
File: 480J 112601 . By:BV . Date:25:09:96 . Time:12:35 LOP8M. V8.0. Page 01:01
Codes: 7291 Signs: 4644 . Length: 60 pic 11 pts, 257 mm

Journal of Mathematical Psychology � MP1126

journal of mathematical psychology 40, 185�202 (1996)

Empirical Recovery of Response Time Decomposition Rules
I. Sample-Level Decomposition Tests
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E. N. Dzhafarov and R. Schweickert (1995, Journal of Mathematical
Psychology, 39, 285�314) developed a mathematical theory for the
decomposability of response time (RT) into two component times that
are selectively influenced by different factors and are either stochasti-
cally independent or perfectly positively stochastically interdependent
(in which case they are increasing functions of a common random
variable). In this theory, RT is obtained from its component times by
means of an associative and commutative operation. For any such
operation, there is a decomposition test, a relationship between observ-
able RT distributions that holds if and (under mild constraints) only if
the RTs are decomposable by means of this operation. In this paper, we
construct a sample-level version of these decomposition tests that serve
to determine whether RTs that are represented by finite samples are
decomposable by means of a given operation (under a given form of
stochastic relationship between component times, independence or
perfect positive interdependence). The decision is based on the asymp-
totic p-values associated with the maximal distance between empirical
distribution functions computed by combining in a certain way the RT
samples corresponding to different treatments. ] 1996 Academic Press, Inc.

PROBLEM

In this paper, we construct and investigate a sample-level
version of the decomposition tests proposed on a popula-
tion level by Dzhafarov and Schweickert (1995). The
decomposition tests serve to decide in what way a response
time (RT), whose distribution depends on two experimental
factors, can be decomposed into two component times that
are selectively influenced by these factors and have a
specified form of stochastic relationship between them.
Denoting the RT by T(:, ;), where : and ; are the two
experimental factors mentioned, the decompositions invest-
igated by Dzhafarov and Schweickert can be presented as

T(:, ;) =d A(:) H B(;), A(:) �-�s B(;), (1)

where A(:) and B(;) are component times selectively
influenced by : and ;, =

d
means ``is distributed as,'' and H

is an associative and commutative algebraic operation,
referred to as the decomposition rule. The symbol �-�s

denotes one of two simple forms of stochastic relationship
between A(:) and B(;): either these component times are
stochastically independent, which is denoted by A(:) =

B(;), or they are perfectly positively stochastically inter-
dependent, A(:) & B(;), which means that for any values of
: and ;, they are increasing functions of each other (that is,
they can be viewed as increasing functions of a single ``inter-
nal source of variability''). Following Dzhafarov and
Schweickert (1995), we abbreviate stochastic independence
as s.-independence, and perfect positive stochastic interde-
pendence as p.p.s.-interdependence. Either of these forms of
stochastic relationship makes A(:) H B(;) uniquely deter-
mined by the marginal distributions of the component
times, for any H, with no restrictions imposed on these
marginal distributions. (To avoid technical difficulties,
however, we impose in this paper some smoothness con-
straints on both the distribution functions and their inver-
ses, the quantile functions.)

In Dzhafarov and Schweickert's theory, the decomposi-
tion rule H is the only thing to be determined. That the
component times are influenced by : and ; selectively, and
that their stochastic relationship �-�s has a particular form
(= or &) are not falsifiable assumptions; rather they should
be considered parts of the definition of what kind of compo-
nent times the decomposition rule sought is applied to. (See,
however, Dzhafarov, 1992, and Dzhafarov 6 Rouder, 1996,
for an empirical test of s.-independence versus p.p.s.-interde-
pendence in a different context.)

In a 2_2 (subset of a) crossed factorial design, (:1 , :2)_
(;1 , ;2), one can denote

Tij=T(:i , ;j), Ai=A(:i), Bj=B(;j) (i=1, 2, j=1, 2)

and represent (1) as a system of four distributional
equations,

{
T11 =d A1 H B1 (A1 �-�s B1)

(2)
T12 =d A1 H B2 (A1 �-�s B2)

T21 =d A2 H B1 (A2 �-�s B1)

T22 =d A2 H B2 (A2 �-�s B2),
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where �-�s has the same meaning in all four equations, either
= or &. A necessary condition for such a decomposability is

T11 H T22 =d T12 H T21 (T11 �-�s T22 , T12 �-�s T21). (3)

This proposition is referred to as the (population-level)
decomposition test for H, or (H)-test, because if (3) does
not hold, then the RT is not (H)-decomposable (i.e., it is
not decomposable by means of the operation H). For a
given H and a given form of �-�s , the distributions of
T11 H T22 and T12 H T21 are observable, as they are
uniquely determined by those of the observable random
variables T11 , T12 , T21 , T22 . Namely,

Prob[Tij H T3&i, 3& j�t | Tij = T3&i, 3& j]

=||
u H v�t

dFij (u) dF3&i, 3& j (v)

(4)
Prob[Tij H T3&i, 3& j�t | Tij & T3&i, 3& j]

=|
Tij ( p) H T3&i, 3& j ( p)�t

dp,

where i=1, 2, j=1, 2, Fij (t) is the distribution function for
Tij , and Tij ( p)=F&1

ij ( p) is its quantile function (0�p�1).
In the special case of additive decompositions into s.-

independent components (i.e., when H is + and �-�s is =),
the decomposition test (3) becomes the familiar ``summa-
tion test,'' proposed by Ashby and Townsend (1980) and
elaborated by Roberts and Sternberg (1992).

In the context of the present work, the central problem
investigated in Dzhafarov and Schweickert (1995) is that of
the uniqueness of the decomposition rule: if H and V are two
different operations, can a RT be both (H)-decomposable
and (V)-decomposable, assuming the same form of
stochastic relationship between component times? Under
certain constraints, listed below, the answer to this ques-
tions turns out to be negative: a successful (H)-test excludes
the possibility of a success for another, (V)-test (under the
same form of �-�s ), excluding thereby the possibility that the
RT in question is (V)-decomposable. The constraints are as
follows.

First, the class of the decomposition rules to which H and
V belong must be confined to a proper subclass of
associative and commutative operations, termed the simple
operations. This subclass consists of the operations
min[a, b], max[a, b], and all operations a�b with ``addi-
tion-like'' properties: continuous in both arguments, strictly
increasing in both arguments, and mapping onto their
domains. One can think of the simple operations as
obtained by the following algorithm: choose a strictly
monotonic continuous function g, and define an operation
a H b as

a H b#g&1[ g(a) 7g(b)], (5)

where 7 is one of the three ``prototypical'' operations,
min[a, b], max[a, b], or a+b. Examples of addition-
like operations g&1[ g(a)+g(b)] (on the domain of posi-
tive reals) are a+b, a_b, (ak+bk)1�k, etc.; however,
all ``maximum-like'' and ``minimum-like'' operations,
g&1[max[ g(a), g(b)]] and g&1[min[ g(a), g(b)]], simply
coincide with max[a, b] and min[a, b] themselves (not
necessarily respectively). The operations max[a, b] and
min[a, b] can also be construed as limiting cases for addi-
tion-like operations: for positive a and b, (ak+bk)1�k tends
to max[a, b] and min[a, b] as k tends to � and &�,
respectively.

Second, the competing decomposition rules H and V
must be ``algebraically distinct.'' This means that for any u
and v, there is at most one unordered pair (a, b) that
satisfies the system of equations

{a H b=u
a V b=v.

The examples of simple operations given above, min[a, b],
max[a, b], a+b, a_b, (ak+bk)1�k, etc., are all pairwise
algebraically distinct.

The third and final constraint is imposed on the quad-
ruple of observable RTs T11 , T12 , T21 , T22 . Let F11(t),
F12(t), F21(t) , F22(t) be their respective distribution func-
tions. If

{max[F12(t), F21(t)]#max[F11(t), F22(t)]
min[F12(t), F21(t)]#min[F11(t), F22(t)],

then F12(t) and F21(t) are called ``cross-over rearrange-
ments'' of F11(t) and F22(t) (see Dzhafarov 6 Schweickert,
1995, for a detailed explanation). The requirement is that
this should not be the case. In particular, it should not be
the case that

{F11(t)#F21(t)
F22(t)#F12(t)

or {F11(t)#F12(t)
F22(t)#F21(t).

(6)

In either of the latter cases, at least one of the index factors
is ineffective: changes in its level do not affect the RT dis-
tribution at any level of the other factor. When this happens,
the RTs T11 , T12 , T21 , T22 trivially satisfy (3) for any opera-
tion H, and nothing can be deduced about their decom-
posability. Note that cross-over rearrangements, as well as
their special case, ineffective index factors, are defined solely
in terms of observable RTs, and are therefore empirically
identifiable in principle.

In the subsequent discussion these constraints are
assumed to be satisfied implicitly. There is hardly a cause for
concern here: theoretically interesting competing decom-
position rules are likely to be algebraically distinct simple
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operations, and when both factors are effective, cross-over
rearrangements are highly artificial and unlikely to occur.
The degenerate case when one of the factors is ineffective
can, however, take place, and it should be excluded from
consideration. In the context of the present research, the
concern associated with this case is that even when both fac-
tors are effective on a population level, the effect of one of
them may be too weak to enable one to recover the true
decomposition rule in a competition with other operations.

To sum up the relevant aspects of Dzhafarov and
Schweickert's theory: if RTs T11 , T12 , T21 , T22 are de facto
(H)-decomposable, as in (2), then the decomposition tests
uniquely determine whether a given operation is the true
decomposition rule H. Indeed, it is guaranteed that

{T11 H T22 =d T12 H T21 (T11 �-�s T22 , T12 �-�s T21)
(7)

T11 V T22 {
d

T12 V T21 (T11 �-�s T22 , T12 �-�s T21)

for any operation V other than H.
Note that the unique recovery of the decomposition rule

does not imply a unique recovery of the component times:
generally, (H)-decomposable RTs T11 , T12 , T21 , T22 allow
for more than one quadruple of component times A1 , B1 ,
A2 , B2 . Recall also that the decomposition tests are not
designed to test the form of stochastic relationship. The
latter should be taken as part of the definition of the
component times to be connected by the operation sought.

Now we can specify the sample-level problem we focus on
in this work. Let RTs T11 , T12 , T21 , T22 be (H)-decom-
posable, under a given form of stochastic relationship �-�s .
For any operation h (identical to or different from H),
denote by Ch(t) the distribution function of the ``cross''
combination T12 h T21 (T12 �-�s T21) and by Uh(t) the dis-
tribution function of the ``uncross'' combination T11 h T22

(T11 �-�s T22). Let d[Uh(t), Ch(t)] be some dissimilarity
function on the space of distribution functions (vanishing if
and only if the two distribution functions are identical). We
can restate (7) in the following form:

d[UH(t), CH(t)]=0, d[U
*

(t), C
*

(t)]>0. (8)

Here V is any operation other than the true decomposition
rule H. Obviously, this proposition cannot be verified
directly if the RTs T11 , T12 , T21 , T22 are only represented
by finite-size samples. All one can do in this case is to con-
struct consistent estimators Dh for the inter-distributional
dissimilarities d[Uh(t), Ch(t)], and to base one's decisions
on these estimators' values.

The decision considered in this paper is whether a given
operation h is the true decomposition rule H (that is

assumed to exist).1 In statistical terms, the null hypothesis
that h is H is tested against the generic alternative that h
is different from H. Intuitively, if the null hypothesis is
correct, then the observed value of Dh=DH should be suf-
ficiently small. One justifies this intuition by showing that,
as the sample sizes for the RTs T11 , T12 , T21 , T22 increase
beyond bound,

{Prob[DH<=] � 1,
Prob[D

*
<=] � 0,

for all =>0
for some =>0

(9)

for any operation V other than H.
In the next section we construct inter-distributional dis-

similarities (in fact, distances) and their estimators in such
a way that p-values associated with the asymptotic sampling
distribution of DH can be analytically evaluated (or
enclosed between bounds), for any operation H and for
either of the two forms of stochastic relationship.

To avoid technical difficulties we assume that the dis-
tribution functions Fij (t) of RTs Tij (i=1, 2, j=1, 2) are
piecewise differentiable and have piecewise differentiable
inverses Tij ( p), 0�p�1, the quantile functions. Then the
same is true for the distribution and quantile functions

Uh(t)= , U&1
h ( p)= , for T11 h T22 (T11 = T22),

Ch(t)= , C&1
h ( p)= , for T12 h T21 (T12 = T21),

Uh(t) | | , U&1
h ( p) | | , for T11 h T22 (T11 & T22),

Ch(t) | | , C&1
h ( p) || , for T12 h T21 (T12 & T21).

The notation refers to ``uncross'' and ``cross'' combinations
of s.-independent (=) and p.p.s.-interdependent (&) RTs by
means of the operation h. We will also assume piecewise
differentiability of all simple operations in both arguments:
this is trivially satisfied when h is minimum or maximum,
and for the addition-like operations this is equivalent to the
piecewise differentiability of the function g in a h b=
g&1[ g(a)+g(b)].

All proofs and comments of a mathematical nature are
relegated to the Appendices.

SAMPLE-LEVEL DECOMPOSITION TESTS:
ASYMPTOTIC p-VALUES

Let [T1
ij , ..., Tn

ij] be a random sample from Tij (i.e., inde-
pendent random variables distributed as Tij), and let

187RESPONSE TIME DECOMPOSITION RULES, I

1 Dzhafarov and Schweickert determined that a successful (H)-test
guarantees that the RTs in questions are (H)-decomposable when the form
of stochastic relationship is p.p.s.-interdependence, or if H is minimum
or maximum under s.-independence; however, if H is an addition-like
operation, then under s.-independence, it is possible that RTs are not
decomposable by means of any simple operation even when the (H)-test is
successful.



File: 480J 112604 . By:BV . Date:25:09:96 . Time:12:35 LOP8M. V8.0. Page 01:01
Codes: 5728 Signs: 3174 . Length: 56 pic 0 pts, 236 mm

[T (1)
ij , ..., T (n)

ij ] be the same random sample arranged in an
increasing order (i=1, 2, j=1, 2). Then the sequences

[T1
11 h T1

22 , ..., Tn
11 h Tn

22]

and

[T1
12 h T1

21 , ..., Tn
12 h Tn

21]

are random samples from T11 h T22 (T11 = T22) and
T12 h T21 (T12 = T21), respectively. Denoting the (ran-
dom) empirical distribution functions corresponding to
these two sequences by Un

h(t)= and Cn
h(t)= , respectively,

we have from classical statistical theory (see, e.g., Cso� rgo,
1983)

{Un
h(t)= w�a.s. Uh(t)=

(10)
Cn

h(t)= w�a.s. Ch(t)=

(a.s. stands for almost sure convergence).
In the case of p.p.s.-interdependence, we form the sequen-

ces of paired empirical quantiles

[T(1)
11 h T (1)

22 , ..., T (n)
11 h T (n)

22 ]

and

[T(1)
12 h T (1)

21 , ..., T (n)
12 h T (n)

21 ].

These sequences cannot be viewed as ordered random sam-
ples from T11 h T22 (T11 & T22) and T12 hT21 (T12 & T21),
because the paired values, say, T (i)

11 and T (i)
22 , do not have the

same population quantile rank. Nevertheless, as shown in
Appendix 1, here too we have the almost sure convergence

{Un
h(t) | | w�a.s. Uh(t) | |

(11)
Cn

h(t) | | w�a.s. Ch(t) | | ,

where Un
h(t) | | and Cn

h(t) | | denote the (random) empirical
distribution functions corresponding to the two sequences
above.

A convenient choice for an inter-distributional dis-
similarity function d[Uh(t), Ch(t)], under either form of
stochastic relationship, is the supremal distance

sup
t

|Uh(t)&Ch(t)|.

Its familiar estimator Dh is the Smirnov distance

Dh=sup
t

|Un
h(t)&Cn

h(t)|.

It is easy to show (see Appendix 2) that (10) and (11)
respectively imply

sup
t

|Un
h(t)=&Cn

h(t)= | w�a.s. sup
t

|Uh(t)=&Ch(t)= |
(12)

sup
t

|Un
h(t) | |&Cn

h(t) | | | w�a.s. sup
t

|Uh(t) | | &Ch(t) | | |.

From this, (9) follows immediately, and it becomes clear
that the asymptotic p-values associated with values dh of
Dh should be computed as Prob[DH>dh]; one may
decide to reject the hypothesis that h is H (the true decom-
position rule) if and only if the computed p-value falls below
one's idea of a small probability (significance level). We
come now to the problem of deriving the asymptotic
distribution of DH .

In the case of s.-independence, DH is the classical
Smirnov statistic, and it is known that

DH=sup
t

|Un
H(t)=&Cn

H(t)= | w�d �2
n

sup
p

|B( p)|, (13)

where w�d indicates convergence in distribution (as n
increases), and B( p), 0�p�1, is a Gaussian process
known as a Brownian bridge (see Appendix 3). The
supremum of the absolute value of a Brownian bridge has a
known distribution function (e.g., Kendall 6 Stuart, 1967),

B(z)=Prob[sup
p

|B( p)|�z]=1&2 :
�

r=1

(&1)r&1 e&2(rz)2
,

which allows one to compute the asymptotic p-values as

lim
n � �

Prob[DH>dh]=1&B \�n
2

dh+ . (14)

In the case of p.p.s.-interdependence the sampling theory
is more complicated. As shown in Appendix 4, we have in
this case

DH=sup
t

|Un
H(t) | |&Cn

H(t) | | | w�d
1

- n
sup

p
|*pB11( p)

+(1&*p) B22( p)&'p B12( p)&(1&'p) B21( p)|,

(15)

where B11( p), B22( p), B21( p), B12( p), 0�p�1, are four
stochastically independent Brownian bridges, and *p and 'p

are deterministic functions of p whose values are confined
to the interval [0, 1]. Although for terminological sim-
plicity we continue to refer to this statistic as the Smirnov
distance, its asymptotic distribution is different from (13).
Asymptotic p-values associated with this statistic are not
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FIG. 1. Quantiles of DH against the corresponding quantiles of the Smirnov statistic under p.p.s.-interdependence, for a quadruple of component time
distributions having the same shape. The solid, unit-slope lines represent the values of - (2�n) B&1(1&:), the dotted lines represent the values of
- (1�n) B&1(1&:).

available, but one can derive for them the following lower
and upper bounds (Appendix 5):

{
lim

n � �
Prob[DH>dh]

�Prob[sup
p

|B( p)|>- n dh]=1&B(- n dh)

lim
n � �

Prob[DH>dh]

�Prob[sup
p

|B( p)|>�n
2

dh]=1&B \�n
2

dh+ .

(16)

where the notation is the same as in (13) and (14). This
suggests that if one has to formally reject or retain the
hypothesis that h is H (against the generic alternative),
then the decision rule should be tripartite:

:<1&B(- n dh) O retain

:>1&B \�n
2

dh+O reject

1&B(- n dh)�:�1&B \�n
2

dh+
O indefinite (more data needed).

The evaluations given in (16) can sometimes be improved.
The derivations in Appendix 4 show, in particular, that if
the true decomposition rule H is maximum, or minimum,
then

*p#1, 'p#1,

and the asymptotic p-values in (16) merge with their upper
bounds, becoming thereby identical to the asymptotic
p-values in the case of s.-independence, (14). If, however,
H is an addition-like operation, then in order to improve

189RESPONSE TIME DECOMPOSITION RULES, I
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the evaluations given in (16), one should know something
about the population quantiles Tij ( p) of RTs Tij (i=1, 2,
j=1, 2). For example, when the true decomposition rule is
addition,

{
*p=

dT11( p)�dp
dT11( p)�dp+dT22( p)�dp

'p=
dT12( p)�dp

dT12( p)�dp+dT21( p)�dp
.

The situation simplifies if one has reason to believe that the
RTs being combined, Tij and T3&i, 3& j (i=1, 2, j=1, 2), are
linearly related to each other:

{T22 =d bu T11+au , bu>0

T21 =d bcT12+ac , bc>0.

This means that when a treatment changes in both factors,
the RT distribution may only change its mean and variance,

FIG. 2. Quantiles of DH against the corresponding quantiles of the Smirnov statistic under p.p.s.-interdependence, for a quadruple of component time
distributions having different shapes. The solid and dotted lines are as in Fig. 1.

but not its shape. This will follow, for example, from the
assumption that the hypothetical component times, A1 , A2 ,
B1 , B2 , all have the same shape. Then, as shown in
Appendix 5,

lim
n � �

Prob[DH>dh]=1&B \�n
�

dh+ , (17)

where the constant is

�=\ 1
1+bu+

2

+\ bu

1+bu+
2

+\ 1
1+bc+

2

+\ bc

1+bc+
2

.

This constant can be estimated by comparing the sample
variances for Tij and T3&i, 3& j (i=1, 2, j=1, 2). It is always
true that 1���2, but if the differences in the variance
values are not too large (say, less than by a factor of 10),
then � is sufficiently close to 1. In such a case the asymptotic
p-values in (16) are close to their lower bounds.

Analogous considerations can be applied to other addi-
tion-like operations, such as multiplication, as they can all

190 DZHAFAROV AND CORTESE
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be reduced to addition by g-transforming the values of T11 ,
T12 , T21 , T22 (see (5)). The assumption of shape invariance,
however, then becomes

{g(T22) =d bu g(T11)+au , bu>0

g(T21) =d bc g(T12)+ac , bc>0,

which may or may not be considered justifiable.
Figures 1 and 2 illustrate some of the points just made

about the distribution of DH under the assumption of p.p.s.-
interdependence between component times. These figures
show the relationship between quantiles of DH , obtained by
a Monte-Carlo simulation, and the corresponding quantiles
of the classical Smirnov statistic. The component times were
chosen to be Weibull-distributed,

{
A1 =d bA1[&log(1&P)]cA1

&1

(18)
A2 =d bA2[&log(1&P)]cA2

&1

B1 =d bB1[&log(1&P)]cB1
&1

B2 =d bB2[&log(1&P)]cB2
&1

,

where P is the unit-uniformly distributed quantile rank. The
RTs T11 , T12 , T21 , T22 are then computed as

Tij =d bAi[&log(1&P)]cAi
&1

H bBj [&log(1&P)]cBj
&1

(i=1, 2, j=1, 2). (19)

Samples of size n=300 were selected from these popula-
tions, [t1

ij , ..., tn
ij], ordered, [t (1)

ij , ..., t (n)
ij ], and combined as

[t (1)
11 H t (1)

22 , ..., t (n)
11 H t (n)

22 ]
and

[t (1)
12 H t (1)

21 , ..., t (n)
12 H t (n)

21 ].

Then the supremal distance dH was computed between the
empirical distribution functions corresponding to these two
sequences. This procedure was repeated 2500 times, yielding
the same number of dH-values, from which we estimated
the asymptotic quantiles d 1&:

H , for quantiles ranks (1&:)
ranging from 0.1 though 0.99:

lim
n � �

Prob[DH>d 1&:
H ]=:.

We used three operations to serve, in a succession, as the
true decomposition rule: plus, maximum, and minimum. In
the latter two cases the quantiles d 1&:

H , as predicted, simply
coincide with the corresponding quantiles of the classical
Smirnov statistic,

d 1&:
H =�2

n
B&1(1&:).

For additive decompositions, Fig. 1 represents a case when
the distributions of Tij and T3&i, 3& j (i=1, 2, j=1, 2) have
identical shapes, so that (17) applies, with the true value of
� only negligibly different from 1:

d 1&:
H r�1

n
B&1(1&:).

Figure 2 represents a case when the shapes of Tij and
T3&i, 3& j (i=1, 2, j=1, 2) are different, and when the
operation is addition we cannot improve the evaluations
given in (16) theoretically. However, the same approxima-
tion holds here too, which probably indicates that it is
sufficiently robust with respect to violations of the shape
invariance assumption, provided that the variances of the
RTs being combined are not greatly different.

SAMPLE-LEVEL DECOMPOSITION TESTS:
POWER ANALYSIS

For an incorrect operation V (i.e., any operation different
from the true decomposition rule H) the asymptotic
statistical power at a significance level : is

lim
n � �

Prob[D
*

>d (1&:)
H ].

Unfortunately, under both forms of stochastic relationship,
the asymptotic sampling distribution of D

*
depends on the

entire course of the distribution functions U
*

(t) and C
*

(t),
and cannot be evaluated. Indeed, as shown in Appendix 3,
in the case of s.-independence,

D
*

=sup
t

|Un

*
(t)=&Cn

*
(t)= | w�d sup

t }U*
(t)=&C

*
(t)=

+�1
n

B[U
*

(t)=]&�1
n

B[C
*

(t)=] } , (20)

whereas in the case of p.p.s.-interdependence,

D
*

=sup
t

|Un

*
(t) | |&Cn

*
(t) | | | w�d sup

t }U*
(t) | |&C

*
(t) | |

+
1

- n
[*pB11[U

*
(t) | |]+(1&*p) B22[U

*
(t) | |]

&'pB12[C
*

(t) | |]&(1&'p) B21[C
*

(t) | |]] } , (21)

with the same notation as in (13) and (15).
One can, however, derive lower bounds for the asymp-

totic power in terms of the distance

2
*

=sup
t

|U
*

(t)&C
*

(t)|.
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Namely, it immediately follows from the classical theory
of the Smirnov statistic (Kendall 6 Stuart, 1967; see
Appendix 6) that in the case of s.-independence,

lim
n � �

Prob[D
*

>d (1&:)
H ]

= lim
n � �

Prob {D
*

>�2
n

B&1(1&:)=
�1&8[- 2n 2

*
+2B&1(1&:)]

+8[- 2n 2
*

&2B&1(1&:)], (22)

where 8 is the standard normal integral.

FIG. 3. Power versus significance curves for three different sample sizes when the true decomposition rule is addition, under the two forms of
stochastic relationship. (All curves are computed for one and the same quadruple of component time distributions.)

The same evaluation turns out to apply to the case of
p.p.s.-interdependence. The only difference is that since

�1
n

B&1(1&:)�d (1&:)
H ��2

n
B&1(1&:),

the equality sign in (22) should now be replaced with an
inequality:

lim
n � �

Prob[D
*

>d (1&:)
H ]

� lim
n � �

Prob {D
*

>�2
n

B&1(1&:)=
�1&8[- 2n 2

*
+2B&1(1&:)]

+8[- 2n 2
*

&2B&1(1&:)]. (23)
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If, however, the evaluation of d (1&:)
H is improved, as dis-

cussed in the previous section, then the lower bound (23) for
the asymptotic power can be improved accordingly. In
particular, if (17) holds, and the coefficient � (1���2)
can be estimated (e.g., as being close to 1), then the right-
hand expression in (23) increases to become

1&8[- 2n 2
*

+- 2� B&1(1&:)]

+8[- 2n 2
*

&- 2� B&1(1&:)]. (24)

In the usual way, the lower bounds (22) and (23) can be
used to compute the minimum sample sizes for the RTs T11 ,
T12 , T21 , T22 that would guarantee a given power at a given

FIG. 4. Same as in Fig. 3, except that the true decomposition rule is maximum. The missing or incomplete curves in one of the panels are due to their
closeness to the plot frame.

significance level for a given value of 2
*

(or conversely, to
compute the minimum value of 2

*
that is guaranteed to

correspond to a given power at a given significance level).
For instance, it is easy to estimate that one would need at
most

n=2 \B&1(1&:)
2

*
+

2

(25)

observations per treatments to guarantee that the power
exceeds 0.5 at a conventional significance level : (say, below
0.2). If 2

*
is on the order of 0.1, this means hundreds of

observations per treatment, which is a relatively small
experiment. If, however, 2

*
is on the order of 0.01, this

figure rises to tens of thousand��clearly unrealistic for an
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experiment. In the case of p.p.s.-interdependence, provided
one can estimate the parameter � in (24), these figures can
be lowered, but not by more than a factor of 2 (which is
achieved at �=1).

One should keep in mind that the estimates just given are
only those of the upper bounds for the required sample
sizes, based on the lower bounds for the asymptotic power.
One cannot infer from these estimates any conclusions con-
cerning the factual asymptotic power of a (H)-test against
an alternative operation V, or the relative asymptotic
powers of such a test under the two forms of stochastic rela-
tionship. For any two operations, H (the true one) and V
(the incorrect one), the magnitude of 2

*
depends, in a

complicated way, on the distributions of the RTs T11 , T12 ,
T21 , T22 and on the form of stochastic relationship.
Moreover, the magnitude of 2

*
is by far not the sole deter-

minant of the power: the latter, as shown in (20) and (21),

FIG. 5. Same as in Fig. 3, except that the true decomposition rule is minimum.

is determined by the entire course of the functions U
*

(t) and
C

*
(t).

Figures 3�5 show examples of conventional significance
versus power curves obtained by means of a Monte-Carlo
simulation. The simulation is essentially the same as
described in relation to Figs. 1 and 2, except that now we
deal with both forms of stochastic relationship, and the dis-
tributions for the Smirnov distances were computed not
only for the true decomposition rule, but also for the com-
peting operations. The RTs T11 , T12 , T21 , T22 were com-
puted from the Weibull-distributed component times (18):
they were computed according to (19) in the case of p.p.s.-
interdependence, and as

Tij =d bAi[�log(1&P)]cAi
&1

HbBj[�log(1&Q)]cBj
&1

, P = Q

(26)
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in the case of s.-independence (i=1, 2, j=1, 2; P and Q are
unit-uniformly distributed). The true decomposition rule H
was, in a succession, plus, maximum, or minimum, the
remaining two serving as the competing alternatives.

Samples of a given size n were selected from these popula-
tions and combined by means of all three operations and
according to both forms of stochastic relationship,

[t (1)
11 +t (1)

22 , ..., t (n)
11 +t (n)

22 ]

and [t (1)
12 +t (1)

21 , ..., t (n)
12 +t (n)

21 ]

[min[t (1)
11 , t (1)

22 ], ..., min[t (n)
11 , t (n)

22 ]]

and [min[t (1)
12 , t (1)

21 ], ..., min[t (n)
12 , t (n)

21 ]]

[max[t (1)
11 , t (1)

22 ], ..., max[t (n)
11 , t (n)

22 ]]

and [max[t (1)
12 , t (1)

21 ], ..., max[t (n)
12 , t (n)

21 ]]

in the case of p.p.s.-interdependence, and

[t1
11+t1

22 , ..., tn
11+tn

22]

and [t1
12+t1

21 , ..., tn
12+tn

21]

[min[t1
11 , t1

22], ..., min[tn
11 , tn

22]]

and [min[t1
12 , t1

21], ..., min[tn
12 , tn

21]]

[max[t1
11 , t1

22], ..., max[tn
11 , tn

22]]

and [min[t1
12 , t1

21], ..., max[tn
12 , tn

21]]

in the case of s.-independence. Then the supremal distances
dH (for the operation chosen to serve as the true decomposi-
tion rule), d

*1
, and d

*2
(for the two remaining operations)

were computed between the empirical distribution functions
corresponding to these ``cross'' and ``uncross'' sequences in
each pair. This procedure was repeated 2500 times, allowing
us to estimate the distributions of DH , D

*1
, and D

*2
for

every choice of the true decomposition rule, form of
stochastic relationship, and sample size per treatment.

The results are only shown for the same parameters of the
Weibull-distributed component times as in Fig. 1, but they
are essentially the same for a broad spectrum of other
parameter values (both scale and shape). In the case
of s.-independence, in order to achieve comparable signi-
ficance versus power curves, one needs by an order of
magnitude larger sample sizes per treatment than in the case
of p.p.s.-interdependence. At the same time, even in the case
of s.-independence the sample sizes (say, 5000 per treat-
ment) are within the reach of an experiment, though a large
one.

Direct computation of the functions

|U
*1

(t)&C
*1

(t)| and |U
*2

(t)&C
*2

(t)|

for the simulated RTs in Figs. 3�5 shows that they are by an
order of magnitude larger in the case of p.p.s.-interde-
pendence (reaching values on the order of 0.1 at the
supremum) than they are in the case of s.-independence (on
the order of 0.01 at the supremum). This provides an
obvious explanation for the observed power superiority of
the p.p.s.-interdependence. One should be careful, however,
not to overgeneralize this observation: with different dis-
tributions the power superiority effect might very well be
reversed. To see this clearly, consider the following example.

Let FA1(t)<FB1(t)<FA2(t)<FB2(t) be distribution func-
tions for component times A1 , B1 , A2 , B2 , stochastically
ordered as shown. If the true decomposition rule is maxi-
mum, while the competing incorrect operation is minimum,
it is easy to derive that

|Umin(t) | |&Cmin(t) | | |=|FA2(t)&FB1(t)|

|Umin(t)=&Cmin(t)= |=|FA1(t)&FA2(t)| |FB1(t)&FB2(t)|.

Obviously, it is possible that |FA2(t)&FB1(t)|<|FA1(t)&
FA2(t)| |FB1(t)&FB2(t)|, at all moments t, in which case the
power will be higher under s.-independence. If, however, the
successive intervals between the distribution functions
FA1(t)<FB1(t)<FA2(t)<FB2(t) are of the same order of
magnitude (at any moment t), then it is easy to see that
|FA1(t)&FA2(t)| |FB1(t)&FB2(t)| will be by an order of
magnitude smaller than |FA2(t)&FB1(t)|, and the power
will be higher under p.p.s.-interdependence, as it was in our
simulations.

The sampling distributions of the Smirnov distances Dh

(whether or not h is the true decomposition rule) are criti-
cally determined by the pairing schemes employed in form-
ing the ``uncross'' and ``cross'' combinations of the RTs Tij

and T3&i, 3& j (i=1, 2, j=1, 2). In the case of p.p.s.-inter-
dependence there seem to be no reasonable alternatives to
the pairing of the sample values having identical ordinal
positions,

[T (1)
ij h T (1)

3&i, 3& j , ..., T (n)
ij h T (n)

3&i, 3& j].

In the case of s.-independence, however, one might
wonder whether the power of a sample-level (H)-test could
be increased by forming a Cartesian product of the two
samples,

[T(k)
ij h T (l)

3&i, 3& j], k=1, ..., n; l=1, ..., n, i=1, 2, j=1, 2

instead of their random ``linear'' pairing,

[T1
ij h T1

3&i, 3& j , ..., Tn
ij h Tn

3&i, 3& j].
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The empirical distribution functions, ``uncross'' and ``cross,''
between which one is to compute the Smirnov distance,
then could be constructed over the two sets of n2 values.

The Cartesian product scheme may indeed seem natural.
Roberts and Sternberg (1992) used this scheme in their
empirical analysis of additive decompositions into s.-inde-
pendent components. In its general form, for all possible
operations, this scheme was also presented in Dzhafarov
and Schweickert (1995) as the ``operational meaning'' of s.-
independence. However, the n2 values T (k)

ij h T (l)
3&i, 3& j in a

Cartesian product scheme are stochastically interdepen-
dent, which makes the empirical distribution of statistics
computed over these values (including the Smirnov distance
between the ``uncross'' and ``cross'' empirical distribution
functions) both complicated and ill-behaved.

To understand the latter, refer to Fig. 6 that shows the
sampling distributions of Smirnov distance for the opera-
tions plus, maximum, and minimum. These distribution
were obtained by the same Monte-Carlo simulation as
described in relation to Figs. 3�5, except that now we only
deal with the case of s.-independence, and the pairing used
in forming the ``uncross'' and ``cross'' empirical distribution
functions followed the Cartesian product scheme. The upper
panels illustrate the expected fact that the Smirnov distance

FIG. 6. Distribution functions for the Smirnov distance under s.-independence obtained by the Cartesian product scheme. In each of the upper panels,
the solid curve represents the distribution function for an operation serving as the true decomposition rule; the dotted line represents the arithmetic mean
of the two distribution functions for the same operation when it is incorrect. In the lower panels, the three curves (solid, dotted, and dashed) correspond
to three fixed operations (as shown in inset) irrespective of their being true or incorrect.

for any of the three operations is stochastically smaller when
this operation serves as the true decomposition rule than
when it serves as a competing operation. The difference is
very small, however, and quite comparable with what one
would observe under a random ``linear'' pairing for the same
sample size (200 observations per treatment). This shows
that the n2 values in the Cartesian product scheme do not
yield any power advantage.

The focal information, illustrating the ``ill-behavedness''
alluded to earlier, is presented in the lower panels of Fig. 6.
We see here that the Smirnov distance for the operation plus
is always stochastically smaller than that for the operations
maximum or minimum, even when the true decomposition
rule is de facto maximum or minimum, respectively. This
means that, at any given significance level, it will be more
likely to reject the true operation maximum or minimum
than it will be to reject the incorrect operation plus. It is not
difficult to account for this anomalous situation: when
applied to a Cartesian product of two samples, the opera-
tion minimum and maximum create long strings of tied
values (the number of different clusters of tied values being
between n and 2n, among the total of n2 pairs, assuming no
ties in the two samples themselves). Put informally, the
presence of such clusters counters the intermixing of the two
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samples in the ordered sequence of 2n2 values, increasing
thereby the Smirnov distance magnitude (see, e.g.,
Hettmansperger, 1984). The situation would be the same
with all operations that tend to create clusters of close
values, such as ``Minkowski-norm'' operations, (ak+bk)1�k

with large value of |k|.

CONCLUSION

The problem of deciding whether a given operation is a
true decomposition rule has a relatively straightforward
statistical solution. This solution is based on the asymptotic
p-values associated with the Smirnov distance between
empirical distribution functions, the functions being com-
puted by combining in a certain way the RT samples corre-
sponding to opposite treatments (i.e., the treatments with
differing levels in both factors). Under s.-independence, the
distribution of the Smirnov distance coincides with that of
the classical Smirnov statistic; under p.p.s.-interdependence,
this distance is stochastically ``sandwiched'' between the
classical Smirnov statistic and the same statistic scaled
by a factor of 1�- 2 (the bounds that may sometimes be
improved).

The statistical power of a sample-level (H)-test depends
on the alternative operation V, the form of stochastic rela-
tionship, and the distributions of the RTs corresponding to
different treatments. Conservative bounds for the power can
be derived in terms of the Smirnov distance 2

*
between the

empirical distribution functions resulting from combining
the RT samples by means of the alternative operation V.
One cannot, however, estimate 2

*
based only on the opera-

tions H and V and the form of stochastic relationship; even
if one could, 2

*
is not the sole determinant of the factual

power.

APPENDICES: PROOFS AND MATHEMATICAL
COMMENTS

Appendix 1

To prove (11),

Un
h(t) | | w�a.s. Uh(t) | |

(the proof for Cn
h(t) | | and Ch(t) | | is analogous), choose a

quantile rank p (0�p�1) and consider a sequence of
integers k such that k�n � p as n � �. We have then (omit-
ting the subscript & for convenience)

k
n

=Un
h(T (k)

11 h T (k)
22 ) � p.

Since T (k)
11 w�a.s. T11( p), T (k)

22 w�a.s. T22( p), and h is con-
tinuous in both arguments,

T (k)
11 h T (k)

22 w�a.s. T11( p) h T22( p),

and we have

Un
h(T11( p) h T22( p)) w�a.s. p.

This is equivalent to

Un
h(U&1

h ( p)) w�a.s. p,

from which (11) follows immediately, by putting U&1
h ( p)=t.

Appendix 2

To prove (12),

sup
t

|Un
h(t)&Cn

h(t)| w�a.s. sup
t

|Uh(t)&Ch(t)|

(the proof is the same for both = and &, so the subscripts are
omitted), observe that by the classical Glivenko�Cantelli
argument (pointwise a.s. convergence in the space of dis-
tribution functions implies uniform a.s. convergence),

{Un
h(t) w�a.s. Uh(t)

Cn
h(t) w�a.s. Ch(t)

O{
sup

t
|Un

h(t)&Uh(t)| w�a.s. 0

sup
t

|Cn
h(t)&Ch(t)| w�a.s. 0

Statement (12) then follows from the following triangle
inequalities, with d[..., ...] denoting the supremal metric,

d[Un
h(t), Cn

h(t)]�d[Uh(t), Ch(t)]+d[Un
h(t), Uh(t)]

+d[Cn
h(t), Ch(t)]

d[Un
h(t), Cn

h(t)]�d[Uh(t), Ch(t)]&d[Un
h(t), Uh(t)]

&d[Cn
h(t), Ch(t)].

Appendix 3

Here we comment on (13), describing the distribution of
the classical Smirnov statistic, and we present a few mathe-
matical facts we need subsequently. Asymptotically, the
difference (multiplied with - n) between a continuous
distribution function and a corresponding empirical dis-
tribution function is distributed as a Gaussian stochastic
process called the Brownian Bridge, B( p), 0�p�1: it has
the mean of zero, autocovariance function p(1&q), p�q,
and its endpoints are fixed, B(0)=B(1)=0 (which is the
reason it is called a ``bridge''). We need the following
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elementary facts (given here without proof) about Gaussian
stochastic processes (on a unit interval) in general and
Brownian bridges in particular.

First, given several identically distributed independent
Gaussian processes, Xi ( p), and the same number of func-
tions fi ( p), the autocovariance function of � fi ( p) Xi ( p) is
� fi ( p) fi (q) C( p, q), where C( p, q) is the autocovariance
function of Xi ( p), for all i.

Second, if X1( p) and X2( p) have the variance functions
_2

1( p)�_2
2( p) but the same autocorrelation function (the

term used here to denote C( p, q)�_( p) _(q), as opposed to the
autocovariance function C( p, q)), then for any positive c,

Prob[&c�X1( p)�c, for all p]

�Prob[&c�X2( p)�c, for all p].

The same inequality holds if X1( p) and X2( p) have the same
variance function _2( p) but

C1( p, q)�_1( p) _1(q)�C2( p, q)�_2( p) _2(q).

Third, a linear combination � ci Bi ( p) of several inde-
pendent Brownian bridges is a scaled Brownian bridge

�: c2
i B( p).

In particular, under s.-independence, the difference between
the empirical distribution functions Un

H(t)= and Cn
H(t)= ,

with UH(t)=#CH(t)= , is asymptotically distributed as
- (2�n) B( p), because

[Un
H(t)=&Cn

H(t)=]=[Un
H(t)=&UH(t)=]

&[Cn
H(t)=&CH(t)=]

w�d �1
n

B1( p)&�1
n

B2( p)

=d �2
n

B( p),

where p denotes UH(t)=#CH(t)= . This explains (13). For
an incorrect operation V, however, the analogous formula
does not simplify in the same way: using the same logic as
above we only arrive at (20),

Un

*
(t)=&Cn

*
(t)= w�d U

*
(t)=&C

*
(t)=

+�1
n

B[U
*

(t)=]&�1
n

B[C
*

(t)=],

Appendix 4

Here, we prove statement (15) for supt |Un
H(t) | |&

Cn
H(t) | | |, statement (21) for supt |Un

*
(t) | | &Cn

*
(t) | | |, and we

derive explicit expressions for the functions *p and 'p . Recall
that all distribution and quantiles functions are assumed to
be piecewise differentiable.

We prove first that for any operation h,

Un
h(t) | |&Uh(t) | | w�d

1

- n
[*pB11[Uh(t) | |]

+(1&*p) B22[Uh(t) | |]]
(A1)

Cn
h(t) | |&Ch(t) | | w�d

1

- n
['p B12[Ch(t) | |]

+(1&'p) B21[Ch(t) | |]],

where *p and 'p are some functions to be specified. State-
ment (21),

sup
t

|Un

*
(t) | |&Cn

*
(t) | | |

w�d sup
t }U*

(t) | |&C
*

(t) | |+
1

- n
[*pB11[U

*
(t) | |]

+(1&*p) B22[U
*

(t) | |]&'pB12[C
*

(t) | |]

&(1&'p) B21[C
*

(t) | |]] } ,
then follows immediately, by renaming h to V, whereas
statement (15),

sup
t

|Un
H(t) | |&Cn

H(t) | | | w�d
1

- n
sup

p
|*p B11( p)

+(1&*p) B22( p)&'p B12( p)

&(1&'p) B21( p)|,

follows by renaming h to H and denoting UH(t) | |#

CH(t) | | by p.
To prove (A1) for Un

h(t) | |&Uh(t) | | (the proof for
Cn

h(t) | |&Ch(t) | | is analogous), choose a sequence of
integers k such that k�n � p (0�p�1) as n � �, and
observe that (omitting the subscript & for convenience)

Un
h[T11( p) h T22( p)] w�a.s. Uh[T11(P (k)

11 ) h T22(P (k)
22 )],

where P (k)
11 and P (k)

22 are k th order statistics from two inde-
pendent samples of size n from a unit-uniform distribution.
Indeed, both expressions a.s. converge to p, the left-hand
one by Appendix 1, and the right-hand one because all func-
tions involved are continuous, whereas P (k)

ii (i=1, 2) a.s.
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converge to p. As a result, putting Uh(t)=p and using the
fact that U&1

h ( p)=T11( p) h T22( p), we have

Un
h(t)&Uh(t)=Un

h[T11( p) h T22( p)]&p

w�d Uh[T11(P (k)
11 ) h T22(P (k)

22 )]&p.

Taylor-expanding the latter expression in terms of P(k)
11 &p

and P (k)
22 &p, we conclude that for all t, except perhaps for

a countable number of isolated points,

Un
h(t)&Uh(t)

w�d
�[T11(x) h T22( p)]��x |x=p

d[T11( p) h T22( p)]�dp
(P (k)

11 &p)

+
�[T11( p) h T22(x)]��x |x=p

d[T11( p) h T22( p)]�dp
(P(k)

22 &p).

From Appendix 3, we know that - n (P (k)
ii &p) converges in

distribution to a Brownian bridge, and denoting the latter
by Bii ( p) (i=1, 2), we come to

Un
h(t)&Uh(t)

w�d
1

- n {
�[T11(x) h T22( p)]��x |x=p

d[T11( p) h T22( p)]�dp
B11( p)

+
�[T11( p) h T22(x)]��x |x=p

d[T11( p) h T22( p)]�dp
B22( p)= , (A2)

where p at the right denotes Uh(t), and the two Brownian
bridges are mutually independent.

To compute the coefficients at the bridges, assume first
that h is +. Then

Un
h(t)&Uh(t)

w�d
1

- n {
dT11( p)�dp

dT11( p)�dp+dT22( p)�dp
B11( p)

+
dT22( p)�dp

dT11( p)�dp+dT22( p)�dp
B22( p)= ,

and we obtain (A1) with

*p=
dT11( p)�dp

dT11( p)�dp+dT22( p)�dp
. (A3)

If h is some addition-like operation, then there is a
monotonic transformation g (that here is assumed to be
piecewise differentiable) such that a h b#g&1[ g(a)+g(b)].

Using this expression in (A2), we again obtain (A1), this
time with

*p=
g$[T11( p)] dT11( p)�dp

g$[T11( p)] dT11( p)�dp+g$[T22( p)] dT22( p)�dp
. (A4)

To compute the coefficients in (A2) when h is maximum,
observe that we can always put T11( p)�T22( p), at all p.
Indeed, if this is not the case, then we can rename
max[T11( p), T22( p)] to T11( p) and min[T11( p), T22( p)]
to T22( p). This would not change the piecewise differen-
tiability of the functions, and

max[max[T11( p), T22( p)], min[T11( p), T22( p)]]

#max[T11( p), T22( p)].

Assume first that T11( p) never coincides with T22( p) on an
interval. Then T11( p)>T22( p) almost everywhere, which
implies that almost everywhere T11( p)>T22(x) and
T11(x)>T22( p) in some neighborhood of p. Using this in
(A2), we obtain

Un
h(t)&Uh(t) w�d

1

- n
B11( p),

which is (A1) with

*p#1. (A5)

If T11( p) does coincide with T22( p) on some interval, then
consider a sequence of functions T s

11( p) � T11( p) as s � �,
such that T s

11( p)�T22( p) without coinciding with T22( p)
on an interval, for all s. Constructing the distribution
functions Un, s

h (t) and U s
h(t) for every s, we have

Un, s
h (t)&U s

h(t) w�d
1

- n
B11( p).

Since an asymptotic sampling distribution must be stable
with respect to infinitesimal variations in the population
distributions, it must also be true that

Un, s
h (t)&U s

h(t) w�d Un
h(t)&Uh(t),

and we conclude that when h is maximum, (A5) holds
universally. The derivation for the case when h is minimum
is analogous and leads to the same result, *p#1.

This concludes the proof of (A1) and thereby of (15)
and (21).
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Appendix 5

Here, we derive the upper and lower bounds (16) and
evaluation (17) for

lim
n � �

Prob[DH>dh]

=Prob { 1

- n
sup

p
|*pB11( p)

+(1&*p) B22( p)&'pB12( p)

&(1&'p) B21( p)|>dh= .

To obtain the lower bound, observe that

X( p)=*pB11( p)+(1&*p) B22( p)

&'pB12( p)&(1&'p) B21( p)

is a Gaussian stochastic process with zero mean and
autocovariance function

[*p*q+(1&*p)(1&*q)+'p'q

+(1&'p)(1&'q)] p(1&q), p�q.

The variance function of X( p),

[*2
p+(1&*p)2+'2

p+(1&'p)2] p(1&p),

attains its minimum (at all points), and simultaneously, its
autocorrelation function

*p *q+(1&*p)(1&*q)+'p'q+(1&'p)(1&'q)

- *2
p+(1&*p)2+'2

p+(1&'p)2
- *2

q+(1&*q)2+'2
q+(1&'q)2

_� p
1&p �1&q

q
, p�q,

attains its maximum (at all pairs of points) when

*2
p='2

p= 1
4 ,

at all points. As we know from Appendix 3, then

Prob[sup
p

|X( p)|>c]=1&Prob[&c�X( p)�c, for all p]

attains its minimum, for any positive c. We also know from
Appendix 3 that

X� ( p)=\ 1
2B11( p)\ 1

2B22( p)\ 1
2B12( p)\ 1

2B21( p) =d B( p),

where B( p) is some Brownian bridge. As a result, the lower
bound is obtained as

Prob[sup
p

|X� ( p)|>- n dh]

=Prob[sup
p

|B( p)|>- n dh]=1&B(- n dh).

To derive the upper bound, consider a fixed trajectory
(realization of the stochastic process)

X( p)=*pB11( p)+(1&*p) B22( p)

&'pB12( p)&(1&'p) B21( p).

and let P be the point at which

|X( p)|=sup
p

|X( p)|.

All trajectories can be classified into eight disjunctive classes
I1 , ..., I8 depending on the combination of the inequalities

X(P) {>0
�0

, B11(P)&B22(P) {>0
�0

,

B12(P)&B12(P) {>0
�0

.

For each of these classes one can choose a pair

:i={0
1

, ;i={0
1

, i=1, ..., 8,

such that for all trajectories X( p) # Ii ,

sup
p

|X( p)|�sup
p

|Xi ( p)|,

where

Xi ( p)=:i B11( p)+(1&:i) B22( p)&;iB12( p)

&(1&;i) B21( p).

Indeed, the values of :i and ;i can always be chosen so that
the difference

Xi (P)&X( p)=[:i&*p][B11(P)&B22(P)]

+[;i&'p][B21(P)&B12(P)],

has the same sign as X( p).
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We can write now

Prob[sup
p

|X( p)|>- n dh]

= :
8

i=1

Prob[sup
p

|X( p)|>- n dh |X( p) # Ii]

_Prob[X( p) # Ii]

� :
8

i=1

Prob[sup
p

|Xi ( p)|>- n dh |X( p) # Ii]

_Prob[X( p) # Ii]. (A6)

For every i=1, ..., 8, the stochastic process Xi ( p) is a dif-
ference between two independent Brownian bridges, which
is distributed as a scaled Brownian bridge (see Appendix 3),

Xi ( p) =d
- 2 B( p), i=1, ..., 8.

Since events conditioned on mutually exclusive possibilities
are mutually independent, we can continue the chain in
(A6) as

:
8

i=1

Prob[sup
p

|Xi ( p)|>- n dh |X( p) # I i]

_Prob[X( p) # Ii]

= :
8

i=1

Prob[sup
p

- 2 |B( p)|>- n dh |X( p) # Ii]

_Prob[X( p) # Ii]

=Prob {sup
p

|B( p)|>�n
2

dh==1&B \�n
2

dh+ .

This completes the derivation of the upper bound in (16).
To derive (17), replace T22( p) and T21( p) in (A3) of

Appendix 4 (and in the analogous formula for 'p) respec-
tively by

{bu T11( p)+au ,
bcT12( p)+ac ,

bu>0
bc>0

to obtain

*p=
1

1+bu
, 'p=

1
1+bc

.

We know from Appendix 3 that

1
1+bu

B11( p)+
bu

1+bu
B22( p)

&
1

1+bc
B12( p)&

bc

1+bc
B21( p) =d

- � B( p),

where

�=\ 1
1+bu+

2

+\ bu

1+bu+
2

+\ 1
1+bc+

2

+\ bc

1+bc+
2

.

This yields (17) immediately, because

Prob[sup
p

|- � B( p)|>- n dh]=1&B \�n
�

dh+ .

Appendix 6

Here we explain the logic behind the lower bound (22) for
the statistical power. As we know from Appendix 3,

Un

*
(t)=&Cn

*
(t)= w�d U

*
(t)=&C

*
(t)=

+�1
n

B[U
*

(t)=]&�1
n

B[C
*

(t)=].

It is obvious that

Prob {c�U
*

(t)=&C
*

(t)=+�1
n

B[U
*

(t)=]

&�1
n

B[C
*

(t)=]�c, for all t=
does not exceed the same probability computed for just one
t=t~ , the one at which

|U
*

(t~ )&C
*

(t~ )|=sup
t

|U
*

(t)&C
*

(t)|.

The difference Un

*
(t~ )=&Cn

*
(t~ )= is distributed asymptoti-

cally normally, with the mean U
*

(t)&C
*

(t) and variance
that cannot exceed 1�(4n)+1�(4n). From this, expression
(22) is obtained by straightforward transformations.
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