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Dzhafarov (1992, J. Math. Psych. 36, 235�268) analyzed additive
decompositions of simple response time (RT) into two random
variables: a signal-independent component and a component
stochastically decreasing and vanishing as signal magnitude increases.
The asymptotic behavior of RT (the dependence of RT of a given quan-
tile rank on signal magnitude in the region of sufficiently large signals)
was shown to be different under different models of stochastic rela-
tionship between the two RT components. As a simple alternative to
the more traditional stochastic independence model, according to
which the two RT components have stochastically independent sour-
ces of random variability, Dzhafarov proposed a single-variate RT
decomposition model (SVRT) according to which the two com-
ponents are increasing functions of a single common source of random
variability. The two models predict distinctly different patterns of the
asymptotic RT behavior on a population level. Our computer simula-
tions show, however, that if Dzhafarov's test based on this difference is
applied to RT samples generated according to the stochastic inde-
pendence model, the results can sometimes mimic the asymptotic
predictions of the SVRT model. This happens because of the uncer-
tainty in determining the range of signals that are ``sufficiently large'' to
warrant asymptotic approximations. This difficulty can be overcome if
instead of choosing a fixed range of large signals one repeatedly applies
the test to a sequence of nested regions of large signals. Our computer
simulations show that with this approach the two models can be
reliably discriminated on realistically sized RT samples. ] 1996 Academic

Press, Inc.

1. INTRODUCTION: AN ASYMPTOTIC THEORY OF
ADDITIVE RESPONSE TIME DECOMPOSITIONS

Dzhafarov (1992) proposed an asymptotic theory for
additive decompositions of simple response time (RT)
into two random variables: a signal-independent compo-
nent and a signal-dependent component stochastically
decreasing and vanishing as signal magnitude increases. The
theory imposes no a priori constraints on possible

stochastic relationships between the two RT components,
and it predicts that different forms of stochastic relationship
are generally reflected in different patterns of the asymptotic
behavior of RT (the dependence of RT distributions on
signal magnitude in the region of sufficiently large signals).
In particular, the asymptotic behavior of RT is distinctly
different for the two simplest (and in a sense, opposite)
forms of the stochastic relationship: the stochastic inde-
pendence model (Luce 6 Green, 1972; Kohfeld, Santee, 6
Wallace, 1981a, b), according to which the two RT com-
ponents have stochastically independent sources of random
variability, and Dzhafarov's single-variate RT decomposi-
tion model, according to which the two components have a
single, common source of random variability (so that for
any given signal, the two components are deterministic
increasing functions of each other).

Based on the difference in the two models' population-
level predictions, Dzhafarov proposed a linear regression
test designed to discriminate between these models when
RT distributions are represented by samples corresponding
to several distinct signal magnitudes. Our computer simula-
tions show that because of the uncertainty in choosing the
range of signals that are ``sufficiently large'' to warrant
asymptotic approximations (as required by the test), RT
distributions generated according to the stochastic inde-
pendence model can sometimes mimic the asymptotic
predictions of the single-variate RT model. To account for
this result, we analyze the operational meaning of the
mathematical concepts related to the asymptotic behavior
of RT. This leads to a modification of the test in which,
instead of choosing a fixed region of ``sufficiently large''
signals, one repeatedly applies the original test to a series of
nested regions of large signals and observes the pattern of
changes in the test results. Using simulated RT samples of
realistic sizes, we show that with this sequential approach
one can reliably discriminate between the two models of
stochastic relationship.
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The theory presented in Dzhafarov (1992) deals with sim-
ple RT to step-function signals whose amplitude, A, forms
a ``unidimensional strength continuum.'' The latter means
that as A increases, RT stochastically (i.e., for any given
quantile rank) decreases, while the subjective magnitude or
detectability of the signal increases. As an example, if sub-
jects respond to the onset of a light flash, then its physical
intensity forms a ``unidimensional strength continuum.''
Being a stochastically decreasing and nonnegative random
variable, RT converges (in distribution) to some non-
negative random variable R, as A increases.1 It is assumed
that RT can be additively decomposed as

RT(A)=T(A, Z� )+R, (1)

where Z� is some set of random variables (``internal sources
of variability'') such that

(a) the joint distribution of (R, Z� ) does not depend
on A,

(b) for (almost)2 any value z~ of Z� , the nonnegative func-
tion T(A, z~ ) decreases and vanishes as A increases, and

(c) for (almost) any two values z~ 1 and z~ 2 of Z� , the func-
tions T(A, z~ 1) and T(A, z~ 2) vanish with asymptotically
proportional rates,

0< lim
A � �

T(A, z~ 1)
T(A, z~ 2)

<� (2)

(the range of A can always be set to extend from 0 to �).

In this decomposition, R is the ``maximal'' signal-inde-
pendent component of RT, whereas T(A)=T(A, Z� ) is the
``minimal'' signal-dependent component of RT. The com-
ponents are called ``maximal'' and ``minimal'' in the sense
that T(A) cannot be further additively decomposed into
nonnegative components R1 and T1(A). It is clear that the
stochastic relationship between the two RT components is
determined by the joint distribution of (R, Z� ). In particular,
if R and Z� are stochastically independent, then R and T(A)
are stochastically independent for any given A.

The asymptotic proportionality of T(A, z~ ) at different
values of z~ is stated in Dzhafarov (1992) as a different
though mathematically equivalent proposition (``Asymp-
totic Differentiability Assumption'' and Lemma 1.2.2). This
proposition is that T(A, z~ ) is asymptotically factorizable
into a product of a positive function C(z~ ) and a strictly
decreasing positive function s(A) vanishing at A � �:

T(A, z~ )=C(z~ ) s(A)+o[s(A)], (3)

where C(z~ ) is determined uniquely and s(A) asymptotically
uniquely, up to positive scaling coefficients having recipro-
cal values for the two functions.3 Equation (3) means that in
the region of sufficiently large A, the signal-dependent RT
component T(A) is essentially proportional to a random
variable C=C(z~ ), the proportionality coefficient being
some decreasing transformation s of A. It follows that the
stochastic relationship between R and T(A) in the region of
sufficiently large A is essentially determined by the joint dis-
tribution of (R, C). The variable C is termed the ``criterion''
in reference to the Grice-representability of time variables,
as discussed in Dzhafarov (1993).

The following result is central for Dzhafarov's (1992)
analysis (Theorem 3.1.1):

RTp(A)=Rp+E[C | R=Rp] s(A)+o[s(A)], (4)

where RTp(A) and Rp denote the rank-p quantiles of RT(A)
and R, respectively (0<p<1), whereas E[ } } } | } } } ] denotes
conditional expectation. This proposition serves as a basis
for empirical analysis of stochastic relationship between R
and C, which, as we have seen, asymptotically characterizes
the stochastic relationship between R and T(A). For any
quantile rank p, the value of Rp in (4) can be estimated by
the value of RTp(A) at a very large A. The term ``very large''
means that no further increase in A produces a noticeable
change in the RT distribution (an empirical version of
Cauchy's convergence criterion). If the ``asymptotically
linearizing'' transformation s(A) is known, then one can
find E[C | R=Rp] for different values of p by estimating
slopes of the tangent lines drawn to the RT quantile curves,
RTp(A) versus s(A), at their intercepts, Rp . We will refer to
these tangent lines as intercept tangents (Fig. 1).

The problem of finding the asymptotically linearizing
transformation s(A) is simpler than it might seem. In the
best case it is given by a psychophysical model of sensory
processing. In Dzhafarov's (1992) analysis of RT to an
abrupt displacement of a light source, the transformation
used, s(A)=A&2, is derived from a certain model of visual
motion detection (Dzhafarov, Sekuler, 6 Allik, 1993, Equa-
tions A1 and A4). In the absence of such a model, however,
one can always empirically estimate s(A) (more precisely, a
function asymptotically proportional to s(A); see Foot-
note 3) by choosing an arbitrary quantile rank p and
computing RTp(A)&Rp (the latter term being estimated
from RT to a very large signal): indeed, according to (4) this
difference is asymptotically proportional to s(A),

RTp(A)&Rp=const_s(A)+o[s(A)].

49ADDITIVE COMPONENTS OF RESPONSE TIME

1 Hereafter boldface letters stand for random variables; all unidimen-
sional random variables are assumed to be absolutely continuous on some
intervals of reals.

2 ``Almost'' means ``except for a subset of measure zero.''

3 Recall that o[s] is any variable such that o[s]�s � 0 as s � 0. In practi-
cal terms, o[s] can be ignored when s is sufficiently small. The asymptotic
uniqueness of s (up to positive scaling) means that s can be replaced with
a function s* if, and only if, s*�s tends to a positive constant (as A � �).
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FIG. 1. Geometric meaning of Eq. (4) for an arbitrary quantile rank p.

In Dzhafarov (1992, Section 3.4) this technique is used
as well, although instead of choosing a single arbitrary
quantile rank, the estimator of s(A) is computed there by
averaging across a range of quantile ranks. In fact, our pur-
poses would be served by plotting RTp(A) against any
positive linear transformation of (a function asymptotically
proportional to) s(A). This means that one can even avoid
the necessity of estimating Rp and replace s(A) with RTp(A)
itself, for a given quantile rank p or averaged across a range
of quantile ranks. At the end of this paper we show that this
technique works quite well. Until then, however, we assume
that the asymptotically linearizing transformation s(A) is
known theoretically.

It is much more difficult a problem to estimate slopes of
the intercept tangents. In a sense, this difficulty is the main
issue of this paper. Dzhafarov's (1992) approach to this
problem is to choose A-values so large that o[s(A)] in (4)
can be ignored. The quantile curves then are approximately
linear with respect to s(A), and the slopes in question can be
obtained by a standard linear regression procedure. We will
see that this approach may fail to tell apart two very dis-
similar models of stochastic relationship between R and
T(A), focal to our analysis. We consider these models in the
next section.

2. TWO MODELS OF STOCHASTIC RELATIONSHIP

The single-variate RT decomposition model (SVRT
model) is perhaps the simplest possible scheme of stochastic

relationship between the RT components. Our account of
this model is equivalent to that in Dzhafarov (1992), but
follows more closely Dzhafarov (1991). Recall that for any
quantile rank p, RTp(A) decreases in A and converges to
the same-rank quantile Rp of the signal-independent RT
component. In the SVRT model it is assumed that the
difference RTp(A)&Rp is increasing in p (in addition to
being decreasing in A). Because of this, the following special
version of (1) holds:

RT(A)=RT(A, P)=T(A, P)+R(P), (5)

where P is uniformly distributed between 0 and 1, and
RT(A, P), T(A, P), R(P) are quantile functions (inverse dis-
tribution functions, strictly increasing) for random variables
RT(A), T(A), and R, respectively. This implies (and is
implied by) that T(A) and R are increasing deterministic
functions of each other. It is assumed further that for
(almost) any two quantile ranks, 0<p2<p1<1,

1< lim
A � �

T(A, p1)
T(A, p2)

<�, (6)

which is a special version of (2). It immediately follows from
(5) and (6) that

Tp(A)=Cps(A)+o[s(A)], (7)

50 DZHAFAROV AND ROUDER
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where Cp is the rank-p quantile of some positive random
variable C. Since E[C | R=Rp]=Cp , one comes to the
following version of (4):

RTp(A)=Rp+Cps(A)+o[s(A)]. (8)

This means that slopes of the intercept tangents increase
with the intercept values (both Cp and Rp increase with p).
That is, the intercept tangents form a diverging fan pattern
(Fig. 2).

The second simple model of stochastic relationship
between the two RT components assumes that Z� and R in
(1) are stochastically independent (Luce 6 Green, 1972;
Kohfeld et al., 1981a, b), from which it follows that C
and R in (4) are stochastically independent too, and
E[C | R=Rp]=E[C]=C, a positive constant. Equa-
tion (4) therefore acquires the form

RTp(A)=Rp+Cs(A)+o[s(A)]. (9)

This pattern is distinctly different from that described by
(8): all intercept-tangents now have one and the same slope
(Fig. 3).

The patterns shown in Figs. 2 and 3 seem to be the only
two plausible patterns for the asymptotic behavior of RT
quantiles. A range of quantile curves with decreasing slopes
of their intercept tangents would mean that as amplitude
increases beyond a sufficiently high value, the RT quantiles

FIG. 2. The asymptotically diverging pattern of quantile curves predicted by the SVRT model ( p1< p2< p3 are arbitrary quantile ranks).

increase. This seems highly unlikely, if not directly refuted
by available evidence (and this certainly contradicts the
assumption made in the Introduction that amplitude A
forms a ``unidimensional strength continuum''). It seems
also unlikely that RT quantile curves might exhibit the
parallel pattern of Fig. 3 in some quantile rank regions while
being divergent in other regions.

The two models of stochastic relationship represented by
Figs. 2 and 3 lead to very different computational proce-
dures aimed at extracting the signal-dependent component
T(A) from the overall RT��which is the primary goal of
analysis if T(A) is interpreted, justifiably or not, as the dura-
tion of sensory processing. In the stochastic independence
model, T(A) is extracted by deconvolving the distribution of
R (estimated by RT to a very large signal) from the distribu-
tion of RT(A). In the SVRT model, the dependence of
RTp(A) on A is a deterministic function for any given rank
p, and all one has to do to obtain a rank-p quantile of T(A)
is to arithmetically subtract the quantile Rp from the same-
rank quantile RTp(A). This procedure is both simpler and
more reliable. In a broader RT decomposition context,
Dzhafarov and Schweickert (1995) showed that the
assumption of a perfect positive interdependence between
RT components leads to a much simpler analysis of RT dis-
tributions, both conceptually and technically, than the more
traditional assumption of stochastic independence.

Note that competing models of stochastic relationship
between RT components are generally only testable in

51ADDITIVE COMPONENTS OF RESPONSE TIME
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FIG. 3. The asymptotically parallel pattern of quantile curves predicted by the stochastic independence model ( p1< p2< p3 are arbitrary quantile
ranks).

conjunction with other specific assumptions about the RT
components. Thus it is critical to observe that in the present
context the stochastic independence and SVRT models
only yield different predictions (Figs. 2 and 3) because T(A)
is defined as the ``minimal'' signal-dependent component
satisfying a certain asymptotic proportionality assumption,
(2). To see that these constraints cannot be weakened,
assume that RT(A)=T*(A)+R*, where T*(A) stochasti-
cally decreases but does not converge to a constant as A
increases.4 Instead, assume that it converges to a non-
degenerate random variable L*. In such a case, presenting
T*(A)=T*(A, P) as T(A, P)+L*(P), and assuming that
properties (b) and (c) stated in the Introduction hold for
T(A, P), it is easy to show that the RT quantile curves form
the diverging pattern of Fig. 2 even if T*(A) and R* are
stochastically independent.

Having properly defined the RT components T(A) and R
in the SVRT and stochastic independence models, observe
that the patterns shown in Figs. 2 and 3 are only necessary
consequences but not sufficient conditions for the respective
models. Indeed, it is quite possible, for instance, that
E[C | R=Rp]=E[C]=const (i.e., the parallel pattern of
Fig. 3 holds) even though C and R are not stochastically
independent. It is also quite possible that E[C | R=Rp]
increases with quantile rank p (i.e., the diverging pattern of

Fig. 2 holds) even though the two RT components are not
perfectly positively interrelated. Therefore, by trying to
match RT data with the patterns shown in Figs. 2 and 3,
one does not directly test the independence model against
the SVRT model. Rather, one tests a variety of models
asymptotically indistinguishable from the independence
model against a variety of models asymptotically
indistinguishable from the SVRT model (see Theorem 3.2.1
in Dzhafarov, 1992). In the rest of this paper, however, we
allow ourselves to simply identify Figs. 2 and 3 with the
SVRT model and the stochastic independence model,
respectively.

3. EMPIRICAL ANALYSIS OF RT QUANTILE CURVES

If RT distributions were known precisely (on a popula-
tion level) and for all signal amplitudes beyond a certain
value, then no difficulty would be involved in determining
which of the two patterns of the asymptotic behavior of RT
quantiles holds. In reality, however, RT distributions are
represented by finite samples corresponding to a few distinct
amplitudes. As a result, the task of estimating slopes of the
intercept tangents becomes formidable. Dzafarov's (1992)
approach to this problem is to choose amplitudes so large
that the quantile curves themselves appear linear with
respect to s(A), which means that o[s(A)] in (4) is
negligibly small. The slopes in question then can be deter-
mined by a standard linear regression procedure.

52 DZHAFAROV AND ROUDER

4 Convergence to a constant is immediately reducible, by renaming the
components, to convergence to zero.
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FIG. 4. RT quartile curves from Dzhafarov (1992), arithmetically average over two subjects (about 200 RTs per subject per amplitude; the averaging
is justifiable to the extent the individual quantile curves are close to linear functions).

Figure 4 provides an example of this approach. It presents
results of an experiment in which subjects respond to instan-
taneous changes in spatial position of a small light source.
The amplitude A of the displacement forms a unidimen-
sional strength continuum because as A increases, the detec-
tability and perceptual salience of the displacement
increases whereas RT stochastically decreases. In the region
of A shown, the RT quantile curves (of which only three
quartile curves are presented) are approximately linear with
respect to s(A)=A&2, in accordance with a motion detec-
tion model presented in Dzhafarov et al. (1993). The regres-
sion slopes obviously increase with quantile rank, in fact,
about 5 times faster than the regression intercepts, and
Dzhafarov (1992) correctly observed that this pattern was
consistent with the SVRT model (Fig. 2). He also con-
cluded, however, that the data definitely rejected the
stochastic independence model (Fig. 3), and this conclusion
turns out to be open to criticism.

The weakness of this conclusion lies in the following
possibility. If the linearity of the RT quantile curves when
plotted against s(A) is only approximate, then the linear
regression lines approximating the RT quantiles in a finite
range of amplitudes may very well be systematically biased
with respect to the true intercept tangents. The regression
lines, in particular, may form a diverging fan even when the
true intercept tangents are parallel. To appreciate this
possibility, consider Fig. 5 that shows RT quantile curves

generated according to the SVRT model and the stochastic
independence model. The two upper graphs are identical to
Figs. 2 and 3, with the diverging (SVRT) and parallel (inde-
pendence) patterns of the intercept tangents. The middle
graphs show that one can choose a region of sufficiently
small values of s(A) so that the linear regression lines
approximating RT quantiles in this region virtually coincide
with the intercept tangents, exhibiting therefore the same
patterns of divergence and parallelness as in Figs. 2 and 3.
This illustrates the fact that the regression technique used in
Fig. 4 may successfully discriminate between the competing
models in a well-chosen region of small s(A)-values.5 The
lower graphs, show that if one chooses a wider region, then
the overall regression lines may systematically deviate from
the true intercept tangents; in the case shown, the regression
lines form a diverging fan pattern even when the intercept
tangents are parallel. As a result, if one is satisfied with the
quality of linear approximations in the right-bottom graph,
one might erroneously conclude that the data reject the
independence model.

To formalize this graphical illustration, let the RT quan-
tiles be presented as

RTp(s)=Rp++s+.(s, p). (10)

53ADDITIVE COMPONENTS OF RESPONSE TIME

5 Hereafter the term ``region (or range) of small s-values'' refers to a
positive neighborhood of s=0.
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FIG. 5. The logic of the data analysis designed to distinguish between the SVRT and stochastic independence models. In the middle and lower panels
the symbols represent the regions of RT quantile curves (shown ``in entirety'' in the corresponding upper panel) that are used to compute the linear regres-
sion lines.

If s=s(A) is a decreasing and vanishing function, and if
.(s, p) is o[s], then (10) is equivalent to (9), that is, it
describes the prediction of the stochastic independence
model, with Rp++s describing constant-slope intercept
tangents. Suppose that

�.
�p

>0 and
�2.

�p �s
>0, (11)

that is, .(s, p), the deviation of the quantile curve from its
intercept tangent, increases with p and it increases the faster
the greater the values of s. Under these assumptions, it can
be shown that for any set of distinct values [s1 , s2 , ..., sn],
the least-squares linear regression lines approximating the
corresponding rank-q quantiles [RTp(s1), RTp(s2), ...,
RTp(sn)] form a diverging pattern (i.e., their slopes increase
with p). A generalized and sample-oriented version of this
statement is proved in Appendix as Theorem 1. The proof
can be easily generalized to a broad class of loss functions
other than the sum of squared deviations.

It is not difficult to find sufficient conditions under which
RT distributions generated according to the stochastic
independence model would yield quantile curves whose
deviations from their intercept-tangents satisfy (11). Let

T(A)=Cs(A), (12)

which is a special case of (3), with o[s(A)]=0. The equa-
tion means that the signal-dependent RT component T(A)
is precisely, rather than just asymptotically, factorizable
into a product of a criterion C and some decreasing and
vanishing function s(A). Assume further that RTp(s) have a
continuous bounded second derivative with respect to s on
some positive neighborhood of s=0, for any quantile rank
p. Then it can be proved (Theorem 2 in Appendix) that
under the assumption of stochastic independence

RTp(s)=Rp+E[C] s&
1
2

g$(Rp)
g(Rp)

Var[C] s2+o[s2], (13)

where g is the density function for R. Comparing this with
(10) we have

.(s, p)=&
1
2

g$(Rp)
g(Rp)

Var[C] s2+o[s2].

By choosing a region of sufficiently small s-values (i.e.,
sufficiently large amplitudes A) the term o[s2] can be
dropped, and it follows that ,(s, p) satisfies (11) if, and
only if,

_g$(Rp)
g(Rp) &

$
=[log(g(Rp)]"<0. (14)

54 DZHAFAROV AND ROUDER



File: 480J 110208 . By:MC . Date:26:02:96 . Time:14:27 LOP8M. V8.0. Page 01:01
Codes: 4271 Signs: 3407 . Length: 56 pic 0 pts, 236 mm

FIG. 6. Simulated RT quantiles generated according to a special case of the stochastic independence model: RT(A)=Cs(A)+R, where C and R are
independent and gamma-distributed with parameters [scale=0.0115 ms&1, shape=2] and [scale=0.425 ms&1, shape=72], respectively. The RT
quantiles are computed from 375 RTs per amplitude on the average.

Thus whether or not (11) is satisfied depends essentially on
the signal-independent component R only. If (14) holds at
least within a certain range of quantile ranks (as it does for
many distributions, such as gamma or normal), then the
regression lines within this range will form a diverging
fan pattern in a certain area of small s-values, an area in
which one can ignore all o[s2]-terms but not the linear and
quadratic terms.

Figure 6 presents computer simulation results that
illustrate this possibility. The RT distributions whose quar-
tiles are plotted in the figure have been generated according
to the stochastic independence model with the signal-
dependent component satisfying (12). That is, the model is

RT(A)=Cs(A)+R, (15)

with stochastically independent C and R. Seven values of
s(A) have been chosen to match those in Fig. 4, with the RT
sample sizes being also approximately the same, 375 RTs
per amplitude on the average.6 Both C and R are gamma-
distributed with the parameters indicated in the legend; they
have been chosen so that the means and standard deviations
of the simulated RTs are approximately equal to those in
Dzhafarov's (1992) data at the two marginal amplitudes,
the highest and the lowest. The regression lines approxi-
mating the RT quantiles clearly form a diverging fan

pattern, not dissimilar to that in Fig. 4 (even though less
pronounced).

It should be clear from the previous discussion (see
Fig. 5) that this result is due to the fact that the region
of s-values shown in Fig. 6 is ``too broad,'' and the curvi-
linearity of the quantile curves is sufficient to create a
systematic deviation of the regression lines from the true
intercept tangents. One should expect then that the diverging
pattern in Fig. 6 should diminish if one restricts the regres-
sion analysis to a shorter range of small s-values: the shorter
the range the closer the expected slopes of the intercept
tangents should be to each other. Open symbols in Fig. 7
show this to be the case with Fig. 6: the increase of regres-
sion slopes with regression intercepts essentially disappears
as one progressively restricts the abscissa range. By con-
trast, the filled symbols in Fig. 7 show that no such effect
exists for the data presented in Fig. 4.

One should be cautious, of course, not to assign an undue
weight to such an analysis, because statistical reliability
of regression estimates diminishes when computed from
progressively fewer data points spaced progressively denser.
To rule out the possibility that the flattening of the slope-
intercept curves in Fig. 7 (open symbols) is spurious, we
have replicated the simulation scheme described in its
legend three times, and to get a more detailed look, from
each replication we have computed RT quantiles of the
ranks 0.20, 0.33, 0.5, 0.67, and 0.75. Figure 8 (open symbols)
shows the flattening effect quite clearly. For a comparison,

55ADDITIVE COMPONENTS OF RESPONSE TIME

6 Equal probabilities rather than equal numbers of presentations have
been fixed for different amplitudes in all our computer simulations.
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FIG. 7. Relationship between regression slopes and intercepts computed from Fig. 4 (filled symbols) and Fig. 6 (open symbols) for different ranges
of small s-values (involving all 7, or only 5, 4, or 3 smalles s-values). In each curve the symbols read from left to right correspond to the quantile ranks
0.25, 0.50, and 0.75, respectively.

the figure also presents the same-rank quantiles computed
from Dzhafarov's (1992) data (filled symbols) that clearly
do not show this effect. All this corroborates the hypothesis
that the diverging fan pattern in these data (Fig. 4) indeed
reflects their conformity with the SVRT model,7 rather than
being a statistical artefact, as it is with the simulated data in
Fig. 6.

It is not the aim of this paper, however, to determine
which of the two competing models of stochastic rela-
tionship fits better in a particular experimental situation.
Rather, we are interested in a methodological question:
whether the pattern of changes in the slope-intercept curves
computed from realistically sized RT samples for
progressively shrinking regions of small s-values is robustly
diagnostic in discriminating between the two models (when
one of them is known to be true). Robustness is a key
requirement here, because no theory of sampling distribu-
tions of the regression parameters for RT quantile curves
can be constructed without strong additional assumptions
about RT distributions.

To answer the question, the computer simulation scheme
described earlier has been extended to incorporate different
distributions of the RT components, both models of their
stochastic relationship, and different sample sizes. Response
times have been generated as

RT(A)=Cs(A)+R,

with C and R being either stochastically independent or
linearly interdependent (a special case of the SVRT model).
As in Fig. 6, the seven values of s(A) used in the simulations

have been identical to those in Fig. 4, and the distributions
of C and R have been chosen so that at the two marginal
amplitudes the means and standard deviations of the
simulated RTs are approximately equal to those in
Dzhafarov's (1992) data. There have been four joint dis-
tributions of (C, R), two with stochastically independent
and two with linearly interdependent C and R, each of
which has been used to generate RT samples of three sizes:
10000, 1000, and 250 RT values per amplitude on the
average (see Footnote 6). Hereafter they are referred to as
the large, medium, and small sample sizes, respectively.
Quantile curves computed from the medium-size samples
are presented in Figs. 9 and 10, with the distribution
parameters being described in the figure legends. The
pairing of the independence-model-generated and SVRT-
model-generated data in these and subsequent figures is by
the form of the distribution of C, which could be either
gamma (Fig. 9) or uniform (Fig. 10).8

The slope-intercept curves shown in Figs. 11 and 12 leave
little doubt that at least for the medium and large RT sam-
ples the pattern of changes in the curves allows one to
reliably tell the two models apart. Observe that decreasing
parts of the curves can only be spurious and should be inter-
preted as indicating equal slopes. The difference between the
two models becomes even more apparent if one focuses
one's attention on the near-median quantiles only, ignoring
the (less reliable) leftmost and rightmost points in each
curve. The flattening of the slope-intercept curves for inde-
pendence-model-generated data is faster for the uniform-C
data (Fig. 12, open symbols) than for the gamma-C data
(Fig. 11, open symbols). It is easy to account for this effect
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7 This argument is mentioned but not elaborated in Dzhafarov (1992) in
relation to his Fig. 8, inset.

8 Observe that the parameters of these distributions are different for the
two models, in order to ensure the same mean and variance values at the
marginal amplitudes in both cases.
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FIG. 8. Relationship between regression slopes and intercepts computed for RT quantiles of the ranks 0.20, 0.33, 0.50, 0.67, and 0.75 (from left to
right in each curve) and for different ranges of small s-values (as in Fig. 7). Filled symbols represent Dzhafarov's (1992) data (the same used in Fig. 4).
Open symbols represents three replications of the simulation scheme described in the legend of Fig. 6 (the same sample size).

FIG. 9. Simulated RT quantile curves generated according to the model RT(A)=Cs(A)+R, where C and R are either independent or linearly inter-
dependent. In the independence case C and R are distributed as described in the legend of Fig. 6. In the SVRT case C is gamma-distributed with
parameters [scale=0.0233 ms&1, shape=4], whereas R is a linear transformation of C yielding the same mean and variance as in the independence case.
The RT quantiles shown are computed from 1,000 RTs per amplitude on the average. The linear approximations are computed for the regions of the
quantile curves shown by open symbols.

57ADDITIVE COMPONENTS OF RESPONSE TIME



File: 480J 110211 . By:MC . Date:28:02:96 . Time:15:46 LOP8M. V8.0. Page 01:01
Codes: 1275 Signs: 715 . Length: 56 pic 0 pts, 236 mm

FIG. 10. The same as in Fig. 9, except that C and R are distributed uniformly. The distribution interval for R is (135 ms, 205 ms). The distribution
interval for C, in ms�s(A)-units, is (0, 346) in the stochastic independence case, and (100, 276) in the SVRT case.

FIG. 11. Relationship between regression slopes and intercepts computed for simulated RT quantiles of the ranks 0.20, 0.33, 0.50, 0.67, and 0.75 (from
left to right in each curve) and for different ranges of small s-values. The simulation scheme is as described in the legend of Fig. 9 (which corresponds
to the middle panels here). SVRT-model-generated data are shown by filled symbols, open symbols represent independence-model-generated data.
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FIG. 12. The same as Fig. 11, but for the uniform-C simulation scheme described in Fig. 10.

FIG. 13. The same as Fig. 9, except that the quantile curves are plotted against their arithmetic mean.
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FIG. 14. The same as Fig. 10, except that the quantile curves are plotted against their arithmetic mean.

by referring to (13). Since R in the uniform-C data is also
uniformly distributed (see the legend of Fig. 10), and since

_g$(Rp)
g(Rp) &

$
=0

when g is a uniform density, the deviation of the quantile
curves from their intercept-tangents in these data is o[s2],
rather than just o[s] as in the gamma-C data. This means

FIG. 15. Relationship between quantile ranks and regression slopes in Fig. 12. Symbols are the same as in Fig. 11.

that as the range of small s-values shrinks, the deviation in
the uniform-C case tends to zero infinitely faster.

The analyses presented so far have been predicated upon
the assumption that the asymptotically linearizing transfor-
mation s(A) is known theoretically. As mentioned in the
Introduction, however, this knowledge is not necessary to
achieve a reliable discrimination between the two models of
stochastic relationship. An alternative approach is based on
the following modification of the argument presented in
Dzhafarov (1992, Section 3.4). Let [RTp(A)]p # P be a
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FIG. 16. Relationship between quantile ranks and regression slopes in Fig. 13. Symbols are the same as in Fig. 12

collection of RT quantile curves, and let RTv(A) be their
mean. It is obvious from (4) that

RTv(A)=Rv+Cvs(A)+o[s(A)],

where Cv is the mean of E[C | R=Rp]-values across p # P.
It follows by simple algebra that

RTp(A)=_Rp&
E[C | R=Rp]

Cv

Rv&
+

E[C | R=Rp]
Cv

RTv(A)+o[s(A)]. (16)

This means that for any quantile rank p # P, if RTp(A) is
plotted against RTv(A), then this line is asymptotically
linear, and the slope of the tangent line drawn to it at
s(A)=0 is E[C | R=Rp]�Cv. We will refer to the RTp(A)-
versus-RTv(A) curves as the RT quantile-versus-mean cur-
ves; for terminological simplicity, its tangent line at s=0
can be referred to as the intercept tangent, even though at
s(A)=0, RTv=Rv.

In the case of the SVRT model, (16) becomes

RTp(A)=_Rp&
Cp

Cv

Rv&+
Cp

Cv

RTv(A)+o[s(A)], (17)

and we see that the slopes of the intercept tangents to RT
quantile-versus-mean curves in this case monotonically
increase with quantile rank. Since Cv is the mean of all Cp-
values, the slopes must increase from a value below unity to
a value above unity. In the case of the stochastic inde-
pendence model, (16) assumes the form

RTp(A)=[Rp&Rv]+RTv(A)+o[s(A)], (18)

and we see that the slopes of the intercept tangents to RT
quantile-versus-mean curves here are all equal to unity. One
can now replicate virtually verbatim the previous analysis of
the relationship between regression lines and intercept
tangents to come to the following conclusion: as the range
of small s-values progressively shrinks, the expected regres-
sion slopes for RT quantile-versus-mean curves should
progressively flatten as a function of quantile rank and con-
verge to unity in the case of the stochastic independence
model; and they should converge to an increasing function
crossing the unity level in the case of the SVRT model.

Figures 13 and 14 present the RT quantile-versus-mean
curves for our medium sample size simulations, that is, the
data previously presented in Figs. 9 and 10. Their slope ver-
sus quantile rank analysis is shown in Figs. 15 and 16.9

Obviously, the pattern of changes in the curves here is as
clear as, if not clearer than, that in the slope-intercept curves
analyzed earlier. Again, the distinction between the two
models becomes even more apparent if one focuses on the
near-median quantiles only, and again the flattening and
convergence is faster for the uniform-C simulations. To save
space we do not show the results for the large and small
sample size simulations. The conclusion is that beginning
with the medium size RT samples, the pattern of changes in
the slope versus quantile rank curves for progressively
shrinking regions of small s-values is robustly diagnostic in
discriminating between the two models.

Summarizing, whether or not the asymptotically linear-
izing transformation s(A) is known theoretically, there exist
reliable ways to empirically discriminate between the two
models of stochastic relationship considered in this paper.
Thinking about possible modifications of the analysis, its
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9 For simplicity, all regression lines have been computed with the
abscissa taken as an independent variable (i.e., ignoring the fact that each
abscissa value is the mean of the corresponding ordinate values).



File: 480J 110215 . By:CV . Date:18:01:00 . Time:12:56 LOP8M. V8.0. Page 01:01
Codes: 4952 Signs: 2272 . Length: 56 pic 0 pts, 236 mm

empirical power can be further increased by designing the
experiments so that higher (and more informative for the
analyses) amplitudes are represented by larger sample sizes.

APPENDIX

Theorem 1. Let within some interval I of s-values and
some interval P of quantile ranks p,

RTp(s)=Rp++s+.(s, p),

and let

�.
�p

>0 and
�2.

�p �s
>0.

Let [si], i=1, ..., n, be some distinct values in I, and
[RT@p(si)] be unbiased estimates of [RTp(si)] for some
p # P. Finally, let b� p be the slope of the least-squares linear
regression of [RT@p(si)] on [si]. Then E[b� p] is an increasing
function of p.

Proof. Since RTp(s) is an unbiased estimator of RTp(s),
E[b� p] is the slope of the least-squares linear regression of
[RTp(si)] on [si]:

E[b� p]=k :
n

i=1

(si&s� ) RTp(si)=++k :
n

i=1

(si&s� ) .(si , p),

where k=(�n
i=1 s2

i &ns� 2)&1>0. Then

dE[b� p]
dp

=k :
n

i=1

(si&s� )
�.(si , p)

�p

=k _ :
si<s�

(si&s� )
�.(si , p)

�p
+ :

si�s�

(si&s� )
�.(si , p)

�p &.

The value of �.(s, p)��p is positive and increases with s.
Hence the two summands above decrease if we replace
�.(s, p)��p in them with �.(s� , p)��p, and we have

dE[b� p]
dp

=k :
n

i=1

(si&s� )
�.(si , p)

�p
>k :

n

i=1

(si&s� )
�.(s� , p)

�p

=k
�.(s� , p)

�p
:
n

i=1

(si&s� )=0.

This concludes the proof.

Theorem 2. Let RT(s)=Cs+R, with stochastically
independent C and R. For any quantile rank p, let RT"p(s)

exist and be continuous and bounded on a positive
neighborhood of s=0. Then

RTp(s)=Rp+E[C] s&
1
2

g$(Rp)
g(Rp)

Var[C] s2+o[s2]

where g is the density function for R.

Proof. Consider the Taylor expansion of G(RTp(s)&sc)
about s=0, where G denotes the distribution function for R
and c a possible value of C. Obviously,

dG(RTp(s)&sc)
ds

=g(RTp(s)&sc)[RT$p(s)&c],

d 2G(RTp(s)&sc)
ds2 =g$(RTp(s)&sc)[RT$p(s)&c]2

+g(RTp(s)&sc) RT"p(s)

(obviously, RT$p(s) exists and is continuous and bounded in
a neighborhood of s=0). At s=0, RTp(0)=Rp , and

G(RTp(s)&sc)| s=0=G(Rp),

dG(RTp(s)&sc)
ds } s=0

=g(Rp)[RT$p(0)&c],

d 2G(RTp(s)&sc)
ds2 } s=0

=g$(Rp)[RT$p(0)&c]2

+g(Rp) RT"p(0),

where RT$p(0)=lim RT$p(s) and RT"p(0)=lim RT"p(s) as
s � 0. Hence the Taylor-expansion has the form

G(RTp(s)&sc)=G(Rp)+g(Rp)[RT$p(0)&c]s

+[g$(Rp)[RT$p(0)&c]2

+g(Rp) RT"p(0)]
s2

2
+o[s2].

Denoting by F the distribution function of C, and inte-
grating over the spectrum of C, we have

| G(RTp(s)&sc) dF(c)

=G(Rp)+g(Rp)[RT$p(0)&E[C]]s

+g$(Rp)[RT$p(0)2&2RT$p(0) E[C]+E[C2]]
s2

2

+g(Rp) RTp(0)
s2

2
+o[s2].
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Since

| G(RTp(s)&sc) dF(c)=Prob[R+Cs<RTp(s)]

=Prob[RT(s)<RTp(s)]=p,

and

G(Rp)=Prob[R<Rp]=p,

we conclude that

g(Rp)[RT$p(0)&E[C]]s

+g$(Rp)[RT$p(0)2&2RT$p(0) E[C]+E[C2]]
s2

2

+g(Rp) RT"p(0)
s2

2
=o[s2].

Since the coefficients at s and s2 are constants with respect
to s, this equation can only hold if they equal zero:

g(Rp)[RT$p(0)&E[C]]=0,

that is,

RT$p(0)=E[C],

and

g$(Rp)[RT$p(0)2&2RT$p(0) E[C]+E[C2]]

+g(Rp) RT"p(0)

=g$(Rp)[E[C]2&2E[C] E[C]+E[C2]]

+g(Rp) RT"p(0)

=g$(Rp) Var[C]+g(Rp) RT"p(0)=0.

As a result,

RT$p(0)=E[C] and RT"p(0)=&
g$(Rp)
g(Rp)

Var[C],

from which the statement of the theorem follows
immediately.
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