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Response time (RT} whaose distribution depends on two external
factors can sometimes be presented as an algebraic combination of two
random variables, component times, each of which is sslectively
influenced by one of these factors. The algebraic operation connecting
these componant times {such as addition or “minimum of the two'*} is
referred to as the decompasition rule. We consider a broad subclass of
associative and commutative decomposition rules, and for any opera-
tion from this subclass we construct a decomposition test, a rela-
tionship between observable RTs that must hold if these RTs are
decomposable by means of this operation. The decomposition tests are
constructed under the assumption that KT components are either
stochastically independent or perfectly positively stochastically inter-
dependent (in which case they are increasing functions of a common
random variable). The decomposition tests generalize the summation
test proposed by Ashby & Townsend {1980} and Roberts & Sternberg
{1992} for additive decompositions into stochastically independent
components. Under the assumption of perfect positive stochastic inter-
dependence, a successful decomposition test is not only necessary
but also sufficient for the RT decomposability by means of the corre-
sponding operation. Under the assumption of stochastic indepen-
dence, it is possible that a decomposition test is successful but RTs
cannot be decomposed by any operation. Under both assumptions,
however, a successful decomposition test recovers the true decomposi-
tion rule essentially uniquely. For a given decomposition rule, the
component times themselves cannot be determined uniquely, and the
stochastic relationship between them generally has to be assumed
rather than recovered from the decomposition tests. © 3995 Academic
Press, Inc.

1. INTRODUCTION

This paper deals with one of the classical problems of
response time analysis, dating back to Sternberg’s (1969)
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pioneering work: the problem is that of decomposing
response time (RT) into component durations selectively
influenced by different external variables (factors). A proto-
typical example is the familiar additive decomposition of
RT into stechastically independent selectively influenced
components. Let T denote an observable RT, a random
variable (simple RT, choice RT for a given response or
aggregated over several responses). Let the distribution of T
depend on two factors, « and f, all other external variables
being fixed or counterbalanced across trials: T =T(x, ).
We say that the RT in question is additively decomposable
into stochastically independent and selectively influenced
component times A =A(«) and B =B(f), if the following
three assumptions hold.

(1) Selective influence assumption: the (distributions
of the) random variables A(a) and B(#) only depend on
o and f, respectively {so that B does not depend on «, or A
on ).

(i1} Stochastic independence assumption: for any given
values of « and f, the random variables A(a) and B{f) are
stochastically independent.

(ili) Additive decomposition rule assumption:
observable RT, T(a, £}, 1s distributed as A(x) + B(f#).

the

The conjunction of these three assumptions can be
referred to as the (principal) architecture of the RT in
question. A concise representation of this architecture is
provided by the formula

T(x f) < A()+B(f), A2} LB(S),

where the symbol < should be read “is distributed as,” the
symbol L indicates stochastic independence, and the ran-
dom variables T, A, and B are assumed to depend only on
those factors that are explicitly shown as their arguments.
{The reason for using the equidistribution symbol 2 rather
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than a numerical equality = will be explained later; it
should be noted now that the two must not be confused.)

Due to the obvious interpretation of the additive decom-
position rule as reflecting a physical concatenation of
processes in time, this architecture is commonly referred to
as “sertal” (with stochastically independent components).
Replacing in the formulation above the operation + with
the operations max (“maximum of”} or min (“minimum
of”), one gets two other familiar architectures, commonly
referred to as “paralle]” ones (with stochastically inde-
pendent components):

T(x, f) < max[A(a), B()].
T(x, §) = min[Ala), B(B)],

A(x) L B(f),

A(2) L B(B).

Most of the previous studies of RT decompositions have
been confined to these three architectures.

In this paper the notion of a RT decomposition into selec-
tively influenced components is extended along two dimen-
sions. First, we incorporate, within a unified theoretical
framework, architectures that widely differ in their decom-
position rule, the mathematical operation connecting hypo-
thetical component times A(o) and B(f). Among logically
possible decomposition rules we focus specifically on a
broad subclass of commutative and associative operations,
termed simple operations. This subclass includes the tradi-
tional operations of arithmetic addition, minimum, and
maximum as special cases, but it also includes a variety of
theoretically interesting decomposition rules that have not
been previously considered in the context of RT analysis,
such as “Minkowski-norm” decompositions,

T(a, ) £ [A()” +B(B)"]*,  p>1,
and multiplicative decompositions,
T(a, §) £ kA(@)B(), k>0,

We propose an interpretation of RT components that
naturally leads to decomposition rules other than the
familiar “serial” and “parallel” connections. In this inter-
pretation, component times A{o) and B{#) reflect certain
“properties,” rather than “parts” of a hypothetical process
evoked by a signal and developing until it reaches a preset
criterion level (Dzhafarov, 1993).

Second, our analysis is not confined to stochastically
independent component times exclusively. Stochastic
independence of component times by no means follows
from their being selectively influenced by different factors.
The essence of our approach to this issue, derived from
Dzhafarov (1992), is that A(«) and B(f) are selectively
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influenced {by « and f, respectively) if, and only if, the
proposition '

4

{A(x), B(B)} = {A(x, X), B(S, Y)}

holds for their joint distribution, where 4 and B are some
functions, whereas (X, Y) is a pair of random variables
(“internal sources of variability”) whose joint distribution
does not depend on the factors « and f. Stochastic inde-
pendence, A{x) 1 B(f), is obtained as a special case, by
assuming that the internal sources of variability are them-
selves stochastically independent, X L Y.

The analytic tools used in this paper, however, are not
powerful enough to allow us to operate with arbitrary joint
distributions of the internal sources of variability, (X, Y).
Instead we contrast stochastic independence with only the
simplest case of stochastic interdependence, termed perfect
positive stochastic interdependence. This is obtained by
assuming that the two component durations have one com-
mon source of variability, X =Y, whereas both functions 4
and B increase with the value of X. In this case (generalizing
the “single-variate RT decomposition model,” Dzhafarov,
1992}, the component times A{a) and B(f) arc increasing
functions of each other, for any given values of « and f: we
denote this relationship by A(a) || B(5).

Thus, the focus of this paper is on the RT architectures
representable as

T(x, )  A(x) ¢ B(f),  A(x) L B(f),

or

T(x, §) < A(x) ® B(B),  A(«)|B(B),

where 4 is an operation chosen from the subclass of
associative and commutative operations mentioned earlier.

The principal point of interest is, of course, whether and
how such a RT architecture can be empirically recovered,
based on a relationship between observable RT distribu-
tions only. Ashby & Townsend (1980) proposed a simple
empirical procedure that, if not successful, proves that the
RT cannot be additively decomposed into stochastically
independent components. Later this procedure was sub-
jected to a thorough experimental analysis by Roberts &
Sternberg (1992), as the “summation test.” We show in this
paper that analogous tests can be constructed for all simple
operations (in fact, all associative and commutative opera-
tions) connecting A(a) and B{f), under both stochastic
independence, A(x) L B(f), and perfect positive stochastic
interdependence, A(x) || B{f). We term the variety of these
tests the decomposition tests, and this paper is dedicated to
studying their most basic properties.
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Logically, a decomposition test constructed for a specific
simple operation (say, + ) and for one of the two forms of
stochastic relationship ( | or ||} is a necessary condition for
the existence of the corresponding architecture (in this
example, a “serial” architecture with the same stochastic
relationship). The aim of this study is to investigate whether
and under which conditions such a test is also sufficient for
the existence of the corresponding decomposition, as well as
whether and under which conditions the decomposition rule
is identified by the test uniguely. This investigation is con-
ducted with no a priori constraints imposed on observable
RT distributions (which makes the results potentially appli-
cable to decompositions of random variables in empirical
domains other than RT).

We show that under the assumption of stochastic inde-
pendence, A(x) L B(#), a decomposition test constructed
for a specific simple operation, if successful, 1s not generally
sufficient for the existence of the corresponding architecture.
If, for example, observable RTs T(a, B), for several appro-
priately chosen values of « and f, satisfy the original Ashby-
Townsend—Roberts-Sternberg summation test, these RTs
nevertheless may be indecomposable into sums of selec-
tively influenced stochastically independent component
times. We show, however, that no two tests designed for two
different simple operations can be successful simultanecusly
{with rather mild constraints imposed on the relationship
between these operations). This means that, under the
assumption of stochastic independence, a successful decom-
position test identifies the decomposition rule in the RT
architecture uniquely, if this architecture exists at all (which
the test generally does not guarantee).

The situation is much simpler under the assumption of
perfect positive stochastic interdependence, Afa}| B(f).
Here, a successful decomposition test constructed for a
specific simple operation is always both necessary and suf-
ficient for the existence of the corresponding architecture, At
the same time, for all practical purposes (the precise mean-
ing of which will be explained later), the decomposition rule
here is identified by the test as uniquely as in the inde-
pendence case, under the same mild constraints imposed on
the algebraic relationship between “competing” operations.

A unique recovery of the decomposition rule under the
assumption of either stochastic independence or perfect
positive stochastic interdependence does not mean that
the component times themselves, A{ax) and B(f), can be
reconstructed uniquely (the opposite is de facto true). Nor
does it mean that the decomposition tests allow one to
empirically identify, rather than to assume, the stochastic
relationship between component times, even for as limited a
choice as that between independence and perfect positive
interdependence: two tests designed for one and the same
simple operation, one with A(«)||B(f), another with
A(o) L B(ff), may very well be successful simultaneously
(ie., on the same observable RTs).
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2. STRUCTURE OF THE PAPER AND TECHNICALITIES

In Section 3 we discuss the original Ashby-Townsend—
Roberts—Sternberg summation test as a necessary condition
for an additive decomposition of RT into stochastically
independent components, In Section 4 we introduce the
concept of a simple operation and construct decomposition
tests, analogous to the summation test, as necessary condi-
tions for decomposability invelving any of such operations
{(including, notably, the operations of maximum and mini-
mum that have been previously characterized only by the
pattern of failure of the original summation test, with no
tests specifically designed for “parallel” architectures). In
Section 5 we study the uniqueness-of-identification problem
for simple operations under the assumption of stochastic
independence. We show that a simple operation is identified
uniquely among all “algebraically distinct” competing
simple operations. Note that the uniqueness of identifica-
tion does not imply that the identified architecture exists: it
only rules out other, competing architectures. In Section 6
we point out that a wide variety of stochastic relationships
between component times are consistent with their being
selectively influenced by different factors, and we introduce
the second (after stochastic independence) focal relation-
ship: perfect positive stochastic interdependence. We show
in the same section that decomposition tests involving
simple operations can also be constructed for perfectly
positively stochastically interdependent component times,
that these tests are necessary conditions for the existence
of the corresponding architectures, and that the decom-
position rules are identified by these tests uniquely (or
“essentially” uniquely). In Section 7 we turn to the problem
of the existence of an architecture if the corresponding
decomposition test is successful. We show that the existence
is guaranteed under the assumption of perfect positive
stochastic interdependence, but that under the assumption
of stochastic independence 1t is gnaranteed only in the case
of “min-parallel” and “max-parallel” architectures (and even
then, only if we allow for “incomplete” random variables
as component times). For all other simple operations
(including the traditional “serial” one, with stochastically
independent components) a decomposition test may very
well be successful while no corresponding decomposi-
tion of RTs is possible. We also show that the two forms
of stochastic relationship considered in this paper,
stochastic independence and perfect positive stochastic
interdependence, are not uniquely recovered by the decom-
position tests: generally, they have to be assumed rather
than found out. In Section 8 we show how the concept of
a RT decomposition into selectively influenced component
times can be interpreted to make all simple compositions
a priori equally “realistic” The concluding section
briefly summarizes the main resuits established in this
paper.
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The proofs of all rigorously established results are pre-

sented in the Appendices, which, also contain necessary

auxiliary lemmas and rigorous definitions of key concepts.
In the main text these results are summarized in the form of
numbered Statements. Generally, we allow the discussion in
the main text to be mathematically looser than in the corre-
sponding Appendices, especially in such {(important) techni-
cal details as domains of functions and spectra of random
variables. Although all random variables representing RTs
can be safely assumed to be positive and have continuous
density functions, no such restrictions are imposed in this
paper (not even continuity of distribution functions), as all
our results turn out to hold for arbitrary random variables,

Random variables are always denoted by boldface letters.
Besides the common abbreviations “RT” and “RTs”, we
use the following abbreviations for frequently used terms:
“rv.(’s)” for “random variable(s)”; “s.-independence”
and “s.-independent” for “stochastic independence” and
“stochastically independent”; “p.p.s-interdependence” and
“p.p.s-interdependent” for “perfect positive stochastic
interdependence” and “perfectly positively stochastically
interdependent.”

3. SUMMATION TEST

We begin with the empirical test proposed by Ashby &
Townsend (1980) and termed the “summation test” by
Roberts & Sternberg (1992) for additive decompositions of
RT into s-independent selectively influenced component
times:

T(e f) £ AW +B(B),  Ax) LB(B). (1)
Conlfining one’s attention to a 2 x 2 crossed factorial design,
where factors o and § attain two values each, {o;, ;) %
(8., #2), and denoting

T,;,-=T(C(,'a ﬁj): A:‘:A(OLJ')’
(1:1, 21j=1=2)’

Bj= B(ﬂ_})

one can rewrite (1) as a system of four distributional equa-
tions:

T, =A+B, (Al 1 B,)

T.,< A +B, (A LB)

(2}

[Ie

A,+B, (A, LB

[+9

Tzz == Az + B2 (Az _L Bz).

The reason for using the equidistribution symbol L in (1)
and (2), rather than the numerical equality =, is that the
component times occurring in different equations (ie.,
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corresponding to different treatments) are unrelated r.v.’s:
only their individual distributions, and not their joint dis-
tributions, are defined. In particular, the component times
denoted by one and the same symbol (say, A} in different
equations are unrelated r.v.’s with identical distributions.
If, for instance, the decompositions of T, and T,, were
presented as

T,=A,+B,
T=A+B,

(A; L By)
(A, LBy}

this would have wrongly implied a definite stochastic rela-
tionship between T,; and T,,, by the virtue of their
dependence on a commeon r.v., A;. One should be cautious
not to transfer algebraic properties of numerical equations
{such as the equivalence of a+b=c¢ and a=c—b) to
distributional equations.

To construct an empirical test for decomposition (2), one
has to subject the observable RTs T, T, T, Ty to
numerical transformations resulting in new r.v.’s (such as
T >+ T, ). The distribution of such a r.v., however, is not
defined unless one specifies the joint distribution of the
argument r.v.’s (in this example, T,, and T,,). It must be
clear from our comments on the meaning of 2 that
stochastic relationships among T,,, T,,, T,;, T,, are not
constrained in any way by their hypothetical decomposi-
tions: the joint distribution of, say, (T, T5,;) can be chosen
arbitrarily, insofar as its marginals coincide with the
individual distributions of T,, and T,,. In constructing the
Ashby-Townsend-Roberts-Sternberg test one chooses to
treat (T,;, Ta) and (T,5, T,;) as pairs of s.-independent
r.v.’s, making thereby such r.v’s as Ty, + Ty and Ty, + Ty,
will defined. It is quite easy to see now that if decomposition
{2) holds, then

d
Ty +Typ=T,+Ty (Tn 1Ty, Tl Tll)- (3)

Indeed, if one chooses to treat the component times A, By,
A,, B, in (2) as mutually s.-independent r.v.’s, then

d
(A +B)+ (A +By) =T, + Ty, (T, L Ty)
a4
(A +B)+{A;+B)) =Ty, + Ty (T2 LTy,
whereas
d
(Aj+By)+(A,+B,) = (A, +B,) + (A, +B))

for any fixed joint distribution of (A, B,, A,, B,), because
arithmetic addition is associative and commutative. {We
present this simple derivation in detail, as it lends itself to an
immediate generalization, discussed below.)
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The empirical value of proposition {3} is 1n that it relates
only observable RTs to each other, completely circum-
venting the hypothetical component times. As a result, (3)
provides an empirical test for the decomposition assump-
tions represented by (2), in the sense that 1f (3) is empirically
rejected, then RT cannot be decomposable according to (2).
It does not follow from this, of course, that if (3) is empiri-
cally corroborated, then RTs are necessarily decomposable
according to (2) (later we will show this to be de facto false).
Nor does it foliow that if {3) is empirically corroborated,
then RT cannot be decomposed in some other, non-
additive, way (this will be shown to be de facto true, under
certain constraints).

Clearly, empirical rejection or corroboration of (3) can
only be statistical, based on finite samples of RTs Ty, T,
T,,, T,,: the distributions of these r.v.’s are only observable,
not actually observed. Strictly speaking, therefore, the truth
or falsity of proposition (3) is always an inference, rather
than an empirical fact, and our use of the word “empirical”
i this paper should be understood as an abridged version
of “providing a basis for constructing empirical proce-
dures.” Unless specifically mentioned, however, in this
paper we predicate all our considerations on the assumption
that the truth or falsity of propositions involving observable
RTs has been inferred correctly. It should be mentioned
here that such an inference does not necessarily presuppose
a successful reconstruction of true RT distribution or
characteristic functions (as would be the case in the
convolution-based procedure suggested by Ashby &
Townsend, 1980): Roberts & Sternberg’s (1992} procedure
(the “summation test” proper) circumvents such a recon-
struction completely. We briefly describe this procedure
next, not only for its own sake, but also because it elucidates
the logical structure of proposition (3).

Refer to Fig. |. Let each of the four observable RTs T ; be
represented by a finite sample {7{", ¢}, ., ¢{"} (i=1,2;
j=1,2), the values being listed (for convenience only} in
an ascending order; the equality of all four sample sizes
to n is also immaterial and assumed for convenience only.
Then the set of the #n* equally weighed values {{) 4 (0%,
k,1€{1,2, .., n},is a sample from T,; +T,,, and the set of
the n* equally weighed values {4’ + 1%/} is a sample from
T,, + T,,. Note that the assignment of equal weights to all
possible pairs (¢¥7,¢{)) and all possible pairs (¢35, i}
is the operational meaning of T, L Ty, and Ty, L Tsy,
respectively (the term “weight” is synonymous here to
“probability mass™). Other stochastic relationships would
have resulted in weighing ditferent pairs differently, up to an
exclusion of some pairs from consideration (i.e., assigning to
them zero weights). Now, if proposition {3) is true, then
the empirical distribution functions constructed from the
two samples are mutually s-independent estimates of one
and the same distribution, which can be corroborated or
rejected by an appropriaie non-parametric procedure (note,
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FIGURE 1

however, that within either of the two samples, the n?
values, viewed as r.v.’s, are stochastically interdependent,
making the use of conventional procedures, such as
Smirnov-Kolmogorov’s, dubious).

4. DECOMPOSITION TESTS INVOLVING SIMPLE
OPERATIONS

The following generalization suggests itself immediately.

STATEMENT 1. Let @ be any associative and com-
mutative operation, and let RTs Ty, T,,, T, Ts, in a
2 x 2 crossed factorial design be decomposable as

T, 2 A, ¢B, (A, LB)
T,=A, ¢B, (A, LB, .
T,, = A, B, (A, LB) @
T, = A, B, (A, LB,
Then
T, #Tn ST, ®T, (T, L1Tn TuLlT,) (5

In other words, proposition (5) is a necessary condition for the
existence of a decomposition described by (4).
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No formal proof of this statement is necessary here,
because it has already been given: in deriving (3} from (2}
the only property of arithmetic addition used has been its
associativity and commutativity. Proposition (5) will be
referred to as the decomposition test for the architecture
described by (4). The operational meaning of Statement |1 is
illustrated in Fig. 2. As in the original summation test, we
form all possible pairs (¢{, 1{)) from samples representing
T, and T,, and all possible pairs (£, ¢{7) from samples
representing T, and T,,, and assign to all these pairs equal
probability masses. Instead of arithmetically summing the
paired elements, however, we subject them to the operation
that is assumed to create observable RTs from their
hypothetical component times, €. Finally we compare
the empirical distributions of (¢{¥’ @ r{))-values and
(£ ® 1$))-values to corroborate or falsify the hypothesis
that they are sampled from one and the same population.

Since the operations minimum and maximum are also
both associative and commutative,

min{q, b} =min{b, a},
2 b = b’ H
max{a, b} =max{b, a} ©)
min{a, min{d, ¢} } =min{min{a, b}, ¢},

max{a, max{b, ¢} } =max{max{a, b}, ¢},
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we have, as a corollary, a straightforward transfer of the
sumunation test from “serial” to “parallel” architectures;

T,, = max{A,,B,} (A; LB,
T,, £ max{A,,B,} (A, LB,
Ty < max{A,,B;} (A, LB)
Ty, £ max{A,.B,} (A, LB,

d
=max{T,,, T,,} = max{T,,,T,}

(Ty, LTy, Ty LTy (7)
T, = min{A,,B,} (A, LB,
T,, = min{A,,B,} (A, LB,)
T, < min{A,,B,} (A, LB;)
T,, < min{A,, B,} (A; LB,)
= min{T,,, To,} < min{T,, T, }
(T11 L Tay, Tip L Ta). (8)

In the modified Roberts—Sternberg procedure for these
operations, one takes the larger of the two values in every
pair in the case of maximum and the smaller of the two in
the case of mimimum. It is remarkable that although the
summation test was proposed by Ashby & Townsend as
early as in 1980, the precise analogues of this test for
“parallel” architectures have not been previously noted.
Instead, these architectures have been characterized by
the pattern of failure of the original summation test
(Nozawa, 1992; Schweickert, 1978; Townsend & Ashby,
1983; Townsend & Nozawa, 1988; for surveys see Luce,
1986; Massaro & Cowan, 1993; Schweickert, 1992;
Townsend, 1990).

At this point one might pose an important question: Are
difterent architectures, say, “parallel” and “serial,” objec-
tively different (i.e., empirically distinguishable), or are they
merely different languages for describing the dependence of
observable distributions on external factors, languages one
is free to arbitrarily choose among? It has been shown by
Dzhafarov (1993} that any family of RT distributions can
be modeled in terms of a certain number of processes
developing in time and the corresponding number of criteria
(critical levels}, such that a response is observed when one
of the processes reaches its criterion first. The criteria can
be thought of as r.v’s, and their joint distribution can be
chosen arbitrarily. In particular, the criteria can always be
chosen to be mutually s.-independent, in which case the
observable RT is distributed as the minimum of several
s-independent r.v’s, a result independently established by
Marley & Colonius {(1992) and Townsend (1976). Super-
ficially, this corresponds to the “min-parallel” architec-
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ture described by (8), seemingly suggesting that all other
architectures should be reducibie to this one. Such a conclu-
sion is not true, however, because it overiooks the key
assumption that RT components are selectively influenced.
The assumption of selectivity has not been made in
Dzhafarov (1993), where different processes correspond to
different responses, not factors. The guestion, therefore,
should be reformulated as follows: Is it always true, or can
it ever happen, that one of the tests holds for some T,,, T,
T.;, T, (say, the summation test described by proposition
5), and another test also holds for the same T,,, T,;, T,,,
T,; (say, the max-test or min-test in proposttions 7 and 8)?
This question {the answer to which is that this cannot
happen, under some constraints) is a special version of the
uniqueness-of-identification problem, discussed later.

Another question arises in relation to the fact that froma
mathematical point of view there seems to be no reason for
confining one’s attention to the three architectures just con-
sidered. Are these architectures more “realistic” than those
involving other decompeosition rules, say, multiplication?
A multiplicative architecture was, in fact, proposed, albeit
in a different context, by Roberts (1987). According to his
model, actions such as bar presses are controlied by pulses
generated at a source and transmitted through regulators to
the response system. For any given stimulus each regulator
transmits a fixed fraction of the pulses it receives to the
next regulator, but this fraction may vary from one experi-
mental condition to another. Suppose now that a factor a
{a characteristic of the stimulus) selectively influences a
regulator 4, while another factor, £, selectively influences a
regulator B: the combined effect of the two factors on the
rate of responding then will be the product of their
individual effects. It is easy now to recast this model in terms
of randomly varying component times and to obtain a
multiplicative architecture, as well as the corresponding
empirical test,

d
T, =kAB, (A, LB
Ty, < kAB; (A;LBy) ,
T d kA,B, (A, LB, =TTy =TTy
a2 i z ! (T LTy, Typ LTyy),
d
T =kA;B; (A; LB, (9)

where & > 0 is a conversion coefficient included to match the
dimensionality of time products and time,

One may still be unconvinced of the “possibility” of such
an architecture, and ultimately such a question can only be
resolved empirically, by reliably demonstrating (or failing
to demonstrate in a long run) the existence of RTs that
conform with the right-hand side of proposition (9). In the
concluding section of this paper we discuss a possible inter-
pretation, within the framework of the “McGill modelling
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language” {Dzhafarov, 1993}, of the notion of a RT compo-
nent, according to which no mathematically valid decom-
position rule can be excluded from consideration a priori.
The essence of this interpretation is that the component
times A(a} and B(f), even in the familiar “serial” and
“parallel” schemes, are thought of as time-dimensioned
characteristics of a single process, rather than durations of
separate processes. The component A{a) may be said to be
the “RT that would be observed if the factor § did not inter-
vene (exist),” the component B(f#) may be interpreted
analogously, and the factual RT turns out to be computable
from these two “would-be” RTs by means of an algebraic
operation. The reader who knows of compelling arguments
for not considering any operations beyond arithmetic addi-
tion, minimum, and maximum may still find this paper of
interest, as the applicability of our results to these three
decomposition rules is by no means diminished by their
applicability to other decomposition rules.

Moreover, the arithmetic addition, minimum, and maxi-
raum are in fact the prototypical operations from which all
other operations considered in this paper can be obtained
by a unified mathematical procedure, derived from Aczél's
{1966) investigation of the associativity equation (see also
Krantz, Luce, Suppes, & Tversky, 1971, pp. 99-102). In the
present context, the class of all possible associative and
commutative operations is too broad to lead to useful
results beyond the necessity property established in State-
ment 1: stronger constraints must be imposed to obtain
stronger results, These constraints are described in Defini-
tion Al, and their mathematical structure is elucidated in
Lemma Al (of Appendix A). Here, in order to make the
motivation for these constraints clear, we choose a more
constructive (and less formal) way of presentation.

The operation a+b is not only associative and com-
mutative, it is also increasing in both arguments and
continuous in both arguments, and it maps positive reals
(negative reals, all reals) onto positive reals (respectively,
negative reals, all reals). Consider an arbitrary real-valued,
strictly monotonic (increasing or decreasing), and con-
tinuous function g whose domain is some open interval of
reals I Then the expression g~ '[ g{a)+ g{b)] defines a
new binary operation that can be denoted by a®b. This
operation is closed on I and maps onto [, and is associative,
commutative, increasing in both arguments, and con-
tinuous in both arguments. In other words, a @ b shares all
principal properties of @+ b, except, perhaps, for its
domain. It is natural to call all such operations addition-like.
The remarkable mathematical fact is that an operation
cannot have the properties just mentioned without being
representable as g [ g(a) + g(b)]. The function g creating
an addition-like operation @ from arithmetic addition is
denoted by g, ; two different functions g, create two dif-
ferent operations, except when they are scaling transforms
of each other. As an example, the multiplication x is an
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addition-like operation, with 7 being the half-line of positive
reals and g . being logarithm:

axb=exp[log(a) +log(h)].

As a result, the multiplicative architecture described by (9)
can be reduced to a “serial” architecture by log-trans-
forming all r.v.’s involved. Another mteresting addition-
like operation, from the point of view of its potential
applicability to experimental data, is obtained by making
£ & power function (the domain 7 being again the half-line
of positive reals)

a®b=[af+b7]"",
where |p| = 1. The RT architecture and decomposition test

corresponding to this operation (under the assumption
of s.-independence) are

e
[

S [AZ4BI]7 (A, LBy

= [A{+BZ1'” (A, LB,)

-
]
i

S [AZ+B{]” (A, 1B

v
ot
I

S [AZ+B2]7 (A, L B,)
=T+ ngg T#,+ T4,
(Tll —L T22! T!2 J— TZl)'

g
(53
i

(10)

The empirical value of this scheme for positive values of p
stems from the fact that as p increases, the corresponding
architecture gradually changes from being purely additive
{“serial,” p=1) to being purely supremal (“max-parallel”
P = ), exhibiting intermediate properties in between, This
is a consequence of the well-known property of the
Minkowski norm:
[a” +b#]1"" > max{a, b} as p- .
As a result, the “Minkowski-norm” operations (p > 1) may
provide a reasonable approximation, if not an adequate
description, in the situations when the factors « and 8
appear to have only partially additive effects. For negative
values of p (i.e., for p< — 1), we have
(@ + 571" - min{a, b} p— — o0,

from which it follows that an architecture corresponding to
a negative value of p might be utilized when the combined
effect of the factors o and f# appears to be between the
“min-parallel” (p = —o0) and “harmonic” (p= -1} com-
binations.

It must be clear now that a broad class of potentially use-
ful decomposition rules can be obtained from arithmetic
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addition as a prototype, by means of a unified mathematical
algorithm,

a®b=gg'[gela)+ ga(b)],

and that the operations min{a, b} and max{a, b} can be
appended to this class of the additien-like operations as its
limit cases. Since they are not the only limit cases, however,
it would be more elucidating, as well as more veridical to the
factual motivation, to consider min{a, b} and max{a, b}
as two independent prototypical cases, on a par with
arithmetic addition. It is easy to see then that, unlike the
addition, maximum and mimmum, when one applies to
them the same mathematical algorithm, do not generate
“maximum-like” and “minimum-like” operations beyond
themselves. Indeed, for any sirictly monotonic continuous
function g,

g~ '[max{g(a), g(b)} ] =max{a, b},
g~ '[min{g(a), g(h)} ] =min{a, b}.

if g 1s increasing, and

g~ '[max{g(a), g(b)} ] =min{a, b},
g '[min{g(a), g(b}} ] =max{a, b},

if g is decreasing. As a result, having applied this algorithm
to the three prototypical operations, +, min, and max, we
end up with the class of “simple operations” (for the lack of
a better term), consisting of all addition-like operations
a @b, and the operations min{a, b} and max{«, »}. Within
the class of simple operations, Statement | becomes equiv-
alent to the conjunction of three propositions; (7) for
maximum, {8) for minimum, and the proposition below for
all addition-like operations &@:

2o(Ti) = golA) + go(B)) (A; LBy)
20(Ti2) < g6(A) + ga(Bs) (A, LBy)
£a(T2) = 2o(A.)+ go(B)) (A, LB)
2a(Tx) £ go(A2)+go(B;) (A, LB,)

=2a(Ti)+ 2a(Tn)2 26(Tn) + ga(Ta)

(Tyy LTy, Typ L Ty) (1)

5. UNIQUENESS OF SIMPLE OPERATIONS UNDER

STOCHASTIC INDEPENDENCE

We can now rigorously formulate and answer the ques-
tion posed in the previous section: Under the assumption of
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s.-independence, is it possible that two decomposition tests
involving two different simple operations are successful for
one and the same quadruple of observable RTs T,;, T,,,
T.;, T, ? The answer turns out to be affirmative if no addi-
tional constraints are imposed, but it changes to negative if
one excludes from consideration one trivial case and
imposes a rather natural condition on the algebraic rela-
tionship between two competing simple operations. The
trivial case just mentioned is the one when

dq d d d
Ty=Ty, Tip=T; o T,;,=T,, Tp=Tp,.
Obviously, then
d
T11 * T22 = le * T21 (Tn 1 Tzz: T12 1 Tu}

for any commutative operation #, and in particular, for
any simple operation. It is also obvious, however, that this
case should be excluded from consideration because this is
the case when at least one of the factors « and # is ingffective.
Indeed, if T,, £ T,,, Ty & T, then changes in the second
factor have no effect at any level of the first factor, and we
have the opposite situation if T,; = T,,, Toy = T,,. To be of
any interest, the analysis should be restricted to the cases
when both factors are effective, that is, when (T,,, T5,) and
(T2, T,)), ignoring the order within the pairs, are different
pairs of rv’s. We will refer to such quadruples of RTs
T,,, T s, T, T1, as having effective index factors.

The following example shows that even if the index fac-
tors are effective, one can still think of pairs of decomposi-
tion tests that may be successful simultaneously. Let one of
the tests be the original summation test, comparing the dis-
tribution of T,y +T4 (T,; L Ty) with that of T, + Ty,
{T,; L T5). Let the competing decomposition test be
designed for the addition-like operation @ defined (by the
algorithm discussed in the previous section) by the function
go(x)=2x +sin x (this function is strictly increasing and
continuous}. In other words, this test compares the distri-
bution of [2T,, +sin T, 1+ [2T, +sin Ty ] (T, L Tyy)
with that of [2T |, +sin Ty, ] + [2T5; +sin T,; ] (T, L Ty)).
Choose now an arbitrary r.v. X, such that lext X = 2z (lext
X is the infimum of the spectrum of X)) and put

d

T, 4 X—-2m T, =X+2m T, < T2 X

Obwviously, (T, T3;) and (T,;,, T3} are different (unor-
dered) pairs of r.v.’s, and it is easy to verify that for these
Ty, Tyz, T2y, T3, both our decomposition tests hold:

d
Ti+Typ=Ty+Ty
[2T,; +sin T, ]+ 12T, +sin Ty, ]
2 [2T,, +sin T1o] + [2T, +sin Ty, ]
(T L Ty, Tha L Tyy)

480/39/3-5
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This disappointing result has a clear algebraic cause: the
two simple operations in question, + and @, are such that
the system of numerical equations

xX+y=a

x@y=>b
can have more than one (unordered} pair of reals (x, y)
satisfying this system. TFhis is not the case in most other
cases, involving more interesting and less artificially con-

structed simple operations. For example, with appropriately
chosen domains and coeflicients, each of the systems

x+y=a
max(x, y) =¥,

{ x+y=a
min(x, y) =,
{x +y=a
xy=b,

[x"’+yf’]”"’=a
[x7+y7]"1 =0,

has at most one (unordered) solution (x, y), for any {a, ).
Let us call two operations exhibiting this property algebrai-
cally distinct decomposition rules, the motivation for the
term being as follows. Consider two such operations, for
example, arithmetic addition and arithmetic multiplication
on positive reals, and let (¢,;, ¢5,) and (¢, ¢,;) be different
{unordered) pairs of positive reals. Then if ¢y + ¢y =
€12+ €21, 1t is impossible that ¢, ¢4, = ¢y, ¢34, and vice versa,

Necessary and sufficient conditions for simple operations
to be algebraically distinct decomposition rules are estab-
lished in Lemmas A2 and A3. We summarize and illustrate
them here informally, as they play a key role throughout
this paper. Fig. 3 illustrates the situation when two algebrai-
cally distinct decomposition rules are both addition-like
(denoted ¢ and ® ). According to Lemma A2, this happens
if, and only if, the defining functions g, and g, are strictly
convex—concave with respect to each other (see Defini-
tion A2). The geometric meaning of this property in Fig. 3
is that if one chooses one of these operations, say @, and
gq-transforms the axes, so that the contour x@y=a is
represented by a straight line (for any «), then the contour
x® y =~ (for any b) is either convex {Fig. 3a} or concave
{Fig. 3b) with respect to this straight line. As a result the two
contours cannot intersect at more than two points, and
because of their symmetry with respect to the main bisector,
these two intersection points are identical when viewed as
unordered pairs. Figure 4 illustrates the facts established in
Lemma A3: any addition-like operation @ and maximum
are algebraically distinct decomposition rules (Fig. 4a); any
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addition-like operation @ and minimum are algebraically
distinct decomposition rules ({Fig. 4b); minimum and
maximum are algebraically distinct decomposition rules
(Fig. 4c).

The question posed at the beginning of this section can
now be reformulated as follows: Under the s.-independence
assumption, can two decomposition tests involving two
algebraically distinct decomposition rules hold simul-
taneously for one and the same quadruple of observable
RTs T\, Tz, Ts, Taa, provided that both index factors are
effective, that is, (T,,, Ts,} and (T,,, T5,), are different as
unordered pairs? Put in a shorter form, does a successful
decomposition test 1dentify the decomposition rule uniquely
among algebraically distinct decomposition rules? The
reader may be tempted to say that the answer is trivial, for
the following reason: using again arithmetic addition and
multiplication as examples, since the system of numerical
equations

X+ y=a
xy=b
has no more than one (unordered) solution, it must also be

true {one might think) that the system of distributional
equations

(B

X+Y=A
(X1Y)

XY

has no more than one (unordered) pair of r.v.’s satisfying it;
ergo the two decomposition tests
d
Ti+Ty=T:+Ty
4 (Tyy L T, Tyy L Tyy)
T Tn=T,Ty

cannot hold simultaneously, unless (T,;, T,,} and (T;,, T5,)
are identical. Although the resulting statement, as we will
see, happens to be correct, the reasoning by which it was
obtained is expressly false. We will see, for example, that
this reasoning would have led to a wrong conclusion if
the two operations were minimum and maximum, rather
than addition and multiplication. The best example known
to us, however, follows from Rényi’s (1950) theory of linear
equations in r.v.’s: the numerical system

xX+y=a
x—y=b
always has a unique solution, but the distributional system

X+Y2A

X1Y
X-Y<B ( )
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can nevertheless be satisfied by infinitely many (X, Y)-pairs
(e.g., if both A and B are unit-normally distributed, then any
two normal distributions whose variances add to 1 and
whose means are zero would constitute a solution). The
following two statements, therefore, based on Theorems
BI1, B2, and B3, are nontrivial.

STATEMENT 2. Under the assumption of s-independence,
if a decomposition test involving an addition-like operation is
successful for observable RTs T, T3, Ta,, Tsy (with effec-
tive index factors) then no other decomposition test that
involves an algebraically distinct addition-like decomposition
rule, or maximum, or minimum can be successful on the same
RTs.

STATEMENT 3. Under the assumption of s.-independence,
if a decomposition test involving minimum or maximum is
successful for observable RTs Ty, T2, Ty, Ty (with
effective index factors), then no decomposition test involving
an addition-like decomposition rule may be successful on the
same RTs.

One can summarize these two Statements by saying that
for any T, L T,,, Ty, L T5 with effective index factors,
none of the systems of distributional equations

=8

{Tn DT, =T,®T,

T,®Ty = T, ®Tay,

T ®Ty = T1,0 Ty (12)
min{T,,, T5,) < min(T;,, Ts,),

T ®Ty = T12®T21
max(T,,, Tz,) < max(T,,, Ty),

can hold, where @ and ® are algebraically distinct addi-
tion-like decomposition rules. Each of the two equations
within a system excludes the other.

The only remaining case is that in which the competing
operations are maximum and minimum. It turns out that
here, in spite of the fact that these two operations are
algebraically distinct, it is possible that for some T, L T,,,
Ty, LTy

min(T,,, Tz,) = min(T,, Ty)
, (13)
max(T,,. Ta) = max(T;,, Ty )

even when the index factors are effective, that is, when
(T,,, Ty) and (T,,, T,) are not identical as unordered
pairs. It is easy to see, however, that for this to happen, the
relationship between (T,;, Ty,) and (T, T,,) must be
of a rather artificial nature, both readily identifiable and
unlikely to be observed.
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Refer to Fig. 5 that shows two repeatedly intersecting dis-
tribution functions, one following the path 1-2-3, the other
the path a-b—c. Let them be the distribution functions F,,(7)
and F,,(t) for RTs T, and T, respectively. Consider now
the following procedure, called a cross-over rearrangement
{Definition B2): choose any two successive crossing points,
say, the end-points of the line segments 2 and b, and inter-
change the two segments in between, in this case 2 and b,
We obtain thereby two other functions, one following the
path 1-b-3, the other the path a-2—c. This step can be
repeated as many times as there are pairs of successive
crossing points (possibly counting as such oo and —o0).
Thus in Fig. 5 we can form eight different pairs of curves
that are cross-over rearrangements of the functions £, ,(f)
and F,,(#) (counting themselves). It is easy to verify that any
such a pair of curves can be viewed as a pair of distribution
functions, and can be, therefore, taken to be the pair of dis-
tribution functions Fy,{#), F5,(¢) for some RTs T, and T»,.
By Theorem B4, the decomposition tests involving mini-
mum and maximum can succeed simultaneously, on one
and the same quadruple of RTs Ty, T, Ty, Ta, if, and
only if, the distribution functions F,(¢), F»,(#) are cross-
over rearrangements of the distribution functions F;,(#),
F,,(1). Intuitively, this situation seems highly unlikely, and
it seems safe to compartmentalize it and exclude it from
consideration. Observe that cross-over rearrangements of
distribution functions F,(£), F5(¢) will typically be less
smooth than the functions themselves: for example, in Fig. 5
any cross-over rearrangement of the curves 1-2-3 and
a-b—c (except for the exchange of the entire curves) will
have at least one “cusp,” indicating a discontinuity in the
density function. One could, therefore, exclude such
rearrangements by imposing a formal requirement that T,
T2, T5, To; must all have continuous density functions.
Now we can formulate the final proposition of this section,
based on Theorem B4,

STATEMENT 4. Let the observable RTs T1, T15: Tsy, T
be such that (the distribution functions for) Ty, Ta; are not
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cross-over rearrangement of (the distribution functions for)
T,,, Tys. Then, under the assumption of s.-independence, the
decomposition tests involving minimum and maximum cannot
be simultaneously successful on Ty, T 5, Ty, Tay.

Observe that one does not have to mention here the
effectiveness of the index factors, because the identity of
(T,;, Ty} and (T,,, T,;) is a special case of the distribution
functions for T,,, T,; being cross-over rearrangements of
those for T, T,,.

It should be emphasized that the uniqueness-of-iden-
tification results obtained here and below (Statements
2,3,4, and 6) tell us nothing about statistical power of
competing decomposition tests. Obviously, algebraically
distinct decomposition rules may very well be so similar
that they can be decided between only on unrealistically
large samples (think, for example, of two “Minkowski-
norm” operations with exponents 12 and 13). At the same
time, a computer simulation work using a wide variety of
Weibull-distributed RT components (Cortese & Dzhafarov,
1995) shows that at the level of only a few thousand RTs per
treatment onc can achieve a virtually perfect discrim-
inability among the three traditional decomposition rules:
plus, maxinm, and minimum.

6. PERFECT POSITIVE STOCHASTIC
INTERDEPENDENCE

That the (hypothetical) selectively influenced component
times A{a) and B(f) in a decomposition of an observable
RT are s-independent, A{x) 1 B{8), has been assumed by
most researchers primarily because, in the absence of
empirical information for or against, this is thought to be
the simplest choice, both conceptually and technically.
Dzhafarov (1992) has analyzed an alternative possibility,
termed the “single-variate RT decomposition model,” that,
if one is to be guided by simplicity considerations, i1s at
least a viable alternative to the s.-independence hypothesis.
Moreover, the investigation presented by Dzhafarov (1992)
leaves little doubt that this alternative is, in fact, more
simple conceptuaily and more manageable technically. In
the context of decomposition tests, as we will see, this con-
clusion is even more called for. For the moment we are not
concerned with the issue of empirical testability of the.
single-variate RT decomposition model against the s.-inde-
pendence model, both being treated as assumptions that
predicate decomposition tests.

As mentioned in the Introduction, the theoretical frame-
work for the variety of possible stochastic relationships
between component times A(x) and B(f) is formed by the
definition of selective influence,

(A(w), B(F)} £ {42, X), BB, Y)},



DECOMPOSITIONS OF RESPONSE TIMES

where A and B are some functions, whercas (X, Y) is a pair
of rv’s (termed “internal sources of variability”) whose
joint distribution does not depend on the factors « and f.
Possible interpretations for internal sources of variability in
terms of randomly preset criteria or stochastic components
of a response formation process are discussed by Dzhafarov
(1993); one such interpretation will also be addressed in the
concluding section of this paper. For our present purposes
it is sufficient and convenient to assume that both X and Y
are wuniformly distributed between O and 1, and the functions
A and B are quantile functions for the rv’s A(a) and B(f)
(see Definition Cl}):
Alw) £ Qu(X,a),  B(B) < Qu(Y, B

In other words, for any 0< p <1, Q@ (p, «) is simply the
quantile of rank p of the rv. A at the factor level
analogously for Qz(Y, £). This choice of X, Y and 4, B
outlines an important subclass of possible stochastic rela-
tionships between A{«} and B{f): each such a relationship
is determined by a fixed pairing scheme of quantiles of Az}
with the quantiles of B(f). In the case of s.-independence,
A{a) L B(f), the pairing scheme is all-with-all, and it
induces the all-with-all pairing of the observable RTs, as
reflected in the generalized Roberts—Sternberg algorithm
(Fig. 2).

In the single-variate RT decomposition model we assume
that there is only one, common source of variability, X =Y,
because of which the rv.’s A(a) and B(f) are perfectly
positively stochastically ( p.p.s.-Yinterdependent, Alo) || B(f).
It is trivial to prove now the following analogue of
Statement 1.

STATEMENT 5. Ler @ be a simple operation (in fact, any
associative and commutative operation), and let RTs T,
Ti5, Tar, Ty in a 2x2 crossed factorial design be decom-
posable as

T, =A B, (A |B)
T, <A #B, (A [B)
, (14)
Tzr = Az * Bl (Az ”31)
Ty, 2 A, B, (A,IBy)
Then,
T, €Ty ST, €Ty (Tyy 1 To, Ty 1 Tay). (15)

In other words, proposition {15) is a necessary condition for
the existence of a decomposition described by (14).

Proposition (15) is referred to as the decomposition test
(for operation #) under the assumption of p.p.s.-inter-
dependence. The operational meaning of (15) is Hlustrated
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in Fig. 6. Here the equality of sizes of the paired samples,
as well as the ascending order in which the samples are
arranged, is critical, not just a matter of convenience, as it
was in Fig. 2. The value ¢} is an estimator of a fixed-rank
guantile of T,,, and it can only be paired with the estimator
ti5) of the same-rank quantile of T,,; analogously for T,
and T,,. In other words, among the »* pairs (%', r{))
and »n® paits (1%, 159), k, 1€ {1, 2, ., n}, all are assigned
zero weights (ie., ignored) except for the diagonal pairs
(e, 1§, (£, 1) that are taken with equal weights.
The rest is analogous to the case of s.-independence: one
computes r values (5 & ¢55)) and n values ({5 & 1),
considering them samples from T,; ® T, (T, [T} and
T,, ® T, (T; || Ty), respectively. If {15) is true, then the
empirical distribution functions constructed from these two
samples are mutually s.-independent estimates of one and
the same distribution, which can be corroborated or rejected
by an appropriate non-parametric procedure. (Here, unlike
in the case of s.-independence, the » values, viewed as r.v.’s,
are stochastically independent within either of the two
samples. The pairing of sample quantiles of the same rank,
however, implies a stronger form of stochastic inter-
dependence than p.p.s.-interdependence—the latter only
requires pairing of the same-rank population quantiles. As
a result, the use of conventional procedures, such as
Smirnov—K olmogorov’s, remains dubious in this case, too.)

We pose now the analogue of the guestion studied in
the previous section: Under the p.p.s.-interdependence
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assumption, can two decomposition tests involving two
algebraically distinct decomposition rules hold simul-
taneously for one and the same quadruple of observable
RTs T, T3, Ty, Tay, provided that both index factors are
effective? In other words, does a successful decomposition
test identify the decomposition rule as uniquely here as it
does under the assumption of s.-independence ? The answer
requires that we deal with cross-over rearrangements of
quantile functions. Figure 7 illustrates the concept. The two
curves shown, 1-2-3 and a-b-c, are the same as in Fig. 5,
only viewed this time as functions of quantile rank p: let
them be the guantile functions Q,(p) and Q..{ p) for RTs
Ty, and T,,, respectively. Cross-over rearrangements of
these two functions {such as 1-b—c and a-2-3) are obtained
as in Fig 5, by choosing successive crossing points, and
interchanging the line segments between them. The resulting
curves can also be viewed as quantile functions 0,.(p),
Q.1(p), for some RTs T, and T,,. It is easy to see that the
quantile functions @,,(p), @fp) for (Ty,, Ty} are cross-
over rearrangements of the quantile functions @,,(p),
(,.(p) for (T, T,,) if, and only if, the same is true about
their distribution functions. As a result, we may simply say,
by some abuse of language, that the RTs T,,, T,, are cross-
over rearrangements of the RTs T,,, T,,, without mention-
ing either quantile or distribution functions. It is also easy to
see that all comments made in the previous section about
the justifiability of compartmentalizing and excluding from
consideration the RTs quadruples T,;, T, Ts, T
exhibiting this relationship apply here with no modifica-
tions. The following statement is based on Theorems Cl
and C2.

STATEMENT 6. Let the observable RTsT,,, T, Ts, Ta
be such that T,,, T, are nol cross-over rearrangements
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of T,1,Ts. Then, under the assumption of p.p.s-interde-
pendence, two decomposition tests involving two algebraically
distinct decomposition rules cannot be simultaneously
successful on Ty, T1s, Toy, Ty

Put differently, if T,; | T,; and T, |'T,; are not cross-
over rearrangements of each other (which also means that
the index factors are effective), then none of the systems of
distributional equations

TIZ@TZl
T12 ® T21 ’

T,&Ty
min(T,,, Ty;),

T,®T,
maXTlZ: TZl H

lie |l

Ttl ®T22

T, ®Ts
min(T,;, T,,)

{Tu@Tzz

e e

(16)
{ T, ®T,

max(T,,, T,,)

e lla

{min(T“ s Tyz) = min(T;,, Ty}

max(T,,, T5) < max(T,;;, Ts),

can hold, where @& and ® are algebraically distinct addi-
tion-like decomposition rules. As in the case of s.-inde-
pendence, each of the two equations within a system
excludes the other.

The computer simulation work already mentioned
{Cortese & Dzhafarov, 1995; see the last paragraph of
Section 5) shows that statistical discriminability of the three
traditional decomposition rules (plus, max, min) under the
assumption of p.p.s.-interdependence is ¢ven better than
under the assumption of s.-independence: a virtually perfect
discriminability is achieved at a level of only a few hundred
RTs per treatment.

Observe that the algebraic distinctiveness of the simple
operations involved is as critical here as it is under the
assumption of s.-independence. This can be demonstrated
by using the same example (see the previous section): the
operation + competes against the addition-like operation
@ defined by the function gg(x)=2x+ sin x. Again, we
choose an arbitrary X such that lextX = 2z, and put

Ty SX-21 Ty EX+2m T, =Th=X

This time we put T,, | T,, and T, ||T,,, and it is easy to
verify that the decomposition tests involving 4+ and @ hold
simultaneously:

Ty 4 Ta = Ty + Tap
[2T,, +sin T, ]+ [2T,, +sin Ty, )
& [2T ; +sin Ty ] + [2T5y +sin T, ]
(T3 [ Ta2s Tya [Ty
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7. SUFFICIENCY OF DECOMPOSITION TESTS
FOR DECOMPOSABILITY

So far, we have seen that the two forms of stochastic
relationship between hypothetical component times, s.-inde-
pendence and p.p.s.-interdependence, exhibit an almost
perfect parallelism. Under both assumptions the decom-
position tests are necessary conditions for the existence of
the corresponding architectures (ie.., the architectures
involving the same simple operation and the same form of
stochastic relationship; see Statements 1 and 3). Under both
assumptions, excluding the peculiar case of cross-over
rearrangements, only one decomposition rule can be
successfully used in a decomposition test, providing it com-
petes against algebraically distinct decomposition rules (see
Statements 2, 3, 4, and 6). None of these results however,
implies that a successful decomposition test guarantees the
existence of the corresponding architecture: we do not
know, for example, whether it follows from the success of
the original summation test that the observable RTs are
additively decomposable into s.-independent components.
This problem, the sufficiency of decomposition tests for
the existence of corresponding architectures, is the one we
consider next. We will see that the mentioned parallelism
between the two forms of stochastic relationship breaks
down on this problem: the analysis of the p.p.s-interde-
pendence case turns out to be much simpler. The following
statement is based on Theorems D1 and D2.

STATEMENT 7. Under the assumption of p.p.s.-interde-
pendence, let a decomposition test involving a simple opera-
tion & (addition-like, minimum, or maximum) be successful
when applied to RTs T, T12, Tay, Tz, that is,

4
T, ®T,=T,,® Ty (Ti (T, T [ Ta)

Then there exist rv’s Ay, A,, B, B, such that

o

T,.2A ¢B, (AlB)
T, = A, ¢B, (A B,
T, = A, B, {AB)
Tx = A, B, (A,|B,).

The component times A, A,, B, B, are not gererally deter-
mined uniquely, but their spectra can always be chosen to lie
within the same domain of the operation @ that contains the
spectraof RTs T,,, T 5, Tsy, Tay.

Combining this statement with Statement 5, we can say
that proposition (15) is both necessary and sufficient for the
decomposability of RTs according to (14). The importance
of the concluding sentence in Statement 7, concerning the
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choice of the interval in which the component times may
attain their values, is in establishing that the additive com-
ponent times can always be chosen “to make sense.” For
cxample, one would not want to additively decompose RTs
that are inherently positive into components that may
attain negative values. Since the interval of positive reals is
a domain for arithmetic addition (because the addition is
defined on this interval and maps onto it), Statement 7 tells
us that the component times can aiways be chosen to lie
within this interval. Note that even though the domain of an
operation is part of this operation’s definition, there can be
different domains for operations denoted by one and the
same symbol and computed according to one and the same
algorithm, For example, addition may have one of the three
domains, (0 ), (—o0,0), and (—o0, 00), whereas any
open interval of reals can serve as a domain for maximum
or minimurm.

One could add to Statement 7 (though this issue is not
pursued in Appendix D beyond the most obvious continuity
characteristics of the quantile functions involved) that the
component times A;, A;, B;, B, can always be chosen so
that their quantile functions (and distribution functions}
have the same degree of smoothness as the quantile (respec-
tively, distribution ) functions for the decomposed RTs T,
Ty2, Tay, Tap.

As already mentioned, the situation is much more com-
plex if one assumes that the component times are s.-inde-
pendent. The decomposability is guaranteed here only if the
operations involved are minimum or maximum, and even
then in a somewhat less straightforward sense. We consider
these operations first, preceded by necessary clarifications.

Let T be a continuous r.v, say, a non-negative one, as
would be natural to assume in the case of a RT. Recall that,
by conventional definition, the distribution function F(r)
for T should converge to zero as  decreases (here, —0), and
it should converge to 1 as f increases {— oo). If the first of
these requirements is not satisfied, that is, Fr(1} » p>0 as
t— 0, we will say that T is left-incomplete {(in probabilistic
terminology, has an atom at 0). If the second requirement
is not satisfied, that is, F;(¢) » g <1 as { — oo, we will say
that T is right-incomplete (has an atom at infinity; in
Feller, 1968, such r.v.’s are called “defective”: in Dzhafarov,
1993, right-incomplete r.v.’s are called incomplete). In the
literature on the “parallel” versus “serial” RT architectures
right-incomplete r.v.’s have sometimes been treated as
a physical impossibility (Luce, 1986; Townsend, 1976;
Townsend & Ashby, 1983). It has been shown, by
Dzhafarov (1993), however, that right-incomplete compo-
nent times arc physically realizable and that they arise
naturally in the context of “min-parallel” architectures. In
the Grice-representability language, a component time is
meodelled as the time it takes for a deterministic process
{evoked by stimulus) to cross a randomly preset criterion,
as shown in Fig. 8. 1t may happen then, as in Fig. 8a, that
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with a non-zero probability g the criterion e¢xceeds the
maximum level of the process, making the crossing time an
incomplete r.v. If such a process is assumed to compete with
other processes (the winner being the one that reaches its
criterion first), then the observable minimum of the com-
peting crossing times may be night-complete (so that a finite
RT is observed in every trial} even if all but one of the
component times are right-incomplete. The modelling of the
left-incompleteness in the Grice-representability language is
equally simple (Fig. 8b): the starting level for a process may
be non-zero, in which case the criterion may fall below it
with some non-zero probability p. If the overall observable
RT is assumed to be the longest of the crossing times for
several processes (the “max-parallel” architecture), then this
RT will be left-corplete even if all but one of the component
times are left-incomplete. Both forms of incompleteness, left
and right, can be equivalently modelled in the McGill-
representability language (Dzhafarov, 1993). Having estab-
lished this, we can formulate the following statement,
derived from Theorems El and E2.

STaTeMENT 8. Under the assumption of s.-independence,
let a decomposition test involving maximum (or minimum) as
its operation be successful when applied to RTs'Y,,T,,, T,
Ty, that is,

max{T“, Tzz} = max{T),, T2l} (Ty; LTy, Ty, LTy),
or

min{T“, Taa} < min{le, Tu} (T LTy T LTy

Then there exist r.v’s A, A,, By, B, such that, respectively,

T, < max{A,, B} (A, LB)
T,, £ max{A,,B,} (A, LB.)
T, < max{A,,B,} (A, LB;)
T, = max{A,, B,} (A, LB,
or
T,, = min{A,,B,} (A, LB
T, = min{A,,B,} (A, LB,)
Ty £ min{A,, B} (A, LB)
T, £ min{A,;,B,} (A, LlRB,).

The component times A, A;, B, B, are not generally deter-
mined uniquely, but their spectra can always be chosen to lie
within the same domain of the operation max (or min) that
contains the spectra of RTs T,,, T,5, Ty, Tas. The compeo-
nent times A,, A,, By, B, are all right-complete in the case
of maximum, but some of them (not all) may be left-incom-
plete; in the case of minimum, they are all left-complete, but
some of them (not all) may be right-incomiplete.

Combining this statement with propositions (7} and (8),
and keeping in mind the possibility of incomplete com-
ponent times, we can say that, under the assumption of
s.-independence, a successful decomposition test involving
minimum or maximum is both necessary and sufficient for
the existence of the corresponding “parallel” architecture.
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The remaining decomposition tests involve addition-like
operations. Mathematically, any such decomposition test
can be immediately reduced to one with arithmetic
addition, because

T, ®Ty = T,®Ty (T, LT, Ty LT,))

1s equivalent to

€a(Ti) + £6(Tn) = go(T)+ 2o(Ts)
[gea(Tn) 1 gea(Tzz): g@(le) 1 g@(Tzl)]-

Renaming the g4 -transformed RTs as T,, T, T, Th,
we observe that these new r.v’s are either all positive or
all negative, or else they can attain all real values (see
Lemma Al). The problem can now be formulated as
follows: Given that

P .

To+Tn £ Tp+Ty (T, LT TunlT,), (7)

can one always find reai-valued r.v.s A, A, B,, B, such
that

Tn ""K1+§1 (“il-Lﬁl)
T12=1§1+§2 (A, 1By
_ _ _ (18}
T, =A,+B, (A, LB)
T = A,+B, (A, LB,

on the condition that they are all positive (negative,
arbitrary) if T,,, T, Ta, Ty are posmve (respectwely,
negative, arbitrary)? If, and only if, such &,, A,, B,, B, can
be found, then by gz'-transforming them one gets the
decomposition sought:

(=9

T, < A,®B, (A, LB)
T,2A,®B, (A, LR,
Ty = A,&B, (A, LB
Ty £ A,@®B, (A, LB,

Although the mathematical theory of decompositions of
r.v.’s into sums of s.-independent 1.v.’s is conspicuously void
of results that might be judged both general and construc-
tive, a variety of decompositions associated with so-called
irreducible r.v’s have been found (Linnik & Ostrovskii,
1972; Lukacs, 1960) that imply that (17) may very well hold
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without (18). A “classical” example (albeit artificial in the
present context, as the r.v.’s involved are all discrete) is
obtained by putting

0, prob. §
. ~ 9, prob. 1
T, =<2, prob. } 22={1 I;rob 1
4, prob. £, ’ o
0, prob. 1
. - 0, prob. &
T=¢lLprob i T, = {3 irob f
2, prob. 1 ’ >

and verifying that (17) holds. It can be proved {Lukacs,
1960) that all these r.v.’s are irreducible, that is, all their
possible decompositions inte sums of s.-independent
components have the form

T, 2T, -0 +c

i

(i=1,2;j=1,2),

where ¢ is a constant (formally, a constant and a r.v. are
s.-independent]. From this it follows easily that no decom-
position (18) is possible for these r.v’s, whatever the per-
missible spectra of A, A,, B,, B,, and even if some of A,
A,, By, B, are allowed to be constants. (The essence of the
example, using the language defined in Appendix E, is that
both “RTs” T,,, T,, here are irreducible, but neither is an
independent additive component of either of the “RTs” T,
T.,.) A “classical” example involving continuous r.v.’s is as
follows. Let T,,, T1,, T, , T1, (with unconstrained spectra)
have the following characteristic functions {Lukacs, 1960):

@y (s) = (1 —57/2) exp( —s7/4),
P2(st =g (s),

@208} = (1 —57/2)% exp ( —35%/8),
@21(s) =exp( —s/8).

Again, (17) holds, because @ ,(5) @2(s) = @ 12(s) @, (5), but
no decomposition {18) is possible (because both T, T22
are irreducible, but neither is an independent additive
component of either le, which is irreducible itself, or T,
which is normally distributed, and hence can have only
normally distributed independent additive components).
Other exampies, or references to the literature containing
such examples, can be found in Feller (1968), Linnik &
Ostrovsku (1972), Lukacs (1960), and Rusza & Szekely
(1988). Irreducible r.v.’s, upon which all these examples are
based, are not as rare as one might judge from the difficulty
of constructing them. In fact, for any distribution function
there exists an irreducible r.v. with a distribution function
arbitrarily close to it {see Definition E1 and Lemma E1 for
more rigorous formulations). We are in the position now to
formulate the following statement, based on Theorem E3.
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STATEMENT 9. Under the assumption of s.-independence,
a decomposition test involving any addition-like operation @
may be successful for some rv’s Tyy, Tia, Tsy, Tay that do
not have the corresponding architecture. In other words, for
any addition-like operation & one can find a quadruple of
ro’s Ty, Ta, Ty, Toy such that

T ®Ty, = Tp® Ty (T LTy Ty LT,),

but that cannot be decomposed as

=R

T2 A,®B, (A, LB)

T, <A, ®B, (A LB)
T, £ A,®B, (A, LB)
Ty = A,®B, (A, LB,

Comparing this statement with Statement 1, we conclude
that, under the assumption of s.-independence, a successful
decomposition test involving an addition-like operation is
necessary but not sufficient for the existence of the corre-
sponding architecture.

We see that addition-like decompositions into s.-inde-
pendent components stand in sharp contrast to all other
decomposition tests. Having verified that

T ®Ty =T,®T, (T, LTy, Ty, LT,),

one rules out the possibility that the RTs T, T15, Tay, Tas
might have an architecture involving another, algebraically
distinct, decompaosition rule, but one cannot be sure that
they have the architecture involving @: this has to be
proved by aciually finding some quadruple of @®-decom-
posing component times A,, A,, B;, B,. This result is cer-
tainly disappointing, but it is not clear at the moment just
how grave its consequences are for RT analysis. We cannot
exclude the possibility that all empirically observable RTs
de facto belong to a subclass of r.v’s for which the decom-
posability in question is guaranteed by a success of the
corresponding decomposition test, at least for some decom-
position rules. Just as an example, this would be the case
for additive decompositions if all RT distributions were
gamma-distributions with one and the same exponential
parameter. It would be very useful, therefore, to investigate
the validity of Statement 9 for a relatively narrow family of
r.v.’s that would include (according to some, so far non-
existing, theory) all possible RTs or all possible RTs in a
certain experiment. The mentioned {non-existing) theory
constraining the family of RT distributions would also be
likely to constrain the distributions of the component times,
which might considerably simplify mathematical analysis.
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Irrespective of the results of such an investigation,
however, one practical conclusion that can be drawn from
this paper is that s-independence in the context of RT
decompositions should not be mvoked for the sake of
simplicity, cither conceptual (one's intuition should be con-
siderably “educated” to successfully deal with independent
additive components of r.v.’s) or technical (the actual com-
putation of independent additive components is both non-
trivial and ad hoc). The p.p.s.-interdependence assumption
seems at least equally plausible a priori, and it does make
matters simple. Dzhafarov (1992) showed that for some
experimental situations one can impose restrictions on
hypothetical component times that would make the two
assumptions, s.-independence and p.p.s.-interdependence,
empirically testable against each other {for a detailed
analysis, see Dzhafarov & Rouder, 1995).

Unfortunately, these restrictions do not apply to the
decomposition tests based on a 2x2 factorial design. A
decomposition test involving an addition-like operation can
very well hold on one and the same quadruple of RTs T;,,
Tz, T,,, T3, under both assumptions, s.-independence and
pps-interdependence. As an example, consider the RTs

Tu 4 X—a Txn 4 X+a Ty, 2 T, 4 X,

where lextX > a. It is easy to verify that for these RTs

T11+T22 i T12+T21 (Tll -LT223T12-'LT21)

T+Ty S Tu+Ta (T T, Tl Ty)
hold simultaneously. It would be useful to investigate what
additional constraints have to be imposed on RT distribu-
tions (or those of the hypothetical RT components) that
would prevent this from happening (making thereby the
two forms of stochastic relationship testable against each
other).

8. PHYSICAL REALIZABILITY OF NON-TRADITIONAL
DECOMPOSITION RULES

Perhaps the most unusuwal notion introduced in this
paper is that of using operations other than arithmetic addi-
tion, minimum, and maximum. As stated earlier, decisive
arguments in favor of the “possibility” of RT architectures
involving such operations can only be empirical. It is
legitimate, however, in the absence of empirical informa-
tion, to ask whether these alternative operations can at all
be physically realizable, that is, whether they can be shown
to reflect some properties of hypothetical processes whose
durations are observable RTs. In the case of the common
operations (4, min, max) their physical realizability is
obvious: one can think of each component time as the
duration of a separate subprocess (selectively influenced by
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a certain factor) with uniquely defined starting-stopping
rules. In such a “naturalistic” interpretation, the alternative
addition-like decomposition rules do appear artificial, if not
non-realizable. We propose, therefore, another interpreta-
tion, at this stage as a logical possibility only. We present
this interpretation in the McGill modelling language
(Dzhafarov, 1993), in which observable RTs are durations
of stochastic processes evoked by stimuli and developing
until they reach a fixed critical level {criterion).

The simplest special case of a stochastic process is a deter-
ministic function of time with randomly preset initial condi-
tions. Let C, 4(¢]X, Y} be such a process, where ¢ stands for
time, X, Y are r.v.’s representing initial conditions, and C, 4
1s some increasing function of ¢ that depends on factors «
and f as its parameters. The process is assumed to be
evoked at moment ¢ =0 and increase until it crosses some
fixed criterion, whose value can be taken to be unity. The
time of the crossing is determined by solving for ¢ the
equation

C. 51X Y)=1,
and the solution
T=Tu 4 X,Y)

is the observable RT. Suppose that it happens that this
solution is representable as

T, 5, X, Y)=A(a, X) ® B(f.Y), (19)

where # is a simple operation, and 4, B are some functions,
Then, putting

Tlo, f) = T(a, B, X, Y),
Ao} = A, X),

B(8) < B(4, Y),

one can say that the RT has the architecture

T(a, f) < A(x) ® B(p),

where the stochastic relationship between A(w) and B(f) is
determined by the joint distribution of X, Y (the initial
conditions that now can be called “internal sources of
variability” for the component times). As we see, the compo-
nent times here are merely time-dimensioned descriptors of
a single process, and they are not interpretable as durations
of its separate “parts.” It remains to demonstrate now that
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one can indeed construct the process C, 4(¢|X, Y) so that
proposition {19) holds. Consider the process representable
as

1
~exp(Y)

xexp{B; (g~ [ &(t) - g(A4(XD1}},

Co plt1X,Y)

with the following properties: g is some monotonic con-
tinnous function (increasing or decreasing) mapping
positive time values onto one of the three intervals { — oo, 0),
(0, ®), or {(—ow, w); 4, and B, are some increasing
functions mapping reals into positive time values and
depending on the factors « and f as their respective param-
eters. (If the expression for the process appears too artificial,
observe that by simple renaming it can be simplified as

S exp{ @[ g(r) — ¥,(S:)1} 1

it will save us time, however, to use the more explicit
version.) The process level is considered undefined or equal
to zero at all moments ¢ >0 at which g{f) — g(4 (X)) falls
outside the domain of g ' It is easy to prove that at all
other moments the process increases. The solution (with
respect to ¢) of the equation

oy LB {8780~ A XN T} =1

1s, writing A(«, X), B(f, Y) instead of A,(X), By(Y),

T, B, X, Yy=g el A, X)]+ g[ BB, Y) 1}
= A(x, X)® BB, Y).

where @ is the addition-like operation determined by
8o = g This agrees with (19) and makes our point for addi-
tion-like operations: architectures involving such opera-
tions are physically realizable. The case of s.-independence
is obtained by assuming that the two initial conditions are
mutually s-independent, X L Y, the case of p.p.s-interde-
pendence is obtained by assuming that the process is single-
variate, X =Y. The traditional serial architecture with
s.- independent components corresponds in this scheme to
the process

1
C. slt1X, Y)=m

X1Y.

exp{ B, '[1 - 4.(X)]},

The minimum and maximum operations can be appended
as limit cases, through a procedure involving “Minkowski-
norm” operations for maximum (g(¢) =##, p= 1) and their
negative-exponent counterparts for minimum (g(f) =1*,
p<—1). To avoid technical complications, however,
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a more straightforward approach is to simply define
stochastic processes as

Cimax)(¢ (X, Y) = min{ec, (| X), cs(t| Y)},
C (X, Y) = max{e,(1]X), ¢s(t] Y},

where ¢, and ¢, are some increasing functions. Denoting the
solutions of the equations ¢,{#})X) =1 and ¢,4{¢]Y}=1 by
Afo, X) and B(f,Y), respectively, it is easy to see that
the processes CU"3(z|X,Y) and CU"M(¢1X, Y) cross a
unity level at the moments max{A4(a, X}, B(§, Y)} and
min{ A(a, X), B(8, Y)}, respectively. The difference between
this interpretation and the traditional one, with two paralle!
processes, is obviously inconsequential, and our only reason
for presenting it is to emphasize that here, too, as is the case
with addition-like decomposition rules, the component
times can be interpreted as time-dimensioned characteristics
of a single process, rather than durations of separate
processes.

9. SUMMARY OF MAIN RESULTS

To state the main results succinctly, we adopt the following
conventions. A decomposition test involving a decomposi-
tion rule @ is referred to as the { #)-test. Analogously, we
say that RT is ( 4 )-decomposable, meaning that it can be
decomposed into two components connected by the simple
operation . It is implied but not mentioned explicitly
that we deal with a 2 %2 crossed factorial design and that
the component times are selectively influenced by different
factors. It is also implied without mentioning that the RTs
involved do not form a pattern of cross-over rearrange-
ments (in particular, the index factors are effective), and
that competing decomposition rules (¢ and <) are
algebraically distinct. With these conventions in mind, the
results are as follows.

{A) Necessity and uniqueness of identification. Under
either of the two forms of stochastic relationship, p.p.s.-
interdependence or s.-independence, and for any two
decomposition rules ¢ and <,

(Al} asuccessful { @ )-test is necessary for ( # )-decom-
posability of RTs;

(A2) (#)-test and (<)-test cannot be successful
together; that is, no RTs can be both ( ¢ )-decomposable
and (< )-decomposable.

(B) Sufficiency.

(B1) Under the assumption of p.p.s.-interdependence
a successful { ® )-test is sufficient for { ®)-decomposability
of RTs.
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(B2) Under the assumption of s.-independence, a suc-
cessful { ® )-test is sufficient for ( ® )-decomposability of RTs
if the operation 4 is min or max (some of the component
times in these cases can be incomplete random variables); if
the operation ¢ is addition-like, then a ( ®)-test may be
successful even if the RTs are not { #)-decomposable (in
which case they are not decomposable by means of any
other operation either}).

(C) Recovery of component times. The component times
of { ®#)-decomposable RTs generally cannot be recovered
uniguely, but their spectra can always be chosen 1o lie
within the same domain of the operation # that contains
the spectra of the RTs themselves.

(DY Recovery of stochastic relationship. The decom-
position tests do not recover the stochastic relationship:
a ( #)-test may be successful under both p.p.s.-interdepen-
dence and s.-independence.

(E) The results of this paper are not predicated on any
constraints imposed on RT distributions. The results there-
fore are equally applicable to random variables in other
empirical domains.

APPENDIX A: SIMPLE OPERATIONS

DerniTioN Al An operation @ 1s called an addi-
tion-like operation on some open interval / < Re if @ maps
I'xI— T onto, is associative, continuous, and strictly
increasing in both arguments. An operation on [ is called
simple if it is min{a, b}, max{a, b} or a@ b, where @ is
addition-like (a, beT).

Lemma Al. (Aczél). An operation @ is addition-like on
some interval 1< Re iff there is a sirictly monotonic con-
tinuous  function gg:T—Re, such that a®b=

—1 ) . . .
ga Legla)+2o(B)); g is determined uniguely up to a
multiplication cgqo,. Addition-like operations are com-
mutative, and g (1) is one aof the three fntervals (—a, 0),
(0, ), (~ 00, ).

Proof. The main statement, that a@b=g3'[ go(a) +
Z2e(P)], and the uniqueness statement are proved in Aczél
(1966, pp. 256-267), with the commutativity following as
an obvious corollary. That gg(f) is (—o0, 0}, (0, o), or
(—o0, o), is proved as follows. If sup g4(7) +sup go(f)
>supge(l), then, for sufficiently large x,yeggq(f),
x+y>supgg(f). Hence gZl(x)@gz'(y)¢7 while
8o (X), g5'(y) el which contradicts the fact that @ is
ciosed. If sup go{f) +sup go(l) <supgg(f), then for a
sufficiently large zegg(f), x+y <z for all x, vegg (D).
Hence g3'(z) cannot be presented as gg'(x)@ g5 (),
which contradicts the fact that @ maps onto. It follows that
SUp g (1) + sup g o(7) =sup g &{7), and hence sup g (/) =
—o0, 0, or + o0. Analogously one proves that inf gg (/) +
infgg(f)=infgo(7), that is, infgg(f)= —c0, 0, or + 0.
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This completes the proof, because the only three non-
degenerate intervals that can be formed from these values
are { —o0, @), (0, c0), or { — a0, o0},

DerFmrTion A2, Given two addition-like operations @
and ® on some interval J < Re, g is called strictly convex
(strictly concave) on [ with respect to g, if the function g
defined by g, = gg is strictly convex (strictly concave) on
go(l). The function g is well defined and continuous
because both g and g, are strictly monotonic and con-
tinuous. Obviously, g, is strictly convex (strictly concave)
with respect to g ., on some interval iff g o, is strictly concave
{strictly convex) with respect 10 g on the same interval.

The proof of the following lemma, except for minor
modifications, was provided to us by Donald Burkholder
(personal communication, June 1994).

Lemma A2. (Burkholder). Given fwo addition-like oper-
ations @ and @ on some interval I = Re, the following two
statements are equivalent:

(1) the system of equations

XPy=a
{x, vieIxI=RexRe

x®y=4h,

is satisfied by no more than one unordered pair (x, v) for any
ordered pair (a, b);

(1) gg fs strictly convex or strictly concave on I with
respect (o g g .

- DProof. let go=gegq, and let ¢ denote gglc). This
allows us to rewrite the system as

{ YIS SesalDx gD
- % Pe X .
gD+ g =ghy, e Ee

Any two diferent pairs (¥, 5), (%, F2), such that
X1+ 7, =%+ 7, can be presented (except for trivial
permutations of indices) as

=
Fy= R A F
Jo=R+4,%
Fr=X+4,X+4,%,
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Proposition (i) then can be viewed as stating that for all
such ¥, 4, %, and 4, %, the function
K% 4, %, 4,0 =[g(X+4,84 4,%) + g(%)]

g +4,%)+8(¥+4,%)]
=[g(f+4, F+4,%5)— g(Z+4,%)]
—[g(x+4,%)—g(®)]

does not vanish. At the same time, g is strictly convex
(concave) on gg () iff F(%, 4, %, 4,%) 1s strictly positive
(negative) for all admissible values of £, A, %, and A £ This
proves that (i1) implies (i). Assume now that (i) holds, but,
for some triads (%,, 4,%,,d,%,), and (&,, 4,%,, 4,%,),
F(x,, 4,7, 4,%))>0and F(%,, 4, %,, 4,%,) <0. Let f(a},
0 <o < 1, be delined by
fla)= Floak, + (1 —a) X5, ad, &,
+(1—o)d, %y, ad, % +{1 —a) 4,%,).

Observe that f(a) is continuous, and

infgg(N€ak, +(1—a) &,
<[of, +(1—o) %] +lad, &, + (1 —a) 4, %]
gla¥; +()—a) X} +[ad, % +(1 ~a) 4, %, }
<faX, +{l—a)y ¥, ]+ [ad, X+ (1 —2) 4, 7,1
Flads Xy + (1 —a)d,8,]
< sup golf)
Since, by assumption, f(0}>0 and f{1)<0, there must
be a point o between 0 and 1 at which f(a)=0. This is
impossible, however, because it follows from (i) that

F(% 4, % 4,%) never vanishes. This contradiction proves
that (1) implies (i1) and completes the proof.

LeMMa A3, Given an addition-like operation @ on some
interval I < Re, each of the systems of equations
xPy=a x@r=ag maxix, y)=a
max{x, ¥y} =4, (min{x, yj=24,
{x, y)eIxI=RexRe

min{x, y)=b,

is satisfied by no more than one unordered pair (x, y) for any
ordered pair (a, b).

Proof. Since g5 is strictly monotonic, the contour
x® y=aqa, which is equivalent to go(x) + g2o(¥) =ggla),
detines a strictly decreasing relationship between x and y for
any a. Hence, for any b, this contour cannot intersect
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straight lines x = & and y = b at more than one point each;
due to the contour’s symmetry with respect to the main
bisector, the two intersection points are identical as unor-
dered pairs (refer to Fig. 4). This proves the lemma for the
first two systems of equations. For the third one, the unor-
dered solution is always {x, y)=(a, b). This completes the
proof.

APPENDIX B: UNIQUENESS OF SIMPLE OPERATIONS
UNDER STOCHASTIC INDEPENDENCE

In the theorems below the spectra of all r.v.’s are assumed
to lie in the domains of the simple operations relating them
to each other (the spectrum of a r.v. 1s the set of its possible
values).

THEOREM Bl. For any given pair of r.v's A and B, there
is at most one (unordered) pair of rv’s X L Y, such that

=

X®Y
X®Y

A
B,

lie

provided that g g Is strictly convex (strictly concave) with
respect 10 g o,

We first prove this theorem for a spectal subclass of
discrete r.v.’s, referred to as primitive. The result is then
generalized to arbitrary r.v’s based on limit considerations,
since any r.v. can be approximated by a weakly converging
sequence of primitive r.v.’s. (The concept of weak con-
vergence, which here coincides with that of convergence in
distribution, is explained in most textbooks of probability;
see, e.g., Loeve, 1963.)

DermviTION Bl. A rv. X is called primitive if its spec-
trum S, consists of a finite number of points x; € --- £x,
each associated with a probability mass of 1/n.

Lemma Bl.  Theorem Bl holds if the rv’s A and B are

primitive.

Proof.  Let one solution (X, Y) exist. Obviously, both
X and Y are primitive, and denoting their spectra
by Sy=x,< - - €x,and Sy=y,< - €Y,,, we observe
that the spectra of A and B contain nm points each:
S,=a,< - <€a,,, Sg=b,< - £b,,. For definiteness,
assume that (X,Y) are always chosen so that x, < y,.
It is clear that

XD =4
x1 @y =b,
hence, by Lemma A2, x, and y, are determined uniquely

{x, £ y;). Taking this as an induction basis, we assume that
the first k points in Sy, x; < --- <x; (k=1) and the first /
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points in Sy, ¥y, < .- €<y, (/21) have been determined
uniquely, and we show by induction that then either x, , , or
¥;4+1 {or both} are determined uniquely. This is sufficient to
prove the lemma, because at the end of the induction chain
one of the r.v.'s {X, Y) will be determined uniquely, and the
other will then be determined from either of the distribu-
tional equations g4(X) + go(Y) 4 ga(A), 26 X)+2s(Y)
g o(B), by deconvolution.

We begin the induction step by forming all pairwise
combinations x,® x; and x,® x; among the values known
by the induction hypothesis:

Ii={x,@x; i<k j<I} 8,
IB= {x,—@xj: ls.k,_]-g.l} gSB,
Let
p=min{i:a,eS,, a,¢1,},
g=minf{i:b,e Sy, b;¢ I5};
that is, @, and b, are the smallest elements in .S, and 8,
respectively, that have not been “accounted for™ in terms
of the known values of 5, and S,. Obviously, either
X1 @ ¥rp1=4a, of X, ®y =a, (or both), because
there can be no combination x; @ x,¢ I, that is less than

both these values. Analogously, either x, ® y,,, =b, or
Xi 41 ® ¥, =b, {or both). If

xl@y:-..l:ap
X @Y =b,,

then y,_ , is determined vniquely, and the induction step is
complete. Analogously, if

Xep 1By =4,

xk+l®y1=bqs

then x; ., is determined uniquely, and the induction step
is complete. These two possibilities are not, of course,
mutually conflicting. Assume now that none of them takes
place. Then

) X @ y1=a,
either {

{xkﬂ@%:%
or
xk+l®y1=bq

X1 ® Yiva1= bp
{or both}
Since each of the two equation pairs determines

(X4« 1» V14 ) uniquely, the induction step is complete if only
one, but not another of these equation pairs holds. It
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remains to be proved, therefore, that if both these equa-
tion pairs hold, then their solutions (X;.,,7:,,) and
(X a1, ¥1.1) coincide, Indeed, if both

{xl®j;f+l=ap

{f%kH@yl:ap
} and
e @2 =bq

8 .iht 1= bq’
then there must exist 5 > p, §> ¢, p > p, and § > q, such that

{xl®y~l+1=bq a_nd {§k+l®y1=bé

X @®y1=a; X D =as

Then we have, however, by grouping the equations dif-
ferently,

@ Fi=a, = -

= = Vi1 2 Vi
X\ @Fi=aezza, N N

- = Vi1 =VYir1s
xl®yl+1:bq

- =’y:1+1'~<~y~1+1
x1®3/’1+1=b¢72bq}

and

X1 @ ri=a, . .

- = X S X4
ka@yJ:aﬁ?ap - ~

- X1 = Xy
xk+l®yl=bq } = > £

X = Xp412 Xt 1
xk+l®yl=bi}'2bq

This completes the induction step and the proof of the
lemma.

To generalize this uniqueness result to arbitrary r.v.’s (of
which we are really interested in continuous ones only), we
make use of topological considerations. The topological
terms and facts used here and below are standard, their
definitions and proofs being found is almost any textbook of
topology or advanced calculus (see, e.g., Kelly, 1955). Let X
be the class of all r.v.’s, N < R be the class of all primitive
r.v.’s, and R} =R, be the class of primitive r.v.’s whose
spectra contain n elements. We introduce the following
embedding relationship on Rp: r.v’s CeR% and Ce R,
k=1,2, .., are equivalent if their ordered spectra are related
as

SC=C|, Ca, aaay C,,
Se=€1,C1y w3 €1 €2:Cayuny €2 iy €y Cppy wvey Cpy
k times k times k times
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By such a refinement any set 8% can be embedded as a sub-
set in X7, Obviously, R% is closed (n-point spectra can
weakly converge to n-point spectra only), and hence 8} is
compact in the sense of weak convergence (because, by
Helly’s theorem, ¥ is compact in this sense; sec Loeve, 1963,
pp- 179-180). We will also need the obvious fact that the
subspaces of ® are Hausdorff.

Proof of Theorem Bl. The distributional equations

X®Y <A
q X1Y,
X®Y =B,
define a continuous operator 2: N xR — X x X uniquely
mapping pairs (X, Y) into pairs (A, B). We have to prove
that Q' maps (A, B) into (X, Y) uniquely, considering, of
course, (X, Y) and (Y, X) indistinguishable. By Lemma Bl,
this is true if (A, B) e Q(Np xRp) S Rp x ¥p, that is, the
restriction of £2 to Rp xR, - QN x V) is a bijection,
obviously continuous. For an arbitrary n> 1, consider
a sequence of embedded spaces R xNjc RIXRE <
- cRExREc .- and the corresponding sequence
QRO xR cQREXRT) < - QREXRP) ... For
any i=1,2,.., the restricion of @ to RLxR}—
Q(R% x R%) is a continuous bijective operator from a com-
pact space ®% x 8% onto a Hausdorff space (R} x 83).
Hence, by a well-known theorem of topology (Kelly, 1955,
p. 141), any such restriction of £2: R xR% — Q(N% x RY)
is a homeomorphism; that is, the restriction of 2-'to
Q(R2 x R2) — N7 xRY is a continuous bijection. Consider
now the restriction of Q ~' to Q( #) — #», where

Fo={) RE xR, QFp)=1{) QR xRE).

1 1
Any element of Q(_#,) belongs to all spaces Q(N xX%)
beginning with some value of 7, and in all these spaces the
corresponding restrictions of £2~' are continuous. As a
result, the restriction of 2! to Q(#,) = # is continuous
on Q(_%).

Suppose now that Q! maps some pair of {(non-
primitive) r.v.’s (A, B) into two distinct unordered pairs
(X;,Y,) and (X,, Y,). Then in the small neighborhood of
(A, B) one should be able to find two arbitrarily close
members of Q(_¢,) that map into two distinct members
of _#p, which contradicts the continuity of the restriction of
Q7! to _#) = F». This completes the proof.

THEOREM B2. For any given pair of r.v.’s A and B, there
is at maost one (unordered) pair of rvo’s X LY, such that

d

XYy

A
max(X, Y) = B.

[l
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Proof. One can verify step-by-step that the entire proof
of Lemma Bl applies here with no non-trivial modifi-
cations, except that references to Lemma A2 should be
replaced by those to Lemma A3. Hence the proof of
Theorem Bl applies here in its entirety.

THEOREM B3. For any given pair of rv’s A and B, there
is at most one (unordered) pair of rv’s X L Y, such that

e

XaY
min{X, Y)

A
B.

lle

Proof. It is easy to see that the induction chain in
Lemma Bl could also begin at the maxima, rather than
the minima of S, and S (hence also of Sy and §,), and
proceed in the decreasing, rather than increasing, order of
indexation. With such an order-reversion, the proof of
Lemma Bl (hence of Theorem Bl} applies here with no
nen-trivial modifications.

The scheme of proof used in Lemma Bl does not work,
however, if the two operations are min and max. For-
tunately, this is the case when a proof of the uniqueness
{that turns out to be of a weaker variety) can easily be
obtained by elementary means, We need first one auxiliary
result.

DerFmaTion B2, Let F, (1), Fy(t) be the distribution
functions of r.v’s X, Y. Point 7 is called a crossing point of
the two distribution functions if for all sufficiently small
=0, [Fylt+e)— Fy(t—e)][Fylt —&)—Fy{t +£)]1 <0
and either F(t + &) — Fy{t+e)#=0or Fylt —e) — Fy{i —¢&)
#0, Let { ... <t_,<tp<t;< ---} be the sequence of all
such crossing points. Functions (), G,(t), right-con-
tinuous, are called cross-over rearrangements of the distri-
bution functions F(¢), Fy{(¢) if in any interval [z, 1, ),
either G, (1) = Fy(t), Gu{t)y=F,(1), or G,{1) = F(1),
G{t) = F, (). [Obviously, cross-over rearrangements of
distribution functions are themselves distribution functions,
because they are increasing and right-continuous.| By
abuse of language, we will say that r.v.’s with distribution
functions &,(1), G(1) are cross-over rearrangements of the
rv.’s X, Y with distribution functions Fy(2), Fy(s).

Lemma B2, I, for any real t at which the values of
distribution functions Fy(t), F(t) exist, these values are
determined uniquely as an unordered pair {ie., up to their
interchange), then F (1) and F,(t) are determined uniguely
up Lo cross-over reqrrangements.

Proof. Observe that F,(¢) and F, () are non-decreasing
and that in any interval (¢,, ¢, ,,} between two crossing
points, either Fy(#) > Fy (1) or Fy{() < Fy(t). Therefore, if
the entire segments of Fy(r) and Fy(¢) on (¢,,¢,,,) are
interchanged, the functions will remain non-decreasing.
However, any partial interchange in (7,7, ,) will
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necessarily create a point of decrease in one of the functions.
This completes the proof.

THEOREM B4. For any given pair of rv’s A and B, there
is at most one (up to cross-over rearrangements) pair of r.v’s
X LY, such that

max(X,Y) = A

min(X, Y) = B.

Proof. This system of distributional equations is equiv-
alent to the following numerical equations relating the
distribution functions of the r.v.’s involved:

Fylr) Fyl(t)=F (1)
U =Fx ()1 =Fyp(t)]=1 - Fglr).

Their solutions, for any given ¢, are unique up to an
interchange of F,(r) and F,{(¢) values, and the proof is
completed by applying Lemma B2.

APPENDIX C: UNIQUENESS OF SIMPLE OPERATIONS
UNDER PERFECT POSITIVE INTERDEPENDENCE

Dermvimion C1. The quantile function Q(p) (0 < p<1)
for a r.v. X is defined as inf {¢: F(#) > p}, where F(z} is the
distribution function for X. [ This makes quantile functions
right-continuous, with a countable number of discon-
tinuities of the first kind.] The definition of cross-over
rearrangements of the quantile functions Oy(p), O(p) for
rv’s X, Y is analogous to Definition B2. [ Obviously, cross-
over rearrangements of quantile functions correspond to
cross-over rearrangements of the corresponding distribu-
tion functions. We may continue, therefore, to speak of the
cross-over rearrangements of rv’s without mentioning
either quantile or distribution functions. ]

LEmMMma Cl. If, for any p (0 < p <) at which the values
of quantile functions Qy{(p), Qy(p) exist, these values are
determined uniquely as an unordered pair (ie., up to their
interchange), then Q y(p) and Q y(p) are determined uniguely
up 10 CroSS-gUer rearrangements.

Proof. The same as for Lemma B2.

Tueorem Cl.  If g, is strictly convex (strictly concave)
with respect to g, then for any given pair of rv.’s A and B,
there is at most one (up to cross-over rearrangements) pair of
rv’s X || Y, such that

d

XpY <A

d

X®Y =B
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Proof. The distributional equations can immediately be
rewritten as numerical ones with quantile functions,

Ox(P) @0 (p)=C4p)
Ox(p)®Qy(p)=Qs(p),

O<p<l,

whose solutions, by Lemma A2, are unique up to an inter-

change of Oy(p) and Q,(p) values. The proofis completed
by applying Lemma Cl,

THEOREM C2. For any given pair of r.v’s A and B, there

is at most one (up lo cross-over rearrangements) pair of r.v.’s
X || Y, such that

e

XPY

max(X, Y) &

[
=

The same is true for systems

Ile

{ X®Y

A max(X,Y) £ A
and
min(X, Y) s

min(X, Y) < B.

Proof. The same as for Theorem Cl, except that unique-
ness up to interchanges is now justified by Lernma A3,

APPENDIX D: EXISTENCE OF DECOMPOSITIONS
UNDER PERFECT POSITIVE INTERDEPENDENCE

Here and in the next appendix we will need some
auxiliary algebraic results.

LEMMA D1, Any four reals ¢\, ¢y, €12, €21 Such that
€y +cp=C12+ ¢y can be additively decomposed as c;=
a;+b; (i=1,2; j=1,2), all decomposing {a,,as, b, bs}-
quadruples being obtained by arbitrarily choosing a, and
putting

Ay=C3 —Cp &

by=¢,—a,

by=c,—a,.
If cii,€m,€(3, ¢ are all non-negative (non-positive),
then there exist non-negative (non-positive) decomposing
{a,, a,. by, by} -quadruples: all such quadruples are obtained
by restricting a, to the closed interval [ max{c;, —cy, 0},

min{cy,, ¢} ] (if non-negative) or the closed interval
[max{c,y, cia}, min{e,  — cx, 0} 1 (if non-positive).

430/39/3-6
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Proof. The system determinant of the linear equations
(with respect to a,, a,, b;, b,)
C =4, + b 1
ch = al + bg_
cy=ay;+by
¢n=ar+b;
is zero, and the equations are mutually consistent because
€y + €33 =5 + €. All real solutions of this system, there-
fore, can be presented as
a, is arbitrary
oy =Co—Cn—th
by=c—a
b2 =Cyp—dy.
If €41, €42, €12, €2 are all non-negative, then by subjecting
the four right-hand expressions above to nonnegativity con-
straints, and solving all the inequalities for a,, one gets
a, 20
@z —Cn
ay sy
a,5¢y,
which is equivalent to max{c, —c¢;, 0} <a, <min{c,,,
¢i2}. This proves that all non-negative solutions that exist
are obtained as stated. To prove that they do exist, one has
to show that max{c,, —¢,,0} <minf{c,, cy,}. This
inequality is equivalent to the system
e 20
Crp 20
= —Cn
Ci22 01— a5
in which the first three inequalities hold trivially (because
Cia2, Ca1, €q; are all non-negative), and the fourth inequality

holds because (¢, + ¢2;) — ¢4y = €22 2. The non-positive
case is considered analogously. This completes the proof.

Lemma D2, If cpytep=cpten, Cutin=~Cn+a,
and Eyzcy (i=1,2; j=1,2), then t_@e g"ecamposing quad-
ruples {a;, a,, b,,b,} and {4, d,, by, by} of Lemma D1
can always be chosen so that &,z a;, b,z b, (i=1, 2).
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Proof. By Lemma D1, we have to prove that one can In particular, the {a,, a,, by, b, }-quadruples can be obtained

always choose 4, = a, so that

Ey—Cfuta zey—cepta
En—dyzen—a
Cp—dy Zcp—dy,
and that, under non-negativity or non-positivity con-
straints, both 4, and &, belong to the appropriate intervals.
It is easy to see that the inequalities above are satisfied iff
max{(gll — ¢} — (8 — ey, 0}

sd—a gmin{En — €1 512_‘312},
the interval being non-empty because

En—¢y 20

Cla— €220
En—en2{ey—en)—(6n—cu)
Crp—cpz{€p—C2) —(Enn—c2)
(En

—cp) —(Ex — )

In the non-negativity case we sum the two double-
inequalities

max{(EII —cyp) — {81 — 1), 0} <d;—a
Smin{E“—c“, 512—012}

maX{C“ ‘*021, 0} -<._a1 i__min{cll, (.'12}

and observe that

M

d, <min{f; — ¢y, o —cpa} +min{eyy, 50}
<min{é,;, é5}
d, zmax{c;, — ¢y, 0}
+max{(& —cy ) — (€sy —€3), 0}
Zmax{é¢ —&,, 0},
that is, 4, € [max{é,, — &,, 0}, min{¢,,, &,,} ], as required

by Lemma D1. The non-positivity case is considered
analogously. This completes the proof.

LemMma D3, Any  four ¢y, ¢, C13. €IS Re  such
thar max{c,,, ¢;;} =max{cy,, ¢y}
as cy=max{a;, b;} (i=1,2;j=1,2), witha,,a,,b,,b,c1

can be decomposed

as

a,=C1=0Cp bi=ciy=cy

br=cy i) =70Cyp
by=1¢3 a,=10Cy
a,<b,b, (ayel), by<ay,a, (bel),

by=cyp=cy; dy=0Cm = Cy

a,==0ey bi=cy
4y =Cyy by=c;
by <a;,a, (bel), a,<b,, by (a el),

corresponding to, respectively,

{max{c“,cn} =tn {max{cll, Cnf =Cq
max{c,;, ¢} =¢pz  (max{c, ¢a} =cy,

{max{Cn, Caa} =cCp {max{c“, Co} =C
max{cy, €} =€, (Max{cyy, €2} =ca.

The theorem also holds for max being replaced with min
everywhere, provided that < is replaced with = in the last
lines of the expressions for a,, a., by, b,.

Proof. Obtained by direct verification.

LEMMA D4 [fmax{cn, sz} =max{6‘12, 621}, maX{E”,
Cao} =max{&,, &y}, and &;28 (i=1,2, j=12),
then the decomposing quadruples {a,,a,, by, by} and
{d,,a,, b, by} of Lemma D3 can always be chosen so that
d;za, b,zb, (i=1,2). The theorem also holds Sor max
being replaced with min.

Proof. Without loss of generality, assume that

max{c,,, ¢} =),

max{clb Czl} =Cy2
and consider the four possibilities

{max{fu » 522} =

™ ™

11 {max{éu, 522} =L

max{Elz, 621} = maX{Elz, EZ[} =521,
(D (2)

{max{‘:;u: 522} ={p {max{&‘“, Ezz} =Cx
max{Elz, 521} = 512, max{Elz, 521} =

(3) (4)

12>
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In case (1), by Lemma D3, one can put

a1=C=Cn €1=511=512
by=cy £_7_1=521

by=c¢yp by =28y

a,<by, by (axel), @églsgz (a,el),

and the statement of the theorem holds trivially: a, <4,
bi<by, by < §2’ and one can always choose d, between a,
and min{h,, b,} Zmin{d,, b,}. In case (2), by Lemma D3,
one can put

a4, =011=Cp2 51=511=521
by=cy dy=2&;

by=cy dy =10

a,<hy, b, (ael), \b,<d,,d, (byel),

and observe that a,<d, (because c¢,,<&,), b, <Bb,
(because ¢;,<&;;), and a,<éd, (because a,<bh,=
€12 S Cay = @,). Obviously, b, < a,, and also b, < a, because
otherwise we would have «¢,=c,>8,; hence
by <min{d,, &}, and one can always choose b, between
these values. The remaining cases are considered
analogously, and the theorem is transferred to min trivially,
This completes the proof.

THEOREM D1. Let @& be an addition-like operation on
I=Re, let T, T5, Ty, Ty, be rv’swith spectrain I, and let

Tll @TZZ i T12®T21 (Tll H T22= Tl2 H TZI)'

Then Ty, T2, Ty, Ty can be decomposed as
d . .
T; = A,@B;, (A[B;i=1,2,j=1,2),

where A}, A,, B\, B, are ro’s with spectra in I. The quantile
Junctions of A, A,, B, B, are all continuous at every quan-
tile level at which the quantile functions of Ty,, Ti5, T2, Tas
are all continuous.

Proof.
sented as

The assumptions of the theorem can be pre-

galQuP)]+ el Pn(p)1=go[012APi] + gal Culp) ]

b<p<l,

where Q. (p}el are the quantille functions of the r.v’s
T, (i=1,2, j=1,2). We have to prove that there exist

3

quantille functions A,(p), A.(p), Bi(p), B.(p)el such
that

galCuip)]l=gal4ipr)] + galBi{p)]
sl Qu(2)]=gal4\(p)}] + go[ Bap)] 0<p<l.
2a[Qalp)]1=gal 4P} + g5 Bi{p)]
2al0n(P) =gl A4:P) ]+ g5 Bap)].

Obviously, the only two constraints imposed on

2ol AP, galAx(p)], sl Bi(p)], go[BAp)] are that
they are non-decreasing and that their values belong to
8o(f). By Lemma Al, gg(/) can only be (—cc, 0), (0, c0),
or (—oo, o). In any of these three cases Lemmas D1 and
D2 guarantee the existence of additive decompositions
of g Q;(p)]-functions (non-strictly) increasing with p
while remaining within g .{7}. To prove the continuity part
of the theorem, observe that by Lemma D2, for any p < j,

max{{ge[ 01(F)]— 26 Qulp)])
— (82l 221(P)] ~ gl Ou(p}1). 0}
S gol4:i(AY] - galAp)]
<min{ggl 01(F)]—ga[Culp)],
2al 012(F)] — g6[Qualp)]}-

If all four gg[ @,(p)]-functions are continuous at some
point p between p and j, then both the left-hand and the
right-hand expressions vanish as p— p or §— p, forcing
gs[A(p)] to be continuous at p. The functions
gal4:P)] =20l 0n(P)] — 20l Qulp)] + 86l 4i(p)]
galBip)1=8a[Quip)] — gal4:p)]

galByp)l=gal Qua(p)]— gEB[Al(p)]:

are then continuous at p, too. The proof is complete.

THEOREM D2. Let
spectra in I, and let

T3, T3, T, Tay be rov’s with

maX{Tu, Tzz} = max{le, Tzl} (T11 1 Tz, Tya || Tog)

Then Ty, T12, T4y, T2z can be decomposed as
T; < max{A, B} (AIB;i=1,2j=12),

where A, A,, B, B, are ru’s with spectrain I A, A;, By,
B, can be chosen so that their quantile functions are all con-
tinuous at every quantile level at which the quantile functions
of Ty, T2, Ty, Tas are all continuous. The theorem also
holds for max being replaced with min.



312

Proof. The assumptions of the theorem can be pre-
sented as

max{Qu(P)s sz(P)} EmaX{le(P)s Qzl(P)}:

0<p<l,

where Q (p)el are the quantile functions of the rv’s
T, (i=1,2, j=1,2). We have to prove that there exist
quantile (i.e, non-decrcasing) functions A,(p), A,(p),
Bi(p), B.{p) eI, such that

Qn(p)=max{4,(p), B\(p)}

Qnp)= max{Al(P): Bz(P)}

Qulp)= max{Az(p), Bl(P)}

QOx(p) =max{A4,(p), Bxp}},
In this formulation, the proof immediately follows from
Lemmas D3 and D4. The continuity statement immediately
follows from the fact that if all Q;(p)-functions are con-

tinuous at some point p, then at least one of the four
patterns

{max{Qu(P); Ox{p)} = 0ulp)
max{Q,(p), Oa(p)} = Qs p).

{max{Q”(p), Qu(p)} = 0n(p)
max{Qs(p) Cu(p)} = Quip),

{max{ Q11(P), Olp)} = 02(p)
max{le(p), QZI(P)} = le(P),

{max{Qll(P)s 0x(p)} = 0ol p)
max{Qu(p), le(P)} = Qx(p)

must hold in some neighborhood of p once it holds at p. The
proof for min being the same, the theorem is proved.

APPENDIX E: EXISTENCE OF DECOMPOSITIONS
UNDER INDEPENDENCE

THEOREM El.
spectra in I, and let

Let T4,,T12, Ty, Ty be rv’s with

d
max{T“, Tzz} = max{le, T21} (Ty, L Tz, Tz L Toy)

Then Ty, T, Ty, T2, can be decomposed as

T, = max{A,,B;} (A, LB;i=1,2j=1,2),

DZHAFAROV AND SCHWEICKERT

where A\, A,,B,.B, are ru’s (right-complete, but not
necessarily left-complete) with spectra in I, however, at least
one of the pairs (A, A,) or (B, By) is a pair of complete
r.v.’s. The distribution functions of A\, A,, B, B, are all con-
tinuous at every point of I at which the distribution functions
of Ty, T2, Ty, Ty, are all continuous.

Proof.
sented as

The assumptions of the theorem can be pre-

log Fy (t) + log Fyu(1)} =log Fio(t) +log (1), tel,
where F(¢) are the distribution functions of the r.v.’s T,
(i=1,2,j=1, 2). Wehave to prove that there exist distribu-
tion functions A,(), 4,(2), B,(2), B»(1), t € I, generally left-
incomplete, such that

log Fy,(t) =log A,(t) +1og By(z2)
log F.{#) =log 4,(t) +log B,(¢)
log F, () =log A,(t)+log B,(#)
log Fr(ty=log A,{t}+log B.(¢)

The only constraints imposed on a log-distribution function
on an interval [ are that this function is non-decreasing and
non-positive, that it converges to 0 as ¢ - sup [ (if it is right-
complete}, and that it converges to —oo as ¢+ —inf 7 (if it
is left-complete). It immediately follows from Lemmas D1
and D2 that non-decreasing and non-positive functions
log 4{t), log A,(t), log B,(1}, log B,{?) can indeed be found
that satisfy the decomposition identities above. Specifically,
log 4 ,(7) is a non-decreasing function such that

max{log Fy;(1), log F (1)}
< log A,(#) <min{log Fy,(r) - log F;,(1), 0},

whereas

log 4,(¢) =log Fy,(t) —log Fy,(t) +log A,(7)
log B\(t) =log Fy,(1) —log A4,(1)
log B,(t) =log F,(1} —log 4,(¢).

Clearly, since log F(¢)-functions vanish as ¢—sup/,
log A,(t), log A,(1), log By(1), log B,(t) vanish, too, which
means that A;, A,, B,;, B, are all right-complete. As
t — inf 7, however, even though log F,(r)-functions tend to
—oo, it cannot be excluded that some of the functions
log 4,(1), log 4,(¢t), log B (), log B,(t) converge to finite
values. At the same time, if both log A,(r) and log A,(¢)
have finite limits, then both log B,(¢) and log B.(t) tend to
— o0, and conversely, if both log B,() and log B,(¢) have
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finite limits, then both log 4 ,(¢) and log A,(¢) tend to — co.
This immediately follows from algebraic identities
log B\(t)=log F\,(r) —log A (1)
=log F,,(1) —log A,(1)
log B,(t)=log F,(t) —log 4,(1)
=log Fi,(1) —log A,(t},
log A.(¢) =log Fy (1) —log By(?)
=log Fi,{t) —log B,(t)
log A,(t) =log Fy(#)—log B\(r)
=log F,s(1) — log B,(1),
proving that either (A, A,) or (B,, B;) is a pair of complete

r.v’s. The continuity part of the theorem is proved as in
Theorem D1. The proof is complete.

TeeorRem E2. Let T, T, Ty, Ty

spectra in I, and let

be ruv’s with

mip{T“, Ty} < min{T,z, TZ]} (Tyy L T, Tia L Ty
Then T,,, Ty, Tay, T, can be decomposed as
T, = min{A,B;} (A, LB;i=1,2,;=12),

where A, A,,B,, B, are ru’s (left-complete, but not
necessarily right-complete) with spectra in I, however, at least
one of the pairs (A, A;) or (B, B,) is a pair of complete
r.v.’s. The distribution functions of A, A,, B, B, are all con-
tinuous at every point of I at which the distribution functions
of Ty1, Tia, Ta, Tay are all continuous.

Proof. The proof is the same as that of Theorem E1,
except that instead of distribution functions it is conducted
in terms of log-survival functions log[1 - F,(r)] (i=1,2,
j=1, 2), constrained by

log[1— Fy(t)] +log[1— Fp(s)]

=log[1 —Fiy(1)] +log[1 = Fy (1) ],

and decomposed as

log[ 1 — Fy,(1})]=log[1 —~ A (1)1 +log[1— B,(1}]
log{ 1 — Fiy(1)] =log[ 1 —A,(#)] +log[ 1 — By(1)]
log[ 1 — Fy (1)1 =log[ 1 — A,(£)] +log[ 1 — By(1)]
log[1— Fay(1)] =log[1—Ay(1}] +log[ 1 - Bo1) ],

DeriNITION El.  Let a certain interval 7< Re be fixed,
and let all r.v.’s mentioned below have their spectra in 1.
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A r.v. X is called an independent additive component of ar.v.
U, in which case we write X = U, ifU £ X+ Y (X L Y),
for some r.v. Y. [If X is degenerate, i.e., X = x ¢  with prob-
ability 1, then X < U, for any U, also, for any constant
xel, U—xc'® U, provided the spectrum of U — x isin 1.]
A rv. X is called irreducible if it is non-degenerate and
cannot be presented as X < X,+X, (X, LX) unless
either X, or X, is degenerate. [ An important fact about
irreducible r.v.’s is that if 7=Re, or [ is a closed interval in
Re, then the space of all irreducible r.v.’s is everywhere dense
(in the sense of weak convergence) in the space of all r.v.’s
{Linnik & Ostrovskii, 1972, p. 97, Rusza & Szekely, 1988,
p. 161).] Finaily, a rv. X is called prime if X<**U+V
(ULV)implies X' Uor Xc'* V.

LemMa El. In any of the three intervals (—w,0),
(0, 0}, or (— o0, o0}, one can find a rv. X that is irreducible
(in this interval) but is not prime (in this interval ).

Proof. The lemma is proved by examples discussed or
referred to in the main text. Examples for the interval
(— o0, 0) are trivially obtained from those for the interval
{0, oc), by multiplying positive r.v.’s with — 1. For the inter-
val ( — o0, oo) the statement of the lemma also follows from
a general non-constructive theorem by Rusza & Szekely
(1988, pp. 128-129) that says that no rv. is prime in
(— oo, o).

THEOREM E3. For any addition-like operation @ on
I<=Re, one can find four r.v’s Ty, T 3, Ty, Ty with spectra
in I, such that even though

Tu@Ty = Ty®Ty (T LTy, Ty LTy,

they cannot be decomposed as
T, = A,®B, (A, LlB;i=12j=12),

where A, A,, B,, B, are r.v.'s with spectra in L

Proof. By Lemma Al, g4(I) is one of the three inter-
vals, (— o0, 0), (0, o0), or {—o0, oo). Then, by Lemma E1,
one can find an irreducible X in g ,,(I) that is not prime. This
means that one can find r.v’s ¥, U, V with spectra in gg/(I},
such that

X+Y2U+V (XLY,ULV),
but neither X <'* U nor X ='* V. Putting X =g4(T},),
Y =£4(Ty), U=sgg(T;), V=gg(T; ), assume that, con-
trary to what the theorem says, there are r.v.’s gg(A,)

galAz), g5(B)), g4(B;) in g 4(I), such that

26(T;) < gao(A)+25(B) (A, LB;i=1,2,j=1,2)
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Since go(T;)) 1s irreducible, either g4,(A ) or g4(B,) in the
decomposition

£o(Th) < ga(A) + g0(B,) (A; LB))

must be degenerate: say, g4{A;) = a (with probability 1}, in
which case g4(B,) = g4(Ty,) —a. Then the decomposition
of g 4(T5 )} can be presented as

2o(Ta) = go(An) + [26(T ) ~al (A, LT)),

from which it follows that
X=g4(Tn) i galTy)=V.

As this contradicts the assumption that neither X =** U nor
X =**V, the theorem is proved.
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