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Abstract

We describe a principled way of imposing a metric representing dissimilarities on any discrete set

of stimuli (symbols, handwritings, consumer products, X-ray �lms, etc.), given the probabilities

with which they are discriminated from each other by a perceiving system, such as an organism,

person, group of experts, neuronal structure, technical device, or even an abstract computational

algorithm. In this procedure one does not have to assume that discrimination probabilities are

monotonically related to distances, or that the distances belong to a prede�ned class of metrics,

such as Minkowski. Discrimination probabilities do not have to be symmetric, the probability of

discriminating an object from itself need not be a constant, and discrimination probabilities are

allowed to be 0�s and 1�s. The only requirement that has to be satis�ed is Regular Minimality,

a principle we consider the de�ning property of discrimination: for ordered stimulus pairs (a; b) ;

b is least frequently discriminated from a if and only if a is least frequently discriminated from

b. Regular Minimality generalizes one of the weak consequences of the assumption that discrim-

ination probabilities are monotonically related to distances: the probability of discriminating a

from a should be less than that of discriminating a from any other object. This special form

of Regular Minimality also underlies such traditional analyses of discrimination probabilities as

Multidimensional Scaling and Cluster Analysis.

Keywords:. continuous stimulus space, discrete stimulus space, discrimination, Fechnerian

Scaling of Discrete Object Sets (FSDOS), Multidimensional Fechnerian Scaling (MDFS), Non-

constant Self-Dissimilarity, Regular Minimality, psychometric function, same-di¤erent judgments,

subjective distance.
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1. Introduction

1. Example. We begin with a toy example, to be used throughout to illustrate various points.

Let there be a set of four distinct objects, fA;B;C;Dg (say, four pictures or symbols), and let

them be presented pairwise side-by-side (AA, AB, BB, CD, etc.). A �perceiver� (say, a child)

has to answer the question �Are these two objects di¤erent or the same?�Each of the 16 pairs

in this experiment is presented R times, R being large enough to form reliable estimates of the

probabilities  (x; y) with which objects x and y are judged to be di¤erent, x; y 2 fA;B;C;Dg.

The results of such an experiment may look like in Table 1, where the rows represent, say, the

objects presented on the left, and the columns the objects presented on the right.

Table 1: A toy example: discrimination probabilities in a four-element set.

M1 A B C D
A 0:1 0:8 0:6 0:6
B 0:8 0:1 0:9 0:9
C 1 0:6 0:5 1
D 1 1 0:7 0:5

This experimental paradigm may have numerous variants (di¤erent randomization schemes,

presence or absence of feedback, successive rather than simultaneous presentations of object pairs,

etc.), but the essential feature is that at the end we get a matrix whose entries  (x; y) can be

interpreted as probabilities with which a given perceiver judges the row objects, x, to be di¤erent

from the column objects, y.

The purpose of this paper is to describe a computational procedure, Fechnerian Scaling of

Discrete Object Sets (FSDOS), which when applied to such matrices produces a matrix of distances

we call Fechnerian. Intuitively, they re�ect the degree of subjective dissimilarity among the objects,
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�from the point of view�of the perceiver. In addition, FSDOS produces the set of what we call

geodesic loops, the shortest (in some well-de�ned sense) chains of objects leading from one given

object to another and back. Thus, when applied to our matrixM1, FSDOS yields the two matrices

shown in Table 2. For instance, the geodesic loop connecting A and B is A ! C ! B ! A;

whereas the geodesic loop connecting A and C is A! C ! A. The lengths of these loops (whose

computation is explained later) is taken to be the Fechnerian distances between A and B and

between A and C; respectively. We see in G1 that the Fechnerian distance between A and B is

1.3 times the Fechnerian distance between A and C.

Table 2: Geodesic loops (matrix L1) and Fechnerian distances (matrix G1) computed from matrix
M1 of Table 1.

L1 A B C D G1 A B C D
A A ACBA ACA ADA A 0 1:3 1 1
B BACB B BCB BDCB B 1:3 0 0:9 1:1
C CAC CBC C CDC C 1 0:9 0 0:7
D DAD DCBD DCD D D 1 1:1 0:7 0

Our choice of M1 in Table 1 illustrates the fact that FSDOS does not presuppose that  (x; x)

is the same for all x (constant self-dissimilarity), or that  (x; y) =  (y; x) (symmetry). Also,

FSDOS allows some or even all the probabilities to equal 1�s and 0�s. The procedure, however,

is based on the assumption that discrimination probabilities satisfy what we call the Regular

Minimality requirement : in our example this means that  (x; x) is always less than both  (x; y)

and  (y; x), for any y 6= x (as explained in Section 3.6, the general formulation of Regular

Minimality is weaker).

2. Experimental paradigm. In general, the experimental paradigm we deal with involves a

set of objects fs1; s2; :::; sNg, N > 1; presented two at a time to a perceiver whose task is to
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respond to each ordered pair (x; y) by one of two answers, interpretable as �x and y are the same�

and �x and y are di¤erent.�As a result, each ordered pair (x; y) is assigned (an estimate of) the

probability

 (x; y) = Pr [the perceiver judges x and y in (x; y) to be di¤erent objects] ; (1)

where x; y 2 fs1; s2; :::; sNg : The �perceiver� is a technical term whose meaning can vary. In

psychophysics it usually means a biological organism or a person to whom each pair is presented

repeatedly (Dzhafarov & Colonius, 2005a; Indow, 1998; Indow, Robertson, von Grunau, & Fielder,

1992; Zimmer & Colonius, 2000). In other applications the �perceiver� can be a group of peo-

ple whose individual responses to a given pair of objects are treated as replications of this pair

(Rothkopf, 1957; Wish, 1967). With some additional assumptions, the term can also designate

a neuronal system reacting di¤erently when a stimulus changes and when it does not change

(Izmailov, Dzhafarov, & Zimachev, 2001).

Discrimination probabilities  (x; y) occupy a special place among available measures of pair-

wise dissimilarity. The ability of telling two objects apart or identifying them as being the same

(in some respect or overall) seems to be the most basic cognitive ability in biological perceivers

and the most basic requirement of intelligent technical systems. For our purposes it is convenient

to use the term �perceiver�in the maximally broad meaning, including even the cases when ob-

jects fs1; s2; :::; sNg are purely conceptual entities and the �perceiver�designates a computational

procedure whose inputs are ordered pairs (si; sj) and whose outputs are interpretable as responses

�same�and �di¤erent.�The Fechnerian distances among fs1; s2; :::; sNg then are pairwise dissim-

ilarities �from the point of view�of this computational procedure. To give an example of such
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a situation, let fA;B;C;Dg in Table 1 designate four statistical models whose parameters are

completely speci�ed by �tting them to a given data set s. Let there be a certain statistical cri-

terion, q, that allows one to reject or retain any of the models A;B;C;D when applied to any

data set s0 having the same format as s. Then the entries  (x; y) of matrix M1 could represent

the probabilities with which model y is rejected (by criterion q) when applied to a data set s0

generated by model x. The Fechnerian distances in matrix G1 of Table2 then can be interpreted

as dissimilarities among the four models �from the point of view�of the procedure speci�ed by

data set s and criterion q. Similar examples can be constructed for a variety of other applications,

such as similarities among molecules, bird songs, and other strings of elements as discussed in

Sanko¤ and Kruskal (1999).

The precise meaning of the response categories �same�and �di¤erent�also may vary depending

on the context: �x is the same as y�may mean that x and y appear physically identical (i.e., it

is the same object presented in two di¤erent locations or at two di¤erent times), or it may mean

that they appear to belong to the same category or have the same source. In the latter case it is

the categories or sources that are viewed as objects fs1; s2; :::; sNg ; whereas the �replications�of a

pair (si; sj) are pairs of examples or instances of these categories or sources. Thus, in matrix M1

of Table 1 the objects A;B;C;D might designate four lung dysfunctions, each represented by a

set of X-ray �lms. The fact that  (A;B) = 0:8 in this case means that randomly chosen examples

of A paired with randomly chosen examples of B are judged (by a physician) to be representing

di¤erent dysfunctions in 80% of cases.

3. To prevent confusion. The paradigm just described (pairwise presentations, same-di¤erent

judgments) must not be confused with two other experimental paradigms that produce matrices
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super�cially similar to Table 1.

One of these paradigms is pairwise presentations with greater-less judgments. This paradigm

underlies the classical procedure of Thurstonian scaling (Thurstone, 1927): the perceiver is given

a semantically unidimensional property (such as pleasantness, usefulness, loudness, etc.), and in

response to every pair (x; y) chosen from fs1; s2; :::; sNg the perceiver determines which of the two

stimuli is �greater�(has more of this property). In the psychophysical literature the probabilities

� (x; y) with which the second object, y, is judged to be greater than the �rst one, x, are often

referred to as discrimination probabilities, the same term as we use for  (x; y) in (1). Note

that the determination of the di¤erence or sameness of two objects may but need not involve

any designated properties, unidimensional or otherwise. For a detailed comparison of the same-

di¤erent and greater-less judgments see Dzhafarov (2002d, 2003a).

The other paradigm is that of identi�cation: stimuli from a set fs1; s2; :::; sNg are presented

one at a time, and the perceiver�s task is to identify the presentation by a normatively preassigned

�stimulus�name�. The results of such an experiment can be presented in the form of a stimulus-

response confusion matrix, with rows representing objects and columns object names. The entries

of this matrix � (x; y) are conditional probabilities of the perceiver replying to x by the name

normatively assigned to y. Clearly,
PN

j=1 � (si; sj) = 1: In contrast, in the same-di¤erent paradigm

the discrimination probabilities  (si; sj) can, logically speaking, attain any set of N � N values

(e.g., all of them can be equal to 1). The Regular Minimality constraint mentioned earlier is an

empirical assumption, rather than a mathematical necessity.

With some additional assumptions, the FSDOS procedure described in this paper can in fact

be applied to stimulus-response confusion matrices (as outlined in the concluding section) and

matrices of probabilities for greater-less judgments (as described in Dzhafarov & Colonius, 1999;
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Dzhafarov, 2002b). These applications, however, are not focal for this paper.

4. Regular Minimality, nonconstant self-dissimilarity, and asymmetry. Classical Mul-

tidimensional Scaling (MDS, Borg & Groenen, 1997; Kruskal & Wish, 1978) when applied to

discrimination probabilities serves as a convenient reference against which to consider FSDOS.

MDS is based on the assumption that for some metric d (x; y) (distance function) and some in-

creasing transformation f;

 (x; y) = f (d (x; y)) : (2)

This is a prominent instance of what is called the probability-distance hypothesis in Dzhafarov

(2002b). To remind, the de�ning properties of a metric d are: (A) d (a; b) � 0; (B) d (a; b) = 0 if

and only if a = b; (C) d (a; c) � d (a; b)+ d (b; c); (D) d (a; b) = d (b; a). In addition one assumes in

MDS that metric d belongs to a prede�ned class, usually the class of power-function Minkowski

metrics with exponents between 1 and 2. It immediately follows from (A), (B), (D), and the

monotonicity of f that for any distinct x and y;  (x; y) =  (y; x) (Symmetry),  (x; x) =  (y; y)

(Constant Self-Dissimilarity), and  (x; x) is less than both  (x; y) and  (y; x) (Regular Mini-

mality). The problem for MDS is that the properties of symmetry and, more important, constant

self-dissimilarity are systematically violated in experimental data. For continuous stimulus spaces

(colors, line segments, two-dot apparent motions, pure tones) this has been demonstrated in exper-

iments reported in Dzhafarov & Colonius (2005a), Indow (1998), Indow et al. (1992), and Zimmer

& Colonius (2000). For discrete object spaces an example is provided in Table 3 (for now refer

to the parenthesized numbers only) representing Rothkopf�s (1957) study of discrimination prob-

abilities among 36 Morse codes. As one can see, the Morse code for digit 6 was judged di¤erent

from itself by 15% of respondents, but only by 6% for digit 9. Digits 4 and 5 were discriminated
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from each other in 83% of cases when 5 was presented �rst in the two-code sequence, but in only

58% when 5 was presented second.

Table 3: A 10�10 excerpt from Rothkopf�s (1957) 36�36Morse code data. Shown are Fechnerian
distances (�rst number in each cell), percentages of �di¤erent�judgments for row!column Morse
code pair sequences (in parentheses), and corresponding closed-loop geodesics (bottom strings).
The 10-code subset is chosen so that it forms a self-contained subspace of the 36 codes: a geodesic
loop for any two of its elements is contained within the subset.

B 0 1 3 4 5 6 7 8 9
B 0 (16) 151 (88) 142 (83) 95 (60) 97 (68) 16(26) 57 (57) 77 (83) 140 (96) 157 (96)

B B0B B1B B35B B4B B5B B565B B5675B B567875B B975B
0 151 (95) 0 (16) 48 (37) 160 (92) 150 (90) 147 (92) 127 (81) 99 (68) 61 (43) 73 (45)

0B0 0 010 030 040 050 0670 070 080 090
1 142 (86) 48 (38) 0 (11) 132 (80) 164 (95) 147 (86) 125 (80) 128 (79) 106 (84) 121 (89)

1B1 101 1 131 141 151 161 171 1081 10901
3 95 (81) 160 (95) 132 (74) 0 (11) 68 (58) 95 (56) 127 (68) 145 (90) 165 (97) 169 (97)

35B3 303 313 3 343 35B3 363 3673 383 393
4 97 (55) 150 (86) 164 (90) 68 (31) 0 (10) 106 (58) 138 (76) 160 (90) 171 (84) 174 (95)

4B4 404 414 434 4 45B4 4564 474 484 494
5 16 (20) 147 (85) 147 (86) 95 (76) 106 (83) 0 (14) 41 (31) 61 (86) 124 (95) 143 (86)

5B5 505 515 5B35 5B45 5 565 5675 567875 5975
6 57(67) 127 (78) 125 (71) 127 (85) 138 (88) 41 (39) 0 (15) 44 (30) 92 (80) 118 (87)

65B56 6706 616 636 6456 656 6 676 6786 678986
7 77 (77) 99 (58) 128 (71) 145 (84) 160 (91) 61 (40) 44 (40) 0 (11) 63 (39) 83 (74)

75B567 707 717 7367 747 7567 767 7 787 7897
8 140 (86) 61 (43) 106 (61) 165 (88) 171 (96) 124 (89) 92 (58) 63 (44) 0 (9) 26 (22)

875B5678 808 8108 838 848 875678 8678 878 8 898
9 157 (97) 73 (50) 121 (74) 169 (89) 174 (95) 143 (78) 118 (83) 83 (48) 26 (19) 0 (6)

975B9 909 90109 939 949 9759 986789 9789 989 9

At the same time we see that every diagonal probability in this table is less than the o¤-diagonal

probabilities in its row and in its column. This means that Regular Minimality is satis�ed, and this

is the only property required by FSDOS (generally, in a weakened form). For continuous stimulus

spaces Regular Minimality holds (though, as discussed later, not necessarily in this simplest form)

in all data sets mentioned earlier. In the context of continuous stimulus spaces the combination

of Regular Minimality with nonconstant self-dissimilarity has been shown (Dzhafarov, 2002d)

to impose stringent constraints on the possible shapes of functions  (x; y), some of which have
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been experimentally corroborated (Dzhafarov & Colonius, 2005a). The same two properties have

also been shown (Dzhafarov, 2003a, b) to have surprisingly strong consequences for modeling of

discrimination probabilities. They rule out, in particular, the possibility of modeling  (x; y) in a

continuous stimulus space by means of �well-behaved�random representations of x and y in some

perceptual space (e.g., multivariate normal distributions with parameters smoothly depending on

stimuli, in combination with any decision rule).

It appears that prior to Dzhafarov (2002d) Regular Minimality for discrimination probabilities

has not been formulated as a basic property of discrimination, independent of its other properties,

such as constant self-dissimilarity. The violations of symmetry and constant self-dissimilarity,

however, have long since been noted. Tversky�s (1977) contrast model and Krumhansl�s (1978)

distance-and-density scheme are two best known theoretical schemes dealing with these issues.

Some non-classical versions of MDS are based on these models (e.g., DeSarbo et al., 1992; Weeks

& Bentler, 1982). We do not review these approaches here, as a detailed comparison of Tversky�s

and Krumhansl�s ideas with those of Fechnerian Scaling is beyond the scope of this paper. We note

only that the �uncertainty blobs�model proposed in Dzhafarov (2003b) leads to a mathematical

expression which is similar to that of Krumhansl�s (1978) main formula.

2. Background

FSDOS is an outgrowth of the general theory of Fechnerian Scaling originally proposed for con-

tinuous stimulus spaces in a primarily psychophysical context (Dzhafarov 2002a, b, c, d; 2003a,

b; Dzhafarov & Colonius, 1999, 2001, 2005a, b). The historical reasons for associating this theory

with G. T. Fechner (1801-1887) are given in Dzhafarov & Colonius (1999). We begin with a brief
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simpli�ed account of the Fechnerian theory for a special class of continuous stimulus spaces, from

which its extension to discrete object sets will follow in a natural way.

1. Basics: Two observation areas and Regular Minimality. Stimulus space (or object

space) is a set S of all objects of a particular kind (say, all audible simple tones, or all letters of an

alphabet) endowed with a discrimination probability function  (x; y) ; x; y 2 S. The reason we can

distinguish (x; y) from (y; x) and treat (x; x) as a pair rather than a single object is that in pairwise

presentations the two stimuli generally belong to two distinct observation areas. In psychophysical

applications this usually refers to spatial arrangement (say, one stimulus is on the left, the other on

the right, ) or temporal order (�rst-second). The perception of a stimulus may depend on which

of the two observation areas it belongs to. In the case of conceptual objects and �paper-and-pencil

perceivers�the term observation area refers to the asymmetries in the computational procedure.

Thus, in our example with statistical models, a data set can be generated by model x and �tted

by model y; or vice versa.

The most fundamental property of discrimination probabilities is Regular Minimality, which

we present for now in its simplest (so-called canonical) form: for any x 6= y;

 (x; x) < min f (x; y) ;  (y; x)g : (3)

It should be noted from the outset that the logic of Fechnerian Scaling is very di¤erent from

that of MDS in the following respect: Fechnerian distances are computed within rather than across

the two observation areas. The Fechnerian distance between a and b does not mean a distance

between a presented �rst (or on the left) and b presented second (on the right). Rather, we should
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logically distinguish G(1) (a; b), the distance between a and b in the �rst observation area, from

G(2) (a; b), the distance between a and b in the second observation area. This must not come as a

surprise: a and b in the �rst observation area are generally perceived di¤erently from a and b in

the second observations area. As it turns out, however, if Regular Minimality is satis�ed in the

canonical form, (3), then it follows from the general theory that G(1) (a; b) = G(2) (a; b) (details

below, Sections 2.3, 3.4).

2. Oriented Fechnerian distances in continuous spaces. MDFS (Multidimensional Fech-

nerian Scaling) is Fechnerian Scaling on a stimulus set that can be represented by an open con-

nected region E of n-dimensional (n � 1) real-valued vectors, such that  (x; y) is continuous with

respect to its Euclidean topology. This means that (xk; yk)! (x; y) implies  (xk; yk)!  (x; y) :

Fechnerian Scaling has been developed for continuous spaces of a much more general structure

(Dzhafarov & Colonius, 2005a), but a brief overview of MDFS should su¢ ce in providing motiva-

tion for FSDOS.

Refer to Fig. 1. Any points a; b 2 E can be connected by a smooth arc x (t) ; a piecewise

continuously di¤erentiable mapping of an interval [�; �] of reals into E; with x (�) = a; x (�) = b:

The main intuitive idea underlying Fechnerian Scaling is that (A) any point x (t), t 2 [�; �) ;

can be assigned a local measure of its di¤erence from its �immediate neighbors,�x (t+ dt) ; (B)

by integrating this local di¤erence from � to � one can obtain the �psychometric length�of the

arc x (t); and (C) by taking the in�mum of psychometric lengths across all possible smooth arcs

connecting a to b one obtains the distance from a to b in space E:

As argued in Dzhafarov and Colonius (1999), this intuitive scheme can be viewed as the

essence of Fechner�s original theory for unidimensional stimulus continua (Fechner, 1860). The
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β

a

bb

t

x(t)

α

E

E

Figure 1: The underlying idea of MDFS. [�; �] is a real interval, a! x (t)! b a smooth arc. The
psychometric length of this arc is the integral of �local di¤erence�of x (t) from x (t+ dt) ; shown
by vertical spikes along [�; �] : The inset shows that one should compute the psychometric lengths
for all possible smooth arcs leading from a to b. Their in�mum is the oriented Fechnerian distance
from a to b.

implementation of this idea in MDFS is as follows (see Fig. 2). As t for a smooth arc x (t) : [�; �]!

E moves from � to �; the value of self-discriminability  (x (t) ; x (t)) may vary (nonconstant

self-dissimilarity). Therefore, to see how distinct x (t) is from x (t+ dt) it would not su¢ ce to

look at  (x (t) ; x (t+ dt)) or  (x (t+ dt) ; x (t)); one should compute instead the increments in

discriminability  (x (t) ; x (t+ dt))� (x (t) ; x (t)) and  (x (t+ dt) ; x (t))� (x (t) ; x (t)) : These

increments, denoted �(1) (x (t) ; x (t+ dt)) and �(2) (x (t) ; x (t+ dt)), respectively, are positive due

to the Regular Minimality property. They are referred to as psychometric di¤erentials of the

�rst kind (or in the �rst observation area) and second kind (in the second observation area),

respectively.

The assumptions of MDFS guarantee that the cumulation of �(1) (x (t) ; x (t+ dt)) from t = �

to t = � always yields a positive quantity. We call this quantity the psychometric length of arc
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β

a

bb

t2

x(t2)

α

E

t1 t3

x(t1)

x(t3)

ψ(x(ti), x(t)), i = 1,2,3
or

ψ(x(t), x(ti)), i = 1,2,3

Figure 2: The �local di¤erence� of x (t) from x (t+ dt) (as dt ! 0+) at a given point, t = ti,
is the slope of the tangent line drawn to  (x (ti) ; x (t)) or to  (x (t) ; x (ti)) at t = ti + : Using
 (x (ti) ; x (t)) yields derivatives of the �rst kind, using  (x (t) ; x (ti)) yields derivatives of the
second kind. Their integration from � to � yields oriented Fechnerian distances of, respectively,
�rst and second kind (from a to b).
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x (t) of the �rst kind, and denote it L(1) [a! x! b] (where we use the suggestive notation for arc

x connecting a to b). The in�mum G1 (a; b) of the psychometric lengths L(1) [a! x! b] across all

possible smooth arcs connecting a to b satis�es all properties of a distance except for symmetry:

(A) G1 (a; b) � 0; (B) G1 (a; b) = 0 if and only if a = b; (C) G1 (a; c) � G1 (a; b) +G1 (b; c); but it

is not necessarily true that G1 (a; b) = G1 (b; a) :We call G1 (a; b) the oriented Fechnerian distance

of the �rst kind from a to b. By repeating the whole construction with �(2) (x (t) ; x (t+ dt)) in

place of �(1) (x (t) ; x (t+ dt)) we will get the psychometric lengths L(2) [a! x! b] of the second

kind and, as their in�ma, the oriented Fechnerian distances G2 (a; b) of the second kind (from a

to b).

The following observation provides additional justi�cation for computing the oriented Fech-

nerian distances in the way just outlined. A metric d (symmetrical or oriented) on some set S

is called intrinsic if d (a; b) for any a; b 2 S equals the in�mum of the lengths of all �allowable�

(in our case, smooth) arcs connecting a and b: The oriented Fechnerian distances G1 (a; b) and

G2 (a; b) are intrinsic in this sense. In reference to the classical MDS, all Minkowski metrics are

(symmetrical) intrinsic metrics. Assume now that the discrimination probabilities  (x; y) on E

can be obtained from some symmetrical intrinsic distance d on E by means of (2), with f being

a continuous increasing function. It is su¢ cient to assume that (2) holds for small values of d

only. Then, as proved in Dzhafarov (2002b), d � G1 � G2 :  (x; y) cannot monotonically and

continuously depend on any (symmetrical) intrinsic metric other than the Fechnerian one. The

latter in this case is symmetrical, and its two kinds G1 and G2 coincide.1 The classical MDS

and its modi�cation proposed in Shepard and Carroll (1966), Tenenbaum, de Silva, & Langford

1Fechnerian distances are unique up to multiplication by a positive constant. Equation d � G1 � G2 therefore
could more generally be written as d � kG1 � kG2, k > 0. Throughout this paper we ignore the trivial distinction
between di¤erent multiples of Fechnerian metrics.
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(2000), and Roweis & Saul (2000) fall within this category of models. For continuous spaces,

therefore, MDS and MDFS are not simply compatible, the former in fact implies the latter (under

the assumption of intrinsicality but without con�ning the class of metrics d to Minkowski ones).

Fechnerian computations, however, are also applicable when the probability-distance hypothesis

is false (as we know it generally to be).

3. Overall Fechnerian distances in continuous spaces. The asymmetry of the oriented

Fechnerian distances lacks operational meaning. It is easy to understand why  (x; y) 6=  (y; x):

stimulus x in the two cases belongs to two di¤erent observation areas and can therefore be perceived

di¤erently (the same being true for y). In G1 (a; b) ; however, a and b belong to the same (�rst)

observation area, and the non-coincidence of G1 (a; b) and G1 (b; a) prevents one from interpreting

either of them as a reasonable measure of perceptual dissimilarity between a and b (in the �rst

observation area, �from the point of view�of a given perceiver). The same consideration applies, of

course, to G2: In MDFS this di¢ culty is resolved by taking as a measure of perceptual dissimilarity

the overall Fechnerian distances G1 (a; b) + G1 (b; a) and G2 (a; b) + G2 (b; a) : What justi�es this

particular choice of symmetrization is the remarkable fact that

G1 (a; b) +G1 (b; a) = G2 (a; b) +G2 (b; a) = G (a; b) ; (4)

where the overall Fechnerian distance G (a; b) (we need not now specify of which kind) can be easily

checked to satisfy all properties of a metric (Dzhafarov, 2002d; Dzhafarov & Colonius, 2005a).

Caution should be exercised though: the observation-area-invariance of the overall Fechnerian

distance is predicated on the canonical form of Regular Minimality, (3). In a more general case,
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as explained in Section 3.6, G1 (a; b) +G1 (b; a) equals G2 (a0; b0) +G2 (b0; a0) if a and a0 (as well as

b and b0) are �points of subjective equality,�not necessarily physically identical.

x

y

a a

bb

x

y

G 1(
a,

b)
 +

G 1(
b,

a)
)

G(
a,

b)

G(
a,

b)

observation area 1 observation area 2

G 2(
a,

b)
 +

G 2(
b,

a)
)

E E

Figure 3: Illustration for the Second Main Theorem: the psychometric length of the �rst kind
of a closed loop from a to b and back equals the psychometric length of the second kind for the
same loop traversed in the opposite direction. This leads to the equality of the overall Fechnerian
distances in the two observation areas.

Equation (4) is an immediate consequence of the following proposition (Dzhafarov, 2002d;

Dzhafarov & Colonius, 2005a): for any smooth arcs a! x! b and b! y ! a;

L(1) [a! x! b] + L(1) [b! y ! a] = L(2) [a! y ! b] + L(2) [b! x! a] : (5)

Put di¤erently, the psychometric length of the �rst kind for any closed loop containing a and b

equals the psychometric length of the second kind for the same closed loop but traversed in the

opposite direction. Together (5) and its corollary (4) constitute what we call the Second Main

Theorem of MDFS (see Fig. 3). This theorem plays a critical role in extending the continuous

theory to discrete and other, more complex object spaces (Dzhafarov & Colonius, 2005b).
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3. FSDOS

1. Discrete object spaces. Recall that a space of stimuli (objects) is a set S of all objects

of a particular kind endowed with a discrimination probability function  (x; y). For any distinct

x; y 2 S we de�ne psychometric increments of the �rst and second kind (or, in the �rst and second

observation areas) as, respectively,

�(1) (x; y) =  (x; y)�  (x; x) ; �(2) (x; y) =  (y; x)�  (x; x) : (6)

Due to Regular Minimality, (3), �(�) (x; y) > 0; � = 1; 2. A space S is called discrete if, for any

x 2 S; infy
h
�(�) (x; y)

i
> 0, � = 1; 2: In other words, the psychometric increments of both kinds

from x to other objects cannot fall below some positive quantity (�get arbitrarily close� to x).

Clearly, objects in a discrete space cannot be connected by arcs (continuous images of intervals of

reals).

2. Main idea. To understand Fechnerian computations in discrete spaces, return for a moment

to a continuous spaces E (Section 2.2). Consider a smooth arc x (t) : [�; �]! E; x (�) = a; x (�) =

b, as in Fig. 4. We know that its psychometric length L(�) [a! x! b] of the �th kind (� = 1; 2) is

obtained by cumulating psychometric di¤erentials of the same kind from � to �. It is also possible,

however, to approximate L(�) [a! x! b] by partitioning [�; �] into � = t0; t1; :::; tk; tk+1 = � and

computing the sum of the chained psychometric increments

L(�) [x (t0) ; x (t1) ; :::; x (tk+1)] =
kX
i=0

�(�) (x (ti) ; x (ti+1)) ; � = 1; 2 (7)
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β
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b

t2

x(t1)

α

E

t1 t3

x(t3)

x(t2)

t4 t5

x(t4)

x(t5)

x(ti) x(ti+1)

φ(1)(x(ti), x(ti+1))  or φ(2)(x(ti), x(ti+1))

E

Figure 4: The psychometric length of the �rst (second) kind of an arc can be approximated by the
sum of psychometric increments of the �rst (second) kind chained along the arc. The right insert
shows that if E is represented by a dense grid of points, the Fechnerian computations involve
taking all possible chains leading from one point to another through successions of immediately
neighboring points.
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As shown in Dzhafarov and Colonius (2005a), by progressively re�ning the partitioning this sum

can be made as close to the value of L(�) [a! x! b] as one wishes. In practical computations,

E can be represented by a su¢ ciently dense discrete grid of points. In view of the result just

mentioned, the oriented Fechnerian distance G� (a; b) (� = 1; 2) in this case can be approximated

by (A) considering all possible chains of successive neighboring points leading from a to b, (B)

computing sums (7) for each of these chains, and (C) taking the smallest value.

This almost immediately leads to the algorithm for Fechnerian computations in discrete spaces.

The main di¤erence is that in discrete spaces we have no physical ordering of objects to rely on:

every point in a discrete space can be viewed as a �neighbor�of any other point. Consequently,

in place of �all possible chains of successive neighboring points leading from a to b�one has to

consider simply all possible chains of points leading from a to b (see Fig. 5).

a
b

xi
xi+1

φ(1)(xi, xi+1)  or
φ(2)(xi, xi+1)

Figure 5: In a discrete space (10 elements whereof are shown in an arbitrary spatial arrangement)
Fechnerian computations are performed by taking sums of psychometric increments (of the �rst
or second kind, as shown in the inset) for all possible chains leading from one point to another.
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3. Illustration. Returning to our toy example (Table 1), let us compute the Fechnerian distance

between, say, objects D and B. The stimulus space here is fA;B;C;Dg ; and we have �ve di¤erent

chains in this space which are comprised of distinct (nonrecurring) objects and lead from D to

B: DB;DAB;DCB;DACB;DCAB: We begin by computing their psychometric lengths of

the �rst kind, L(1) [DB] ; L(1) [DAB] ; etc. By analogy with (7), L(1) [DCAB] ; for example, is

computed as L(1) [DCAB] = �(1) (D;C)+�(1) (C;A)+�(1) (A;B) : Using the de�nition of �(1) (x; y)

in (6), L(1) [DCAB] = [ (D;C)�  (D;D)] + [ (C;A)�  (C;C)] + [ (A;B)�  (A;A)] =

[0:7� 0:5]+ [1:0� 0:5]+ [0:8� 0:1] = 1:4: Repeating this procedure for all our �ve chains, we �nd

out that the smallest value is L(1) [DCB] = �(1) (D;C) + �(1) (C;B) = [ (D;C)�  (D;D)] +

[ (C;B)�  (C;C)] = 0:3: Note that this value is smaller than the length of the one-link chain

DB: L(1) [DB] = �(1) (D;B) =  (D;B) �  (D;D) = 0:5: The chain DCB can be called a

geodesic chain connecting D to B. Its length is taken to be the oriented Fechnerian distance of

the �rst kind from D to B; G1 (D;B) = 0:3: (Generally there can be more than one geodesic

chain, of the same length, for a given pair of objects.)

Consider now the same �ve chains but viewed in the opposite direction, that is, all chains in

fA;B;C;Dg leading from B to D; and compute for these chains the psychometric lengths of the

�rst kind: L(1) [BD] ; L(1) [BAD] ; etc. Having done this we will �nd out that this time the shortest

chain is the one-link chain BD; with the length L(1) [BD] = �(1) (B;D) =  (B;D)�  (B;B) =

0:8: The geodesic chain from B to D therefore is BD; and G1 (B;D) = 0:8:

Using the same logic as for continuous stimulus spaces, we now compute the (symmetrical)

overall Fechnerian distance between D and B by adding the two oriented distances �to and fro,�

G (D;B) = G (B;D) = G1 (D;B) +G1 (B;D) = 0:3 + 0:8 = 1:1: This is the value we �nd in cells

(D;B) and (B;D) of matrix G1 in Table 2. The concatenation of the two geodesic chains DCB



22 Dzhafarov and Colonius

and BD forms the geodesic loop between D and B; which we �nd in cells (D;B) and (B;D) of

matrix L1 in Table 2. This loop, of course, can be written in three di¤erent ways depending on

which of its three distinct elements we choose to begin and end with. The convention we adopt is

to begin and end with the row object: DCBD in cell (D;B) and BDCB in cell (B;D). Note that

the overall Fechnerian distance G (D;B) and the corresponding geodesic loop could also be found

by computing psychometric lengths for all 25 possible closed loops containing objects D and B in

space fA;B;C;Dg and �nding the smallest. This, however, would be a more wasteful procedure.

The reason we do not need to add the quali�cation �of the �rst kind� to the designations

of the overall Fechnerian distance G (D;B) and the geodesic loop DCBD is that precisely the

same value of G (D;B) and the same geodesic loop (only traversed in the opposite direction)

are obtained if the computations are performed with psychometric increments of the second

kind. For chain DCAB; for example, the psychometric length of the second kind, using the

de�nition of �(2) in (6), is computed as L(2) [DCAB] = �(2) (D;C) + �(2) (C;A) + �(2) (A;B) =

[ (C;D)�  (D;D)] + [ (A;C)�  (C;C)] + [ (B;A)�  (A;A)] = 1:3: Repeating this com-

putation for all our �ve chains leading from D to B, the shortest chain will be found to be DB;

with the length L(2) [DB] = �(2) (D;B) =  (B;D) �  (D;D) = 0:4; taken to be the value of

G2 (D;B) ; the oriented Fechnerian distance form D to B of the second kind. For the same �ve

chains but viewed as leading fromB toD; the shortest chain isBCD; with the length L(2) [BCD] =

�(2) (B;C)+�(2) (C;D) = [ (C;B)�  (B;B)]+[ (D;C)�  (C;C)] = 0:7, taken to be the value

of G2 (B;D). Their sum is G (D;B) = G (B;D) = G2 (D;B) + G2 (B;D) = 0:4 + 0:7 = 1:1; the

same value for the overall Fechnerian distance as before (even though the oriented distances are

di¤erent). The geodesic loop obtained by concatenating the geodesic chains DB and BCD is also

the same as we �nd in matrix L1 in cells (D;B) and (B;D) ; but read from right to left: DBCD
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in cell (D;B) and BCDB in cell (B;D).

The complete formulation of the convention adopted in L1 therefore is as follows: the geodesic

loop in cell (x; y) begins and ends with x and is read from left to right for the computations of

the �rst kind, and from right to left for the computations of the second kind (yielding one and the

same result, the overall Fechnerian distance between x and y).

4. Procedure of FSDOS.2 It is clear that any �nite set S = fs1; s2; :::; sNg endowed with

probabilities pij =  (si; sj) forms a discrete space in the sense of our formal de�nition. As

this case is of the greatest interest in empirical applications, in the following we will con�ne our

discussion to �nite object spaces. All our statements, however, unless speci�cally quali�ed, apply

to discrete object spaces of arbitrary cardinality. The procedure below is described as if one knew

the probabilities pij on the population level. If sample sizes do not warrant this approximation,

the procedure should ideally be repeated with a large number of matrices pij that are statistically

retainable given a matrix of frequency estimates p̂ij: We return to this issue in the concluding

section.

The computation of Fechnerian distances Gij among fs1; s2; :::; sNg proceeds in several steps.

The �rst step is to check for Regular Minimality: for any i and all j 6= i; pii < min fpij; pjig : If

Regular Minimality is violated (on the population level), FSDOS will not work. Put di¤erently,

given a matrix of frequency estimates  ̂ (si; sj) ; one should use statistically retainable matrices of

probabilities pij that do satisfy Regular Minimality; and if no such matrices can be found, FSDOS

is not applicable. Having Regular Minimality veri�ed, we compute psychometric increments of

2An algorithmic description of FSDOS as well as a computer program implementing it can be
downloaded from http://www.psych.purdue.edu/~ehtibar. It is written in Matlab 6.0 and MS Excel
XP. (The program also performs some computations not discussed in this paper.)
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the �rst and second kind, �(1) (si; sj) = pij � pii; �(2) (si; sj) = pji � pii; which are positive for all

j 6= i.

Consider now a chain of objects si = x1; x2; :::; xk = sj leading from si to sj, with k �

2. The psychometric length of the �rst kind for this chain, L(1) [x1; x2; :::; xk] ; is de�ned as

L(1) [x1; x2; :::; xk] =
Pk

m=1 �
(1) (xm; xm+1) : The set of di¤erent psychometric lengths across all

possible chains of distinct elements connecting si to sj being �nite, it contains a minimum value

L
(1)
min (si; sj). (The consideration can always be con�ned to chains (x1; x2; :::; xk) of distinct ele-

ments, because if xl = xm, l < m, the length cannot increase if the subchain (xl+1; :::; xm) is

removed.) This value is called the oriented Fechnerian distance of the �rst kind from object si to

object sj: G1 (si; sj) = L
(1)
min (si; sj) : G1 satis�es all properties of a metric, except for symmetry:

(A) G1 (si; sj) � 0; (B) G1 (si; sj) = 0 if and only if i = j; (C) G1 (si; sj) � G1 (si; sm)+G1 (sm; sj);

but in general, G1 (si; sj) 6= G1 (sj; si). Properties (A) and (B) trivially follow from the fact that

for i 6= j; G1 (si; sj) is the smallest of several positive quantities, L(1) [x1; x2; :::; xk]. Property (C)

follows from the observation that the chains leading from si to sj through a �xed sk form a proper

subset of all chains leading from si to sj:3 In accordance with the general logic of Fechnerian

Scaling, G1 (si; sj) is interpreted as the oriented Fechnerian distance from si to sj in the �rst

observation area. Any chain from si to sj whose elements are distinct and whose length equals

G1 (si; sj) is a geodesic chain from si to sj. There may be more than one geodesic chain for given

si; sj. (Note that in the case of in�nite discrete sets geodesic chains need not exist.)

The oriented Fechnerian distances G2 (si; sj) of the second kind (in the second observation

3For �nite sets S we can always �nd the minimum of L(1) [x1; x2; :::; xk] across all chains with �xed endpoints.
For an in�nite discrete S the minimum need not exist and L(1)min (a; b) should be replaced with L

(1)
inf (a; b) ; the

in�mum of L(1) [a = x1; x2; :::; xk = b]. The argument for properties (A) and (B) then should be modi�ed: for a 6= b;
G1 (a; b) > 0 because L

(1)
inf (a; b) � infx

h
�(1) (a; x)

i
, and by de�nition of discrete object spaces, infx

h
�(1) (a; x)

i
> 0:
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area) and the corresponding geodesic chains are computed analogously, using the chained sums of

psychometric increments �(2) instead of �(1).

As argued in Section 2.1, the order of two objects in a given observation area has no operational

meaning, and we add the two oriented distances, �to and fro,�to obtain the (symmetrical) overall

Fechnerian distances: Gij = G1 (si; sj)+G1 (sj; si) = Gji; and also Gij = G2 (si; sj)+G2 (sj; si) =

Gji: Quantity Gij clearly satis�es all the properties of a metric. The validation for this procedure

is provided by the fact that

G1 (si; sj) +G1 (sj; si) = G2 (si; sj) +G2 (sj; si) ; (8)

i.e., the distance Gij between the ith and the jth objects does not depend on the observation

area in which these objects are taken. The proof of this fact is a trivial corollary of the following

statement, which is of interest on its own sake: for any two chains si = x1; x2; :::; xk = sj and

si = y1; y2; :::; yl = sj (connecting si to sj),

L(1) [x1; x2; :::; xk] + L(1) [yl; yl�1; :::; y1] = L(2) [y1; y2; :::; yl] + L(2) [xk; xk�1; :::; x1] : (9)

Indeed, denoting p0ij =  (xi; xj) and p00ij =  (yi; yj),

L(1) [x1; x2; :::; xk] + L(1) [yl; yl�1; :::; y1] =
k�1X
m=1

�
p0m;m+1 � p0ii

�
+

l�1X
m=1

�
p00m+1;m � p00m+1;m+1

�
;

L(2) [y1; y2; :::; yl] + L(2) [xk; xk�1; :::; x1] =

l�1X
m=1

�
p00m+1;m � p00m;m

�
+

k�1X
m=1

�
p0m;m+1 � p0m+1;m+1

�
:

Subtracting the second equation from the �rst we get p0kk � p011 + p0011 � p00kk; which is zero because
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p011 = p0011 = pii and p0kk = p00kk = pjj; where, we recall, pij =  (si; sj) : Together (8) and (9) provide

a simple version of the Second Main Theorem of Fechnerian Scaling, mentioned earlier.

An equivalent way of de�ning Gij is to consider all closed loops x1; x2; :::; xn; x1 (n � 2)

containing two given objects si; sj: Gij is the shortest of the psychometric lengths computed for

all such loops. Note that the psychometric length of a loop depends on the direction in which it is

traversed: generally, L(1) (x1; x2; :::; xn; x1) 6= L(1) (x1; xn; :::; x2; x1) ; and L(2) (x1; x2; :::; xn; x1) 6=

L(2) (x1; xn; :::; x2; x1) : The Second Main Theorem tells us, however, that L(1) (x1; x2; :::; xn; x1) =

L(2) (x1; xn; :::; x2; x1) ; that is, any closed loop in the �rst observation area has the same length in

the second observation area if traversed in the opposite direction. In particular, if x1; x2; :::; xn; x1

is a geodesic (i.e., shortest) loop containing the objects si; sj in the �rst observation area (the

concatenation of the geodesic chains connecting si to sj and sj to si), then the same loop is a

geodesic loop in the second observation area, if traversed in the opposite direction, x1; xn; :::; x2; x1:

5. Two examples. The algorithm just described was used to compute Fechnerian distances

and geodesic loops for the 36 � 36 data set reported in Rothkopf (1957) and the 32 � 32 data

reported in Wish (1967). Only small subsets of these object sets are shown in Tables 3 and 4,

chosen because they form �self-contained� subspaces: any two elements of each subset can be

connected by a geodesic loop lying entirely within the subset. The discrimination probabilities

satisfy Regular Minimality in the canonical form: the main diagonal values in the two tables are

both row and column minima.4 Recall our convention on presenting geodesic loops. Thus, in Table

4In the complete 32� 32 matrix reported in Wish (1967) there are two violations of Regular Minimality, both
due to a single value, p̂TV = 0:03: this value is the same as p̂V V and smaller than p̂TT = 0:06 (using the labeling
described in Table 4). As we used Wish�s data for illustration purposes only, we simply replaced p̂TV = 0:03 with
pTV = 0:07; putting pij = p̂ij for the rest of the data. Chi-square deviation of thus de�ned matrix of pij from
the matrix of p̂ij is negligibly small. A comprehensive procedure should have involved a repeated generation of
statistically retainable pij matrices subject to Regular Minimality.
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Table 4: A 10 � 10 excerpt from Wish�s (1967) 32 � 32 data matrix. Stimuli were 5-element
sequences T1P1T2P2T3; where T stands for a tone (short or long) and P stands for a pause (1 or 3
units long). We arbitrarily labeled the stimuli A;B; :::; Z; 0; 1; :::; 5; in the order they are presented
in Wish�s paper. The format of the table and the criterion for choosing this particular subset of
10 stimuli are the same as in Table 3.

S U W X 0 1 2 3 4 5
S 0 (6) 32 (16) 72 (38) 89 (45) 57 (35) 119 (73) 112 (81) 128 (70) 119 (89) 138 (97)

S SUS SWS SUXS S0S SU1WS SU2US SUX3XS SUX4WS SUX5XS
U 32 (28) 0 (6) 76 (44) 79 (24) 89 (59) 107 (56) 80 (49) 116 (51) 107 (71) 128 (69)

USU U UWU UXWU US0SU U1WU U2U UX31WU UX4WU UX5XWU
W 72 (44) 76 (42) 0 (4) 30 (11) 119 (78) 55 (40) 122 (79) 67 (55) 58 (48) 79 (83)

WSW WUW W WXW WS0W W1W W2XW WX31W WX4W WX5XW
X 89 (64) 79 (71) 30 (26) 0 (3) 123 (86) 67 (51) 94 (73) 39 (27) 45 (31) 49 (44)

XSUX XWUX XWX X X0X X31WX X2X X3X X4X X5X
0 57 (34) 89 (55) 119 (56) 123 (46) 0 (6) 113 (52) 71 (39) 143 (69) 95 (39) 132 (95)

0S0 0SUS0 0WS0 0X0 0 010 020 0130 040 0250
1 119 (84) 107 (75) 55 (22) 67 (33) 113 (70) 0 (3) 109 (69) 31 (17) 72 (40) 08 (97)

1WSU1 1WU1 1W1 1WX31 101 1 121 131 141 135X31
2 112 (81) 80 (44) 122 (62) 94 (31) 71 (45) 109 (50) 0 (7) 116 (41) 92 (35) 74 (26)

2USU2 2U2 2XW2 2X2 202 212 2 232 242 252
3 128 (94) 116 (85) 67 (44) 39 (17) 143 (85) 31 (19) 116 (84) 0 (2) 84 (63) 77 (47)

3XSUX3 31WUX3 31WX3 3X3 3013 313 323 3 3X4X3 35X3
4 119 (89) 107 (73) 58 (26) 45 (20) 95 (65) 72 (38) 92 (67) 84 (45) 0 (3) 68 (49)

4WSUX4 4WUX4 4WX4 4X4 404 414 424 4X3X4 4 454
5 138 (100) 128 (94) 79 (74) 49 (11) 132 (83) 108 (95) 74 (58) 77 (67) 68 (25) 0 (3)

5XSUX5 5XWUX5 5XWX5 5X5 5025 5X3135 525 5X35 545 5

3 the geodesic chain from letter B to digit 8 in the �rst observation area is B ! 5! 6! 7! 8

and that from 8 to B is 8 ! 7 ! 5 ! B. In the second observation area the geodesic chains

should be read from right to left: 8 7 5 B from B to 8; and B  5 6 7 8 from 8

to B. The oriented Fechnerian distances are G1 (B; 8) = :70, G1 (8; B) = :70, G2 (B; 8) = :77, and

G2 (8; B) = :63, yielding G(8; B) = 1:40.

Note that Fechnerian distancesGij are not monotonically related to discrimination probabilities

pij: there is no functional relationship between the two because the computation of Gij for a given

(i; j) involves pij values for all (i; j) : Nor are the oriented Fechnerian distances G1 (si; sj) and

G2 (si; sj) monotonically related to psychometric increments pij � pii and pji � pii, due to the

existence of longer-than-one-link geodesic chains. There is, however, a strong positive correlation
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between pij andGij:5 0.94 for Rothkopf�s data and 0.89 forWish�s data (Pearson correlation for the

entire matrices, 36�36 and 32�32). This indicates that the probability-distance hypothesis, even

if known to be false mathematically, may still be acceptable as a crude approximation. We may

expect consequently that MDS-distances could provide crude approximations to the Fechnerian

distances. That the adjective �crude�cannot be dispensed with is indicated by the relatively low

values of Kendall�s correlation between pij and Gij: 0.76 for Rothkopf�s data and 0.68 for Wish�s

data.

Dimension 1

D
im

en
si

on
 2

22221­9

22211­8

22111­7

21111­6

11111­5

11112­4

11122­3
12222­1

22222­0

2111­B

A
Dimension 1

22221­9

22211­8

22111­7 21111­6
11111­5

11112­4

11122­3

12222­1

22222­0

2111­B

B

321

0.20

0.10

321

0.20

0.10

Figure 6: Two-dimensional Euclidean representations for discrimination probabilities (nonmetric
MDS, Panel A) and for Fechnerian distances (metric MDS, Panel B) in Table 3. The MDS program
used is PROXSCAL 1.0 in SPSS 11.5, minimizing raw stress. Sequence of 1�s and 2�s preceding a
dash is the Morse code for the symbol following the dash. Insets are scree plots (normalized raw
stress versus number of dimensions).

MDS can be used in conjunction with FSDOS, as a follow-up analysis once Fechnerian dis-

tances have been computed. A nonmetric version of MDS can be applied to Fechnerian distances

(as opposed to discrimination probabilities directly) simply to provide a rough graphical repre-

sentation for matrices like in Tables 3 and 4. More interestingly, a metric version of MDS can be

applied to Fechnerian distances to test the hypothesis that Fechnerian distances, not restricted

5We are grateful to Associate Editor for pointing this out to us.
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Figure 7: Same as Fig. 6, but for discrimination probabilities (nonmetric MDS, Panel A) and for
Fechnerian distances (metric MDS, Panel B) in Table 4. L stands for long tone, S for short tone,
while digits 1 an 3 show the lengths of the two pauses.

a priori to any particular class (except for being intrinsic), can be approximated by Euclidean

distances (more generally, power-function Minkowski ones); the degree of approximation for any

given dimensionality is measured by the achieved stress value. Geometrically, metric MDS on

Fechnerian distances is an attempt to isometrically embed (i.e., map without distorting pairwise

distances) the discrete object space in a low-dimensional Euclidean (or Minkowskian) space. Fig-

ures 6 and 7 provide a comparison of the metric MDS on Fechnerian distances with nonmetric

MDS performed on discrimination probabilities directly, for the 10� 10 submatrices presented in

Tables 3 and 4. Using the value of normalized raw stress as our criterion, the two-dimensional

solution is almost equally good in both analyses. Therefore to the extent we consider the tradi-

tional MDS solution acceptable, we can view the Fechnerian distances in these two cases as being

approximately Euclidean. The con�gurations of points obtained by metric MDS on Fechnerian
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distances and nonmetric MDS on discrimination probabilities are more similar in Fig. 6 than in

Fig. 7, indicating that MDS-distances provide a better approximation to Fechnerian distances in

the former case. This may re�ect the fact that the Kendall correlation between the probabilities

and Fechnerian distances for Rothkopf�s data is higher than for Wish�s data (0.76 vs 0.68). A

detailed comparison of the con�gurations provided by the two analyses, as well as such related

issues as interpretation of axes are, however, beyond the scope of this paper.

6. General form of Regular Minimality. In continuous stimulus spaces it often happens

that for a �xed value of x;  (x; y) achieves its minimum not at y = x but at some other value

of y; and for a �xed value of y;  (x; y) achieves its minimum at some value other than x = y.

It has been noticed since Fechner (1860), for example, that when x and x are presented in a

succession, the second stimulus often seems larger (bigger, brighter, etc.) than the �rst: this is the

classical phenomenon of �time error.�It follows that in a successive pair (x; y) the two elements

maximally resemble each other when y is physically smaller than x: Borrowing the terminology

from the theory of greater-less comparisons, Dzhafarov (2002d, 2003a) proposed to call the value

of argminy  (x; y) (i.e., the value of y at which  (x; y) achieves its minimum, for a �xed x) the

point of subjective equality, PSE, for x; and analogously, the value of argminx  (x; y) is called the

PSE for y:

Using this terminology, the general formulation of the Regular Minimality principle is as follows:

(a) every x in the �rst observation area has a unique PSE in the second observation area; (b) every

y in the second observation area has a unique PSE in the �rst observations area; and (c) y is the

PSE for x if and only if x is the PSE for y: For a detailed discussion, see Dzhafarov (2002d, 2003a)

and Dzhafarov and Colonius (2005a).
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Table 5: A matrix of discrimination probabilities satisfying Regular Minimality in a non-canonical
form. A canonical transformation of this matrix yields matrix M1 of Table 1.

M0 a b c d

a 0:6 0:6 0.1 0:8

b 0:9 0:9 0:8 0.1
c 1 0.5 1 0:6

d 0.5 0:7 1 1

Clearly, the formulation of Regular Minimality that we used so far, (3), is a special case:

argminy  (x; y) = x and argminx  (x; y) = y (i.e., two physically identical stimuli are mutual

PSEs). As we know, this form of Regular Minimality is called canonical. It is possible that in

discrete stimulus spaces Regular Minimality always has this special form, but it need not be so

a priori. It seems useful therefore to reformulate the algorithm and interpretation of FSDOS

under the assumption that Regular Minimality holds in its general form. Consider the following

modi�cation of our toy example. Let the object space now be fa; b; c; dg and the initial matrix

look as in Table 5. It is easy to see that Regular Minimality holds here, although not in a canonical

form: every row contains a single minimal cell, and this cell is also minimal in its column. We can

make a list of mutual PSEs and relabel them, assigning one and the same label to every pair of

PSEs: (a; c)! A; (b; d)! B; (c; b)! C; (d; a)! D:With this relabeling, the matrixM0 of Table

5 transforms into the matrix M1 of our initial toy example (Table 1), with Regular Minimality

now holding in the canonical form, (3). Due to Regular Minimality this can always be achieved by

an appropriate relabeling. Having performed the Fechnerian analysis onM1 and having computed

the matrices L1 andG1 of Table2, we can return to the original labeling and present the Fechnerian

distances and geodesic loops separately for the �rst and the second observation areas. A;B;C;D

in L1 and G1 should be replaced with, respectively, a; b; c; d for the �rst observation area, and with
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c; d; b; a for the second observation area. Denoting the overall Fechnerian distance G in the �rst

and second observation areas by G(1) and G(2); respectively (not to be confused with the oriented

Fechnerian distances distances G1 and G2), we will see, for instance, that G(1) (a; b) is 1.3, while

G(2) (a; b) is 0.7, re�ecting the fact that a; b are perceived di¤erently in the two observation areas.

On the other hand, G(2) (c; d) is 1.3., the same as G(1) (a; b). This re�ects the fact that c; d in the

second observation area are PSEs for, respectively, a; b in the �rst observation area.

4. Concluding Remarks

1. Statistical issues. In some applications the frequency estimates of pij =  (si; sj) are

computed from samples su¢ ciently large to ignore statistical issues and treat FSDOS as being

performed on essentially a population level. To a large extent this is how the theory of FSDOS

is presented in this paper. The questions of �nding the joint sampling distribution for Fechnerian

distances Ĝij (i; j = 1; 2; :::; N) or joint con�dence intervals for Gij are beyond the scope of this

paper. We can, however, outline a general approach. The estimators P̂ij of the probabilities pij

are obtained as

P̂ij =
1

Rij

RijX
k=1

Xijk;

where
�
Xij1; :::; XijRij

	
are random variables representing binary responses (1 = different,

0 = same). The index k may represent chronological trial numbers for (si; sj) ; di¤erent ex-

amples of this pair, di¤erent respondents, etc. Random variables Xijk and Xi0j0k0 can be treated

as stochastically independent, provided (i; j; k) 6= (i0; j0; k0). Assuming that Pr [Xijk = 1] does not

vary too much as a function of k (i.e., ignoring such factors as fatigue, learning, and individual

di¤erences), P̂ij may be viewed as independent normally distributed variables with means pij and
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variances pij (1� pij) =Rij; from which it would follow that the joint distribution of the psychome-

tric lengths of all chains with distinct elements is asymptotically multivariate normal, with both

the means and covariances being known functions of true probabilities pij. The problem then is

reduced to �nding the (asymptotic) joint sampling distribution of the minima of psychometric

lengths with common terminal points. Realistically, the problem is more likely to be dealt with

by means of Monte Carlo simulations.

Monte Carlo is also likely to be used for constructing joint con�dence intervals for Gij; given

a matrix of p̂ij: The procedure consists of repeatedly replacing the latter with matrices of pij

that are subject to Regular Minimality and deviate from p̂ij less than some critical value (e.g.,

by the conventional chi-square criterion), and computing Fechnerian distances from each of these

matrices.

2. Choice of object set. In some cases, as with Rothkopf�s (1957) Morse codes, the set S of

objects used in an experiment or computation may contain all objects of a given kind. If such a

set is too large or in�nite, however, one can only use a subset S 0 of the entire S: This gives rise

to a problem: the Fechnerian distance G (a; b) between objects a; b 2 S 0 will generally depend on

what other objects are included in S 0: In a psychophysical experiment, when pairs of objects are

presented repeatedly to a single observer, adding a new object s to S 0 may change the pairwise

discrimination probabilities  (a; b) within the old subset. In a group experiment with each pair

presented just once, or for the �paper-and-pencil� perceivers, adding s to S 0 may not change

discrimination probabilities; but this will still add new loops containing any given a; b 2 S 0; as a

result, the minimum psychometric length L(�)min (si; sj) will generally decrease.
6

6This decrease must not be interpreted as a decrease in subjective dissimilarity. As mentioned earlier, Fechnerian
distances are determined up to multiplication by an arbitrary positive constant, which means that only relative
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A formal approach to this issue is to simply state that the Fechnerian distance between two

given objects is a relative concept: G (a; b) shows how far apart the two objects are �from the point

of view�of a given perceiver and with respect to a given object set. This approach may be su¢ cient

in a variety of applications, especially in psychophysical experiments with repeated presentations

of pairs to a single observer: one might hypothesize that the observer in such a situation gets

adapted to the immediate context of the objects in play, e¤ectively con�ning to it the subjective

�universe of possibilities.�A discussion of this �adaptation to subspace�hypothesis can be found

in Dzhafarov and Colonius (2005a). Like in many other situations involving sampling, however

(including, e.g., sampling of respondents in a group experiment), one may only be interested in

a particular subset S 0 of objects to the extent it is representative of the entire set S of objects

of a particular kind. In this case one faces two distinctly di¤erent questions. The �rst question

is empirical: is S 0 large enough (well chosen enough) for its further enlargements not to lead

to noticeable changes in discrimination probabilities within S 0? This question is not FSDOS-

speci�c, any other analysis of discrimination probabilities (e.g., MDS) will have to address it too.

The second question is computational, and it is FSDOS-speci�c: provided the �rst question is

answered in the a¢ rmative, is S 0 large (well chosen) enough for its further enlargements not to

lead to noticeable changes in Fechnerian distances within S 0? A detailed discussion being outside

the scope of this paper, we can only mention what seems to be an obvious approach: the a¢ rmative

answer to second question can be given if one can show, by means of an appropriate version of

subsampling, that the exclusion of a few objects from S 0 does not lead to changes in Fechnerian

distances within the remaining subset.

Fechnerian distances G (a; b) =G (c; d) are meaningfully interpretable.
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3. Other empirical procedures. The procedure of pairwise presentations with same-di¤erent

judgments is the focal empirical paradigm for FSDOS. With some caution, however, FSDOS

can also be applied to other empirical paradigms, such as that of identi�cation, mentioned in

Section 1.3: all objects fs1; s2; :::; sNg are associated with rigidly �xed, normative reactions

fR1; R2; :::; RNg (e.g., �xed names), and the objects are presented one at a time. Such an ex-

periment results in the stimulus-response confusion probabilities � (si; sj) with which reaction Rj

(normatively reserved for sj) is given to object si. FSDOS here can be applied under the ad-

ditional assumption that � (si; sj) can be interpreted as 1 �  (si; sj). Regular Minimality here

means that each object si has a single modal reaction Rj (in the canonical form, Ri), and then

any other object causes Rj less frequently than si does. Thus understood, Regular Minimality

is satis�ed, for example, in the data reported in Shepard (1957, 1958). We reproduce here one

of the matrices from this work (Table6, rows are stimuli, columns normative responses, entries

conditional probabilities � (si; sj)), together with the matrix of Fechnerian distances. Geodesic

loops are not shown because the space fA;B; :::; Ig here turns out to be a �Fechnerian simplex�:

a geodesic chain from a to b in this space is always the one-link chain (a; b).

In a variant of the identi�cation procedure, the reactions may be preference ranks for objects

fs1; s2; :::; sNg, R1 designating, say, the most preferred object, RN the least preferred. Suppose

that Regular Minimality holds in the following sense: each object has a modal (most frequent)

rank, each rank has a modal object, and Rj is the modal rank for si if and only if si is the modal

object for Rj. Then the frequency � (si; Rj) can be taken as an estimate of 1�  (si; sj), and the

data be subjected to FSDOS. The fact that these and similar procedures are used in a variety of

areas (psychophysics, neurophysiology, consumer research, educational testing, political science),

combined with the great simplicity of the algorithm for FSDOS, makes one hope that its potential
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Table 6: M2: one of the identi�cation probability matrices reported in Shepard (1957, 1958). G2:
Fechnerian distances computed from matrix M2:

M2 A B C D E F G H I
A .678 .148 .054 .03 .025 .02 .016 .011 .016
B 0.167 0.544 0.066 0.077 0.053 0.015 0.045 0.018 0.015
C 0.06 0.07 0.615 0.015 0.107 0.067 0.022 0.03 0.014
D 0.015 0.104 0.016 0.542 0.057 0.005 0.163 0.032 0.065
E 0.037 0.068 0.12 0.057 0.46 0.075 0.057 0.099 0.03
F 0.027 0.029 0.053 0.015 0.036 0.715 0.015 0.095 0.014
G 0.011 0.033 0.015 0.145 0.049 0.016 0.533 0.052 0.145
H 0.016 0.027 0.031 0.046 0.069 0.096 0.053 0.628 0.034
I 0.005 0.016 0.011 0.068 0.02 0.021 0.061 0.018 0.78

G2 A B C D E F G H I
A 0 0.907 1.179 1.175 1.076 1.346 1.184 1.279 1.437
B 0.907 0 1.023 0.905 0.883 1.215 0.999 1.127 1.293
C 1.179 1.023 0 1.126 0.848 1.21 1.111 1.182 1.37
D 1.175 0.905 1.126 0 0.888 1.237 0.767 1.092 1.189
E 1.076 0.883 0.848 0.888 0 1.064 0.887 0.92 1.19
F 1.346 1.215 1.21 1.237 1.064 0 1.217 1.152 1.46
G 1.184 0.999 1.111 0.767 0.887 1.217 0 1.056 1.107
H 1.279 1.127 1.182 1.092 0.92 1.152 1.056 0 1.356
I 1.437 1.293 1.37 1.189 1.19 1.46 1.107 1.356 0

application sphere may be very large.
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