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The Sorites Paradox: A Behavioral

Approach

Ehtibar N. Dzhafarov and Damir D. Dzhafarov

The issues discussed in this chapter can be traced back to the Greek
philosopher Eubulides of Miletus. He lived in the 4th century BCE,
a contemporary of Aristotle whom he, according to Diogenes Laër-
tius, “was constantly attacking” (Yonge, 1901, pp. 77–78). Eubu-
lides belonged to what is known as the Megarian school of philoso-
phy, founded by a pupil of Socrates named Euclid(es). Besides his
quarrels with Aristotle we know from Diogenes Laërtius that Eubu-
lides was the target of an epigram referring to his “false arrogant
speeches”, and that he “handed down a great many arguments in
dialectics”, mostly trivial sophisms of the kind ridiculed by Socrates
in Plato’s Dialogues. For example, the Horned Man argument asks
you to agree that ‘whatever you haven’t lost you have’, and points
out that then you must have horns since you have not lost them.

Two of the “arguments in dialectics” ascribed to Eubulides, how-
ever, are among the most perplexing and solution-resistant puzzles
in history. The first is the Liar paradox, which demonstrates the
impossibility of assigning a truth value to the statement ‘This state-
ment is false’.⇤ Eubulides’s second ‘serious’ paradox, the Heap, is
the subject of this chapter. It can be stated as follows. (1) A single
grain of sand does not form a heap, but many grains (say 1, 000, 000)
do. (2) If one has a heap of sand, then it will remain a heap if one
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⇤[See Chapter 2,p. 43ff, for more on the Liar. (Eds.)]
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removes a single grain from it. (3) But, by removing from a heap of
sand one grain at a time sufficiently many times, one can eventually
be left with too few grains to form a heap. This argument is tra-
ditionally referred to by the name ‘sorites’ (from the Greek swróV
[soros] meaning ‘heap’), with the adjective ‘soritical’ used to indi-
cate anything ‘sorites-related’. Thus, the Bald Man paradox which
Diogenes Laërtius lists as yet another argument of Eubulides in di-
alectics is a ‘soritical argument’, because it follows the logic of the
sorites but applies it to the example of the number of hairs forming
or not forming a full head of hair.

Two Varieties of Sorites

This chapter is based on Dzhafarov & Dzhafarov (2010a,b), in which
we proposed to treat sorites as a behavioral issue, with ‘behavior’
broadly understood as the relationship between stimuli acting upon
a system (the ‘system’ being a human observer, a digital scale, a set
of rules, or anything whatever). We present here a sketch of this
treatment, omitting some of the more delicate philosophical points.
Examples of behavioral questions pertaining to sorites include: Can
a person consistently respond by different characterizations, such
as ‘is 2 meters long’ and ‘is not 2 meters long’, to visually presented
line segments a and b which only differ by one billionth of one per-
cent? Is the person bound to say that these segments, a and b, look
‘the same’ when they are presented as a pair? But soritical questions
can also be directed at non-sentient systems: Can a crude two-pan
balance at equilibrium be upset by adding to one of the pans a single
atom? Can the probability that this balance will remain at equilib-
rium change as a result of adding to one of the pans a single atom?

Sorites, viewed behaviorally, entails two different varieties of
problems. The first, classificatory sorites , is about the identity or
nonidentity of responses, or some properties thereof, to stimuli that
are ‘ almost identical’, ‘differ only microscopically’. The second,
comparative sorites , concerns ‘match/not match’-type responses to
pairs of stimuli, or more generally, response properties interpretable
as indicating whether the two stimuli in a pair ‘match’ or ‘do not
match’. A prototypical example would be visually presented pairs
of line segments with ‘matching’ understood as ‘appearing the same
in length’. Perhaps surprisingly, the two varieties of sorites turn out
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to be very different. The classificatory sorites is a logical impossi-
bility, and our contribution to its analysis consists in demonstrating
this impossibility by explicating its underlying assumptions on ar-
guably the highest possible level of generality (using the mathemat-
ical language of Maurice Fréchet’s proto-topological V-spaces). The
comparative sorites (also called ‘observational’ in the philosophical
literature) is, by contrast, perfectly possible: one can construct ab-
stract and even physically realizable systems which exhibit soritical
behavior of the comparative variety. This, however, by no means
has to be the case for any system with ‘match/not match’-type re-
sponse properties. Most notably, we will argue that contrary to the
widespread view this is not the case for the human comparative
judgments, where comparative sorites contradicts a certain regular-
ity principle supported by all available empirical evidence, as well
as by the practice and language of the empirical research dealing
with perceptual matching.

The compelling nature of the view that the human comparative
judgments are essentially soritical is apparent in the following quo-
tation from R. Duncan Luce (who used this view to motivate the
introduction of the important algebraic notion of a semiorder).

It is certainly well known from psychophysics that if
“preference” is taken to mean which of two weights a
person believes to be heavier after hefting them, and if
“adjacent” weights are properly chosen, say a gram dif-
ference in a total weight of many grams, then a subject
will be indifferent between any two “adjacent” weights.
If indifference were transitive, then he would be unable
to detect any weight differences, however great, which
is patently false. (Luce, 1956, p. 179)

One way of conceptualizing this quotation so that it appears
to describe a ‘paradox’ is this. (1) If the two weights being hefted
and compared are the same, x and x, they ‘obviously’ match per-
ceptually. (2) If one adds to one of the two weights a ‘microscopic’
amount # (say, the weight of a single atom), the human’s response to
x and x + # cannot be different from that to x and x, whence x and
x + # must still match perceptually. (3) But by adding # to one of the
weights many times one can certainly obtain a pair of weights x and
x + n# that are clearly different perceptually.

This reasoning follows the logic of the classificatory sorites, and
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is thus logically invalid. This reasoning, however, seems intuitively
compelling, which explains both why the philosophers call the com-
parative (‘observational’) sorites a sorites, and why psychophysi-
cists need to deal with the classificatory sorites even if they are in-
terested primarily in human comparative judgments.

Luce (1956) definitely did not imply a connection to the classi-
ficatory sorites of Eubulides. Rather, he simply presented as “well
known” the impossibility of telling apart very close stimuli. This
being a logically tenable position, we will see that the “well known”
fact in question is in reality a theoretical belief not founded in em-
pirical evidence. Almost everything in it contradicts or oversimpli-
fies what we know from modern psychophysics. Judgments like
‘x weighs the same as y’ or ‘x is heavier than y’ given by human ob-
servers in response to stimulus pairs cannot generally be considered
predicates on the set of stimulus pairs, as these responses are not
uniquely determined by these stimulus pairs: an indirect approach
is needed to define a matching relation based on these inconsistent
judgments. When properly defined, the view represented by the
quotation from Luce’s paper loses its appearance of self-evidence.

Classificatory Sorites

The classificatory sorites is conceptually simpler than the compar-
ative one and admits a less technical formal analysis. Within the
framework of the behavioral approach we view the elements that
the argument is concerned with (such as collections of grains of
sand) as stimuli ‘acting’ upon a system and ‘evoking’ its responses.
Thus, the stimuli may be electric currents passing through a digi-
tal ammeter which responds by displaying a number on its indica-
tor; or the stimuli may be schematic drawings of faces visually pre-
sented to a human observer who responds by saying that the face
is ‘nice’ or ‘not nice’; or the stimuli may be appropriately measured
weather conditions in May to which a flock of birds reacts by either
migrating north or not. This is a very general framework which
many examples can be molded to fit. In Eubulides’s original argu-
ment, the stimuli are collections of sand grains, presented visually
or described verbally, and the system responding by either ‘form(s)
a heap’ or ‘do(es) not form a heap’ may be a human observer, if one
is interested in factual classificatory behavior, or a system of linguis-
tic rules, if one is interested in the normative use of language.
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Supervenience, Tolerance, and Connectedness

To get our analysis off the ground, we would like to identify some
properties which characterize stimulus-effect systems amenable to
(classificatory) soritical arguments. Consider the following.

Supervenience assumption (Sup). There is a certain property of
the system’s responses to stimuli that—all else being equal—cannot
have different values for different instances (replications) of one and
the same stimulus. That is, there is a function p such that a certain
property of the response of the system to stimulus x is p(x). We call
p the stimulus-effect function , and its values stimulus effects .1

Tolerance assumption (Tol). The stimulus-effect function p(x) is
‘tolerant to microscopic changes’ in stimuli: if x0 6= x is chosen suffi-
ciently close to x, then p(x0) = p(x).

Connectedness assumption (Con). The stimulus set S contains at
least one pair of stimuli a, b with p(a) 6= p(b) such that one can
find a finite chain of stimuli a = x1, . . . , xi, xi+1, . . . , xn = b leading
from a to b ‘by microscopic steps’: xi+1 is arbitrarily or maximally
close to but different from xi for i = 1, . . . , n � 1.

We have, of course, yet to define what precisely we mean by
‘closeness’ and ‘connectedness by microscopic steps’ here, but defer-
ring that for the moment, it is not difficult to see that the conjunction
Sup ^ Tol ^ Con is sufficient and necessary for formulating the clas-
sificatory sorites ‘paradox’.

Classificatory Sorites. There exists a stimulus-effect system satisfy-
ing Sup, Tol, and Con.

It is clear that this statement is false: the three assumptions in ques-
tions are mutually inconsistent. Indeed, by Sup and Con we can fix a
pair of stimuli a, b with p(a) 6= p(b), connectable by a classificatory

soritical sequence x1, . . . , xn with a = x1, b = xn, and xi+1 only ‘mi-
croscopically’ different from xi for each i. By Tol, p(xi) = p(xi+1)

1The response itself, e.g., ‘heap’ or ‘not heap’, may be viewed as a response
property (namely, its identity or content), and this property may or may not be a
stimulus effect. Other candidates for being stimulus effects can be such response
properties as response time, response probability, the probability with which re-
sponse time falls within a certain interval, etc.
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for i = 1, . . . , n � 1, whence p(a) = p(b), a contradiction. Therein
lies the classificatory sorites.

Notice that if Sup is not satisfied, then Tol and Con simply can-
not be formulated as above, as these formulations make use of a
stimulus-effect function p(x). Once Sup is accepted, simple math-
ematical examples can be constructed to witness the independence
of Tol and Con. It is natural to ask whether Tol and Con can be for-
mulated without an explicit reference to Sup, but this can readily be
seen not to be an option, at least not without making Tol ‘automat-
ically’ false. Indeed, if a property px of a response to stimulus x is
not a function of x, then px will generally be different from py even
if y is a replication of x, let alone close to but different from x.

The fact that Sup is indispensable for the formulability of the
classificatory sorites leads one to reject the philosophical tradition
of relating soritical issues to ‘vague predicates’. A vague predicate
is defined as one whose truth value is not determinable at least for
some objects to which the predicate applies, whether the structure
of its truth values is dichotomous (true, false), trichotomous (true,
false, not known), or the entire interval between 0 (false) and 1 (true).
Here we see a major advantage of the behavioral approach to sorites.
One may very well argue about the truth value structure of the pred-
icate ‘form(s) a heap’, and one may suggest that for certain values of
x this predicate’s truth value is indeterminate when applied to a col-
lection of x grains of sand. However, a statement like “in this trial,
this observer responded to x grains of sand by saying ‘they form a
heap’ ” or “in this trial, this observer did not produce a response to
x grains of sand when asked to choose between ‘they form a heap’
and ‘they do not form a heap’ ” is true or false in the simplest sense,
with no controversy involved. The ‘observer’ in this examples can
very well be replaced with a set of linguistic rules or the group of ex-
pert language users if one is interested in the normative rather than
factual use of language.2

From the behavioral point of view (and in agreement with the
position, stated with admirable clarity in the dictionary article by
Peirce, 1901/1960), a ‘vague predicate’ is merely a special case of
an inconsistent response. If we call the predicate ‘form(s) a heap’
vague, this is because the choice of an allowable response associated

2In the philosophical literature, Varzi (2003) comes close to the behavioral ap-
proach by arguing that soritical issues are essentially non-semantic and are not
confined to linguistic phenomena.
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with this predicate (such as ‘yes, it is true’, ‘possibly’, or ‘I don’t
know’) is not uniquely determined by the number x of the sand
grains to which it applies. Thus, a human observer is likely to clas-
sify one and the same collection of x grains sometimes as forming
and sometimes as not forming a heap (and sometimes neither if this
is an option); and in a group of competent speakers of the language
some will choose one response, and some another. This implies a vi-
olation of Sup and the impossibility of formulating the soritical argu-
ment with this predicate. The behavioral scientist in a situation like
this would likely redefine the stimulus-effect function p = p(x) as
the probability distribution on the set of all allowable responses, the
hypothesis being that this probability distribution is now uniquely
determined by stimuli. Thus, if the allowable responses are ‘form(s)
a heap’ and ‘do(es) not form a heap’, then the hypothesis is that for
some probability function p(x), called a psychometric function in
psychophysics,

p(x) = p(x) = Pr[‘a collection of x grains of sand is a heap’].

Of course, to say that a probability p of a response to x is an
effect of the stimulus x amounts to treating probabilities as occur-
ring at individual instances of x ‘within’ the system responding
to x, rather than characterizing patterns of the system’s behaviors
over a potential infinity of instances of x. While this view may
encounter philosophical misgivings, it is routine in the established
conceptual schemes of probability theory, physics, and behavioral
sciences. Our analysis is not critically based on accepting this ‘prob-
abilistic realism’, but the class of physically realizable response prop-
erties uniquely determined by stimuli may get precariously small if
one rejects it.3 Without allowing probability distributions over re-
sponses to function as legitimate stimulus effects one would often
have to declare sorites altogether unformulable and hence automat-
ically dissolved, or would have to seek additional factors to include
in the description of stimuli.

There are a number of avenues for redefining stimuli in order to
achieve the compliance of some response property (deterministic or
probabilistic) with Sup. Thus, one might think it important to take
into account sequential effects, that is, to make the response prop-
erty in question dependent on a sequence of previously presented

3In the context of the comparative sorites (p. 13 ff ), Hardin (1988) argued for
the necessity of taking into account the probabilistic nature of responses to stimuli.
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stimuli, or even on both the previous stimuli and the responses
given to each of them. In either case we deal with some form of com-
pound stimuli, the space of which we can endow (not necessarily in
a unique way) with a closeness structure based on that of the orig-
inal space of stimuli. For instance, if in the sequence x0, x1, x2, . . .
of stimuli each xi+1 differs from xi ‘microscopically’, then the same
can be said of x⇤i+1 and x⇤i in the sequence x⇤0, x⇤1, x⇤2, . . . of compound
stimuli x⇤i = {xj}ji. If now a stimulus-effect function p, such as
the probability of saying ‘form(s) a heap’, is uniquely determined
by such finite sequences of successive stimuli, the characterizations
Sup, Tol, and Con will be formulable for this function on the rede-
fined stimulus set, and our analysis applies with no modifications.

To see the generality of our approach, one may even consider a
radical redefinition of stimuli (by no means feasible for scientific
purposes) which consists in taking stimulus instances as part of
stimulus identities, so that each stimulus is formally characterized
by a pair (x, t) where x is the stimulus’s physical value, and t desig-
nates an ‘instance’ at which it occurs, say, a trial number. With this
redefinition no stimulus (x, t) is replicable, because of which every
response to (x, t) can be viewed as a function of (x, t), a stimulus ef-
fect. Given an ‘initial’ closeness measure between stimulus values x
and y, and the conventional distance |t � t0| between time moments
t and t0, it is easy to see that Tol in this situation means that (x, t)
and (y, t0) evoke identical responses if x and y are sufficiently close
and |t � t0| sufficiently small; and Con means that for some (a, t)
and (b, t0) which evoke different responses one can find a sequence
(a, t) = (x1, t1), . . . , (xn, tn) = (b, t0) whose successive elements fall
within the sphere of Tol. As Sup here is satisfied ‘automatically’, our
analysis again applies with no modifications.

Closeness and connectedness

It is apparent from our formulation of Tol and Con that we need
conceptual means of saying that two distinct stimuli x and y can be
chosen ‘as close as one wishes’ or ‘as close as possible’. The mean-
ing is clear in the case the stimulus set is endowed with a metric.
Thus, if stimulus values (say, time intervals) are represented by real
numbers, y can be chosen arbitrarily close to x by making the differ-
ence |x � y| arbitrarily small. If, as it is the case with grains of sand,
stimulus values are represented by integers, y is as close as possible
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to x (without being equal to it) if |x � y| = 1. The requirement of
a full-fledged metric, however, is too stringent in general, and it is
moreover unnecessary. The analysis of the classificatory sorites can
be carried out at a much higher (arguably, the highest possible) level
of generality using the following concept due to Fréchet (1918).

Definition 1. A V-space on a nonempty set S is a pair {S, {Vx}x2S}
where Vx, for each x 2 S, is a collection of subsets of S satisfying
(1) Vx 6= ?, (2) if V 2 Vx then x 2 V. For each x 2 S, any element
V of Vx is called a vicinity of x. Any set of vicinities obtained by
choosing one element of Vx for every x 2 S is called a V-cover of S.

For each x 2 S, each V 2 Vx represents the stimuli which are close to
x in some sense, namely, in the sense of belonging to V. In particular,
since x belongs to each of its vicinities, x is ‘close’ to itself in all
possible senses. (Fig. 1.1 illustrates ‘closeness’ in a V-space.)

Va
(2)

Vb
(2)

Va
(3)

Va
(1)

Vb
(1)

Vc
(1)

S S S

a
a a

b
b b

c c c

(1) (2) (3)

Figure 1.1: An example of a V-space {S, {Vx}x2S}. The set S consists
of all points within the large outlined area, including the points a,
b and c shown. The vicinities V(1)

a , V(2)
a , V(3)

a of the point a, which
together comprise Va, are indicated by the ovals in (1), and similarly
for Vb = {V(1)

b , V(2)
b } in (2) and Vc = {V(1)

c } in (3). These three sets of
vicinities determine the closeness relations among a, b, and c. Thus,
c is close to a in the sense of belonging to V(1)

a and V(3)
a ; c is close to

b in the sense of belonging to V(1)
b ; and a and b are not close to c in

any sense (i.e., they are ‘not close at all’ to c) as they do not belong
to any vicinity of c. Note that, at this level of generality, closeness
is not a symmetric relation. Any V-cover of S will contain V(1)

c , one
and only one of V(1)

b , V(2)
b , and one and only one of V(1)

a , V(2)
a , V(3)

a .
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The notion of V-space obviously generalizes that of a topological
space, and in particular, a V-space on any metric space (S, d) can be
obtained by letting Vx consist of all open balls

Bx(#) = {u 2 S : d(x, u) < #}

where # > 0. In general, however, V-spaces provide for a notion of
closeness that does not have to be numerical.

Next we need to use this notion of closeness to define connected-
ness. Eubulides’s Heap riddle would not be perplexing were it not
for the fact that by adding one grain of sand at a time one can ob-
tain from a very small collection of grains of sand a collection large
enough to form a heap. The key to defining connectedness in the
general language of V-spaces is in replacing the notion of being con-
nectable ‘by microscopic steps’ (which requires a quantitative mea-
sure of closeness) with the notion of being connectable, from each
choice of vicinities covering the space, by a chain of sequentially
intersecting vicinities.

Definition 2. A point a 2 S is V-connected to a point b 2 S in a
V-space {S, {Vx}x2S} if for any V-cover {Vx}x2S of S one can find
a finite chain of points x1, x2, . . . xn�1, xn 2 S such that (1) a = x1,
(2) b = xn, (3) Vxi \ Vxi+1 6= ? for i = 1, . . . n � 1. A V-space
{S, {Vx}x2S} is V-connected if any two points in S are V-connected
in {S, {Vx}x2S}.

Consider the following example. Let S = N be the set of all nat-
ural numbers 0, 1, 2, . . ., and give it a V-space structure by defining,
for each n, k 2 N, Vn,k = {n, n + 1, . . . , n + k} and Vn = {Vn,k : k >
0}. Then any two numbers a < b in this space are V-connected be-
cause for any V-cover, the chain x1, x2, . . . , xb�a+1 with xi = a+ i � 1
satisfies properties (1)–(3) of Definition 2. If, however, we take in-
stead Vn = {Vn,k : k � 0}, then no two elements can be V-connected,
as witnessed by the V-cover {Vn,0 : n 2 N}.

It is easy to see that the relation of ‘being connected to’ is an
equivalence relation, whence we immediately have the following
lemma.

Lemma 1. For any V-space {S, {Vx}x2S}, the set S is a union
S

Sg of
pairwise disjoint nonempty subsets (the V-components of S) such that
any two points in every V-component are V-connected and no two points
belonging to different V-components are V-connected.
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We also need the following definition to formalize Sup and Tol.

Definition 3. Given a V-space {S, {Vx}x2S} and an arbitrary set R,
any function p : S ! R is a stimulus-effect function (and R a set of
stimulus effects). A stimulus-effect function p is called tolerant at

x 2 S in {S, {Vx}x2S} if there is a vicinity Vx 2 Vx on which p is
constant; p is tolerant if it is tolerant at every point.

Thus, R can be the two-element set {‘form(s) a heap’,‘do(es) not form
a heap’}; or the set [0, 1] representing the probabilities of choosing
the response ‘form(s) a heap’ over ‘do(es) not form a heap’; or R can
be the set of all probability distributions on [0, 1], with x 2 [0, 1] rep-
resenting the degree of confidence with which a stimulus is judged
to form a heap.

Dissolving the classificatory sorites ‘paradox’

The reward for formulating the soritical concepts on such a high
level of generality is that the classificatory sorites ‘paradox’ can now
be dissolved by means of a simple mathematical theorem.

Theorem 1 (No-tolerance theorem). Let {S, {Vx}x2S} be a V-space
and p : S ! R a stimulus-effect function, such that S contains two V-
connected elements a, b for which p(a) 6= p(b). Then p is not tolerant:
there is at least one x 2 S such that p is nonconstant on any vicinity of x
(‘however small’).4

N.B. The words ‘however small’ are added for emphasis only and
do not imply that the vicinities have numerical sizes.

Proof. Assume p is tolerant: every x has a vicinity V⇤
x such that p is

constant on V⇤
x . The set {V⇤

x }x2S is a V-cover of S, and a, b being V-
connected, one can form a sequence V⇤

x1
, . . . , V⇤

xn satisfying (1)–(3) of
Definition 2. Then, denoting by yi an arbitrary element of V⇤

xi
\V⇤

xi+1
for i = 1, . . . n � 1, we would have p(xi) = p(yi) = p(yi+1) =
p(xi+1) (since yi, yi+1 2 V⇤

xi+1
), whence p(a) = p(x1) = p(xn) =

p(b), contradicting the premise p(a) 6= p(b).

4One may recognize in this formulation a generalized version of what is
known as the epistemic dissolution of the classificatory sorites, proposed by Soren-
sen (1988a,b) and Williamson (1994, 2000), except that they apply this dissolution
to vague predicates. This would only be legitimate if vague predicates were as-
signed to stimuli consistently, but then they would not be considered vague.
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Corollary 1. No nonconstant function on a V-connected V-space is toler-
ant.

One can easily recognize in Theorem 1 the spelled-out version
of the classical (classificatory) sorites, taken as a reductio ad absur-
dum proof of the incompatibility of Sup, Tol, and Con. More pre-
cisely, this incompatibility is formulated as Sup ^ Con =) ¬Tol. In
fact, when discussing classificatory sorites, Sup and Con are almost
always assumed implicitly, although Sup is sometimes mentioned
as an innocuous premise. The ‘paradox’ (in these cases) is thus dis-
solved by pointing out the inescapable truth of the assertion our
intuition often finds hard to accept:

Non-tolerance principle (¬Tol). If Sup and Con hold, then there is at
least one point x0 2 S in every vicinity of which (‘however small’),
the stimulus-effect function p(x) is nonconstant.

Note that it may very well be that every single point in S complies
with ¬Tol, and this is probably the case in a host of situations with
continuously varying stimulus effect (as a mathematical example,
consider the identity function, mapping any stimulus into itself).

To prevent misunderstanding, ¬Tol does not imply that the re-
sponding system can be used to measure some of the stimulus val-
ues with absolute precision. The situation here is very much like
the one with a stopped clock: it shows the correct time twice a day,
but one cannot determine when. In order to distinguish a stimu-
lus x from its arbitrarily close neighbors x0 by means of a stimulus-
effect function p(x) a human researcher must know that x being
presented on two different instances is indeed one and the same x,
and that x0 presented on another instance is not the same as x. This
amounts to having a system identifying stimuli being presented,
iS(x), and a system identifying the stimulus effects being recorded,
iR(p(x)), and hence to having yet another stimulus-effect function
besides p(x) whose values react to arbitrarily small differences from
precisely the same stimulus x (something not impossible but defi-
nitely not deliberately construable unless the stimuli have been iden-
tified by some i0S(x), which assumption leads to an infinite regress).

For completeness, we should mention that there is another way
of approaching the inconsistency of Sup ^ Tol ^ Con, formulable as
Sup ^ Tol =) ¬Con. We can define vicinities as constant-response
areas of the stimulus set S; we call them ‘pi-vicinities’ since we de-
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note the stimulus-effect function by p. This makes the stimulus-
effect function ‘automatically’ tolerant, and one sees subsequently
that no two points in S are V-connected unless they map into one
and the same stimulus effect.

Definition 4. Given a nonempty set S, an arbitrary set R, and a
stimulus-effect function p : S ! R, the pi-vicinity of x 2 S is the
set Px of all x0 2 S such that p(x0) = p(x). The pair {S, {Px}x2S} is
called the pi-space associated to p.

Lemma 2. Any pi-space {S, {Px}x2S} uniquely corresponds to the V-
space on S in which the only vicinity of x 2 S is Px. The collection of
the sets {Px}x2S is the only V-cover of S in this V-space.

Proof. It is clear that {S, {Vx}x2S} with Vx = {Px} satisfies Defini-
tion 1.

Lemma 3. (1) The pi-space {S, {Px}x2S} associated to p : S ! R is
uniquely determined by p. (2) p is tolerant in the corresponding V-space
{S, {Vx = {Px}}x2S}.

Proof. Immediate consequences of Definition 4, Lemma 2, and Defi-
nition 3.

This yields the following alternative dissolution of the classifica-
tory sorites.

Theorem 2 (No-connectedness theorem). Given a stimulus-effect func-
tion p : S ! R and its associated pi-space {S, {Px}x2S}, elements a, b 2
S are V-connected in the corresponding V-space {S, {Vx = {Px}}x2S} if
and only if p(a) = p(b).

Proof. An immediate consequence of Definition 2 and the fact that
either Px = Py or Px \ Py = ?, for any x, y 2 S.

Comparative Sorites

The comparative sorites pertains to situations in which a system re-
sponds to pairs of stimuli (x, y), and there is some binary response
property which is uniquely determined by (x, y) and whose values
are interpretable as two complementary relations, ‘x is matched by
y’ and ‘x is not matched by y’. A prototypical example would be an
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experiment in each trial of which a human observer is shown a pair
of line segments and asked whether they are or are not of the same
length, or two circles of light and asked which of them is brighter.
The matching relation in both cases is computed from probabilities
of the observer’s answers, as discussed later. Thus, we regard the
comparative sorites as pertaining to what in psychophysics would
be called discrimination or pairwise comparison tasks.

Comparing stimuli

The comparative sorites ‘paradox’ can be intuitively stated as fol-
lows.

Comparative Sorites. A set of stimuli S acting upon a system and
presentable in pairs may contain a finite sequence of stimuli x1, . . . ,
xn such that ‘from the system’s point of view’ xi is matched by xi+1
for i = 1, . . . , n � 1, but x1 is not matched by xn.

We call a sequence x1, . . . , xn as above a comparative soritical se-

quence .
At the outset, the comparative sorites may seem very similar to

the classificatory sorites, and it is natural to ask whether the former
may be only a special case of the latter. This turns out not to be
the case. It is true that nothing prevents one from redefining a pair
of stimuli (xi, xj) into a single ‘bipartite’ stimulus xij, and treating
‘match’ and ‘not match’ as classificatory responses to xij. However,
given a sequence x12, x23, . . . , xn�1,n, x1n, we can only apply to it the
rationale of the classificatory sorites provided each term in this se-
quence is only ‘microscopically’ different from its successor. While
this may be the case for xi,i+1 and xi+1,i+2 for each i = 1, . . . , n � 2
(perhaps because xi is very close to xi+1, which in turn is very close
to xi+2), there is in general no reason at all to think that xn�1,n is
only ‘microscopically’ different from x1n, assuming a reasonable no-
tion of closeness between the two can be formulated at all.5 Thus,

5Nor can one consider the classificatory sorites a special case of the compara-
tive one. Given a purported classificatory soritical sequence x1, . . . , xn under some
stimulus-effect function p, we can indeed recast p(xi) into a function f (xi, xi + 1)
loosely interpretable as a ‘comparison’ of xi with xi+1 for each i = 1, . . . , n � 1. But
then the logic of the classificatory sorites would lead to the ‘comparison’ of xn�1
with xn being different from that of x1 with x2 (while in the comparative sorites the
two pairs produce the same effect, ‘match’), with nothing in this logic necessitating
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the existence of comparative soritical sequences is not automatically
precluded by the analysis of the classificatory sorites given in the
previous section. Indeed, it is easy to construct simple mathemati-
cal examples of such sequences, arguably the simplest of them being
as follows.

Example 1. Fix # > 0. Let the stimulus set S be the set R of reals,
and define

‘y matches x’ () |y � x|  #.

Then any sequence 0, d, 2d with #/2 < d  # is a comparative soriti-
cal sequence.

This example also precludes the possibility of reducing the com-
parative sorites to the classificatory one by postulating the existence
of a stimulus-effect function p(x) such that

‘x is matched by y’ () p(x) = p(y).

If such a function could always be found, the comparative sorites
would indeed be obtained as a ‘logical consequence’ of the classi-
ficatory one and would then be ruled out together with the latter.
In the preceding example, however, it is readily seen that given
any non-constant stimulus-effect function p, there exists an x with
p(x) 6= p(y) for some y with x < y  x + #, even though |y� x|  #
and so ‘y matches x’.

We see that, on the one hand, the comparative sorites cannot be
ruled out as a logical inconsistency, as it was in the case of the classi-
ficatory one. On the other hand, the comparative sorites ‘paradox’ is
rarely if ever presented as an exercise in constructing abstract math-
ematical examples like the one above, and is generally assumed to
apply to systems which, in their responses, resemble human com-
parative judgments. That human comparative judgments are sorit-
ical is often considered self-evident and well-known. As we shall
see in the next subsection, this assumption contradicts a certain psy-
chophysical principle (Regular Mediality/Minimality) proposed for
comparative judgments. In systems similar to human comparative
judgments, for which it is plausible that this principle holds, the
‘matching’ relation must satisfy (a certain form of) transitivity, thus

x1 to be ‘compared’ with xn (while in the comparative sorites this comparison is
critical).
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compelling the system to behave more in accordance with the fol-
lowing example than with Example 1.

Example 2. Fix l > 0. Let the stimulus set be S = R�0 (non-
negative reals), and define

‘y matches x’ () blxc = blyc,

where bac denotes the floor of a, i.e., the greatest integer  a. Then
the relation ‘matches’ is reflexive, symmetric, and transitive, so no
comparative soritical sequence involving this relation is possible.6

Stimulus areas

It is clear from the comparison of the two examples above that transi-
tivity or lack thereof is at the heart of dealing with comparative sorit-
ical sequences. We will see, however, that with the recognition of the
fact that two stimuli being compared belong to distinct ‘stimulus ar-
eas’ (the notion we explain next), the notion of transitivity should
be approached with some caution, and the transitivity sometimes
has to be formulated differently from the familiar, ‘triadic’ way (x
is matched by y and y is matched by z, hence x is matched by z).
For the same reason (‘stimulus areas’) the same degree of caution
should be exercised in approaching the properties of reflexivity and
symmetry, which most writers seem to take for granted.7

The notion of distinct ‘stimulus areas’ is both simple and funda-
mental. To say meaningfully that two physically identical stimuli, x
and x, are judged as being the same or different, the two x’s have to
designate identical values of two otherwise different stimuli. If not
for this fact we would have a single stimulus rather than two stim-
uli with identical values, and we would not be able to speak of pair-
wise comparisons. Thus, one of the two stimuli can be presented
on the left and another on the right from a certain point, or one pre-
sented chronologically first and the other second. Stimuli, therefore,

6This agrees with the obvious fact that blxc can be viewed as a stimulus-effect
function defined on individual number-stimuli, so comparative soritical sequences
here are ruled out by the nonexistence of classificatory ones.

7Thus, Goodman (1951/1997), Armstrong (1968), Dummett (1975), and Wright
(1975) view it as obvious that perceptual matching is intransitive, Graff (2001);
Jackson & Pinkerton (1973) argue for its transitivity (in the conventional, ‘triadic’
sense), and all of them consider it self-evident that perceptual matching is reflexive
and symmetric.
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should be referred to by both their values (for example, length) and
their stimulus areas (for example, left and right).8 The complete refer-
ence here is then (x, left) and (y, right), or more briefly, x(l) and y(r).

Stimulus areas need not be defined only by spatiotemporal posi-
tions of stimuli. Thus, two line segments compared in their length
may be of two different fixed orientations, and two patches of light
compared in their brightness may be of two different fixed colors
(in addition to occupying different positions in space or time). Nor
should there be only two distinct observation areas: pairs of light
patches compared in brightness can appear in multiple pairs of dis-
tinct spatial positions, and can be of various colors.

The sets to which we shall address our formal analysis will con-
sequently be of the form S ⇥ W, where S is a set of stimulus values

and W a set of stimulus areas , both containing at least two elements.
(We will continue to use the more convenient notation x(w) for the
stimulus (x, w) 2 S ⇥ W.) The most basic property of the matching
relation M is then

x(w)
1 M x(w

0)
2 =) w 6= w0,

that is, that we do not compare stimulus values from the same stim-
ulus area. This implies, in particular, that M is antireflexive:

¬x(w) M x(w)

holds for all x(w).9

For w, w0 2 W, the sets S ⇥ {w} and S ⇥ {w0} may simply be
viewed as sets with different, further unanalyzable elements. We
could, in fact, replace S ⇥ W with {Sw}w2W treating thereby W as
an indexing sets for a collection of sets otherwise unrelated to each
other. This is an important point in view of situations where one
would want to speak of matching between entities of different na-
tures, e.g., abilities of examinees and difficulties of the tests offered
to them (as is routinely done in psychometric models). We prefer,
however, an intermediate notational approach: we write S ⇥ W as a

8The term used in Dzhafarov (2002), where the concept was introduced in a
systematic fashion, was ‘observation area’, but ‘stimulus area’ seems preferable if
the present analysis is also to apply to non-perceptual responses.

9This should not be confused with the statement that ¬x(w) M x(w0 ) holds for all
x(w) and x(w0 ). We are perfectly free to compare two stimuli with the same value, so
long as they belong to different stimulus areas, and these stimuli may match or not
match.
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reminder that stimuli in different stimulus areas may have identical
values, but we treat x(w) ‘holistically’, saying, e.g.,

for any a(w), b(w0) 2 S ⇥ W, the stimuli a(w) and b(w0) are. . .

instead of

for any w, w0 2 W and a, b 2 S, the stimuli a(w) and b(w0) are. . .

Psychophysics of matching

Let us begin with a situation involving only two stimulus areas, say,

W = {l, r},

standing for ‘left’ and ‘right’. In modern psychophysics (cf. Dzhafa-
rov, 2002, 2003), matching relations on a given system S ⇥ {l, r} are
defined from discrimination probability functions, as follows. For
an observer asked to say whether two stimuli are the same or differ-
ent, either with respect to a specified subjective property or overall,
but ignoring the conspicuous difference in the stimulus areas, we
can form a ‘probability of being judged to be different’ function,

y(x(l), y(r)) = Pr[x(l) and y(r) are judged to be different].

If the stimuli are compared with respect to a specified property, and
if this property is linearly ordered (as in the cases of length, bright-
ness, attractiveness, etc.), then the question can also be formulated
in terms of which of the two stimuli has a greater amount of this
property, and we can form a ‘probability of being judged to be greater’
function,

g(x(l), y(r)) = Pr[y(r) is judged to be greater than x(l)].

We can then define the ‘matching’ relation, henceforth denoted by
M , either by

x(l) M y(r) iff y(x(l), y(r)) = min
z

y(x(l), z(r))

y(r) M x(l) iff y(x(l), y(r)) = min
z

y(z(l), y(r))

if dealing with y, or by

x(l) M y(r) iff g(x(l), y(r)) = 1/2

y(r) M x(l) iff g(x(l), y(r)) = 1/2
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if dealing with g. (No claim is being made that we get the same
notion of matching in both cases.)

We now present two properties of the matching relation M that
are critical for our treatment of comparative sorites. These proper-
ties, formulated and developed in Dzhafarov (2002, 2003) and Dzha-
farov & Colonius (2006), constitute a principle which is called Reg-

ular Mediality or Regular Minimality , depending as it is applied to
(a function like) g or to y. These properties are formulated here in
a form better suited to the present context of studying the compar-
ative sorites, but their formulations in psychophysics are entirely
unrelated to and unmotivated by soritical issues.

Regular Mediality/Minimality, Part 1 (RM1). For every stimulus in
either of the two stimulus areas, one can find a stimulus in the other
stimulus area such that if x(l) and y(r) are the stimuli in question
then x(l) M y(r) and y(r) M x(l).

To formulate the second property, we need the following notion.
We call two stimuli in a given stimulus area equivalent if they match
exactly the same stimuli in the other stimulus area. So, x(l)1 and x(l)2

are equivalent, in symbols x(l)1 E x(l)2 , if

y(r) M x(l)1 () y(r) M x(l)2

for every y(r); and y(r)1 E y(r)2 if

x(l) M y(r)1 () x(l) M y(r)2

for every x(l).10

Regular Mediality/Minimality, Part 2 (RM2). Two stimuli in one
stimulus area are equivalent if there is a stimulus in the other area
which matches both of them, i.e.,

if x(l)1 M y(r) and x(l)2 M y(r) then x(l)1 E x(l)2 ,

if y(r)1 M x(l) and y(r)2 M x(l) then y(r)1 E y(r)2 .

10In Dzhafarov & Colonius (2006) the equivalence is defined in a stronger
way: x(l)

1 E x(l)
2 if y(x(l)

1 , y(r)) = y(x(l)
2 , y(r)) for all y(r), and y(r)

1 E y(r)
2 if y(x(1), y(r)

1 ) =

y(x(1), y(r)
2 ), for all x(1).
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In regard to g, the relations x(l) M y(r) and y(r) M x(l) mean one
and the same thing, g(x(l), y(r)) = 1/2. For g, then, RM1 requires
only that, for every x(l)0 , the function y 7! g(x(l)0 , y(r)) reaches the
median level 1/2 at some point y(r)0 , and then it follows that the func-
tion x 7! g(x(l), y(r)0 ) reaches the median level at x(l)0 . In regard to y,
however, RM1 is more restrictive, requiring not only that the func-
tions y 7! y(x(l)0 , y(r)) and x 7! y(x(l), y(r)0 ) reach their minima at
some points, but also that, for every x0, if y0 minimizes the function
y 7! y(x(l)0 , y(r)) then x0 minimizes the function x 7! y(x(l), y(r)0 ).
Unlike with g, RM1 imposes nontrivial restrictions on the proper-
ties of the function y (Kujala & Dzhafarov, 2008).

To understand RM2, note that it is satisfied trivially if all matches
are determined uniquely, i.e., if for each y(r) there is only one x(l) sat-
isfying x(l) M y(r), and for each x(l) there is only one y(r) satisfying
y(r) M x(l). However, this is not generally the case, and whether it is
the case in specific cases depends on one’s choice of the physical de-
scription of stimuli. The most familiar example is that of matching
isoluminant colors. A given color on the right, y(r), usually matches
a single color on the left, x(l), provided that x(l) is identified, say,
by its CIE coordinates. But if x(l) is identified by its radiometric
spectrum, then y(r) matches an infinite multitude of x(l), all of them
mapped into a single CIE point. All these different versions of x(l),
however, are equivalent: they all match precisely the same colors on
the right. Another example: a stimulus of luminance level L1 and
size s1 can have the same (subjective) brightness as a stimulus of
some other luminance L2 and size s2, regardless of whether the two
stimuli belong to the ‘left’ or ‘right’ stimulus area. One would ex-
pect then that (L2, s2)(l) M (L, s)(r) if and only if (L1, s1)(l) M (L, s)(r).
That is, a given right-hand stimulus would match more than one
left-hand stimulus. It would be reasonable to expect, however, that
then (L1, s1)(l) and (L2, s2)(l) are equivalent, i.e., that it is impossible
for one of them to match and the other to not match one and the
same stimulus on the right. This is precisely what RM2 posits: the
uniqueness of matches up to equivalence.

The following proposition contains two most important conse-
quences of RM1-RM2.

Proposition 1. Assuming M satisfies RM1 and RM2, we have
(1) a(l) M b(r) () b(r) M a(l),
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(2a) a(l) M b(r) ^ b(r) M c(l) ^ c(l) M d(r) =) a(l) M d(r),
(2b) a(r) M b(l) ^ b(l) M c(r) ^ c(r) M d(l) =) a(r) M d(l)

for all a(l), b(r), c(r), d(l).

Proof. To prove (1), suppose a(l) M b(r). By RM1, there exists some
e(l) with e(l) M b(r) and b(r) M e(l). By RM2, the first of these relations
implies that e(l) E a(l), and by definition of E ) the second implies
that b(r) M a(l). Thus a(l) M b(r) =) b(r) M a(l); the reverse implica-
tion is proved symmetrically.

We now prove (2a), the proof of (2b) being symmetric. Assume
that a(l) M b(r), b(r) M c(l), and c(l) M d(r). By symmetry of M we
have d(r) M c(l), and since b(r) M c(l) RM2 implies b(r) E d(r). Since
a(l) M b(r), a(l) M d(r) by definition of E .

The proposition says that if one accepts RM1 and RM2 (which
are in agreement with, or at least do not contradict, what we know
about human comparative judgments), then the (idealized) ‘match-
ing’ relation designed to generalize psychophysical matching ought
to be symmetric in the sense of (1) and satisfy the notion of tetradic

transitivity , (2). Let us briefly comment on each of these.
Regarding symmetry, it is very important to note that the values

x and y in the expression x(l) M y(r) () y(r) M x(l) remain in their
respective stimulus areas on both sides. The symmetry condition
does not necessarily allow for the exchange of values between the
two stimulus areas,

x(l) M y(r) () y(l) M x(r).

The naive notion of symmetry represented by this statement is defi-
nitely not a general rule.11 The symmetry in the sense of (1), on the
other hand, is supported by all available empirical evidence (Dzha-
farov, 2002; Dzhafarov & Colonius, 2006) and underlies the very lan-
guage of psychophysical research dealing with matching-type rela-
tions. A psychophysicist is likely to consider the description

11Thus, in one of the same-different discrimination experiments described in
Dzhafarov & Colonius (2005), a right-hand segment of length x happens to match
a left-hand segment of length x � 2, if measured in minutes of arc. So, a 17(r) min
arc segment and a 15(l) min arc one match each other. But, clearly, 15(r) min arc
and 17(l) min arc do not match: rather the former of the two is matched by 13(l)
min arc. One can list a host of such illustrations involving what in psychophysics
is called constant error .
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the observer adjusted the right-hand stimulus until its
appearance matched that of the fixed stimulus on the left

as saying precisely the same as

the observer adjusted the right-hand stimulus until the
fixed stimulus on the left matched its appearance

and precisely the same as

the observer adjusted the right-hand stimulus until its
appearance and that of the fixed stimulus on the left
matched each other.

Regarding now the tetradic form of transitivity in Proposition 1,
it is easily seen that the ‘ordinary’, triadic transitivity is simply false
(or unformulable) if one deals with two stimulus areas: if a(l) M b(r)
and b(r) M c(l), it is never true that a(l) M c(l) since only stimuli from
different stimulus areas can be compared. Thus M can be said to be
transitive in the tetradic sense but antitransitive in the triadic sense.
It is easy to see, and will be rigorously demonstrated in the next sub-
section, that the tetradic transitivity is all one needs to rule out the
existence of comparative soritical sequences in the case involving
just two distinct stimulus areas (not necessarily the ‘left’ and ‘right’
used here for concreteness only).

If the number of stimulus areas is greater than two, the analysis
above does apply, of course, to any two of them. In addition, how-
ever, for any three distinct stimulus areas (let us denote them 1, 2,
and 3) one can formulate the familiar triadic transitivity property,

a(1) M b(2) ^ b(2) M c(3) =) a(1) M dc(3r).

This property can be derived from appropriate reformulations of
RM1 and RM2 for three distinct stimulus areas. We forgo this task,
however, as it is subsumed by the formal treatment presented next,
which applies to an arbitrary set of stimulus areas.

Formal theory of regular well-matched stimulus spaces

We work throughout with a set S⇥W in which at least two stimulus
values are paired with at least two stimulus areas. We endow S ⇥ W
with
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(1) a binary relation M such that ¬a(w) M b(w) for all a(w), b(w) 2
S ⇥ W;

(2) a binary relation E such that a(w) E b(w0) if and only if

c(i) M a(w) () c(i) M b(w
0)

for all a(w), b(w0), c(i) 2 S ⇥ W.
Since E is uniquely defined in terms of M , we refer to the space
(S ⇥ W, M , E ) by the more economical (S ⇥ W, M ).12 We omit the
simple proof that E is an equivalence relation on S ⇥ W.

Definition 5. A sequence x(w1)
1 , . . . , x(wn)

n in a space (S ⇥ W, M ) is
called
(1) chain-matched if x(wi)

i M x(wi+1)
i+1 for i = 1, . . . , n � 1;

(2) well-matched if wi 6= wj =) x(wi)
i M x(wj)

j for all i, j 2 {1, . . . n};

(3) soritical if it is chain-matched, w1 6= wn and ¬x(w1)
1 M x(wn)

n .

In (3) we easily recognize a formal version of what we earlier de-
fined as comparative soritical sequences. Soritical sequences are
clearly always chain-matched and never well-matched.13 It is also
clear that there are no soritical sequences with just two elements,
and that all soritical sequences consisting of three elements are of
the form a(a), b(b), c(g) with {a, b, g} pairwise distinct. Longer sorit-
ical sequences, as it turns out, can always be reduced to one of two
types (illustrated in Fig. 1.2): three-element sequences like the one
just mentioned, and four-element sequences with two alternating
stimulus areas, a(a), b(b), c(a), d(b).

Lemma 4. If x(w1)
1 , . . . , x(wn)

n in a space (S ⇥ W, M ) is a soritical se-
quence, then it contains either a triadic soritical subsequence a(a), b(b), c(g)
or a tetradic soritical subsequence a(a), b(b), c(a), d(b).

Proof. Let x
(wi1 )

i1 , . . . , x(wim )
im

be a soritical subsequence of our sequence
having the shortest possible length. If there exists an ` such that 1 <

12In dealing with both E and M , and treating them as two interrelated but
different relations, we follow Goodman (1951/1997).

13This shows that chain-matchedness does not imply well-matchedness. That
the reverse implication also does not hold can be seen by considering any sequence
of the form x(w)

1 , . . . , x(w)
n . Thus, chain-matchedness and well-matchedness are logi-

cally independent conditions.
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` < m and wi1 6= wi` 6= wim then it must be that x
(wi1 )

i1 M x
(wi` )

i`
: oth-

erwise x
(wi1 )

i1 , . . . , x
(wi` )

i`
would be yet a shorter soritical subsequence

of the original sequence. Similarly, it must be that x
(wi` )

i`
M x(wim )

im
.

Hence,

(a(a), b(b), c(g)) = (x
(wi1 )

i1 , x
(wi` )

i`
, x(wim )

im
)

is a triadic subsequence of the kind desired. If no such ` exists, then

a

c d

b

a

b

c

Figure 1.2: Examples of a triadic soritical sequence (top) and a
tetradic soritical sequence (bottom). According to Lemma 4, at least
one of these can be found as a subsequence in any soritical sequence.
The outlined areas represent stimulus areas: a, b, g in the top illus-
tration and a, b in the bottom one. An arrow (resp., interrupted
arrow) drawn from one point to another indicates that the latter
point is matched (resp., not matched) by the former. Thus, in the
top illustration, b(b) matches a(a), c(g) matches b(b), but c(g) does not
match a(a). In the bottom illustration, b(b) matches a(a), c(a) matches
b(b), d(b) matches c(a), but d(b) does not match a(a). According to
Theorem 3 (p. 26), neither of these scenarios (and hence no soritical
sequence) is possible in a regular well-matched space (Definition 6).
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it must be that m � 4 and that wi1 = wi3 6= wi2 = wim . Again,

the choice of x
(wi1 )

i1 , . . . , x(wim )
im

as the shortest soritical subsequence

ensures that x
(wi3 )

i3 M x(wim )
im

, so in this case

(a(a), b(b), c(a), d(b)) = (x
(wi1 )

i1 , x
(wi2 )
i2 , x

(wi3 )

i3 , x(wim )
im

)

is a tetradic soritical subsequence of our sequence.

Our goal being to dissolve the comparative sorites ‘paradox’ in
systems resembling human comparative judgments, we would like
to restrict our interest from arbitrary spaces to those in which we can
formalize (suitably generalized versions of) the conditions RM1 and
RM2 discussed in the previous subsection. To this end, we introduce
the following two types of spaces.

Definition 6. We call (S ⇥ W, M ) a
(1) well-matched space if, for any sequence a, b, g 2 W and any

a(a) 2 S ⇥ W, there is a well-matched sequence a(a), b(b), c(g);
(2) regular space if, for any a(a), b(a), c(b) 2 S ⇥ W with a 6= b,

a(a) M c(b) ^ b(a) M c(b) =) a(a) E b(a).

In the concept of regularity, we clearly see the formalization of
RM2. The following lemma shows that, similarly, the notion of well-
matchedness suffices for the formalization of RM1. It also shows
that in such spaces the relation E behaves as we expect it to.

Lemma 5. Let (S⇥W, M ) be a well-matched space. (1) For any a, b 2 W
and any a(a) 2 S ⇥ W, there exists b(b) 2 S ⇥ W such that a(a) M b(b)

and b(b) M a(a). (2) For any a(a), b(b) 2 S ⇥ W, if a(a) E b(b) holds then
a = b.

Proof. For (1), consider a sequence a, b, b and apply Definition 6(1)
(notice that no assumption is made in that definition that a, b, g
need to be pairwise distinct). To prove (2), suppose for a contradic-
tion that a(a) E b(b) and a 6= b. Then by part (1), we can find some
c(a) with c(a) M b(b) and b(b) M c(a). By definition of E , this implies
that c(a) M a(a), which contradicts the definition of M .

It follows that if comparative judgments satifying RM1 and RM2
are to serve as the model for our formal analysis, then we should
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apply our analysis to spaces which are both well-matched and regu-
lar.14 The following lemma provides us with additional information
about the structure of such spaces. Part (1) is the analog of Propo-
sition 1(1); parts (2) and (3) are obvious and are stated mostly for
convenience of reference in the next subsection.

Lemma 6. Let (S ⇥ W, M ) be a regular well-matched space, and let a(a),
b(b), c(a), d(b) 2 S ⇥ W. Then
(1) a(a) M b(b) () b(b) M a(a);
(2) if either a(a) M b(b) ^ c(a) M b(b) or b(b) M a(a) ^ b(b) M c(a), then

a(a) E c(a);
(3) if a(a) E c(a) ^ b(b) E d(b) then a(a) M b(b) () c(a) M d(b).

Proof. Part (1) is proved exactly as Proposition 1(1), only replacing
references to RM1 by those to Lemma 5(1) and replacing references
to RM2 by those to the regularity of the space. Parts (2) and (3) are
straightforward consequences of Definition 2 and part (1).

Dissolving the comparative sorites ‘paradox’

The main result of the section is in the theorem presented next. As
mentioned above, soritical sequences are always chain-matched and
never well-matched, so the theorem in particular implies that soriti-
cal sequences do not exist in regular well-matched spaces.

Theorem 3. Let (S ⇥ W, M ) be a regular well-matched space. Then any
chain-matched sequence in this space is well-matched.

Proof. In view of Lemma 4, it suffices to prove the result for all sorit-
ical sequences of the form a(a), b(b), c(g) and a(a), b(b), c(a), d(b). We
begin with the former.

Suppose a(a), b(b), c(g) is a chain-matched sequence. This means
a(a) M b(b) ^ b(b) M c(g). All we have to prove is that then a(a) M c(g),
as the rest of the matches in a(a), b(b), c(g) then obtain by symme-
try of M . By Definition 6, there exists a well-matched sequence
x(a), b(b), y(g). Since a(a) M b(b) ^ x(a) M b(b), it follows by Lemma
6(2) that a(a) E x(a). Since b(b) M c(g) ^ b(b) M y(g), it follows simi-
larly that c(3) E y(3). Since x(a), b(b), y(g) is well-matched, we have
x(a) M y(g), and so, by Lemma 6(3), a(1) M c(3).

14These are independent assumptions. It is easy to construct toy examples
demonstrating that a well-matched space need not be regular, and vice-versa.
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Now suppose a(a), b(b), c(a), d(b) is a chain-matched sequence, so
a(a) M b(b)^ b(b) M c(a)^ c(a) M d(b). We have to show that a(a) M d(b).
By Definition 6, there exists a well-matched sequence x(a), b(b), y(a),
z(b). Since b(b) M c(a) ^ b(b) M y(a), it follows by Lemma 6(2) that
c(a) E y(a). Then we should have y(a) M d(b) (by Lemma 6(3), because
c(a) M d(b)). Since y(a) M d(b) ^ y(a) M z(b), we have by Lemma 6(2)
that d(b) E z(b). By the same lemma, we also have a(a) E x(a), because
a(a) M b(b) ^ x(a) M b(b). But now a(a) E x(a) and d(b) E z(b), so from
the fact that x(a) M z(b) it follows that a(a) M d(b), by Lemma 6(3).

Corollary 2. Any chain-matched sequence in a regular well-matched space
is well-matched: one cannot form a soritical sequence in such a space.

We conclude with a method of merging the antireflexive relation
M and the equivalence relation E into a single identity relation EM.
To this end, we define the notion of ‘canonical labeling’. The idea is
very simple: given a regular well-matched space S ⇥ W, any two
equivalent stimuli a(w) and b(w) in any stimulus area w can be as-
signed one and the same label (say, x). Then every new label in
any one stimulus area will match and be matched by one and only
one label in any other stimulus area—and then it is possible to as-
sign the same label x to all stimuli in all stimulus areas which match
(and are matched by) x

(w). The resulting simplicity is the reward:
for any two stimulus areas w and w0, any ‘relabeled stimulus’ x

(w)

matches the ‘relabeled stimulus’ x

(w0) and none other; and in any
given stimulus area any x

(w) is only equivalent to itself. If one now
‘merges’ the relations E and M into a single relation EM, the lat-
ter is simply the indicator of the equality of labels and is therefore
reflexive, symmetric, and transitive:

a

(a)EMb

(b) () a = b,

where a and b need not be distinct. The formal procedure described
below effects the canonical (re)labeling by means of a single func-
tion cal (from ‘canonical labeling’) applied to all stimuli in the space.

Canonical representation is not a return to the naive idea that
every stimulus matches ‘itself’. One cannot dispense with the no-
tion of a stimulus area: for distinct w and w0 and one and the same
label x, the original identities (e.g., conventional physical descrip-
tions) of x

(w) and x

(w0) are generally different. In fact, x

(w) and x

(w0)

designate two equivalence classes of stimuli, whose values may be
non-overlapping (partially or completely).
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Definition 7. A surjective function

cal : S ⇥ W ! S

is called a canonical labeling of a regular well-matched space (S ⇥
W, M ) (and S is called a set of canonical labels) if, for any a(a), b(b) 2
S ⇥ W,

cal(a(a)) = cal(b(b)) ()
⇢

a(a) E b(b) if a = b
a(a) M b(b) if a 6= b

.

Theorem 4. A canonical labeling function cal exists for any regular well-
matched space (S ⇥ W, M ). If cal : S ⇥ W ! S and cal⇤ : S ⇥ W ! S

⇤

are such functions, then cal⇤ ⌘ h � cal, where h is a bijection S ! S

⇤.

Proof. For each x(w) 2 S ⇥ W, let

Nx(w) = {y(i) 2 S ⇥ W : x(w) M y(i) _ x(w) E y(i)}.

Since (S ⇥ W, M) is regular and well-matched, it is easy to see that
if Nx(w) \ Ny(i) 6= ? for some x(w), y(i) 2 S ⇥ W, then Nx(w) = Ny(i) .
Setting S = {Nx(w) : x(w) 2 S ⇥ W}, we define cal : S ⇥ W ! S

by cal(x(w)) = Nx(w) , and this function clearly satisfies Definition 7.
If now cal⇤ : S ⇥ W ! S

⇤ is another canonical labeling function
for (S ⇥ W, M), define h : S ! S

⇤ by h(Nx(w) ) = cal⇤(x(w)). Since
cal⇤(x(w)) = cal⇤(y(i)) if and only if x(w) M y(i) or x(w) E y(i), it fol-
lows that h is well-defined and injective, while its surjectivity fol-
lows immediately from that of cal⇤. Clearly, cal⇤ = h � cal, whence
the proof is complete.

Consider now the set S ⇥ W. As before, let us use the notation
x

(w) for (x, w).

Definition 8. Given a regular well-matched space (S ⇥ W, M ) and
a canonical labeling function cal : S ⇥ W ! S, for any a, b 2 S and
a, b 2 W, we say that b

(b)
matches a

(a), and write a

(a)EMb

(b), if

a(a) M b(b) _ a(a) E b(b)

for some a(a)and b(b) in S⇥W such that cal(a(a)) = a and cal(b(b)) =
b. We refer to (S ⇥ W, EM) as a canonical comparison space .
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Theorem 5. Given any regular well-matched space (S ⇥ W, M ) and any
canonical labeling function cal : S⇥W ! S, for any a, b 2 S and a, b 2
W we have

a

(a)EMb

(b) () a = b.

Hence EM is an equivalence relation on S ⇥ W.

Proof. By Definition 8, a

(a)EMb

(b) means that for some a(a) with
cal(a(a)) = a and b(b) with cal(b(b)) = b, either a(a) M b(b) (which
implies a 6= b) or a(a) E b(b) (implying a = b). But by Definition 7,

a(a) E b(b) (a = b)
a(a) M b(b) (a 6= b)

�
() cal(a(a)) = cal(b(b)).

This proves the theorem.

Corollary 3. With EM in place of M and S in place of S, any canonical
comparison space (S ⇥ W, EM) is a regular well-matched space.

Conclusion

We have approached soritical arguments and (allegedly) soritical
phenomena within a broadly understood behavioral framework, in
terms of stimuli acting upon a system (such as a biological organ-
ism, a group of people, or a set of normative linguistic rules) and
the responses they evoke.

The classificatory sorites, dating back to Eubulides of the Megar-
ian school, is about the identity of or difference between the effects
of stimuli which differ ‘only microscopically’. We have formulated
the notions and assumptions underlying this variety of sorites in a
highly general mathematical language, and we have shown that the
‘paradox’ is dissolved on grounds unrelated to vague predicates or
other linguistic issues traditionally associated with it. If stimulus
effects are properly defined (i.e., if they are uniquely determined by
stimuli), and if the space of the stimuli is endowed with appropriate
closeness and connectedness properties, then this space must con-
tain points in every vicinity of which, ‘however small’, the stimulus
effect is not constant. This conclusion clashes with the common but
nonetheless false intuition that a ‘macroscopic’ system cannot ‘react
differently’ to two ‘microscopically different’ stimuli. In fact, a non-
constant stimulus effect upon a system can only be insensitive to



30 Ehtibar N. Dzhafarov and Damir D. Dzhafarov

small differences in stimuli if the closeness structure which is used
to define very close stimuli does not render the space of stimuli ap-
propriately connected, and in this case we have no ‘paradox’. The
‘paradox’ cannot even be formulated using response properties that
are not true stimulus effects, i.e., are not uniquely determined by
stimuli. This is the reason the classificatory sorites is not related to
the issue of vagueness in human responses to stimuli: ‘vague predi-
cates’ are always assigned inconsistently, whatever other properties
they may be thought to have.

The comparative sorites (also known in the literature as ‘observa-
tional’) is very different from the classificatory one. Here, it has been
discussed in terms of a system mapping pairs of stimuli into a bi-
nary response characteristic whose values are uniquely determined
by stimulus pairs and are interpretable as the complementary rela-
tions ‘match’ and ‘do not match’ (overall or in some respect). The
comparative sorites is about hypothetical sequences of stimuli in
which every two successive elements are mapped into the relation
‘match’, while the pair comprised of the first and the last elements of
the sequence is mapped into ‘do not match’. Although soritical se-
quences of this kind are logically possible, we have argued that inso-
far as human comparative judgments are concerned, their existence
is far from being a well-known, let alone obvious, empirical fact.
Rather it is a naive theoretical idea that overlooks the fundamental
notion of stimulus areas and the necessity of defining the matching
relation so that it is uniquely determined by stimulus pairs (which
is critical in view of the probabilistic nature of comparative judg-
ments in humans). Moreover, the comparative soritical sequences
are excluded by the principle of Regular Mediality/Minimality pro-
posed for human comparative judgments in a context unrelated to
soriticial issues. In this chapter we have generalized this principle
into the mathematical notion of regular well-matched spaces of stim-
ulus values paired with stimulus areas. The matching relation in
such spaces is irreflexive, symmetric, and transitive in the tetradic
or triadic sense, depending as we deal with two or more than two
stimulus areas, respectively.
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