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Abstract
Given a set endowed with pairwise dissimilarities, the Dissimilarity Cumulation procedure computes the (quasi)distance between

any two elements of the set as the infimum of the sums of dissimilarities across all finite chains of elements connecting the two
elements. For finite sets this procedure is known to be equivalent to recursive corrections for violations of the triangle inequality in
any sequence of ordered triads of points which contains every triad a sufficient number of times. This paper extends this equivalence
to infinite sets.

For a finite stimulus set S, a dissimilarity is a function
D : S ×S → R which is nonnegative and equal to zero if
and only if its two arguments coincide. The dissimilarity
D(a, b), which we will write as Dab, is usually an empiri-
cally observable quantity, such as the mean numerical esti-
mate of dissimilarity by an observer, or, in Fechnerian scal-
ing, either of the following two “psychometric increments”
(let x Diff y abbreviate “x is judged to be different from
y”):

Pr [a Diff b]− Pr [a Diff a]

and

Pr [b Diff a]− Pr [a Diff a] .

Here the probabilities are defined on S×S following certain
“canonical” transformation of the stimuli (Dzhafarov, 2002;
Dzhafarov and Colonius, 2006). While by itself D imposes
a rather weak structure on the set S, it allows one to com-
pute, for each pair of stimuli a, b, a quantity interpretable
as a “subjective distance from a to b.” This is done as fol-
lows. Denoting by X = x1 · · ·xn (n ≥ 1) a finite sequence
of stimuli (referred to as a chain and written as a string,
without commas), denoting by aXb the chain ax1 · · ·xnb,
and putting

DaXb = Dax1 +
∑

1≤i≤n−2

Dxixi+1 +Dxn−1b, (1)

we define

Gab = min
X

DaXb, (2)

where we write Gab in place of G (a, b), and the minimum is
taken over all chains X in S. The function G is easily seen
to be a (quasi)metric, that is, a dissimilarity function that
satisfies the triangle inequality (but which is not necessarily
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symmetric). It is referred to as the (quasi)metric induced
by the dissimilarity D.1 A symmetrization, if needed, can
be obtained by taking Dab+Dba, and will not concern us
in this paper.

It is shown in Dzhafarov (2010a) that Gab can be also
be computed from Dab by means of another procedure.
We present it in a modified form to better link it to the
construction we introduce in the next section. Let Tri(S)
be the set of all ordered triples (a, b, c) ∈ S3 with a 6= b,
a 6= c, and b 6= c. Call each such triple a triad. Consider
any sequence T of triads in which every triad occurs an
infinite number of times. Suppose that we move along T
from one triad to another and every time when we find that
Dab > Dac+Dcb (i.e., the triangle inequality is violated),
we replace Dab with Dac + Dcb and consider this sum a
new, redefined value of Dab. Then, after a finite number of
such steps the redefined D will coincide with the quasimet-
ric G induced by the original D (whence subsequent steps
will no longer change D). The number of these steps can
be arbitrarily large, but, as it is known from the Floyd-
Warshall algorithm (Floyd, 1962), it can be made no larger
than n3, where n is the cardinality of S.2

It is not immediately obvious how this recursive proce-
dure of correcting for violations of the triangle inequality
should be defined in the case of an infinite stimulus set S;
and if appropriately defined, whether for infinite sets too
the “eventual” result of such corrections is guaranteed to
be achieved and coincide with the metric induced by the
original dissimilarity in accordance with Dissimilarity Cu-
mulation (DC) theory (Dzhafarov & Colonius, 2007; Dzha-
farov, 2008a-b, 2009, 2010b). We show in this paper that

1 The reason for writing the qualifier “quasi” in parentheses is that
G is a quasimetric in traditional terminology but also, as explained
below, a metric in the nomenclature of Dissimilarity Cumulation
theory (see Dzhafarov, 2010b).

2 In the Floyd-Warshall algorithm, having enumerated the elements
of S 1 to n, the replacement of Dab with min {Dab, Dac + Dcb}
occurs within three nested cycles (each combination whereof we call
a step): c = 1 to n, nesting a = 1 to n, nesting b = 1 to n. At the
end of this triple-cycle all violations of the triangle inequality are
guaranteed to be corrected. If one excludes degenerate triads, the
number of steps in the triple-cycle is n (n− 1) (n− 2).
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the answer to the latter question is affirmative after the
correction procedure has been extended to arbitrary sets
by means of transfinite recursion. We provide a general
account of ordinals and transfinite recursion, sufficient for
our purposes, in Appendix 3.

1. DISSIMILARITY AND RELATED NOTIONS
FOR ARBITRARY SETS

For an arbitrary stimulus set S, we follow notation con-
ventions already used in the introduction. Chains X are
finite sequences of elements of S, written as strings: ab,
abc, x1 · · ·xn, etc. XY is the concatenation of X and
Y , so we can write aXb, aXbY Zc, etc. For any func-
tion F : S × S → R the notation FX denotes 0 if X
is the empty chain or a chain of length 1, and denotes
Fx1x2 + · · · + Fxn−1xn if X = x1 · · ·xn, n ≥ 2. Let S
denote the set of all chains in S, including the empty chain.

We call any functionD : S×S→ R which is nonnegative
and equal to zero if and only if its two arguments coincide
a pre-dissimilarity function. The minimum in (2) need not
generally exist and has to be replaced with

Gab = inf
X∈S

DaXb. (3)

The functionGab is nonnegative, equal to zero at a = b, and
easily seen to satisfy the triangle inequality: by definition,
for any X,Y ∈ S,

Gab ≤ DaXcY b = DaXc+DcY b,

so Gab ≤ Gac+Gcb. The function G is not itself, however,
a pre-dissimilarity function, as Gab = 0 does not imply
a = b. Consider, for instance, Dab = (b− a)2 with S = R:
in this case
Gab = infX=x1···xn [(a− x0)2

+
∑

1≤i≤n−1 (xi+1 − xi)2 + (b− xn)2]

≤ infk≥1

∑
1≤i≤k((a+ (i− 1) b−ak )− (a+ i b−ak ))2

= infk≥1

∑
1≤i≤k(

b−a
k )2 = 0,

for any reals a and b. The function G defined by (3) there-
fore is a pseudo-quasi-metric (p.q.-metric, for short) in-
duced by the pre-dissimilarity D. For any a, b ∈ S, the
value Gab will be referred to as the p.q.-distance from a to
b.

A metric, in the nomenclature of DC theory, is a p.q.-
metric M such that Mab > 0 for any a 6= b, and Manbn →
0 implies Mbnan → 0 for any sequences {an} and {bn} in
S.3 To ensure that the p.q.-metric G induced by a pre-

3 This “symmetry in the small” property replaces the global symme-
try, Gab = Gba, as the latter plays no useful role in DC theory. This
notion of a metric is common in Finsler geometry (from which DC
theory has evolved), where the global symmetry is often dropped
and the symmetry in the small is always satisfied.

dissimilarity D is a metric, the pre-dissimilarity should be
strengthened by additional properties, making it a dissim-
ilarity. In DC theory these properties are: (1) Danbn −
Da′nb

′
n → 0 for any sequences {an} , {a′n} , {bn} , {b′n} in S

such that Dana′n → 0 and Dbnb
′
n → 0 (uniform continu-

ity), and (2) Danbn → 0 for any sequences {an} , {bn} in
S such that DanXnbn → 0 for some sequence {Xn} in S
(the “chain property”). For finite sets these properties are
satisfied trivially, whence any pre-dissimilarity on a finite
set is a dissimilarity, and the p.q.-metric induced by it a
metric.

We shall show below that a certain procedure of recur-
sively redefining a pre-dissimilarity function D will “eventu-
ally” (in a transfinite sense) always result in the p.q.-metric
G induced byD, whether this p.q.-metric is a metric or not.
In other words, we will assume that an infinite stimulus set
S is endowed with a pre-dissimilarity D which induces the
p.q.-metric G according to (3). Then we will define a re-
cursive procedure which consists in inspecting the ordered
triads abc of the elements of S one by one, and replac-
ing Dab with Dac + Dcb if the former exceeds the latter,
precisely as it was done for finite S. The triads, however,
will now have to be enumerated by transfinite numbers. We
will prove that however this enumeration is performed, pro-
vided each triad is enumerated by a sufficiently large set of
transfinite numbers, all violations of the triangle inequality
in S will have been corrected at some transfinite step, at
which step the corrected pre-dissimilarity D will have been
transformed into the p.q.-metric G. Moreover, we will esti-
mate the cardinality of the set of the transfinite steps it will
take to achieve G. We will show that if the inspections of
the triads for violations of the triangle inequality are orga-
nized “economically,” the cardinality in question coincides
with that of the stimulus set S.

2. RECURSIVE CORRECTIONS IN INFINITE
SETS

We assume in this section that the stimulus set S is
infinite. Denoting by Ord the class of all ordinals, let T :
Ord → Tri(S) be any class function such that for every
abc ∈ Tri(S) and every ordinal α there is an ordinal β ≥ α
with T (β) = abc. Fix a pre-dissimilarity D : S ×S → R,
and let G be the induced p.q.-metric.

Definition 1. Define for each ordinal α a function M (α) :
S×S→ R by transfinite recursion:

1. M (0) = D;

2. if α = β + 1, then for all a, b ∈ S,

M (α)ab =

{
min{M (β)ab,M (β)ac+M (β)cb} if T (β) = abc,

M (β)ab otherwise;

3. if α is a limit ordinal, then M (α) = infβ<αM (β).

It is obvious from this definition that M (α)ab is nonin-
creasing in α for any a, b ∈ S.
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Lemma 2. Let α be any ordinal.

1. For all a, b ∈ S, M (α)ab ≥ Gab.

2. If M (α) satisfies the triangle inequality, then for all
a, b ∈ S, M (α)ab = Gab.

Proof. We prove part 1 by transfinite induction. It clearly
holds for α = 0, since D ≥ G. Let it hold for all β < α. It
clearly follows from Definition 1(3) that it holds for α if it
is a limit ordinal. If α = β + 1 for some β, then, by part 2
of Definition 1, for all a, b ∈ S, either

M (α)ab = M (β)ab ≥ Gab,

or

M (α)ab = M (β)ac+M (β)cb ≥ Gac+Gcb ≥ Gab,

where the last inequality holds because G satisfies the tri-
angle inequality. This completes the proof.

To prove part 2, suppose M (α) satisfies the triangle in-
equality. Then, for all a, b ∈ S and every X ∈ S, we have

M (α)ab ≤M (α)aXb ≤ DaXb,

since M (α) ≤M (0) = D. We conclude that

M (α)ab ≤ inf
X∈S

DaXb = Gab,

and the equality M (α)ab = Gab follows then from part
1.

Lemma 3.

1. The class

Cab = {µ ∈ Ord : M (µ+1)ab 6= M (µ)ab}

is a countable set for every a, b ∈ S.

2. The class

C = {µ ∈ Ord : M (µ) 6= M (µ+1)}

is a set of cardinality ≤ |S|.

Proof. To prove part 1, assume it is false. Then there exists
a function f : ω1 → Cab, where ω1 is the first uncountable
ordinal, such that for all α < β < ω1 we have f(α) <
f(β). In particular, f(α) + 1 ≤ f(α + 1), so since M (γ)ab
is nonincreasing in γ, we have,

M (f(α))ab > M (f(α)+1)ab ≥M (f(α+1))ab.

Thus we can pick a rational qα such thatM (f(α))ab > qα >
M (f(α+1))ab. But then the map α 7→ qα is an injection
from ω1 into Q, which is impossible.

To prove part 2, first notice that the class C is a set since
α ∈ C if and only if α ∈ Cab for some a, b ∈ S. Thus

C =
⋃

a,b∈S

Cab,

whence |C| ≤ |S2|·|ω| = |S|. This completes the proof.

Now we can prove our first main theorem.

Theorem 4. There exists an ordinal αM such that

1. M (αM ) = M (α) for all α ≥ αM , and

2. M (αM ) satisfies the triangle inequality.

Thus, M (αM ) = G.

Proof. Let the set Cab be as in Lemma 3, and let αab be the
least ordinal larger than each α ∈ Cab. For any α ≥ αab, we
have M (α+1)ab = M (α)ab, whence if M (α)ab = M (αab)ab
then M (α+1)ab = M (αab)ab. If α is a limit ordinal and
M (β)ab = M (αab)ab for all αab ≤ β < α, then

M (α)ab = inf
β<α

M (β)ab = inf
αab≤β<α

M (β)ab = M (αab)ab,

where the second equality holds because M (γ)ab is nonin-
creasing in γ. By transfinite induction, it follows that for
all α ≥ αab, M (α)ab = M (αab)ab. Now consider the class
function f : S2 → Ord given by f(a, b) = αab. As S2 is a
set and Ord is a proper class, f must be bounded by some
ordinal, and we let αM be the least such. It is readily seen
that αM satisfies part 1 of the statement of the theorem.

To see that αM also satisfies part 2 of the statement,
we argue by contradiction. Suppose there is a triad abc in
Tri(S) such that

M (αM )ab > M (αM )ac+M (αM )cb.

By definition of T , there exists some α ≥ αM such that
T (α) = abc. By definition of αM , M (α) = M (αM ), so that

M (α)ab > M (α)ac+M (α)cb.

But then by Definition 1, M (α+1)ab is M (α)ac + M (α)cb,
whence M (α+1)ab 6= M (α)ab = M (αM )ab. This is a contra-
diction, which completes the proof. That M (αM ) = G now
follows by Lemma 2.

The cardinality of αM in the previous theorem can be ar-
bitrary, but only because nothing prevents one from defin-
ing the class function T in a “wasteful” way, e.g., by map-
ping all ordinals between two uncountable limit ordinals
into one and the same triad abc. We can still estimate
the cardinality of αM under a reasonable, “economic” or-
ganization of T . For this, however, we need an auxiliary
construction.

Definition 5. Let T : Ord→ Tri(S) be any class function
as described at the beginning of this section. Define, for
each ordinal α, an ordinal ια by transfinite recursion as
follows:

1. ι0 = 0;

2. if α = β + 1, then ια is the least ordinal > ιβ such
that for each abc ∈ Tri(S) there exists ιβ ≤ γ < ια
with T (γ) = abc;

3. if α is a limit ordinal, then ια = supβ<α ιβ .
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Lemma 6. If M (ια) = M (β) for all ια ≤ β ≤ ια+1, then
M (ια) = G.

Proof. If M (ια) = M (β) for all ια ≤ β ≤ ια+1 then it must
be that M (ια) satisfies the triangle inequality. Otherwise,
fix the least β ≥ ια such that T (β) = abc for some a, b, c ∈
S withM (β)ab > M (β)ac+M (β)cb. By definition, we must
have β < ια+1, so also β+ 1 ≤ ια+1. But then M (β+1)ab is
defined to be M (β)ac+M (β)cb, meaning that M (β+1)ab 6=
M (β)ab = M (ια)ab, a contradiction. By Lemma 2, we must
thus have M (ια) = G.

We now use this result to estimate the cardinality of αM
in Theorem 4 under an “economic” organization of the class
function T . Denoting [ια, ια+1) = {β : ια ≤ β < ια+1}, by
Definition 5, T ([ια, ια+1)) = Tri(S) for any α. The class
function T is “economic” if, for any α, T maps [ια, ια+1)
onto Tri(S) injectively. Such a class function can be con-
structed as follows. Fix a well-ordering 4 of Tri(S). De-
fine T by transfinite recursion as follows. Fix an ordi-
nal α, and assume T (β) is defined for each β < α, with
T (β) ∈ Tri(S). We define T (α) ∈ Tri(S). Let Sα be the
set of all abc ∈ Tri(S) for which there is a β < α such that
T (β) 4 abc and T (β′) 6= abc for all β ≤ β′ < α. If Sα
is nonempty, set T (α) equal to the 4-least element of Sα.
Otherwise, let T (α) be the 4-least element of Tri(S).

Theorem 7. If the class function T is such that for any
ordinal α, T maps the interval [ια, ια+1) onto Tri(S) in-
jectively, then |αM | ≤ |S|.

Proof. Let α0 be the least ordinal such that ια0 ≥ αM .
From Lemma 6 it follows that for each α < α0, there
is some β with iα ≤ β ≤ ια+1 such that M ια 6= Mβ .
The least such β cannot be a limit, since otherwise, for
all a, b ∈ S, we would have M (β)ab = infβ′<βM

(β′)ab =
infια≤β′<βM

(β′)ab = M (ια)ab. The least such β is there-
fore a successor, and we denote its predecessor by βα.
It follows that M (βα) 6= M (βα+1), so that βα belongs to
the set C of Lemma 3. This defines an injective function
{ια : α < α0} → C, so by Lemma 3, {ια : α < α0} has car-
dinality ≤ |S|. Since |[ια, ια+1)| ≤ |Tri(S)| by assumption,
we have

|αM | ≤ |ια0 | =

∣∣∣∣∣ ⋃
α<α0

[ια, ια+1)

∣∣∣∣∣ = |{ια : α < α0}| · |Tri(S)|

≤ |S| · |Tri(S)| = |S| · |S| = |S|.

This completes the proof.

3. CONCLUSION

For both finite and infinite sets S, finding the induced
p.q.-metric G from a pre-dissimilarity D is equivalent to
correcting violations of the triangle inequality in all triads
abc with elements in S. The corrections consist in replac-
ing Dab with Dac+Dcb whenever the former exceeds the
sum. These corrections can be done sequentially, having

enumerated the triads by ordinals (in the finite case, by nat-
ural numbers) in an arbitrary way, provided only that each
triad is enumerated by unboundedly many ordinals (natural
numbers). The latter means that every triad remains acces-
sible after any position in the enumeration. In Dzhafarov
(2010a) and the present paper it is shown that the correc-
tions will stop at some step (at some natural number in the
finite case, and at some infinite ordinal otherwise) because
all violations of the triangle inequality at this step will have
been corrected; the redefined pre-dissimilarity D will then
coincide withG. The well-known Floyd-Warshall algorithm
for finding min aXb for all elements a, b and chains X in a
finite S shows that the sequence of triads can be organized
so that the cardinality of the eventual step does not exceed
the cardinality of Tri(S). The same statement is shown in
this paper to hold for infinite sets, where |Tri(S)| = |S|.

APPENDIX: A Brief Account of Ordinals and Car-
dinals

We recall here some basic facts about ordinals and car-
dinals. We refer the reader to any basic text on set the-
ory for complete details, e.g., Halmos (1974). We work
within Zermelo-Fraenkel set theory with the axiom of choice
(ZFC). The basic objects we deal with are sets, in terms of
which all our other terms (functions, relations, etc.) may
be defined. A class is formally a formula ϕ(x) in the lan-
guage of ZFC (with paremeters), and informally it is the
“collection” C of all x that satisfy this formula. We abuse
notation, and write x ∈ C in place of ϕ(x), and we say C
contains x. Not all classes are sets, and these are called
proper classes. (The class of all sets, for example, is a
proper class.) We can also define class functions to be for-
mulas ϕ(x, y) such that for every x there is at most one
y satisfying ϕ(x, y). Intuitively, a class function is a map
f from one class into another, and as a result we use the
suggestive notation f : C1 → C2, where C1 is the class of
all x for which there exists a y such that ϕ(x, y) holds, and
C2 is any class containing all y such that ϕ(x, y) holds for
some x in the class C1. In this case, for x ∈ C1 we write
f(x) to indicate the unique y ∈ C2 such that ϕ(x, y) holds.

An ordinal is a set α such that each β ∈ α is a set and
β ⊆ α. Thus, for example,

∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}, . . .

are all ordinals. It can be shown that for any two ordinals
α and β, either α = β, α ∈ β, or β ∈ α. We write α ≤ β to
denote α = β or α ∈ β; we write α < β to denote α ∈ β.
In the above example, we thus have

∅ < {∅} < {∅, {∅}} < {∅, {∅}, {∅, {∅}}} < · · · .

The class of all ordinals is not a set, and thus ≤ is not a set
relation. But ≤ can be thought of as well-ordering the class
of ordinals in the following sense: if S is any set of ordinals,
then ≤ restricted to the elements of S is a well-ordering of
S. Thus, in particular, each ordinal is well-ordered by ≤.
Conversely, every well-ordered set can be mapped by an
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order-preserving bijection onto some ordinal. The ordinals
are therefore canonical representatives of all possible well-
order types, i.e., isomorphism classes of well-ordered sets.

For each ordinal α, α ∪ {α} is also an ordinal, and we
call it the successor of α and denote it by α + 1. If α is
the successor of some ordinal, we call α a successor ordinal;
otherwise, we call α a limit ordinal. If we identify ∅ with
0, and, having identified the natural number n ≥ 0 with
an ordinal, identify n + 1 with n ∪ {n}, then the above
displayed sequence becomes

0, 1, 2, 3, . . .

and ≤ coincides with the standard ordering of the natural
numbers. Here, 0 is not a successor ordinal, but each of
1, 2, 3, . . . are. The ordinal

{0, 1, 2, 3, . . .}

is denoted ω, and it is the (≤-)least infinite ordinal, and
the least limit ordinal after 0.

An ordinal α is a cardinal if it cannot be put into one-
to-one correspondence with any ordinal β < α. Thus, for
example, each of 0, 1, 2, . . . are cardinals (called the finite
cardinals), as is ω. The ordinal ω + 1, on the other hand,
is not a cardinal, since it can be put into one-to-one cor-
respondence with ω < ω + 1. The cardinality of a set S,
denoted |S|, is the least ordinal S can be bijected with;
that such an ordinal always exists follows by the axiom of
choice, since it implies that S can be well-ordered. Thus,
for example, |ω + 1| = |ω| and |Q| = ω. It is clear that the
cardinality of a set is a cardinal.

Systems of arithmetic can be developed on each of the
class of ordinals and class of cardinals. These satisfy many
familiar properties from arithmetic on the natural numbers,
but also many properties which the naturals do not have.
For the purposes of our work here, the only relevant prop-
erties are that if κ and λ are cardinals at least one of which
is infinte then κ · λ = max{κ, λ} (in particular, if S is any
infinite set, then |S| · ω = |S|), and that if β is an ordinal
and {Aα : α < β} is a collection of disjoint sets each of
cardinality ≤ κ, then∣∣∣⋃{Aα : α < β}

∣∣∣ ≤ |β| · κ.
Theorems involving ordinals are often proved by transfi-

nite induction, which asserts that if some class contains an
ordinal α whenever it contains all ordinals β < α, then the
class contains all ordinals. Similarly, we can define a class
function on the ordinals by means of transfinite recursion:
if, having defined it on all β < α, we can use our definition

to define it on α, then we define it on all ordinals. Within
the induction or recursion procedure, it is sometimes more
convenient to handle separately the case α = 0, α a succes-
sor ordinal, and α a limit ordinal.
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