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Abstract

The paper provides conceptual clarifications for the issues related to the dependence of jointly distributed systems of random entities

on external factors. This includes the theory of selective influence as proposed in Dzhafarov [(2003a). Selective influence through

conditional independence. Psychometrika, 68, 7–26] and generalized versions of the notions of probabilistic causality [Suppes, P., &

Zanotti, M. (1981). When are probabilistic explanations possible? Synthese, 48, 191–199] and dimensionality in the latent variable models

[Levine, M. V. (2003). Dimension in latent variable models. Journal of Mathematical Psychology, 47, 450–466]. One of the basic

observations is that any system of random entities whose joint distribution depends on a factor set can be represented by functions of two

arguments: a single factor-independent source of randomness and the factor set itself. In the case of random variables (i.e., real-valued

random entities endowed with Borel sigma-algebras) the single source of randomness can be chosen to be any random variable with a

continuous distribution (e.g., uniformly distributed between 0 and 1).

r 2006 Elsevier Inc. All rights reserved.
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1. Informal introduction

When dealing with an issue it occasionally proves useful
to ‘‘get back to basics,’’ to relate the issue to the
fundamental notions of the area to which it belongs. This
seems especially true when dealing with problems whose
formulations involve random variation, where one’s intui-
tions are notoriously faulty. The aim of this paper is to
improve the clarity of and further develop the concept of
selective influence (as defined in Dzhafarov, 2003a) and, as
its special case, the notion of probabilistic causality

(introduced in Suppes & Zanotti, 1981), by relating them
to the basics of Kolmogorov’s probability theory. The
analysis also places within the context of selective influence
and sheds light on the notion of probabilistic dimension-

ality, derived from Levine (2003).
e front matter r 2006 Elsevier Inc. All rights reserved.
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1.1. Selective influence

The history (dating from Townsend, 1984) and various
approaches to the notion of selective influence (Dzhafarov,
1999, 2001; Townsend & Thomas, 1994) are discussed in
Dzhafarov (2003a).
To give a simple example of selective influence, let
ðX 1;X 2;X 3Þ be random variables representing scores in
three performance tests, generally stochastically interde-
pendent. Let ðp1; p2; p3; p4Þ be four external factors (ob-
servable conditions or covariates, say, test duration, prior
training level, sex of the examinee, and age of the
examinee). The factors are considered deterministic vari-
ables: this means that the joint distribution of ðX 1;X 2;X 3Þ

is always being conditioned on specific values of
ðp1; p2; p3; p4Þ. Equivalently, ðX 1;X 2;X 3Þ is viewed as a
family of random vectors indexed by values of
ðp1; p2; p3; p4Þ. Consider the following conjunction of
statements: X 1 is selectively influenced by p1 (i.e., it is not
influenced by p2, p3, or p4), X 2 is selectively influenced by

www.elsevier.com/locate/jmp
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p2 and p3 (not influenced by p1 or p4), and X 3 is selectively
influenced by p4 (not by p1; p2; p3). In Dzhafarov’s (2003a)
notation this is presented as

ðX 1;X 2;X 3ÞIðfp1g; fp2; p3g; fp4gÞ.

What is the meaning of stating this selective dependence if
X 1;X 2;X 3 are not necessarily stochastically independent?
According to Dzhafarov (2003a), the meaning is that
X 1;X 2;X 3 are representable (not necessarily uniquely) in
the form

X 1 ¼ f 1ðC;S1; p1Þ

X 2 ¼ f 2ðC;S2; p2; p3Þ

X 3 ¼ f 3ðC;S3; p4Þ

2
64

3
75, (1)

where f 1; f 2; f 3 are measurable functions, and C;S1;S2;S3

are mutually independent ‘‘sources of randomness’’ whose
distributions do not depend on any of the factors
p1; p2; p3; p4. C is interpreted as a common source of

randomness, its implied role is to ‘‘explain’’ the stochastic
interdependence of ðX 1;X 2;X 3Þ. Si is interpreted as a
specific source of randomness for X i (i ¼ 1; 2; 3). Given any
value c of C, the variables f 1ðc;S1; p1Þ, f 2ðc;S2; p2; p3Þ,
f 3ðc;S3; p4Þ (i.e., X 1;X 2;X 3 conditioned upon C ¼ c) are
stochastically independent, each being influenced by ‘‘its
own’’ set of external factors.1

The sphere of behavioral applications of the notion of
selective influence is not, of course, confined to perfor-
mance scores. Thus, ðX 1;X 2;X 3Þ in the above example
could be durations of three processes in a network of
mental operations aimed at solving a certain task (e.g.,
deciding whether a letter being currently presented was or
was not within a previously memorized set of letters). Then
factors ðp1; p2; p3; p4Þ would designate experimental manip-
ulations that prolong or shorten these durations (in the
sense of monotonically transforming their distribution
functions). The necessity to speak of selective influence in
this context was, in fact, the reason this notion was
historically introduced (Townsend, 1984). The durations
ðX 1;X 2;X 3Þ here are unobservable variables, and their very
identity is predicated on selective influence: within the
hypothetical mental architecture X 1 may be defined as the
duration of the process which is selectively influenced by
p1;X 2 as the duration of the process which is selectively
influenced by p2 and p3, etc.

Representations like (1) were used in Dzhafarov et al.
(2004) to establish certain properties of mental ‘‘parallel–
serial’’ architectures with stochastically interdependent
components.
1Formally, as explained in Dzhafarov (2003a), this approach to selective

influence can be viewed as generalizing the combined use of (nonlinear)

regression and factor analyses (with the term external factor, however,

corresponding to the traditional regressor, and the term source of

randomness to the traditional (unobservable) factor). In view of the results

presented in Section 5, however, this generalization does not lend itself to

extensions of the traditional data-analytic techniques, because in the

general setting the idea of ‘‘interpreting’’ the sources of variability loses its

meaning.
Another, perhaps even more basic application of
selective influence is found in the context of modeling
comparative judgments, say, deciding whether two stimuli
being presented, p1; p2, are the same or different. ðX 1;X 2Þ

in this case are interpreted as perceptual images of these
two stimuli, presumably randomly varying in some
perceptual space. The notion of selective influence here,

ðX 1;X 2ÞIðfp1g; fp2gÞ,

is needed to express the very fact that X 1 is the image of p1

(and not of p2) while X 2 is the image of p2 (and not of p1),
even though X 1 and X 2 are generally stochastically
interdependent. By analogy with (1), this statement is
taken to mean the representability of ðX 1;X 2Þ in the form

X 1 ¼ f 1ðC;S1; p1Þ

X 2 ¼ f 2ðC;S2; p2Þ

" #
, (2)

where f 1; f 2 are measurable functions, while C;S1;S2 are
mutually independent and do not depend on stimuli p1; p2.
As a simple example, let p1; p2 be representable by real

numbers (e.g., two line segments being compared can be
represented by their lengths, in some units), and let
ðX 1;X 2Þ be bivariate normally distributed (as it is
frequently assumed in models derived from Thurstone,
1927), with respective means ðp1; 1Þ, respective variances
ð1þ p2

1; 1þ p2
2Þ, and covariance p1: Then, as one can easily

check,

X 1 ¼ S1 þ p1ðC þ 1Þ

X 2 ¼ p2S2 þ C þ 1

" #
,

where C;S1;S2 are mutually independent standard nor-
mally distributed variables. In this case, therefore,
ðX 1;X 2ÞIðfp1g; fp2gÞ, and the meaning of saying that X 1

is the image of p1 while X 2 is the image of p2 is well defined.
In other cases representability of the form (2) may not be
achievable, even if the marginal distribution of X 1 depends
only on p1 and the marginal distribution of X 2 depends
only on p2 (see an example in Dzhafarov, 2003a).
The notion of selective influence and representations (2)

in the context of selectively relating stimuli to their
perceptual images were used in Dzhafarov (2003c) to
investigate the feasibility of Thurstonian-type models for
same–different judgments (a nontechnical description of
this issue can be found in Dzhafarov & Colonius, 2006).
Returning to (1), this example can be modified to include

the cases when the sets of factors selectively influencing
ðX 1;X 2;X 3Þ may overlap, coincide, or include empty sets.
Thus, the conjunction of statements ‘‘X 1 is selectively
influenced by p1 and p2, X 2 is selectively influenced by
p2; p3, and p4, and X 3 is not influenced by any of the
factors’’ translates into the representability of ðX 1;X 2;X 3Þ

in the form

X 1 ¼ f 1ðC;S1; p1; p2Þ

X 2 ¼ f 2ðC;S2; p2; p3; p4Þ

X 3 ¼ f 3ðC;S3Þ

2
64

3
75,
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which can be schematically presented as

ðX 1;X 2;X 3ÞIðfp1; p2g; fp2; p3; p4g;;Þ.

The reason cases like this should be viewed as special
cases of selective influence is that it would be inconvenient,
artificial, and unnecessary to isolate them. The mathema-
tical theory presented in Dzhafarov (2003a) makes no use
of the constraint that the factor sets are nonempty and
disjoint: given a set f of factors known to influence the
joint distribution of ðX 1;X 2;X 3Þ, the treatment of the
selective influence relationship

ðX 1;X 2;X 3ÞIðf1;f2;f3Þ

is the same for any three subsets f1;f2;f3 of f. Thus, with
f ¼ fp1; p2; p3; p4g, the treatment of such relations of
selective influence as

ðX 1;X 2;X 3ÞIðfp1; p2g; fp1; p2g; fp2; p3; p4gÞ

or

ðX 1;X 2;X 3ÞIðfp1; p2; p3; p4g; ;;;Þ

or even

ðX 1;X 2;X 3ÞIðfp1; p2; p3; p4g; fp1; p2; p3; p4g; fp1; p2; p3; p4gÞ

is no different from that of (1). The notion of selectivity in
the latter example loses its intuitive meaning, but this
special case is important as it links the notion of selective
influence with that of probabilistic causality, discussed
next.
1.2. Probabilistic causality

The term probabilistic causality has a variety of usages.
Ours is based on the formulation given in Suppes and
Zanotti (1981), as pertaining to seeking a ‘‘probabilistic
cause’’ (in a technical meaning clarified below) for the
stochastic interdependence among X 1; . . . ;X n. We general-
ize, however, Suppes and Zanotti’s meaning by including in
the issue the dependence of X 1; . . . ;X n upon a set of
external factors f. For simplicity, we continue here to use
the example with three random variables ðX 1;X 2;X 3Þ.

It follows from a representation like (1) that fixing the
common source of randomness C at any value c will make
ðX 1;X 2;X 3Þ conditionally independent, with the conditional
distribution of X 1 being dependent only on factor p1, the
conditional distribution of X 2 only on factors p2 and p3,
etc. As shown in Dzhafarov (2003a), the possibility of
finding a random entity C with this property is equivalent

to the representability of ðX 1;X 2;X 3Þ in the form (1). Note
that specific sources of randomness ðS1;S2;S3Þ in functions
ðf 1; f 2; f 3Þ may very well be dummy (removable) argu-
ments. In this case fixing C at any value c will make
ðX 1;X 2;X 3Þ conditionally deterministic (with the condi-
tional value of X i being selectively dependent on the
corresponding factor set fi, i ¼ 1; 2; 3). Deterministic
entities are formally stochastically independent.
Suppes and Zanotti (1981) define the issue of probabil-
istic causality as that of finding a random entity C such that
fixing it at any value c would make ðX 1;X 2;X 3Þ

conditionally independent (possibly, conditionally deter-
ministic). Probabilistic causality therefore is a purely
technical term, with no ‘‘what causes what’’ interpretations
implied. Since Suppes and Zanotti do not consider external
factors, their notion of probabilistic causality can be
viewed as a degenerate case of selective influence, formally
obtained by putting f ¼ ; (i.e., the joint distribution of
X 1;X 2;X 3 does not depend on any factors) and
f1 ¼ f2 ¼ f3 ¼ ;. Then (1) is replaced with the represent-
ability of ðX 1;X 2;X 3Þ in the form

X 1 ¼ f 1ðC;S1Þ

X 2 ¼ f 2ðC;S2Þ

X 3 ¼ f 3ðC;S3Þ

2
64

3
75. (3)

This case being too restrictive, we extend the notion of
probabilistic causality to include all cases where
f1 ¼ f2 ¼ f3 ¼ f, that is, where ðX 1;X 2;X 3Þ jointly
depend on some factor set f,

ðX 1;X 2;X 3ÞIðf;f;fÞ,

or equivalently,

X 1 ¼ f 1ðC;S1;fÞ

X 2 ¼ f 2ðC;S2;fÞ

X 3 ¼ f 3ðC;S3;fÞ

2
64

3
75. (4)

Since relation ðX 1;X 2;X 3ÞIðf1;f2;f3Þ obviously im-
plies ðX 1;X 2;X 3ÞIðf;f;fÞ with f denoting the union
f1 [ f2 [ f3 of the factor sets, probabilistic causality (in
our generalized sense) may be viewed as pertaining to the
dependence of ðX 1;X 2;X 3Þ on a factor set f when the
internal structure of this factor set is of no interest. The
relation of selective influence, such as (1), then is obtained
from (4) by eliminating from each of the functions f i the
components of f that do not affect its value.

1.3. Probabilistic dimensionality

Levine (2003) considers a vector of dichotomous or
polytomous items in an aptitude test, say ðX 1;X 2;X 3Þ,
under the assumption that there is a common source of
randomness C, such that given any its value c, ðX 1;X 2;X 3Þ

are conditionally independent (a common assumption in
the context of aptitude analysis). Levine, in addition,
assumes that C has a special form: it is a k-dimensional
vector of random variables (interpreted as ‘‘k-component
aptitude’’). Let us call the smallest such k the probabilistic

dimensionality of ðX 1;X 2;X 3Þ. Levine’s main result is that
if vector ðX 1;X 2;X 3Þ has a probabilistic dimensionality k,
then k ¼ 1. In other words, if a k-dimensional C with the
above property exists, for some kX1, then one can always
find a single (one-dimensional) random variable C� with
the same property. The result, of course, holds for an
arbitrary number of random variables, fX 1; . . . ;X ng.
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In our conceptual setup, the assumption that vector
ðX 1;X 2;X 3Þ possesses a probabilistic dimensionality is
equivalent to positing a representation of the form (3) for
ðX 1;X 2;X 3Þ, with C being a k-dimensional vector of
random variables. Then, as we show below, Levine’s main
result (that one can always choose C with k ¼ 1) is an
immediate consequence of one of the basic theorems in the
theory of standard Borel spaces (e.g., Kechris, 1995). This
holds true for an arbitrary number of arbitrary random
variables X 1; . . . ;X n; not necessarily dichotomous or
polytomous. Moreover, the result also applies to
fX 1; . . . ;X ng whose joint distribution depends on external
factors f: if representation (4) holds with C being a k-
dimensional vector of random variables, then such a
representation also holds with C being a single random
variable.2

1.4. Plan of the paper

In Section 2, we explain the distinction between random

variables in the Kolmogorov’s (1933) sense and the more
general concept of random entities. This section also
introduces the notation and terminological conventions
used throughout this paper. In particular, we explain the
meaning of speaking of a system of random entities whose
joint distribution depends on external factors.

In Section 3, we present a simple lemma that shows that
any such system of random entities can be defined on a
probability space with a probability measure that does not
depend on external factors. In this section, we also
introduce the notion of multiple probability spaces
corresponding to stochastically unrelated random entities,
and we clarify logical distinctions associated with saying
that a random entity can be presented as a function of
another random entity.

In Section 4, we introduce the most general version of
the notion of selective influence and provide a rigorous
definition of selective influence with sources of variability
classifiable into specific sources and a common one.

In Section 5, we deal with finite systems of random
variables depending on factors, and show under what
conditions they can be defined on a probability space with
a single random variable serving as their source of
randomness.
2This fact may seem to contradict Levine’s own conclusion, based on

what he calls ‘‘a tentative, interim characterization’’ of embedding

unidimensional models into multidimensional ones. He states that k ¼ 1

may not be obtainable when X 1; . . . ;X n depend on a parameter, such as

time (‘‘Multidimensionality is not needed to account for one distribution.

Multidimensionality is only needed to account for orderly changes of

observed distributions,’’ Levine, 2003, p. 465). The discrepancy is only

apparent, however: Levine’s ‘‘tentative characterization’’ is very different

from representations of the form (4). For a detailed comparison of

Levine’s treatment with ours (which is not made in this paper) one should

also take into account that values of C in Levine’s analysis are related to

probability distributions rather than random variables per se, and these

relations are constrained by continuity and smoothness requirements

which do not belong in our treatment.
2. Terminology, notation, and basic notions

2.1. Random entities and random variables

Following the original definition by Kolmogorov (1933),
we reserve the familiar term random variable to designate
functions with values in the set of reals endowed with the
usual (Borel) sigma-algebra. Functions with values in
probability spaces of more general nature we term random

entities. Random variables are random entities, and so are
random processes, random fields, product spaces involving
random processes and random fields, random functionals
and operators on a space of functions, etc. The terminology
not being firmly established in the mathematical literature,
other authors use for this purpose such terms as random

element (Fréchet, 1948) and random quantity (Blank-
Lapierre & Fortet, 1967). Nor is it unusual to use the
term ‘‘random variable’’ in the generalized sense, coincid-
ing with our usage of ‘‘random entity.’’ This, however,
would be inconvenient for our purposes, as some of the
results presented below are general, while others are
formulated for (real valued) random variables and vectors
thereof only.
When dealing with observable random outcomes of an

experiment, they can usually be represented by random
variables. In theoretical considerations, however, we often
deal with hypothetical random outcomes or sources of
variability and interdependence whose nature is not known
and cannot be constrained by theoretical considerations.
As an example, Dzhafarov (2003b, 2003c) analyzes in the
context of same–different discriminations the hypothesis
that perceptual images selectively attributable to stimuli
can be viewed as randomly varying, and the decision as to
whether two stimuli are different is based on realizations of
their randomly varying images in a given trial. As we do
not know the ‘‘correct’’ way of describing a perceptual
image (a finite or countably infinite number of real-valued
attributes? a real-valued function with its domain in Rn? a
subset of a set of functions?, etc.), the value of such analysis
is comeasurable with its generality. With reference to (2),
perceptual images ðX 1;X 2Þ and the sources of variability
C;S1;S2 in Dzhafarov (2003b, 2003c) are viewed as
random entities identified on probability spaces of arbi-
trary nature. It is proved then that the hypothesis in
question cannot account for certain observable properties
of discrimination probabilities if the dependence of
ðX 1;X 2Þ on C;S1;S2 possesses a property called well-

behavedness, defined in terms of random entities of
unspecified nature. The import of this conclusion would
be greatly diminished if the perceptual images, their sources
of variability, or the notion of well-behavedness were
confined to random entities of a specific type only (say,
random functions).
This does not mean, of course, that sources of

randomness cannot sometimes be proved to be random
entities of a particular kind, or constrained to be of a
particular kind by hypothesis. Thus, in an example given
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earlier, if ðX 1;X 2;X 3Þ in (4) are random variables (which
they are, if interpreted as three performance scores or
durations of three processes in a mental architecture), then
according to our Theorem 1, C can be chosen to be a
random variable uniformly varying between 0 and 1. In
Levine’s (2003) work as well as in our Theorem 2, C is
constrained by hypothesis to being a vector of random
variables.
2.2. Conventions

We denote random entities (including random variables)
by capital italics (B;X ; . . .) and their values by the
corresponding lowercase italics (b; x; . . .). We use open
letters (B;X; . . .) to denote sets of values for random
variables, and script letters (B;X; . . .) to denote sigma-
algebras defined on such sets. R stands for the set of reals,
R for the usual (Borel) sigma-algebra on R.

If the joint distribution of fX 1; . . . ;X ng (or, more
generally, fX lgl2L; with an arbitrary indexing set L)
depends on some external factors, the set of these factors
is denoted by f, and the set of values of this factor set is
denoted by F. A value of a factor set is understood as the
set of its constituting factors each given with its specific
value. Thus, if f ¼ fp1; p2g, where p1 ¼ 1; 2 and p2 ¼ 1; 2; 3;
then the values of the factor set f are fp1 ¼ 1; p2 ¼ 1g,
fp1 ¼ 1; p2 ¼ 2g, etc., comprising the six-element set F. The
situation when the joint distribution does not depend on
any factors (f ¼ ;) formally corresponds to F ¼ f;g, a
singleton.

In the context of selective influence we present factor set
f as the union of factor sets

Sn
i¼1fi. In this case

F ¼
Qn

i¼1Fi, where Fi is the set of possible values for fi.
We impose no restrictions on the internal structure of
factor sets fi (they may contain a single factor, infinity of
factors, no factors, fi and fj may intersect or coincide,
etc.).
3Product sigma-algebra
Q

l2L Xl is defined as the smallest sigma-

algebra containing sets of the form Pk �
Q

l2LnfkgXl (Pk 2 Xk).
4More precise notation would be fX lgl2LðfÞ, which, however, is less

convenient.
2.3. Basic notions

We assume that the reader is familiar with the basic
notions of measure-based probability theory, such as
probability space ðB;B; mÞ, measurable function f from
one probability space to another, etc. To avoid unnecessary
technicalities, throughout this paper we tacitly assume that
in any probability space ðB;B; mÞ (consisting of a set B,
sigma-algebra B, and a probability measure m) singleton
subsets are measurable (i.e., belong to B).

We say that random entity X is defined on probability
space ðB;B; mÞ and write X ¼ f ðBÞ if f is a measurable
function on B. This means that on the codomain of this
function, X ¼ f ðBÞ, we have a sigma-algebra X and a
probability measure a such that

P 2 X ¼) f �1ðPÞ 2 B,

and, for any P 2 X,
a½P� ¼ Pr½X 2 P� ¼ m½f �1ðPÞ� ¼ Pr½B 2 f �1ðPÞ�.

Obviously, if ðB;B; mÞ ¼ ðX;X; aÞ and f is identity, then
B ¼ f ðBÞ. We say in this case that B is identified on
ðB;B;mÞ (in the sense of mapping the space onto itself by
means of the identity function on B). Thus, any random
entity X maps a probability space on which it is defined,
ðB;B;mÞ, into the probability space on which it is
identified, ðX;X; aÞ.
Given an arbitrary indexing set L, a system of random

entities fX lgl2L, where each X l is identified on a
probability space ðXl;Xl; alÞ, is a random entity X

identified on a probability space ðX;X; aÞ, such that

X ¼
Y
l2L

Xl; X ¼
Y
l2L

Xl; 3

and a is a probability measure such that for any Pk 2 Xk,

a Pk �
Y

l2Lnfkg

Xl

" #
¼ ak½Pk�.

Subsystems fX lgl2L0 of fX lgl2L (where L0 � L;L0a;) are
defined in the obvious way.
In this paper, we primarily deal with finite systems,

L ¼ f1; . . . ; ng, but the general notion is needed too. In
particular, we need it to define the notion of an indexed set
of independent random entities for our first lemma below.
Given a system of random entities fX lgl2L with each X l

identified on ðXl;Xl; alÞ, the meaning of saying that
fX lgl2L are mutually stochastically independent (with
either or both adjectives dropped at one’s convenience) is
as follows: the probability measure a for fX lgl2L is such
that for any fPl 2 Xlgl2L0 with a finite L0 � L,

a
Y
l2L0

Pl �
Y

l2LnL0
Xl

2
4

3
5 ¼ Y

l2L0
al½Pl�.

This is conventionally presented as

Pr½fX l 2 Plgl2L0 � ¼
Y
l2L0

Pr½X l 2 Pl�.

The probability space for such a system will be denoted byQ
l2LðXl;Xl; alÞ, and measure a by

Q
l2Lal.

We say that a system of random entities fX lgl2L (jointly)
depends on factor set f (or, the joint distribution of
fX lgl2L depends on factor set f) if a depends on f

a � af

and correspondingly

al � al;f,

for every l 2 L. In this case, we may present the system as
fX lðfÞgl2L.

4 Note that ðX;XÞ does not change with f; this
explicates the meaning of viewing fX lðfÞgl2L as ‘‘the same’’
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random entities whose distributions may be different at
different values of f.
3. The factor-independence lemma and multiple unrelated

probability spaces

The following lemma shows that fX lðfÞgl2L identified
on ðX;X; afÞ (with a f-dependent measure) can always be
presented as a function of f and a f-independent random
entity.

Lemma 1. Any system fX lðfÞgl2L identified on ðX;X; afÞ
can be defined on a probability space with f-independent

probability measure.

Proof. What we have to show is that one can construct a
random entity B, identified on ðB;B;oÞ, and functions
ff lgl2L, such that

X l ¼ f lðB;fÞ (5)

for every l 2 L and every value of f 2 F. Take B identified
on
Q

f2FðX;X; afÞ, and put, for all l 2 L,

f lðb;fÞ ¼ plð ~pfðbÞÞ,

where ~pf : XF ! X and pl : X! Xl are projection
functions.5 Clearly, o ¼

Q
f2F af is f-independent,

ff lðb;fÞgl2L are measurable for every f, and for any value
of f and any P 2 X,

o½ff lðb;fÞgl2L 2 P� ¼ o½B 2 ~p�1f ðPÞ�

¼ af½fX lðfÞgl2L 2 P�.

This means (5). &

To illustrate the construction used in the proof, consider
the case L ¼ f1; 2; 3g, f ¼ fpg, where the external factor p

can attain values 1; 2. Then F ¼ ff1g; f2gg. We have then
system ðX 11;X 21;X 31Þ for f ¼ f1g (i.e., p ¼ 1) and system
ðX 12;X 22;X 32Þ for f ¼ f2g (p ¼ 2) identified on set X ¼

X1 �X2 �X3 endowed with sigma-algebra X ¼
X1 �X2 �X3 and probability measures a1 and a2,
respectively. Random entity B is defined as

B ¼ ððX 11;X 21;X 31Þ; ðX 12;X 22;X 32ÞÞ,

identified on space ðX�X;X�X;o ¼ a1a2Þ. We have
~p1ðBÞ¼ðX 11;X 21;X 31Þ, ~p2ðBÞ¼ ðX 12;X 22;X 32Þ, p1½ ~p1ðBÞ� ¼
X 11, p2½ ~p1ðBÞ� ¼ X 21, etc. For f ¼ f1g and any P 2 X,

o½fplð ~p1ðBÞÞgl2f1;2;3g 2 P�

¼ o½ðX 11;X 21;X 31Þ 2 P&ðX 12;X 22;X 32Þ 2 X�

¼ a1½ðX 11;X 21;X 31Þ 2 P�,

and analogously for f ¼ f2g.
5To help with notation, XF is the set of all functions F! X, i.e.,

XF ¼ ffxfgf2F : xf 2 X for all f 2 Fg. For a specific value of f, projec-
tion function ~pf, when applied to element fxfgf2F of this set returns the

component xf. In our case, this component is itself a function (indexed

set), x ¼ fxlgl2L, and projection function pl returns its element xl.
Innocuous as it may seem, our lemma has important
consequences. We present them in the remainder of this
section.

3.1. Probability causality

In relation to the issue of probabilistic causality, the
lemma solves, on the most general level possible, the
problem posed by Suppes and Zanotti (1981) and super-
sedes their theorem. We see that given any system
fX lðfÞgl2L, one can always find a common source of
randomness B such that given any of its values b 2 B,
random entities fX lðfÞgl2L are conditionally deterministic,
which is a special case of conditional independence.6 As
shown later, in Section 5 (Theorem 1), this result can be
improved on if one additionally assumes (as Suppes and
Zanotti do) that fX lðfÞgl2L is a finite system of random
variables: in this case the common source of randomness B

can be chosen to be any random variable whose singletons
have zero probability (e.g., a variable uniformly distributed
between 0 and 1).

3.2. Separation of randomness from dependence on factors

The lemma says that the source of randomness for a
system fX lðfÞgl2L can always be chosen to be f-in-
dependent. The influence of a factor set f on fX lðfÞgl2L,
therefore, can always be structurally separated from the
source of randomness B: f and B are logically orthogonal
determinants of the joint distribution of fX lðfÞgl2L.

3.3. Dependence on a single source of randomness versus

stochastic in(ter)dependence

The fact that all components of fX lðfÞgl2L are functions
of one and the same random entity B turns out to hold
essentially by definition (of a system of random entities
with joint distribution). In particular, (5) does not imply a
stochastic interdependence of fX lðfÞgl2L: it may very well
be that, for any fPi 2 Xigi2I with a finite I � L,

Pr½X iðfÞ 2 Pi for all i 2 I �

¼ o
\
i2I

f �1i ðPi;fÞ

" #
¼
Y
i2I

o½f �1i ðPi;fÞ�

¼
Y
i2I

ai;f½Pl�,

in which case the random entities are mutually indepen-
dent. Our lemma shows that ‘‘the reason’’ for independence
or interdependence of random entities X i is not in the
6The theorem by Suppes and Zanotti (which can be viewed as a special

case of our lemma, with f ¼ ;, L being finite, and X’s being random

variables) was proved only for systems consisting of two binary variables.

The argument used in that proof was very different from ours.
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sources of randomness per se, but in the functions relating
these sources to values of X i.

3.4. Stochastic in(ter)dependence and stochastic

unrelatedness

The proof of Lemma 1 essentially consists in redefining
system

X ðfÞ ¼ fX lðfÞgl2L

into system

B ¼ fffX lgl2Lgfgf2F,

by treating f as an outer indexing parameter. With respect
to probability spaces ðX;X; afÞ on which systems X ðfÞ are
identified, X ðfÞ taken at different values of f are
stochastically unrelated, that is, they are not defined on a
common probability space. Consequently, one cannot
speak of their joint distribution. Intuitively, stochastic
unrelatedness of random entities means the absence of a
coupling or co-occurrence scheme for their realizations,
something one routinely encounters in empirical studies
(think, e.g., of response times recorded under different
experimental conditions, or one’s perceptual images on two
different days). Our construction shows that unrelated
random entities can always be transformed, if needed, into
independent (hence stochastically related) ones by introdu-
cing ‘‘new’’ probability spaces, products of probability
spaces already in play.

This simple observation seems useful in assessing
the mathematical practice of introducing a ‘‘universal
probability space’’ upon which all random entities are
supposed to be defined. Thinking of ‘‘all random entities
imaginable,’’ this practice is dubious, very much on
a par with introducing a ‘‘set of all possible things.’’ In
fact, set U in the truly universal probability space ðU;U;oÞ
cannot but coincide with this set of all possible things,
something of undefinable cardinality and with an eni-
gmatic sigma-algebra. The reasonable approach illustrated
by our lemma is to allow for freely introducible un-

related probability spaces (with correspondingly un-
related random entities identified thereon) but to keep
in mind that given any set of such spaces (random
entities) one can always form a new probability space
upon which one can define all the random entities already
introduced.

3.5. Stochastic unrelatedness and representability

statements

The notion of multiple probability spaces is important
for understanding logical ramifications of saying that a
random entity X is representable as a function of another
random entity, X ¼ f ðBÞ. If we posit from the outset that X

and B are defined on a common probability space,
ðU;U;oÞ, then for some measurable functions g : U! X

and h : U! B, we have X ¼ gðUÞ and B ¼ hðUÞ. In this
context, if we state that for any P 2 X,

a½P� ¼ Pr½X 2 P� ¼ m½f �1ðPÞ� ¼ Pr½B 2 f �1ðPÞ�, (6)

this would only mean that X and f ðBÞ are identically
distributed, but not that they are equal. The statement X ¼

f ðBÞ in this context means f � g � h; of which (6) is a
consequent but not an equivalent.
The situation is different, however, if X is identified on
ðX;X; aÞ and one introduces a new, unrelated, probability
space, ðB;B;mÞ, on which one identifies B. Then saying that
X is representable as X ¼ f ðBÞ is equivalent to (6). X which
was initially identified on ðX;X; aÞ in here being redefined,
rendered a random entity defined on ðB;B; mÞ. The
distinction between the statements ‘‘X ¼ f ðBÞ’’ and ‘‘X
and f ðBÞ have identical distributions’’ in this context is
meaningless, as we do not have a joint distribution of
ðX ;BÞ before we represent X as f ðBÞ.
To prevent any misunderstanding, consider the situation

when X and Y are stochastically unrelated random entities
(say, the perceptual images of two stimuli presented to two
different subjects) identified on, respectively, ðX;X; aÞ and
ðY;Y; bÞ. Suppose that with an appropriately chosen B

stochastically unrelated to both X and Y (e.g., uniformly
distributed between 0 and 1), and with appropriately
chosen measurable functions p and q, one can state that X

is representable as X ¼ pðBÞ, in the sense of (6), and,
separately, that Y is representable as Y ¼ qðBÞ, in the same
sense. Both these statements are perfectly meaningful when
taken separately. What one cannot conclude from this is
that the two-component system ðX ;Y Þ is representable as
ðpðBÞ; qðBÞÞ, or, in our notation,

X ¼ pðBÞ

Y ¼ qðBÞ

" #
.

This would wrongly imply a joint distribution for X and Y .
In this situation, if one has to present the two represent-
ability statements together, one would have to say that
X ¼ pðBÞ and Y ¼ qðB0Þ, where B and B0 are stochastically
unrelated but identically distributed entities (say, both are
uniformly distributed between 0 and 1).
4. Selective influence

We now focus on finite systems of random entities,
L ¼ f1; . . . ; ng, and put f ¼

Sn
i¼1fi. Notation

fX 1ðfÞ; . . . ;X nðfÞg is a special case of fX lðfÞgl2L, desig-
nating dependence of the joint distribution of fX 1; . . . ;X ng

on factor set f. Notation fX 1ðf1Þ; . . . ;X nðfnÞg means that
the joint distribution of fX 1; . . . ;X ng depends on

Sn
i¼1fi

and, in addition, the marginal distribution of each X i

depends on fi only.
Representation (5) being universal, the general definition

of selective influence it leads to is as follows.
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Definition 1. If fX 1ðfÞ; . . . ;X nðfÞg can be represented as

X 1 ¼ f 1ðB;f1Þ

..

.

X i ¼ f iðB;fiÞ

..

.

X n ¼ f nðB;fnÞ

2
666666664

3
777777775
, (7)

with B identified on some probability space ðB;B;oÞ and
ff 1; . . . ; f ng being measurable functions, then we say that
fX 1ðfÞ; . . . ;X nðfÞg are selectively influenced by (respective)
factor sets ff1; . . . ;fng, and write

fX 1; . . . ;X ngIff1; . . . ;fng.

In the special case when fi ¼ f for all i, relation

fX 1; . . . ;X ngIff; . . . ;fg

means that fX 1ðfÞ; . . . ;X nðfÞg can be represented as

X 1 ¼ f 1ðB;fÞ

..

.

X i ¼ f iðB;fÞ

..

.

X n ¼ f nðB;fÞ

2
666666664

3
777777775

which, in view of Lemma 1, is uninformative: this
representation can always be achieved. In contrast, if fi’s
are not all the same, Definition 1 is a hypothesis that may
or may not hold for a given vector fX 1ðfÞ; . . . ;X nðfÞg that
depends on f ¼

Sn
i¼1fi.

In particular, although fX 1; . . . ;X ngIff1; . . . ;fng im-
plies

fX 1ðfÞ; . . . ;X nðfÞg ¼ fX 1ðf1Þ; . . . ;X nðfnÞg

(the property called marginal selectivity),7 the reverse
implication does not work. Moreover, as shown in
Dzhafarov (2003a), it is possible that subsystems fX igi2I

depend only on corresponding
S

i2I fi for all possible
nonempty subsets I � f1; . . . ; ng (the property called
complete marginal selectivity), but (7) does not hold for
any random entity B. The reverse, obviously, cannot be
true:

if fX 1; . . . ;X ngIff1; . . . ;fng then fX igi2IIffigi2I

for all possible nonempty subsets I � f1; . . . ; ng (this is
called the nestedness property of selective influence). We
will not discuss here these properties in detail, as this
discussion would not substantially differ from the one in
7Strictly speaking, the meaning of ‘‘X i depends on fi only’’ is ‘‘X i does

not depend on fnfi ’’: the marginal effectiveness of the factors (see

Dzhafarov, 2001) is not important for the present considerations. Thus,

ðX 1;X 2ÞIðf1;f2Þ implies ðX 1;X 2Þ ¼ ðX 1ðf1Þ;X 2ðf2ÞÞ in the sense that

the distribution of X 1 does not change with f2 and the distribution of X 2

does not change with f1. It is possible, however, that the distribution, say,

of X 1 does not change with some or even all factors in f1 either.
Dzhafarov (2003a). Instead, we turn to the aspect of
selective influence which was not represented in that paper
with sufficient clarity.
The definition of selective influence in Dzhafarov (2003a)

is given in the form generalizing our example (1): given
fX 1ðfÞ; . . . ;X nðfÞg and ff1; . . . ;fng,

fX 1; . . . ;X ngIff1; . . . ;fng ()

X 1 ¼ f 1ðC;S1;f1Þ

..

.

X i ¼ f iðC;Si;fiÞ

..

.

X n ¼ f nðC;Sn;fnÞ

2
666666664

3
777777775
,

(8)

where C;S1; . . . ;Sn are mutually independent random
entities whose distributions do not depend on
ff1; . . . ;fng. This definition allows one to give ‘‘nice and
intuitive’’ interpretations to special cases: if the common
source of randomness C in (8) is a dummy argument (i.e., if
f iðc; s;fiÞ does not depend on c, for all i ¼ 1; . . . ; n), then
fX 1ðf1Þ; . . . ;X nðfnÞg is a system of mutually independent
random entities each of which depends on ‘‘its own’’
set of factors; if all Si’s are dummy arguments, and if
all f i’s are one-to-one, then any two components of
fX 1ðf1Þ; . . . ;X nðfnÞg are functions of each other; etc.
In view of Lemma 1, however, it is clear that in the

absence of additional constraints, representation (8) with
the sources of randomness classified into common (C) and
specific (S1; . . . ;Sn), is equivalent to representation (7),
with a single source of randomness B. Indeed, given (7) one
can always rename B into C and add dummy variables
S1; . . . ;Sn. Conversely, given (8), by the definition of jointly
distributed random entities, one can always find a random
entity B such that

C ¼ gðBÞ; S1 ¼ h1ðBÞ; . . . ;Sn ¼ hnðBÞ,

leading to (7). For instance, one can always put
B ¼ ðC;S1; . . . ;SnÞ. As stated before, ‘‘the reason’’ for
independence or interdependence of random entities X i is
not in the sources of randomness per se, but in functions f i.
There is, however, a clear difference between the two

equivalent representations, (7) and (8). Fixing B at some
value b in (7) makes ff 1ðb;f1Þ; . . . ; f nðb;fnÞg, conditionally
deterministic, whereas fixing C at some value c in (8) makes
ff 1ðc;S1;f1Þ; . . . ; f nðc;Sn;fnÞg conditionally independent,
possibly but not necessarily deterministic. One might be
tempted to think that (7) offers greater conceptual
simplicity than (8): is it not easier to deal with deterministic
entities than with stochastic ones? The answer is that it is
not always so. With all f iðb;fiÞ being deterministic, one
can always find measurable sets P in

Qn
i¼1Xi such that the

probability of ff 1ðb;f1Þ; . . . ; f nðb;fnÞg 2 P would jump
from 0 to 1 as one changes the value of ff1; . . . ;fng. If
some of the factors change continuously, this property
might be a serious impediment for analysis. For an
example see Dzhafarov (2003b, 2003c) where the property
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of well-behavedness for probability distributions of per-
ceptual images does not hold if these distributions are
singular. Another example can be found in Dzhafarov et al.
(2004) where the conditional distribution functions for
randomly varying durations are assumed to be differenti-
able. In all such cases we need the assumption that
fX 1ðf1Þ; . . . ;X nðfnÞg are representable by means of (8) with
nondummy specific sources of randomness S1; . . . ;Sn. In the
remainder of this section we show how such an assumption
should be formulated rigorously.

We need two preliminary notions and some notation
conventions.

A random entity A identified on ðA;A; aÞ is called
nondeterministic (with respect to a) if a½fag�o1 for every
value a 2 A (recall our convention that all singletons fag
belong to A). This implies that if a nondeterministic A is
defined on ðB;B; bÞ by means of A ¼ f ðBÞ, then b½fb :
f ðbÞ ¼ ag�o1 for every value a 2 A.

Given a finite system of random entities A ¼ ðA1; . . . ;AnÞ

jointly identified on ðA;A; aÞ, subsystem AI for any
nonempty I � f1; . . . ; ng is identified on the corresponding
projection space, denoted ðAI ;AI ; aI Þ. System A ¼

ðA1; . . . ;AnÞ is called tight8 if for some i 2 f1; . . . ; ng, on
denoting I ðiÞ ¼ f1; . . . ; ngnfig,

Ai ¼ f ðAI ðiÞ
Þ a.s. ðaI ðiÞ

Þ.

We propose now the following definition as generalizing
and clarifying the intended meaning of representation (8).
The motivation for the term classifiable sources of

randomness is derived from the intuition of classifying
different ‘‘aspects’’ of a single source of randomness B into
common and specific sources.

Definition 2. Let fX 1; . . . ;X ngIff1; . . . ;fng. We say that
random entities fX 1; . . . ;X ng have classifiable sources of
randomness if B in Definition 1 can be chosen so that for
any nonempty subset I � f1; . . . ; ng one can find measur-
able functions ff igi2I and stochastically independent
random entities C ¼ gðBÞ; fSi ¼ hiðBÞgi2I identified on,
respectively, ðC;C; gÞ and fðSi;Si; diÞgi2I , such that
1.
8

‘‘in

of r

pro
for all i 2 I

X i ¼ f iðC;Si;fiÞ (9)

and

2.
9Recall that this is the sigma-algebra consisting of all countable

combinations of intersections and unions involving open and closed

subsets of R. In view of Lemma 2, it is sometimes convenient to consider R

as the extended set of reals (with added points1 and �1) and to modify
for any value of ffigi2I at which fX igi2I is not tight,
f iðc;Si;fiÞ is nondeterministic (with respect to di) for all
i 2 I and almost all c 2 C (with respect to g).

The second condition essentially says that C; fSigi2I for a
nontight finite subsystem fX iðfiÞgi2I can be chosen so that
for all values c of C (except, perhaps, for a subset of
We choose this term to avoid potentially more confusing terms

terdependent,’’ ‘‘overdetermined,’’ etc. The tightness of finite systems

andom entities must not be confused with the property of tightness for

bability measures.
probability zero), fX iðfiÞgi2I are conditionally independent
without being conditionally deterministic.

The choice of ff igi2I and fC; fSigi2I g may be different for
different choices of I � f1; . . . ; ng. It is obvious, however,
that if ff igi2I ;C; fSigi2I satisfy Definition 2 for some I , then
they satisfy this definition for any I 0 � I . In particular, if
f1; . . . ; ng is nontight for at least some values of
ff1; . . . ;fng, then a single choice of fC;S1; . . . ;Sng can be
used for all its subsystems.

5. Random variables

We turn now to what is arguably the most important
special case to consider: finite systems of random variables

fX 1ðf1Þ; . . . ;X nðfnÞg selectively influenced by factor sets
ff1; . . . ;fng. For any i ¼ 1; . . . ; n; X iðfiÞ is identified on
probability spaces ðR;R;mfi

Þ, where R is the standard
Borel sigma-algebra on R.9 System fX 1ðf1Þ; . . . ;X nðfnÞg is
then identified on ðRn;Rn; afÞ, where Rn stands for

Qn
i¼1R,

and probability measure af agrees with the coordinate
probability measures mfi

as described earlier in the general
definition of a system of random entities.
Every X i is uniquely described by its distribution function

diðx;fiÞ ¼ Pr½X iðfiÞpx�, x 2 R. A distribution function
can have a countable number of discontinuities corre-
sponding to atoms of mfi

.10 For reasons to become
apparent shortly, it is desirable for us to deal with
continuous, or atomless coordinate measures (which
implies an atomless measure on the product space). To
this end we introduce random variables
fW 1ðf1Þ; . . . ;W nðfnÞg defined as

W 1ðf1Þ ¼ d1ðX 1ðf1Þ � 0;f1Þ þ ½d1ðX 1ðf1Þ;f1Þ � d1ðX 1ðf1Þ � 0;f1Þ�V 1

..

.

W iðfiÞ ¼ diðX iðfiÞ � 0;fiÞ þ ½diðX iðfiÞ;fiÞ � diðX iðfiÞ � 0;fiÞ�Vi

..

.

W nðfnÞ ¼ dnðX nðfnÞ � 0;fnÞ þ ½dnðX nðfnÞ;fnÞ � dnðX nðfnÞ � 0;fnÞ�V n

2
666666664

3
777777775
,

(10)

where fV 1; . . . ;Vng are independent variables Uni½0; 1�
(uniformly distributed on unit interval) such that vectors
fV1; . . . ;V ng and fX 1ðf1Þ; . . . ;X nðfnÞg are mutually inde-
pendent.

Lemma 2. Let fX 1ðf1Þ; . . . ;X nðfnÞg and fW 1ðf1Þ; . . . ;
W nðfnÞg be as above. Then:
1.
R a
1

is a
1

fW
W iðfiÞ is Uni½0; 1�, for all fi and i ¼ 1; . . . ; n;11
ccordingly.
0An atom is a value x such that af½fxg�40. A measure on a Borel space

tomless if it equals zero for all singletons.
1In view of this result one might be tempted to conclude that notation

1ðf1Þ; . . . ;W nðfnÞg is superfluous. This would not be correct. Even
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2.
(foo

tho

dep

f1

pla

rem
X 1 ¼ q1ðW 1ðf1Þ;f1Þ

..

.

X i ¼ qiðW iðfiÞ;fiÞ

..

.

X n ¼ qnðW nðfnÞ;fnÞ

2
666666664

3
777777775
,

for some measurable functions fq1; . . . ; qng;

3.
 fX 1; . . . ;X ngIff1; . . . ;fng if and only if

fW 1; . . . ;W ngIff1; . . . ;fng.
Proof. (Ad 1) For any p 2 ð0; 1Þ there is one and only one u

such that diðu� 0;fiÞpppdiðu;fiÞ and x4u¼)po
diðx;fiÞ. If diðu� 0;fiÞodiðu;fiÞ, then

Pr½W iðfiÞpp� ¼ Pr½X iðfiÞou� þ Pr½X iðfiÞ ¼ u�

�Pr Vp
p� diðu� 0;fiÞ

diðu;fiÞ � diðu� 0;fiÞ

� �
¼ diðu� 0;fiÞ þ ½diðu;fiÞ � diðu� 0;fiÞ�

�
p� diðu� 0;fiÞ

diðu;fiÞ � diðu� 0;fiÞ
¼ p.

If diðu� 0;fiÞ ¼ diðu;fiÞ ¼ p, then

Pr½W iðfiÞpp� ¼ Pr½X ðfiÞpu� ¼ p.

That Pr½W iðfiÞp0� ¼ 0 and Pr½W iðfiÞp1� ¼ 1 is obvious.
(Ad 2) Choose qiðp;fiÞ to be the quantile function for

X iðfiÞ; defined as

qiðp;fiÞ ¼ inffx : diðx;fiÞXpg; p 2 ½0; 1�,

with the convention allowing the function to attain values
1 (at p ¼ 1) and �1 (at p ¼ 0) (see footnote 9). Quantile
functions are obviously measurable.

(Ad 3) fW 1; . . . ;W ngIff1; . . . ;fng means that for some
random entity B, W i ¼ giðB;fiÞ for all i 2 f1; . . . ; ng. Then

X iðfiÞ ¼ qiðgiðB;fiÞ;fiÞ ¼ f iðB;fiÞ,

for all i 2 f1; . . . ; ng. Conversely, if X i ¼ f iðB;fiÞ, then

W iðfiÞ ¼ hiðf iðB;fiÞ;V iÞ,

where hi replaces the expression in (10). Since B and
fV 1; . . . ;Vng are jointly distributed, one can always
construct a random entity B� so that B and all of
fV 1; . . . ;Vng can be presented as measurable functions of
B�. Hence

W iðfiÞ ¼ giðB
�;fiÞ,

for all i 2 f1; . . . ; ng. &
tnote continued)

ugh according to the claim the marginal distribution of W i does not

end on fi, the joint distribution of fW 1; . . . ;W ng depends on

[ 	 	 	 [ fn. We could, however, always write fW 1ðfÞ; . . . ;W nðfÞg in
ce of fW 1ðf1Þ; . . . ;W nðfnÞg: the latter is preferable only insofar as it

inds one of how the W’s were obtained.
Thus, insofar as the relation of selective influence is
concerned we can deal with fW 1ðf1Þ; . . . ;W nðfnÞg instead
of fX 1ðf1Þ; . . . ;X nðfnÞg; for any i; W iðfiÞ is identified on
spaces ð½0; 1�;I;cfi

Þ, where I is the Borel sigma-algebra
on ½0; 1� and cfi

is an atomless measure.
fW 1ðf1Þ; . . . ;W nðfnÞg is then identified on ð½0; 1�n;In;ofÞ

with atomless measure of. The reason for our interest in
atomless measures lies in the following important fact.

Lemma 3. For a Uni½0; 1� random variable U and any

stochastically unrelated to U vector of random variables

ðA1; . . . ;AnÞ identified on ðA;A; aÞ with atomless a, there is a

function h : ½0; 1� ! A such that
(i)
 h is bijective;

(ii)
 h and h�1 are measurable (Borel);

(iii)
 for any P 2A, a½P� ¼ ‘½h�1ðPÞ�, where ‘ indicates the

usual Lebesgue measure on ½0; 1�.
Proof. Follows from a general result for standard Borel
spaces that can be found, e.g., in Kechris (1995,
p. 116). &

In accordance with the explanations given in the last
subsection of Section 3, one consequence of this lemma is
that ðA1; . . . ;AnÞ can be represented as ðA1; . . . ;AnÞ ¼ hðUÞ,
or equivalently,

A1 ¼ h1ðUÞ

..

.

Ai ¼ hiðUÞ

..

.

An ¼ hnðUÞ

2
666666664

3
777777775
,

where hi is the ith projection of function h ði ¼ 1; . . . ; nÞ.
In conjunction with Lemma 2, this mathematical

fact yields Levine’s (2003) main result as an im-
mediate consequence (see the subsection on probabilistic
dimensionality in Introduction). We prefer, however, to
consider implications of Lemmas 2 and 3 in a broader
context, for the case f1 ¼ 	 	 	 ¼ fn ¼ f, that is, for our
generalizations of both probabilistic causality and prob-
abilistic dimensionality to indexed families of random
systems.

Theorem 1. Any vector of random variables fX 1ðfÞ; . . . ;
X nðfÞg is representable as

X 1 ¼ g1ðB;fÞ

..

.

X i ¼ giðB;fÞ

..

.

X n ¼ gnðB;fÞ

2
666666664

3
777777775
,
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where B is any vector of random variables with atomless

distributions, and fg1; . . . ; gng are measurable functions. In

particular, B can always be chosen to be Uni½0; 1�.

Proof. Applying Lemma 3 to fðW 1ðfÞ; . . . ;W nðfÞÞg we get
representation

W i ¼ hiðU ;fÞ,

for all i ¼ 1; . . . ; n, where hi is the ith projection of h

(which now depends on f), and U is Uni½0; 1�. Next, we use
the second statement of Lemma 2 to obtain, for all
i ¼ 1; . . . ; n,

X i ¼ qiðW iðfÞ;fÞ ¼ qiðhiðU ;fÞ;fÞ ¼ giðU ;fÞ.

It remains to rename U into B to obtain the last statement
of the theorem. The possibility of using any vector of
random variables with atomless distribtuions in place of U

is obvious from Lemma 3. &

This is a great improvement over Lemma 1: the
application of the latter to random vector fX 1ðfÞ; . . . ;
X nðfÞg yields a representation fg1ðB;fÞ; . . . ; gnðB;fÞg with
B being a random entity defined on a potentially very large
probability space. Now we know that because X 1; . . . ;X n

are random variables, B can be always be chosen as
Uni½0; 1�, any other atomless variable, or vector of such
variables. This result subsumes and generalizes both
Levine’s (2003) treatment of probabilistic dimensionality
and Suppes and Zanotti’s (1981) treatment of probabilistic
causality, insofar as the latter is confined to finite systems
of random variables.

Unfortunately, we cannot use the same argument as in
the previous theorem to conclude that if

fX 1; . . . ;X ngIff1; . . . ;fng

then fX 1; . . . ;X ng are representable as

X 1 ¼ f 1ðU ;f1Þ

..

.

X i ¼ f iðU ;fiÞ

..

.

X n ¼ f nðU ;fnÞ

2
666666664

3
777777775
,

with U being Uni½0; 1�. The reason for this is that
projection hi of h in Lemma 3 generally depends on entire
ff1; . . . ;fng, for every i ¼ 1; . . . ; n. We can, however, state
a weaker but still useful result.

Theorem 2. If fX 1; . . . ;X ngIff1; . . . ;fng and if there is a

representation

X 1 ¼ f 1ðC;f1Þ

..

.

X i ¼ f iðC;fiÞ

..

.

X n ¼ f nðC;fnÞ

2
666666664

3
777777775
,

with C being a vector of random variables,12 then a

representation

X 1 ¼ g1ðB;f1Þ

..

.

X i ¼ giðB;fiÞ

..

.

X n ¼ gnðB;fnÞ

2
666666664

3
777777775

can be found with B being any vector of random variables

with atomless distribtuions, and fg1; . . . ; gng being some

measurable functions. In particular, B can always be chosen

to be Uni½0; 1�.

Proof. Immediately follows from Lemma 3. &

It is worth observing once again, since here it seems even
more counterintuitive than in the general case, that the
dependence of fX 1ðf1Þ; . . . ;X nðfnÞg on a single random
variable uniformly distributed between 0 and 1 does not tell
us anything about the stochastic relationship among
fX 1ðf1Þ; . . . ;X nðfnÞg: depending on functions gi, this
stochastic relationship may range from stochastic indepen-
dence to perfect functional interdependence.

6. Conclusion

We have established that any system of random entities
whose joint distribution depends on a factor set can be
represented by functions of two arguments: a single factor-
independent source of randomness and the factor set itself.
In the case of random variables (i.e., real-valued random
entities endowed with Borel sigma-algebras) the single
source of randomness can be chosen to be any random
variable (or a vector of random variables) with a
continuous distribution. In particular, it can always be
chosen to be uniformly distributed between 0 and 1. These
results have direct implications for the issue of establishing
sources of stochastic interdependence among random
entities (the problem of probabilistic causality). As it turns
out, finding a source of randomness whose values render
the random entities conditionally independent (including
the possibility of being conditionally deterministic) does
not in any reasonable sense ‘‘explain’’ stochastic inter-
dependence: the true explanation lies in the structure of the
functions that relate this source of randomness to the
random entities.
We have proposed a refined and very general version of

the definition of selective influence. A system of random
entities is selectively influenced by a respective system of
factor sets if each of the random entities can be presented
as a function of two arguments: a single source of
randomness (shared by all random entities) and the
respective factor set. The definition involving both
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common (shared by all) and specific (individual) sources of
randomness is equivalent to the definition involving a
single common source. We have also defined, however, a
more restrictive notion of selective influence, with ‘‘classifi-
able’’ (into common and specific) sources of randomness.
The issue of classifiability remains badly underdeveloped:
we do not know any useful sufficient conditions for the
classifiability to hold. For the case of vectors of (real-
valued) random variables we have established that if the
common source of randomness in their representation is
itself a vector of random variables, then it can be replaced
with any other system of random variables with a
continuous distribution, including a single variable uni-
formly distributed between 0 and 1.

Finally, we have presented arguments in favor of what
we believe to be a useful approach to random entities and
their relationships. This approach involves multiple un-
related to each other probability spaces, with the possibi-
lity, if needed, of redefining the unrelated random entities
identified on them as each other’s functions, or treating
them as stochastically independent random entities on
products of these spaces. The mathematical tradition of
thinking of all random entities under consideration as
jointly distributed on a common (usually undefined)
sample space is unsuitable for applied probabilistic
considerations, where it is common to consider sets of
random entities with no reasonable notion of co-occur-
rence applicable to them, and where it is common to freely
introduce unobservable random entities as part of theore-
tical constructs.

Acknowledgment

The first author’s contribution was supported by the
NSF Grant SES 0318010, Humboldt Research Award, and
Fellowship at the Swedish Collegium for Advanced Studies
in Social Sciences.
References

Blank-Lapierre, A., & Fortet, R. (1967). Theory of random functions. New

York: Gordon & Breach.

Dzhafarov, E. N. (1999). Conditionally selective dependence of random

variables on external factors. Journal of Mathematical Psychology, 43,

123–157.

Dzhafarov, E. N. (2001). Unconditionally selective dependence of random

variables on external factors. Journal of Mathematical Psychology, 45,

421–451.

Dzhafarov, E. N. (2003a). Selective influence through conditional

independence. Psychometrika, 68, 7–26.

Dzhafarov, E. N. (2003b). Thurstonian-type representations for ‘‘same-

different’’ discriminations: Deterministic decisions and independent

images. Journal of Mathematical Psychology, 47, 208–228.

Dzhafarov, E. N. (2003c). Thurstonian-type representations for ‘‘same-

different’’ discriminations: Probabilistic decisions and interdependent

images. Journal of Mathematical Psychology, 47, 229–243.

Dzhafarov, E. N., & Colonius, H. (2006). Regular minimality: A

fundamental law of discrimination. In H. Colonius, & E. N.

Dzhafarov (Eds.), Measurement and representation of sensations

(pp. 1–46). Mahwah, NJ: Erlbaum.

Dzhafarov, E. N., Schweickert, R., & Sung, K. (2004). Mental

architectures with selectively influenced but stochastically inter-

dependent components. Journal of Mathematical Psychology, 48,

51–64.
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