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Abstract. Contextual situations are those in which seemingly “the same” random

variable changes its identity depending on the conditions under which it is recorded.

Such a change of identity is observed whenever the assumption that the variable is one

and the same under different conditions leads to contradictions when one considers

its joint distribution with other random variables (this is the essence of all Bell-type

theorems). In our Contextuality-by-Default approach, instead of asking why or how

the conditions force “one and the same” random variable to change “its” identity,

any two random variables recorded under different conditions are considered different

“automatically”. They are never the same, nor are they jointly distributed, but one

can always impose on them a joint distribution (probabilistic coupling). The special

situations when there is a coupling in which these random variables are equal with

probability 1 are considered non-contextual. Contextuality means that such couplings

do not exist. We argue that the determination of the identity of random variables

by conditions under which they are recorded is not a causal relationship and cannot

violate laws of physics.
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1. Introduction

The main purpose of this paper is to explain the principle of Contextuality-by-Default

(CbD) in nontechnical terms, and to demonstrate the conceptual clarity this principle

brings in the analysis of random variables recorded under varying conditions. The

formulation of the principle in our previous publications [1–5] involves the following

component principles:

(Indexation-by-conditions) A random variable is identified (indexed, tagged) by all

conditions under which its realizations are recorded.

(Unrelatedness) Two or more random variables recorded under mutually incompati-

ble conditions are stochastically unrelated, i.e., they possess no joint distribution.

(Coupling) A set of pairwise stochastically unrelated random variables can be

probabilistically coupled, i.e., imposed a joint distribution on; the choice of a coupling

is generally non-unique.

CbD is complemented by the All-Posssible-Couplings approach [1–4], according to which

the constraints satisfied by a set of random variables observed under different conditions

(e.g., the Tsirelson inequalities [9] satisfied by spins in the EPR/Bohm paradigm [10])

can be characterized by studying the set of all possible ways in which these random

variables can be coupled. A general discussion of this approach is left out of this

paper. We focus, however, on the (im)possibility of imposing on a set of random

variables special, identity couplings, representing situations considered non-contextual.

An identity coupling is one in which random variables recorded under different conditions

are equal to each other with probability one. This approach to (non-)contextuality was

first explored by Larsson [15].∗
CbD is squarely within the framework of the Kolmogorovian probability theory

(KPT), although to keep the presentation nontechnical, we avoid using here explicit

measure-theoretic formalisms (cf. [11–13] and, especially, [14]). Our position is that

there are no empirical or theoretical considerations in quantum mechanics, cognitive

science, or anywhere else, that involve random variables but cannot be fully described

in the language of KPT. CbD can in fact be viewed as a principle that ensures the

universality of the descriptive power of KPT. It is another matter (not elaborated in

this paper, cf. [2]) that KPT may not be the most economic, convenient, or useful

language for describing quantum phenomena.

∗Non-contextuality can be generalized to be represented by couplings that are as close to identity

couplings as it is allowed by the marginal distributions of the variables involved [16, 17]. This allows

one to extend the notion of contextuality to signaling systems. We leave this (very recent) development

outside the scope of this paper.
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2. Indexation-by-conditions

The term “conditions” for a random variable C refers to any variable γ whose values

(random, predictable, or controllable at will) are paired with the observed realizations

of these random variables. The most familiar pairing employed in empirical sciences is

chronological: the values of γ and the values of C are recorded at the same time, say,

in a series of observations.

Consider a toy example. Pat has a monitor that at any given time shows a pair of

symbols, 00, 01, 10, or 11. The pairs follow each other in a very long sequence, such as

01, 11, 11, 10, 10, 10, 11, 11, 01, . . . (1)

Assume, for simplicity, that Pat is unable to record their order,† so she simply counts

the occurrences of each of 00, 01, 10, 11. Pat wishes to treat these pairs as four possible

values of a random variable C, with a distribution

00 01 10 11

p00 p01 p10 p11
. (2)

So far, γ is an empty notion: it can be viewed as a variable having one and the same

single value for each realization of C.

Assume now that Pat notices that the pairs 00, 01, 10, 11 representing C are

sometimes shown in red color and sometimes in blue. The two colors may alternate

randomly or in some regular fashion, e.g., red-blue-red-blue-. . .. In either case, Pat is

able to count the occurrences of the four different C values separately for the blue and

for the red colors, and form thereby two random variables

Cred ∼
00 01 10 11

p00 p01 p10 p11
,

Cblue ∼
00 01 10 11

p′00 p′01 p′10 p′11
,

(3)

where ∼ stands for “is distributed as”. In this representation, the two random variables

have the same possible values, but are distinguished by the condition γ having two

values, “blue” and “red”. That they are two different random variables is obvious if

(p00, p01, p10, p11) 6= (p′00, p
′
01, p

′
10, p

′
11), but this is true even if the the two distributions in

(3) are the same. One way to see this is to observe that these distributions can always

be made different by viewing the conditions under which the variable was recorded as

†Enumerating observed realizations of a random variable amounts to introducing the ordinal number

of the observation as a special condition under which the random variable is recorded. This presents

no conceptual difficulties but complicates the discussion.



Contextuality is About Identity of Random Variables 4

part of its value. That is, we can have

Cred ∼
red 00 red 01 red 10 red 11

p00 p01 p10 p11
,

Cblue ∼
blue 00 blue 01 blue 10 blue 11

p′00 p′01 p′10 p′11
,

(4)

where each value has the structure “color ij”. Even if (p00, p01, p10, p11) =

(p′00, p
′
01, p

′
10, p

′
11), the two random variables have different distributions, simply because

they have different possible values. Such a redefinition is always possible, and even when

it is not convenient and one uses (3) instead, this consideration justifies accepting as a

general principle that different conditions always define different random variables.

Obviously, the color of the symbols in this example can be replaced by any condition

that can be systematically associated with the recorded values in sequence (1). Thus,

Pat could simply distinguish odd-numbered and even-numbered presentations, or have

her window sometimes open and sometimes closed when observing the symbols.

3. Joint Distributions and Stochastic Unrelatedness

Suppose now that Pat wishes to treat C as a vector consisting of two random variables,

A = f1 (C) = left-hand component of C,

B = f2 (C) = right-hand component of C.
(5)

Being functions of one and the same random variable C, the random variables A and B

are jointly distributed, i.e., for every pair of values A = i and B = j, Pat can uniquely

determine the probability with which these two values co-occur. In this case,

Pr [A = i and B = j] = Pr [C = ij] ,

i, j ∈ {0, 1} .
(6)

The co-occurrence in this example is chronological: i and j occur simultaneously, within

a single pair displayed on Pat’s monitor. But the deeper, more general meaning of the

co-occurrence is that

(i) there are function A = f1 (C) and B = f2 (C) of one and the same random variable

C; and

(ii) the co-occurring values are i = f1 (c) and j = f2 (c) for any one value c of C.

The joint distribution of A and B in any such case is uniquely determined: for any value

(i, j) of (A,B) one determines the set Sij of the values c of C such that i = f1 (c) and

j = f2 (c), and one puts

Pr [A = i and B = j] = Pr [c ∈ Sij] ,
i, j ∈ {0, 1} .

(7)

The reverse of this statement is also true: if the joint distribution of (A,B) is well-

defined, then A and B can be presented as functions of one and the same random variable
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C. To prove this, put C = (A,B) with Pr [C = (i, j)] defined as Pr [A = i and B = j].

This amounts to using (??) as the definition of C. Then A and B as functions of C are

defined by (5).

This can be generalized to any set of random variables of arbitrary nature: for any

such a set, the random variables comprising it have a joint distribution if and only if

they can be presented as functions of one and the same random variable [2, 11, 12, 14].

(Note that any set of jointly distributed random variables is a random variable: the

difference between a “single” random variable and, say, a vector of several random

variables is entirely superficial, and can always be eliminated by renaming of the values,

e.g., (0, 0) , (0, 1) , (1, 0) , (1, 1) into 1, 2, 3, 4.)

The situation is very different when we consider random variables recorded under

mutually incompatible conditions (i.e., different values of γ). Thus, unlike A and B

in the above example, the variables Cred and Cblue never co-occur in the chronological

sense, and Pat would not know how to assign probability values to the logically possible

pairs

Cred = x and Cblue = y,

x, y ∈ {00, 01, 10, 11} .
(8)

Pat is not able to assess this probability by counting the occurrences of the different

pairs, because she does not know which value of Cred she should pair with which value of

Cblue to form an “observed” value of the hypothetical random variable C ′ = (Cred, Cblue).

This situation is described by saying that Cred and Cblue are stochastically unrelated. In

view of what was said above, it means that Cred and Cblue are not functions of any single

random variable.

This does not mean, however, that Cred and Cblue cannot be imposed a joint

distribution on. The precise meaning of this is as follows.

4. Couplings

Suppose that Pat formed the pairs (x, y) in (8) according to some arbitrarily chosen

scheme. Any such a pairing scheme defines a (probabilistic) coupling for Cred and Cblue
[18]. Formally, a coupling for Cred and Cblue is a random variable Z = (X, Y ) that

satisfies

X ∼ Cred, Y ∼ Cblue. (9)

Calling Z = (X, Y ) a random variable means that X and Y are jointly distributed. Z is

a coupling because the marginal distributions of X and Y , taken separately, are the same

as those of, respectively, Cred and Cblue in (3) or (4). Note that Z is a random variables

different from both Cred and Cblue (and in fact stochastically unrelated to them): by

constructing a Z satisfying (9) one does not make Cred and Cblue jointly distributed or

changed in any way.
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The coupling Z is generally non-unique. In the matrix below,

Y = 00 Y = 01 Y = 10 Y = 11

X = 00 p0000 p00
X = 01 . . . p01
X = 10 . . . p10
X = 11 p1111 p11

p′00 p′01 p′10 p′11

(10)

any of the (generally infinite) fillings of the interior that agrees with the indicated

marginal probabilities will define a possible coupling. The agreement with the marginal

probabilities means

px00 + px01 + px10 + px11 = px,

p00y + p01y + p10y + p11y = p′y,

x, y ∈ {00, 01, 10, 11} ,
(11)

which is merely an explicit version of (9). For instance, Pat can form Z = (X, Y ) in

such a way that

Pr [X = x and Y = y] = Pr [X = x] Pr [Y = y] = pxp
′
y,

x, y ∈ {00, 01, 10, 11} .
(12)

This Z is called an independent coupling, and it is universally imposable on any set

of pairwise stochastically unrelated random variables (which is the reason stochastic

unrelatedness is often confused with stochastic independence, which is a form of

stochastic relationship).

Equations (9)-(11), however, rule out certain subclasses of couplings. Thus, Pat

may be especially interested in whether she can simply treat Cred and Cblue as “essentially

one and the same” random variable. The rigorous meaning of “essentially the same” is

the identity coupling, defined by the conjunction of (9) and (11) with

Pr [X = Y ] = 1, (13)

or, if Pat uses (4) instead of (3),

Pr

[
X = red x and Y = blue x

for some x ∈ {00, 01, 10, 11}

]
= 1, (14)

Obviously this identity coupling exists if and only if px = p′x for all x, i.e., if and only if

Cred and Cblue in representation (3) have the same distribution.

5. Same Identity vs Same Distributions

Being identically distributed, however, does not generally guarantee the possibility of

the identity coupling. To see this, let us assume that Pat views C as a pair (A,B)

defined by (5). In accordance with the indexing-by-conditions principle, she has then
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Cred = (Ared, Bred) and Cblue = (Ablue, Bblue), i.e., both A and B, since they are

recorded in conjunction with γ = red/blue, are to be indexed by these conditions.

The distributions of Cred and Cblue are then represented by two joint distributions,

γ = red Bred = 0 Bred = 1

Ared = 0 p00 p01 p0·
Ared = 1 p10 p11 p1·

p·0 p·1

γ = blue Bblue = 0 Bblue = 1

Ablue = 0 p′00 p′01 p′0·
Bblue = 1 p′10 p′11 p′1·

p′·0 p′·1

(15)

Suppose first that Pat is only interested in whether she can treat Ared and Ablue as

an “essentially the same” random variable (disregarding B). This translates into the

question of the existence of the identity coupling for Ared and Ablue, i.e., a random

variable (X,X ′) with

X ∼ Ared, X
′ ∼ Ablue, and Pr [X = X ′] = 1. (16)

Repeating the reasoning of the previous subsection, Pat comes to the conclusion that

such a coupling exists if and only if Ared and Ablue are identically distributed, i.e.,

p0· = p′0·. The situation is analogous for Bred and Bblue: the identity coupling (Y, Y ′) for

them exists if an only if Bred ∼ Bblue, i.e., p·0 = p′·0.

Let now both these conditions be satisfied: Ared ∼ Ablue and Bred ∼ Bblue, i.e., let

Pat deal with the distributions

γ = red Bred = 0 Bred = 1

Ared = 0 p00 p01 p0·
Ared = 1 p10 p11 p1·

p·0 p·1

γ = blue Bblue = 0 Bblue = 1

Ablue = 0 p′00 p′01 p0·
Bblue = 1 p′10 p′11 p1·

p·0 p·1

(17)

Any random variable Z = (X, Y,X ′, Y ′) such that

(X, Y ) ∼ (Ared, Bred), (X ′, Y ′) ∼ (Ablue, Bblue) (18)

is a coupling for (Ared, Bred) and (Ablue, Bblue). It is easy to see that Z is also a coupling

for separately taken Ared, Bred, Ablue, Bblue, because (18) implies

X ∼ Ared, X
′ ∼ Ablue, Y ∼ Bred, Y

′ ∼ Bblue. (19)
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Let now the question Pat poses for herself be whether the red/blue difference matters

when considering both A and B together. This questions translates into that of the

possibility of Z being an identity coupling satisfying

Pr [X = X ′] = 1,

Pr [Y = Y ′] = 1.
(20)

Even though Ared ∼ Ablue and Bred ∼ Bblue, such a coupling may not exist. It is

clear that it exists (generally non-uniquely) if and only if the two joint distributions

are identical, which in this case (with p0· and p·0 fixed) is equivalent to p00 = p′00. If

p00 6= p′00, then, in any coupling, one or both of the equations in (20) should be violated.

This leads us to the notion of probabilistic contextuality.

6. Probabilistic Contextuality

It can be said that when (Ared, Bred) , (Ablue, Bblue) cannot be coupled by an identity

coupling, the color creates a context for the probability distributions involved. It can

be shown that Pat can always find a value p such that Z = (X, Y,X ′, Y ′) is a coupling

for (Ared, Bred) and (Ablue, Bblue) that satisfies

Pr [X = X ′] = p,

Pr [Y = Y ′] = p.
(21)

Choosing p = 1 means having the identity coupling, and we take this case as representing

a lack of contextuality. As mentioned earlier, in the distributions described by (17), this

is not the case if p00 6= p′00. In this case p should be chosen to be less than 1. The

minimum possible value of 1− p can in fact be taken as a measure of contextuality, i.e.,

a measure of deviation of the system from the identity coupling representing lack of

contextuality.

We will not, however, pursue the subject of quantitatively measuring contextuality

in this paper. We only want to establish the defining aspect of contextuality:

the contextuality in a system of random variables recorded under various conditions is

a deviation of the possible couplings for this system from a specifically chosen identity

coupling.

There can be more than one identity coupling, depending on which of the random

variables involved are hypothesized to be “essentially the same” despite being labeled

by different conditions. To each specific choice of an identity coupling there corresponds

a specific meaning of contextuality.

Let us make this clear on the abstract notion of a system whose inputs are α, β, γ, . . .

and whose outputs are A,B,C . . .. (This is not the most general conceptual set-up,

but if one wants to avoid technicalities, it is general enough.) The inputs are simply

variables, each having several possible values, while the outputs are random variables

with a well-defined joint distribution for each possible combination of the inputs values.
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Let φ, χ, ψ, . . . be these possible combinations: we call them treatments or conditions.

By the indexation-by-conditions principle, the outputs are to be labeled

(Aφ, Bφ, Cφ, . . .) , (Aχ, Bχ, Cχ, . . .) , (Aψ, Bψ, Cψ, . . .) , . . . , (22)

where any random variable is jointly distributed with any identically indexed random

variable but stochastically unrelated to any differently indexed one. Any random

variable

U = (Xφ, Yφ, Zφ, . . . , Xχ, Yχ, Zχ, . . . , Xψ, Yψ, Zψ, . . .) (23)

such that

(Xφ, Yφ, Zφ . . .) ∼ (Aφ, Bφ, Cφ, . . .) ,

(Xχ, Yχ, Zχ, . . .) ∼ (Aχ, Bχ, Cχ, . . .) ,

(Xψ, Yψ, Zψ, . . .) ∼ (Aψ, Bψ, Cψ, . . .) ,

. . .

(24)

is a coupling for (22).

Assume now that, for whatever reason, one thinks that of the inputs α, β, γ, . . . only

α can influence the identity of A and only β can influence the identity of B. This means

that if, e.g., φ (α0) , φ
′ (α0) , φ

′′ (α0) , . . . denote treatments containing the same value α0

of α, then all Aφ(α0), Aφ′(α0), Aφ′′(α0), . . . are “essentially” the same, even if differently

labeled. A rigorous formulation is that there exists a coupling U ′ in which

Pr
[
Xφ(α0) = Xφ′(α0) = Xφ′′(α0) = . . .

]
= 1, (25)

for every value α0 of α. Analogously, the hypothesized relation between β and B

translates into the constraint[
Yφ(β0) = Yφ′(β0) = Yφ′′(β0) = . . .

]
= 1, (26)

for every value β0 of β. In the sense of being subject to these two sets of constraints, U ′

is an identity coupling. If now it can be shown that such a coupling does not exist, then

the system is contextual with respect to the identity coupling U ′. The interpretation is

that the identity of A depends not only on α or/and the identity of B depends not only

on β.

7. Alice-Bob EPR/Bohm Paradigm

Let us now illustrate the notion of contextuality on an example well familiar in quantum

physics: two entangled spin-half particles, with Alice and Bob measuring spins along

two directions each. Let the direction chosen by Alice be denoted α, with values α1, α2;

the direction chosen by Bob is denoted by β, with values β1, β2. We treat the four

combinations (αi, βj) (i, j ∈ {1, 2}) of settings by Alice and Bob as conditions under

which the spins are recorded, A in Alice’s particle, B in Bob’s, both random variables

with possible values +1 and −1.
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In accordance with the indexation-by-conditions and unrelatedness principles, we

have four stochastically unrelated to each other pairs of random variables (Aij, Bij),

i, j ∈ {1, 2}. They are distributed as

αi, βj Bij = +1 Bij = −1

Aij = +1 pij qij pij + qij
Aij = −1 rij sij

pij + rij

(27)

A coupling for these pairs of random variables is a random variable

V = (X11, Y11, X12, Y12, X21, Y21, X22, Y22) (28)

such that

(Xij, Yij) ∼ (Aij, Bij) , i, j ∈ {1, 2} . (29)

It is taken as a given that a change in Alice’s setting, α1 → α2, changes the identity

of Alice’s random variable (and analogously for Bob). This means that X1j and X2j

in the coupling V should not be required to be equal to each other, no matter what

j is (and analogously for Yi1 and Yi2). It seems, however, reasonable to assume that

Bob’s settings “have nothing to do” with Alice’s measurements, and vice versa. This

translates into requiring that

Pr [Xi1 = Xi2] = 1,

Pr [Y1j = Y2j] = 1,

i, j ∈ {1, 2} .
(30)

The coupling V subject to this requirement can be chosen as the identity coupling of

special interest (this is only one of logically possible identity couplings). Equivalently,

the requirement is that the four pairs (Aij, Bij) allow for a reduced coupling

V ′ = (X ′1, X
′
2, Y

′
1 , Y

′
2) , (31)

such that (
X ′i, Y

′
j

)
∼ (Aij, Bij)

i, j ∈ {1, 2} .
(32)

This is the closest rigorous formulation for the usually considered “joint distribution of

A1, A2, B1, B2” [19]. We know that V subject to (30) exists if and only if the conjunction

of the following two conditions is satisfied:

(i) Marginal selectivity [14,20,21] or no-signaling [22,23],

pi1 + qi1 = pi2 + qi2 = pi·,

p1j + r1j = p2j + r2j = p·j,

i, j ∈ {1, 2} ;

(33)
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(ii) CH/Fine inequalities [19,24],

−1 ≤ p11 + p12 + p21 + p22 − (2p3−i,3−j + pi· + p·j) ≤ 0,

i, j ∈ {1, 2} .
(34)

We can say that if (and only if) these two requirements are jointly met, then the system

in question is non-contextual with respect to the identity coupling V defined by (28)-

(29)-(30), or equivalently, (31)-(32). The essence of all Bell-type theorems is to establish

conditions for such non-contextuality.

Conversely, we can say that the system exhibits contextuality if and only the two

requirements are violated. It may be important or at least useful in many cases to

distinguish the following two cases:

Case 1. Marginal selectivity is violated, that is, either the distribution of Bij (the spin

recorded by Bob for the direction βj he chose) changes with αi (the direction chosen

by Alice), or vice versa. This (perhaps) should be interpreted as a direct influence

of Bob’s choices on Alice’s measurements, i.e., some form of signaling. Note that

the way they are written above, the probabilities pi·, p·j in CH/Fine inequalities are

not defined if marginal selectivity (no-signaling) is violated.

Case 2. Marginal selectivity is satisfied but CH/Fine inequalities are violated. This

can be called the case of “pure contextuality”. Bob’s settings do not affect the

distribution of Alice’s recordings, they only determine the way they are grouped

into random variables (see the next section). The laws of quantum physics and

special relativity dictate this case when the two particles are separated by a space-

like interval.

In all our previous publications regarding contextuality [1–5] we only considered Case

2 as that of contextuality, preferring to speak of “direct cross-influences” in Case 1.

Intuitively, the two cases must be distinguished, although perhaps not as sharply: direct

cross-influences need not prevent the system from also being contextual. It is a challenge

for the future conceptual analysis to see whether there is a principled way to define

contextuality “on top of” violations of marginal selectivity. There is in fact a principled

way to define contextuality “on top of” violations of marginal selectivity [16,17].

8. Why Contextual Indexing Does not Violate Laws of Physics

Let us focus on Case 2 (“pure contextuality”) and ask ourselves: if Bob’s choices change

the identity of Alice’s measurements, does not this mean a form of signaling from Bob

to Alice? In the case of a space-like separation this would contravene special relativity.

The answer is negative, and it can be justified on two levels.

On a most obvious one, Alice can never guess that Bob even exists if the only

information she has is the distributions of spins in her particle in response to her

choices of settings. The non-identity of Ai1 and Ai2 is not available to her. It can

only be established by someone else, a Charlie who receives the information both about
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the settings and about the spin recording from both Alice and Bob. From Charlie’s

point of view, Alice observes a mixture of Ai1 and Ai2, but Alice cannot know that.

On a deeper level, the negative answer is justified because the identity of a random

variable is not an objective, physical entity to begin with. The realizations of random

variables, such as “spin-down in direction α1” are objective, and the probabilities of all

such observations (in the classical, frequentist sense) among, say, all spins in direction

α1 are objective too. But which realizations are grouped together to count them and

establish their relative frequencies is a matter of choice.

It is analogous to looking at a set of points scattered on a sheet of paper: one can

group them in this or that way and create various patterns without ever affecting the

objective locations of the points. For Charlie, Aij and Bij are double-indexed because

he chose to relate their realizations to both Alice’s and Bob’s settings, αi and βj. CbD

prescribes doing this “automatically”, because in this way one can gain information

(e.g., about quantum correlations between entangled particles), and because in cases

when this is redundant one does not lose anything: in those cases differently labeled

random variables are simply merged within an identity coupling.

The latter point deserves being emphasized. The requirement to index a random

variable by all conditions paired with its realizations may be interpreted as a call for

some kind of “all-is-one” holism. What if Charlie notices that the information he gets

from Alice and Bob is received either in the morning, or during the daytime, or else

in the evening? CbD requires then from Charlie to index the spins as Aijt and Bijt,

where t assumes three values (morning, daytime, evening). Does not this “automatic”

extra-labeling make the analysis unnecessarily complicated? The answer is: Charlie

can always choose not to record the time of the day, but once he chooses to record it,

he will either gain valuable knowledge (if the time of the day turns out to affect the

joint distributions of the spins), or, in the worst case, he will find out that an identity

coupling for (Aijt, Bijt) can be constructed eliminating the need for using t.

There is yet another, purely formal way of justifying why the identity of random

variables has no physical meaning. If we list all the random variables in play, each

indexed by the conditions under which it has been recorded, their identities are entirely

defined by (and define) the coupling imposed on them. Different couplings correspond

to different identities. But couplings for one and the same system of random variables

are generally non-unique, and should therefore be viewed as no more than possible

(mutually exclusive) mathematical descriptions. The totality of all couplings that are

imposable on a given system does characterize the system physically, as detailed in Refs.

[1–4], but no single coupling is more “real” than another.

9. Concluding Remarks

The position presented in this paper is summarized in the abstract, and need not be

repeated.

Commenting on an earlier draft of this paper, Arkady Plotnitsky suggested a
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connection between CbD and Bohr’s use of the notion of complementarily in his 1935

reply [6] to the famous EPR paper [7] (for a thorough analysis of this exchange, see Ref.

[8]). Plotnitsky notes that Indexation-by-Conditions corresponds to Bohr’s view that

each quantum phenomenon is unique, so that to specify it one needs all the conditions

under which it occurs; and that the Unrelatedness and Coupling principles reflect Bohr’s

notion of complementary quantum phenomena as being mutually exclusive but equally

necessary for a rigorous description of these phenomena.

Of the modern approaches to probabilistic contextuality in the literature on

foundations of quantum mechanics, Larsson’s [15] comes very close to ours, while

Krennikov’s approach [25–27] is in some respects more general. See also Refs. [28–31].

Here, we will briefly discuss two other treatments.

One of them is proposed by Avis, Fischer, Hilbert, and Khrennikov [32]. In Ref. [1]

we called it “conditionalization” and compared it with CbD. Conditionalization consists

in considering different values of γ associated with realizations of a random variables

as if γ were a random variable in its own right. For instance, in our introductory

toy example, the color of Pat’s random variable C (with values 00, 01, 10, 11) would

be considered a random variable with two values, “red” and “blue”, whether the color

changes randomly or alternates in some regular fashion, say, red-blue-red-blue-. . .. The

probabilities assigned to the two values have to be nonzero; otherwise they are arbitrary

and play no role in characterizing the system being studied. The variable C is then

considered conditioned on the values “red” and “blue”, with the distributions in (3)

treated as conditional distributions. This is equivalent to the indexation-by-conditions

in CbD: two different random variables are indexed by “red” and “blue”. However, here

the conditionalization analysis ends, while the analysis led to by CbD approach only

begins at this point: it entails considering various couplings of the two variables and

determining, when contextuality is of the main interest, whether they contain identity

couplings.

Another approach is based on the use of signed probability measures (sometimes

referred to as “negative probabilities”). The approach dates back to Paul Dirac [33],

but here it will be presented primarily based on Refs. [34, 35]. In relation to CbD, this

approach can be presented in terms as considering identity couplings only, but allowing

some of the joint probabilities in them to be negative (and some greater than 1). As

these are not then true couplings, they can be called quasi-couplings. This approach

will not be applicable to our introductory toy example, but it can be illustrated on

the EPR/Bohm paradigm. Given (Aij, Bij), i, j ∈ {1, 2}, we construct a quasi-coupling

G = (E1, F1, E2, F2) such that

Pr [Ei = a, F j = b] = Pr [Aij = a,Bij = a] ,

i, j ∈ {1, 2} , a, b ∈ {−1,+1} .
(35)

The quasi-coupling G, however, is not a conventional random variable, in the sense that

the signed probability values

p (a1, b1, a2, b2) = Pr [E1 = a1, F1 = b1, E2 = a2, F2 = b2] (36)
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while well-defined for all a1, b1, a2, b2 ∈ {−1,+1} and summing to 1, may be negative or

greater than 1. If the Alice-Bob system allows for the identity coupling in the sense of

CbD, then G simply coincides with the corresponding reduced coupling V ′ in (31), with

all probabilities between 0 and 1. If the identity coupling does not exist (i.e., we have

a contextual system), then some of the probabilities in (36) will have to be negative.

The relationship between CbD and the signed probability measures is presently under

investigation. It should be noted that the approach in question is not applicable if the

marginal selectivity condition is violated (cf. the last paragraph of Section 7). In fact

the quasi-coupling G above exists if and only if marginal selectivity (no-signaling) holds

[36].
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Jan-Åke Larsson, Acacio de Barros, and Gary Oas for many helpful discussions. The

work was supported by NSF grant SES-1155956.

References

[1] Dzhafarov E N and Kujala J V 2014 Embedding quantum into classical: contextualization vs

conditionalization PLoS ONE 9(3):e92818

[2] Dzhafarov E N and Kujala J V 2014 No-Forcing and No-Matching theorems for classical probability

applied to quantum mechanics Found. Phys. 44 248–65

[3] Dzhafarov E N and Kujala J V 2013 All-possible-couplings approach to measuring probabilistic

context PLoS ONE 8(5):e61712

[4] Dzhafarov E N and Kujala J V 2014 A qualified Kolmogorovian account of probabilistic

contextuality Lect. Notes in Comp. Sci. 8369 201-212.

[5] Dzhafarov E N and Kujala J V 2014 Random variables recorded under mutually exclusive

conditions: Contextuality-by-Default Adv. in Cogn. Neurodyn. IV In press (arXiv:1309.0962)

[6] Bohr N 1935 Can quantum-mechanical description of physical reality be considered complete?

Phys. Rev. 48 696

[7] Einstein A, Podolsky B, and Rosen N 1935 Can quantum-mechanical description of physical reality

be considered complete? Phys. Rev. 47 777

[8] Plotnitsky A 2009 Epistemology and Probability: Bohr, Heisenberg, Schrödinger, and the Nature

of Quantum-Theoretical Thinking (New York: Springer)

[9] Cirel’son B S 1980 Quantum generalizations of Bell’s inequality Lett. Math. Phys. 4 93–100

[10] Bohm D and Aharonov Y 1957 Discussion of experimental proof for the paradox of Einstein, Rosen

and Podolski Phys. Rev. 108 1070–6

[11] Dzhafarov E N and Kujala J V 2010 The Joint Distribution Criterion and the Distance

Tests for selective probabilistic causality Front. Quant. Psych. Meas. 1 151 (doi:

10.3389/fpsyg.2010.00151)

[12] Dzhafarov E N and Kujala J V 2012 Quantum entanglement and the issue of selective influences

in psychology: An overview Lect. Notes in Comp. Sci. 7620 184–95

[13] Dzhafarov E N and Kujala J V 2013 Order-distance and other metric-like functions on jointly

distributed random variables Proc. Amer. Math. Soc. 141 3291–301

[14] Dzhafarov E N and Kujala J V 2013 Probability, random variables, and selectivity arXiv:1312.2239
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