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Abstract
A general definition and a criterion (a necessary and sufficient condition) are formulated for an arbitrary set of external factors to selectively

influence a corresponding set of random entities (generalized random variables, with values in arbitrary observation spaces), jointly distributed
at every treatment (a set of factor values containing precisely one value of each factor). The random entities are selectively influenced by the
corresponding factors if and only if the following condition, called the joint distribution criterion, is satisfied: there is a jointly distributed set
of random entities, one entity for every value of every factor, such that every subset of this set that corresponds to a treatment is distributed as
the original variables at this treatment. The distance tests (necessary conditions) for selective influence previously formulated for two random
variables in a two-by-two factorial design (Kujala & Dzhafarov, 2008, J. Math. Psychol., 52, 128–144) are extended to arbitrary sets of factors
and random variables. The generalization turns out to be the simplest possible one: the distance tests should be applied to all two-by-two
designs extractable from a given set of factors.

KEYWORDS: external factors, joint distribution, probabilistic causality, selective influence, systems of random variables, stochastic depen-
dence, stochastically unrelated.

A system’s behavior, be the system biological, social, or
technological, can be thought of as a network of stochastically
interdependent random entities. The external world provides
inputs (influences, interventions, conditions) presumably af-
fecting some of the components of the network and not affect-
ing the others. The question arises therefore as to how, based
on the joint distributions of all these random entities, to dis-
tinguish the components affected and not affected by each of
these external inputs.

The notion of selective influence under stochastic interde-
pendence was introduced and systematically analyzed in the
behavioral context by Townsend (1984), although implicitly
it had been used before (Lazarsfeld, 1965, Bloxom, 1972,
Schweickert, 1982). Townsend’s approach to selective influ-
ence (further developed in Townsend and Thomas, 1994, and
mathematically characterized in Dzhafarov, 1999) is, however,
very different from the present one. In fact, in all nontrivial
cases they are incompatible. Our approach gradually devel-
oped starting with Dzhafarov (2001), based on Dzhafarov’s
earlier work on response time analysis (see Dzhafarov, 1997,
for an overview). In Dzhafarov (2003) the definition of selec-
tive influence adopted in the present paper was given for finite
systems of random entities. This notion was put on a more
solid probabilistic foundation in Dzhafarov and Gluhovsky
(2006), and further developed in Kujala and Dzhafarov (2008).
In the latter work, for the first time, workable tests for selective
influence were formulated.

The present paper continues this line of research on a higher
level of mathematical rigor and arguably the highest possible
level of generality. The abstract nature of the mathematical
theory makes it rather difficult reading, with notation which,
though carefully chosen, may appear complicated. As a partial
remedy, we precede the formal development in Sections 2-5
by Section 1 in which we provide a more intuitive account of
some of the basic notions and results. We do this on simple
examples involving just two random variables influenced by
two factors.
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1. INTUITIVE INTRODUCTION

1.1. What is selective influence?

Consider a simple double-detection experiment: there are
two stimuli each of which may possess or lack a certain fea-
ture (signal property), and an observer has to respond Yes (sig-
nal present) or No (signal absent) to each of the two stim-
uli. For instance, the stimuli may be two spatially separated
line segments in a frontal plane each of which may be ei-
ther vertical (signal absent) or tilted by a fixed small angle
(signal present); the observer says Yes−Yes if both lines ap-
pear to be tilted, Yes−No if the left line appears tilted and
the right one not, etc. These responses are random variables:
A (response to the left stimulus) and B (response to the right
one), each with two possible values {Yes,No} occurring with
some probabilities. They are jointly distributed, in the sense
that by the virtue of co-occurring in the same trial the val-
ues of A and B are naturally paired, enabling one to mean-
ingfully pose questions like “What is the joint probability of
A = Yes and B = No?”. The joint distribution of A and B
may change depending on the values of the following exter-
nal factors: α = Tilt of the left line, with two possible values,
{absent, present}, and β = Tilt of the right line, with the same
two values. The combination of factor values chosen, one for
each of the factors, is traditionally referred to as a treatment.
With this terminology and notation, the population-level (ide-
alized) results of the experiment in question can be presented
in the form of four matrices:

Treatment
[

α = absent
β = absent B = yes B = no

A = yes p11 p12 p1·
A = no p21 p22 p2·

p·1 p·2

Treatment
[

α = absent
β = present B = yes B = no

A = yes q11 q12 q1·
A = no q21 q22 q2·

q·1 q·2

1
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Treatment
[

α = present
β = absent B = yes B = no

A = yes r11 r12 r1·
A = no r21 r22 r2·

r·1 r·2

Treatment
[

α = present
β = present B = yes B = no

A = yes s11 s12 s1·
A = no s21 s22 s2·

s·1 s·2

The letters p,q,r,s here represent theoretical probabilities,
with the usual meaning of the subscripts: p1· = p11 + p12,
p2· = p21 + p22, p1· + p2· = 1, etc. It is natural to surmise
that, unless the observer does not look at the stimuli at all,
the random variable A should depend on (be influenced by)
the value of α, and B should be influenced by the value of β.
It is not obvious, however, whether factor α only (or selec-
tively) influences random variable A, without affecting B, and
whether factor β only (selectively) influences random variable
B, without affecting A:

α β

↓ ↓
A B

,

as opposed to the possibilities

α β

↓ ↘ ↓
A B

,
α β

↓ ↙ ↓
A B

,
α β

↓ ↘↙ ↓
A B

.

Thus, we will have one of the latter scenarios if the “present”
value of α visually masks or enhances the salience of the
“present” value of β, or if the values of β somehow affect the
level of attention the observer pays to the factor α.

We denote the case when (α,β) selectively influence (A,B),
respectively, by

(A,B) " (α,β) .

What does this mean? The meaning of the relation is only
obvious if A and B are stochastically independent for all four
treatments, i.e., if pi j = pi·p· j, qi j = qi·q· j, etc., where i, j ∈
{1,2}. In this case all one has to establish to prove (A,B) "
(α,β) is that the marginal distribution of A is not affected by
changes in β and the marginal distribution of B is not affected
by changes in α.

To look at this in detail, let the pair of our random
variables (A,B) at the four treatments be denoted (A,B)11,
(A,B)12, (A,B)21, and (A,B)22, where 1,2 denote “absent”
and “present,” respectively. If A and B are independent at all
four treatments, then the selectiveness (A,B) " (α,β) sim-
ply means that the marginal distribution of A does not depend
on β (i.e., p1· = q1· and r1· = s1·) and the marginal distribu-
tion of B does not depend on α (i.e., p·1 = q·1 and r·1 = s·1).
The problem arises when A and B are not independent for at
least one of the treatments: how should one determine then
if (A,B) " (α,β)? This is the problem addressed in this pa-
per, only we do not confine the consideration to the case of
two factors and two random variables. Rather we generalize
the problem to an arbitrary set of external factors and an arbi-

trary (but one-to-one corresponding to the set of factors) set of
random entities.1

For a finite set of random variables the definition of selec-
tive influence was given in Dzhafarov (2003) and then refined
in Dzhafarov and Gluhovsky (2006) and Kujala and Dzhafarov
(2008). Applying it to our example, (A,B) is selectively influ-
enced by (α,β) if and only if one can find functions f and g
and a random entity C whose distribution does not depend on
α,β, such that

(A,B)
αβ
∼ ( f (α,C) ,g(β,C)) , (1)

where ∼ stands for “is distributed as.”2 That is, denoting
f (α = 1,C) by f1 (C), g(β = 2,C) by g2 (C), etc.,

(A,B)11 ∼ ( f1 (C) ,g1 (C)) , (A,B)12 ∼ ( f1 (C) ,g2 (C)) ,
(A,B)21 ∼ ( f2 (C) ,g1 (C)) , (A,B)22 ∼ ( f2 (C) ,g2 (C)) .

As an example, let C be a random vector (C0,C1,C2) with
stochastically independent components having the following
interpretation: C0 is a random entity representing the general
level of visual attention, while C1 and C2 are stimulus-specific
sources of randomness (which, with no loss of generality, can
be taken to be uniformly distributed between 0 and 1). Let

A =

{
1 if C1 > h1 (α,C0)
0 if C1 ≤ h1 (α,C0)

,B =

{
1 if C2 > h2 (β,C0)
0 if C2 ≤ h2 (β,C0)

,

where h1,h2 are some measurable functions from the set of
possible values of C into interval [0,1]. One can see that A
and B are generally stochastically interdependent by virtue of
depending on one and the same random entity, C0, but that A
does not depend on β, in the sense that for any given values of
the other arguments, C0 = c0,C1 = c1,C2 = c2, and α = 1 or 2,
the value of A does not change as a function of β; and B does
not depend on α in the analogous sense.

The definition of selective influence can also be looked at
in a simpler and more fundamental way. The fact that for
any given treatment A and B are stochastically related (i.e.,
paired, whether independent or interdependent) means in Kol-
mogorov’s probability theory that A and B are are measurable
functions of one and the same random entity. It is always true
therefore that

(A,B)
αβ
∼
(

f
(
α,β,Cαβ

)
,g
(
α,β,Cαβ

))
.

1 As explained in Section 2, we distinguish random entities and their special
case, random variables. Random entities take on values in arbitrary measur-
able spaces, while random variables map, or can be redefined to map, into
real numbers endowed with the Borel sigma-algebra. Note also that the
notion of a random entity (or variable) should always be taken to include
deterministic entities (variables) as a special case, the same as the notion of
stochastic interdependence, unless otherwise indicated, should be taken to
include stochastic independence as a special case.

2 It is usually the case that the possibility of selectiveness is considered when
it is known that the factors are effective in their influence upon (A,B), mean-
ing that for at least one value of either of the two factors the change of
the other factor from 1 to 2 changes the joint distribution of (A,B). This
aspect of the dependence of (A,B) on (α,β) being relatively trivial, we
do not include it in the definition of selective influence. In other words,
(A,B) " (α,β) is taken to mean that β does not influence A and α does not
influence B, leaving open the question of whether α influences A and/or β

influences B (see Dzhafarov, 2003, p. 10).
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The random entities C11,C12,C21,C22 can always be replaced
with a single C, e.g., by putting C = (C11,C12,C21,C22) and
redefining the functions f ,g accordingly:

(A,B)
αβ
∼ ( f (α,β,C) ,g(α,β,C)) . (2)

Comparing this universal representation with (1) we see that
the assumption of selective influence is that β in f and α in g
are dummy arguments.

1.2. Main properties of selective influence

There are three main properties of the selective influence
relation, (A,B) " (α,β).

First, selective influence is invariant with respect to all
(measurable) transformations of the random variables A,B,
even if transformations of A are allowed to depend on values
of factor α and transformations of B are allowed to depend on
values of factor β. In our example the values of A and B are
denoted yes and no. Clearly, we can encode them 0 and 1, re-
spectively, or by any other two numbers or words. Moreover,
we can, if we so choose, denote {yes,no} for A by {1,0} if
α = absent but by {−3,5} if α = present; analogously, we
can denote {yes,no} for B by {lion,crocodile} if β = absent
but by {zebra,cheetah} if β = present. Selective influence,
(A,B) " (α,β), if it holds for the original values for A and
B must also hold after any such transformations. This fol-
lows from the fact that if (1) holds then after any factor-value-
specific transformations F (α,A) and G(β,B) we have

(F (α,A) ,G(β,B))
αβ
∼ (F (α, f (α,C)) ,G(β,g(β,C)))

= ( f ∗ (α,C) ,g∗ (β,C)) .

Second, selective influence implies marginal selectivity, the
term coined by Townsend and Schweickert (1989) for the sit-
uation when the marginal distribution of A does not depend
on β and the marginal distribution of B does not depend on α.
This is an obvious consequence of (1). The reverse is not true,
as illustrated by examples in Dzhafarov (2003) and, more sys-
tematically, in Kujala and Dzhafarov (2008). Other examples
are given in this paper: in fact, in all our examples where the
selective influence relation does not hold marginal selectivity
is satisfied.

Third, selective influence relation satisfies the nestedness
property: if some random variables are selectively influenced
by corresponding factors (say, (A,B,C) " (α,β,γ) — we need
more than two factor-variable pairs for this property to be non-
trivial), then any subset of these variables is selectively influ-
enced by the corresponding subset of factors: (A,B) " (α,β),
(A,C) " (α,γ), and (B,C) " (β,z). This property is obvious
as soon as (1) is generalized to larger sets.

In this paper the three properties of selective influence will
be demonstrated on the maximal level of generality, for arbi-
trary sets of random entities and corresponding sets of factors
of arbitrary nature.

1.3. Distance tests for selective influence

How can one determine that (A,B) " (α,β)? In Kujala and
Dzhafarov (2008) two types of necessary conditions for selec-
tive influence were formulated, termed cosphericity tests and
distance tests. As we only generalize in this paper the latter

class of tests, we need not discuss the former. To apply a dis-
tance test to our example means to do the following. First,
the values of A and B have to be encoded by real numbers.
In accordance with what we know about the transformations
we can use any functions f (α,A) and g(β,B) with numerical
values. Second, one chooses a number ρ≥ 1. Third, for each
of the four treatments αβ = 11,12,21,21 one computes the
quantity

Dαβ = ρ

√
E
[∣∣Aαβ−Bαβ

∣∣ρ],
where E denotes expected value and

(
Aαβ,Bαβ

)
is an alterna-

tive (and more convenient) way of designating (A,B)
αβ

. Note
that Dαβ (the same as αβ, 21, etc.) is a string of symbols, with
no multiplication involved.

It has been shown in Kujala and Dzhafarov (2008) that if
(A,B) " (α,β), then, considering each random variable at
each value of the corresponding factor as a point (this yields
four points, A1,A2,B1,B2), these points can be placed in a met-
ric space in which the values D11,D12,D21,D22 are, with
some caveats, distances between A points and B points (D11
between A1 and B1, D12 between A1 and B2, etc.). As these
distances, by definition, should satisfy the triangle inequality,
we conclude with a bit of algebra (see Section 5) that

max{D11,D12,D21,D22}
≤ 1

2 (D11+D12+D21+D22) .

A distance test consists in checking if this inequality is satis-
fied: if not (at least for one choice of the numerical values and
the exponent ρ), then the selective influence relation is ruled
out.

In this paper we generalize this test to arbitrary sets of ran-
dom entities selectively influenced by arbitrary sets of exter-
nal factors. As it turns out, all one has to do to prove that all
random entities, taken one for each value of the correspond-
ing factor, can be embedded in a metric space is to apply the
test just described to all pairs of 2× 2 treatments for all pairs
of factors. To present this result in an unambiguous form we
have to introduce some notation that may appear cumbersome
at first: since a value of a factor generally does not itself in-
dicate which factor it is a value of (e.g., absent or 1 can be
a value of both α and β), we superscript each factor value
by the corresponding factor name. In our example it would
be 1α,2α,1β,2β. We call these pairs, factor value with factor
name, factor points. The four distances will now be written
D1α1β,D1α2β,D2α1β,D2α2β. Note that we could only get
away with the previous notation because the identity of the
factors in it was encoded by the order of their values within
pairs: in D11 the first 1 belong to α and the second one to
β. This convention cannot work, of course, for more than two
factors. In the new notation the distance test acquires the form

max
{

D1α1β,D1α2β,D2α1β,D2α2β
}

≤ 1
2

(
D1α1β +D1α2β +D2α1β +D2α2β

)
,

(3)

where

Dxαyβ = Dyβxα = ρ

√
E
[∣∣∣Axαyβ −Bxαyβ

∣∣∣ρ], x,y ∈ {1,2} .

1.4. The joint distribution criterion for selective influence

Compliance with a given set of distance tests is only a nec-
essary condition for selective influence. Is there a way to
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definitively prove that selective influence (A,B) " (α,β) does
hold if it is not ruled out by distance tests? As it turns out,
the answer is affirmative, and it is an almost immediate con-
sequence of our definition of selective influence, if presented
at a sufficiently high level of mathematical rigor. Stated in
intuitive terms and applied to our example, consider four hy-
pothetical random variables, one for each of our factor points:
H1α ,H1β ,H2α ,H2β . Suppose that they are jointly distributed,
i.e., we can speak of co-occurring quadruples of values. There
are six pairwise combinations of the four factor points but only
four of them, those of the form xαyβ (x,y ∈ {1,2}), form treat-
ments, whereas the remaining two, 1α2α and 1β2β, do not.
The four treatments correspond to pairs

(
Axαyβ ,Bxαyβ

)
whose

joint distributions are well defined. Suppose now that for all
those cases when a pair of factor points forms a treatment we
have (

Hxα ,Hyβ

)
∼
(

Axαyβ ,Bxαyβ

)
, x,y ∈ {1,2} . (4)

Then and only then (A,B) " (α,β), and we can write then
Axα instead of Axαyβ and Byβ instead of Bxαyβ . We call this
the joint distribution criterion for selective influence. The
joint distributions of (H1α ,H2α) and

(
H1β ,H2β

)
must also

be well defined, even though they do not correspond to any
pairs of random variables one can choose from the observable
A1α1β ,B1α2β ,A2α1β ,B2α2β .

Let us look at this in detail. The observed joint distribu-
tions of

(
Axαyβ ,Bxαyβ

)
are represented by four probabilities

each, denoted in the four matrices introducing our example by
pi j,qi j,ri j,si j . We now switch to a more convenient notation
(although again, more cumbersome at first glance):

Pi jxαyβ = Pr
(

Axαyβ = i,Bxαyβ = j
)

, i, j ∈ {yes,no} ,
x,y ∈ {1,2} ,

where Pi jxαyβ is a string of symbols, with no multiplication
implied. To ascertain if {A,B}" {α,β} using (4), we have to
see if we can find 16 probabilities

Qi jkl = Pr
(
H1α = i∧H1β = j∧H2α = k∧H2β = l

)
,

i, j,k, l ∈ {yes,no} , (5)

for four binary variables
{

H1α ,H2β ,H1α ,H2β

}
, subject to the

basic constraints

Qi jkl ≥ 0, ∑
i jkl

Qi jkl = 1, (6)

and such that

∑kl Qi jkl = Pi j1α1β, ∑ jk Qi jkl = Pil1α2β,

∑il Qi jkl = Pk j2α1β, ∑i j Qi jkl = Pkl2α2β,
(7)

for all i, j,k, l ∈ {yes,no}. Indeed,

Pr
(
H1α = i∧H1β = j

) by (5)
= ∑

kl
Qi jkl = Pi j1α1β

= Pr
(
A1α1β = i∧B1α1β = j

)
,

which shows that the first of the equations (7) is equivalent to(
H1α ,H1β

)
∼
(
A1α1β ,B1α1β

)
, the application of (4) to xαyβ =

1α1β; and analogously for the other three equations.

Note that (7) implies marginal selectivity. For instance, it
follows from (7) that

Pr
(
A1α1β = i

)
= ∑ j Pi j1α1β

= ∑ j ∑kl Qi jkl = ∑ jkl Qi jkl = Pr(H1α = i) ,

and

Pr
(
A1α2β = i

)
= ∑l Pil1α2β

= ∑l ∑ jk Qi jkl = ∑ jkl Qi jkl = Pr(H1α = i) ,

that is, Pr
(
A1α1β = i

)
= Pr

(
A1α2β = i

)
.

Example 1.1. Let the dependence of {A,B} on {α,β} be de-
scribed by the distributions

Treatment = 1α1β B = yes B = no
A = yes 0.5 0 0.5
A = no 0 0.5 0.5

0.5 0.5
Treatment = 1α2β B = yes B = no
A = yes 0 0.5 0.5
A = no 0.5 0 0.5

0.5 0.5
Treatment = 2α1β B = yes B = no
A = yes 0 0.5 0.5
A = no 0.5 0 0.5

0.5 0.5
Treatment = 2α2β B = yes B = no
A = yes 0.5 0 0.5
A = no 0 0.5 0.5

0.5 0.5
Note that marginal selectivity here is satisfied trivially, as the
marginal distributions remain fixed. Consider the distribution
of
{

H1α ,H1β ,H2α ,H2β

}
with

Qi jkl =


.5 for i jkl = 0011
.5 for i jkl = 1100
0 otherwise.

It is easy to check that this distribution satisfies (6) and (7),
hence also (4). By the joint distribution criterion, we conclude
that {A,B}" {α,β}.

Example 1.2. No such probabilities Qi jkl can be found for the
distributions

Treatment = 1α1β B = yes B = no
A = yes 0.5 0 0.5
A = no 0 0.5 0.5

0.5 0.5
Treatment = 1α2β B = yes B = no
A = yes 0.5 0 0.5
A = no 0 0.5 0.5

0.5 0.5
Treatment = 2α1β B = yes B = no
A = yes 0.5 0 0.5
A = no 0 0.5 0.5

0.5 0.5
Treatment = 2α2β B = yes B = no
A = yes 0 0.5 0.5
A = no 0.5 0 0.5

0.5 0.5
so {A,B} are not selectively influenced by {α,β} in this case.
This can be shown by direct algebra, but there is a simpler
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method: this dependence of {A,B} on {α,β} fails a distance
test. Indeed, let us transform yes into 0 and no into 1, and let
us choose the exponent ρ = 1 (although in this example the
value of ρ does not matter). Then

D1α1β = D1α2β = D2α1β

= |0−0| ·0.5+ |0−1| ·0+ |1−0| ·0+ |1−1| ·0.5 = 0,

D2α2β

= |0−0| ·0+ |0−1| ·0.5+ |1−0| ·0.5+ |1−1| ·0 = 1,

and

max
{

D1α1β,D1α2β,D2α1β,D2α2β
}

= 1 > 1
2 =

(
D1α1β +D1α2β +D2α1β +D2α2β

)
/2,

which contravenes (3).

In this paper the joint distribution criterion is formulated in
complete generality, for arbitrary sets of random entities and
corresponding sets of external factors.

1.5. The need for generalization

In a controlled experiment or systematic survey we usually
focus on a small number of random entities, such as which of
several responses is given and how long it has taken, and try
to selectively target some of them by experimental manipula-
tions, or selectively relate them to concomitant factors. Rela-
tively small networks of random entities and external factors
are therefore of paramount practical importance. But a net-
work of random entities and the set of external factors that
may be thought to affect them selectively can be quite large,
even infinitely large, in theoretical considerations dealing with
complex observable behaviors, such as a person’s activities
within a typical day, or unobservable “mental networks” be-
hind even relatively simple tasks, such as pushing a key in
response to a stimulus varying in two binary properties (see
Dzhafarov, Schweickert, & Sung, 2004, for an example). Ran-
dom processes are routinely used in modeling simple forms of
decision making (see, e.g., Diederich & Busemeyer, 2003).
Any random process can be viewed as a system of stochasti-
cally interdependent random entities indexed by “intervention
values” (including “no intervention”) at every moment of time.
An intervention α at moment t1 can be thought to selectively
affect a portion of the random process in some interval [t1, t2]
(perhaps even with t2 = t1), and the problem arises as to how
to identify such an interval from the observed joint distribution
of the random entities constituting the process. It is important
therefore to be able to apply the notion of selective influence
to arbitrary, finite and infinite, systems of random entities and
external factors.

2. CONVENTIONS AND NOTATION

A factor is defined as a non-empty set of factor points (a
dummy factor can be defined as a set containing a single
point). Denoting factors by lowercase Greek letters, α,β,γ, . . .,
the factor points of, say, factor α are formally pairs (x, ‘α’)
consisting of a factor value (or level), x, and a unique fac-
tor name, ‘α’ (read: value/level x of factor α). This ensures
that no two distinct factors have common points: e.g., level
1 of factor ‘size,’ (1, ‘size’), is distinct from level 1 of factor

‘shape,’ (1, ‘shape’). It is convenient to write xα in place of
(x, ‘α’): 1shape, (50 db)intensity, presentleft stimulus, etc.

Let Φ be a non-empty set of factors. A set φ containing
precisely one factor point (xα, ‘α’) = xα

α for each factor α in
Φ,

φ = {xα
α}α∈Φ

∈∏Φ,

is called a treatment.3 When the set of factors Φ is finite,
treatments will be presented as strings of factor points, without
commas or parentheses: xαyβzγ, xµ1

1 xµ2
2 . . .xµk

k , etc.

Example 2.1. If Φ = {α,β,γ} with α = {1α,2α}, β ={
1β,2β

}
, and γ = {1γ}, then the treatments φ (written as

strings) are 1α1β1γ, 1α2β1γ, 2α1β1γ, and 2α2β1γ.

A random entity A is a triad consisting of a measurable func-
tion f : A′→A, a sample (probability) space (A′,Σ′,M′), and
an observation (measurable) space (A,Σ), on which f induces
a probability measure M. Traditionally, A is simply identified
with f , the sample space and the observation space being as-
sumed implicitly, or A is viewed as the identity function on
A, with (A′,Σ′,M′) = (A,Σ,M). The latter view is often the
only practical one, as we almost never know anything about a
sample space as separate from the observation space.

A random variable is a random entity whose observation
space is a subset of reals endowed with the Borel sigma-
algebra.4

Given an arbitrary indexing set Ω, any set of random en-
tities whose measurable functions { fω : A′→ Aω}ω∈Ω

map
from one and the same sample space (A′,Σ′,M′) into respec-
tive observation spaces {(Aω,Σω)}

ω∈Ω
possesses a joint dis-

tribution, i.e., a probability measure M induced by M′ on the
product space

N
ω∈Ω (Aω,Σω).5

Example 2.2. Let the sample space consist of A′ = {0,1}×
{0,1} × {0,1}, Σ′ = 2A′ , and M′ derived from elementary
probabilities pi jk (i, j,k ∈ {0,1}). Then the random vari-
ables A, B, C defined on (A′,Σ′,M′) by the coordinate pro-
jections a : (i, j,k) 7→ i, b : (i, j,k) 7→ j, and c : (i, j,k) 7→ k, re-
spectively (i, j,k ∈ {0,1}), possess the joint distribution M =
M′ on

(
{0,1} ,2{0,1}

)
⊗
(
{0,1} ,2{0,1}

)
⊗
(
{0,1} ,2{0,1}

)
=

(A′,Σ′).

Two random entities A and B defined on different sample
spaces are called (stochastically or probabilistically) unrelated
(see Dzhafarov & Gluhovsky, 2006). They do not possess a
joint distribution. Note that two unrelated random variables
can be identically distributed — if they map into one and the

3 Strictly speaking, an element of the Cartesian product ∏Φ is a choice func-
tion, {(α,xα

α)}
α∈Φ

whereas a treatment φ is the range of a choice function,
{xα

α}α∈Φ
. We conveniently confuse the two notions. Also for convenience

only, in this paper we assume “completely crossed design,” i.e., that every
member of ∏Φ is a possible treatment. With only slight modifications ∏Φ

can be replaced with any nonempty subset thereof.
4 A random entity A with A a finite or infinite denumerable set and Σ the

set of all its subsets can also be (and traditionally is) considered a random
variable, because such an A can always be injectively mapped into the set
of reals, or into a partition of an interval of reals.

5 Recall that in the product measurable space
N

ω∈Ω (Aω,Σω) = (A,Σ) the
set A is the Cartesian product ∏ω∈Ω Aω, while Σ =

N
ω∈Ω Σω is the small-

est sigma algebra containing all sets of the form aω0 ×∏ω∈Ω−{ω0}Aω,
aω0 ∈ Σω0 .
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same observation space on which they induce one and the
same probability measure.

Throughout this paper we deal with a set of probabilistically
unrelated random entities

{
Aφ

}
φ∈∏Φ

indexed by treatments
φ ∈ ∏Φ, with measures

{
Mφ

}
φ∈∏Φ

induced on one and the
same observation space (A,Σ). For convenience, we refer to
Aφ as “a random entity A at φ”, as if Aφ and Aφ′ for φ 6= φ′

were “a single” entity A at two different treatments. Note that
Aφ and Aφ′ are defined on different sample spaces: they do not
possess a joint distribution. In particular, they are not mutually
independent.6

Example 2.3. The random variables A and B in the exam-
ples of Section 1 are called A and B by the abuse of language
just mentioned. Strictly speaking we deal with four pairwise
stochastically unrelated A1α1β ,A1α2β ,A2α1β ,A2α2β and four
pairwise stochastically unrelated B1α1β ,B1α2β ,B2α1β ,B2α2β ,
such that Axαyβ and Bzαuβ possess a joint distribution if and
only if xαyβ = zαuβ.

A set of random entities {Aω}
ω∈Ω

on one and the same sam-
ple space is a random entity whose observation space (A,Σ)
is the conventionally understood product of the observation
spaces (Aω,Σω) for Aω, ω ∈ Ω. If the set of random entities
{Aω}

ω∈Ω
depends on Φ, we present {Aω}

ω∈Ω
at a treatment

φ as
{

Aω
φ

}
ω∈Ω

instead of the more correct but less convenient(
{Aω}

ω∈Ω

)
φ
.

Example 2.4. The variables {A,B,C} of Example 2.2 depend
on the factors Φ = {α,β,γ} of Example 2.1 if M′ = M′

φ
is

viewed as a function of φ = 1α1β1γ,1α2β1γ, . . .. In this exam-
ple A′

φ
= A′, Σ′

φ
= Σ′, and

{
aφ,bφ,cφ

}
= {a,b,c}.

3. SELECTIVE INFLUENCE

In accordance with the previous section, given a set of
factors Φ, a corresponding set of random entities is denoted
{Aα}

α∈Φ
. For each α ∈ Φ, the entity Aα may in fact be a

shortcut notation for a set of stochastically unrelated random
entities indexed by different treatments,

{
Aα

φ

}
φ∈∏Φ

. In other

words, Aα
φ

is treated as a random entity A corresponding to
factor α and taken at treatment φ. The complete notation for
the set of random entities {Aα}

α∈Φ
then is{{

Aα
φ

}
α∈Φ

}
φ∈∏Φ

, (8)

where the elements of
{

Aα
φ

}
α∈Φ

, for a given φ, are stochasti-
cally interrelated (possess a joint distribution), while the sets

6 We could have extended the scope of this definition by allowing Aφ to be

a function fφ : A′
φ
→ Aφ relating

(
A′

φ
,Σ′

φ
,M′

φ

)
to
(
Aφ,Σφ

)
, i.e., by allow-

ing the set and the sigma algebra, not only the measure Mφ, to depend on
treatment φ. This would have, however, made our abuse of language (in
treating different Aφ’s as a single A at different φ’s) even more abusive.
Moreover, this general approach can always be reduced to the set-up with a
φ-independent (A,Σ) by putting A =

S
φ∈∏Φ

(
Aφ×{φ}

)
and Σ the sigma

algebra consisting of all countable unions of the sets a×{φ} for all a ∈ Σφ

and all φ ∈∏Φ.

{
Aα

φ

}
α∈Φ

and
{

Aα

φ′

}
α∈Φ

, for distinct φ,φ′, are stochastically
unrelated. It is more convenient, however, not to use this ex-
plicit notation and to speak instead of {Aα}

α∈Φ
depending on

Φ.

Definition 3.1. Let a set of random entities {Aα}
α∈Φ

indexed
by a set of factors Φ depend on this set of factors (i.e., be pre-
sentable as (8)). We say that the dependence of {Aα}

α∈Φ
on Φ

is marginally selective (satisfies the property of marginal se-
lectivity) if, for any subset Φ1 ⊂Φ and any φ1 ∈∏Φ1, the dis-
tribution of

{
Aα

φ

}
α∈Φ1

is the same for all treatments φ contain-

ing φ1 (that is, it does not depend on
{

xβ ∈ φ : β ∈Φ−Φ1
}

).

The notion of marginal selectivity was introduced by
Townsend and Schweickert (1989), for two random variables.
In Dzhafarov (2003) it was generalized to a finite set of ran-
dom variables under the name of complete marginal selectiv-
ity. The adjective “complete” (omitted in the present paper for
simplicity) distinguishes this notion from a weaker and less
useful generalization of Townsend and Schweickert’s term:
for any factor α ∈ Φ and any treatment φ, the distribution of
Aα

φ
does not depend on

{
xβ ∈ φ : β ∈Φ−{α}

}
.

Note that Definition 3.1 does not mean that for distinct
treatments φ and φ′ which include φ1 =

{
xβ ∈ φ : β ∈Φ1

}
={

xβ ∈ φ′ : β ∈Φ1
}

,{
Aα

φ1∪(φ−φ1)

}
α∈Φ1

=
{

Aα

φ1∪(φ′−φ1)

}
α∈Φ1

.

This equality is not legitimate as the two sets of random vari-
ables do not possess a joint distribution. One can only say
that {

Aα

φ1∪(φ−φ1)

}
α∈Φ1

∼
{

Aα

φ1∪(φ′−φ1)

}
α∈Φ1

,

where, as before, ∼ means “is distributed as.”

Example 3.2. Let the variables {A,B,C} of Example 2.2 be
indexed by the factors Φ = {α,β,γ} of Example 2.1, respec-
tively. That is, {A,B,C} stands for

{
Aα,Aβ,Aγ

}
, in accor-

dance with the general notation of Definition 3.1. Then the
dependence of

{
Aα,Aβ,Aγ

}
on {α,β,γ} is marginally selec-

tive if and only if

{Aα,Aγ}1α1β1γ ∼ {Aα,Aγ}1α2β1γ

&{Aα,Aγ}2α1β1γ ,∼ {Aα,Aγ}2α2β1γ ,

{
Aβ,Aγ

}
1α1β1γ ∼

{
Aβ,Aγ

}
2α1β1γ

&
{

Aβ,Aγ
}

1α2β1γ ∼
{

Aβ,Aγ
}

2α2β1γ ,

Aα

1α1β1γ ∼ Aα

1α2β1γ &Aα

2α1β1γ ∼ Aα

2α2β1γ ,

Aβ

1α1β1γ
∼ Aβ

2α1β1γ
&Aβ

1α2β1γ
∼ Aβ

2α2β1γ
,

Aγ

1α1β1γ
∼ Aγ

1α2β1γ
∼ Aγ

2α1β1γ
∼ Aγ

2α2β1γ
.

Under marginal selectivity, it is sometimes admissible, by
abuse of notation, to write

{
Aα

φ

}
α∈Φ1

as
{

Aα
φ1

}
α∈Φ1

where

φ1 = {xα ∈ φ : α ∈Φ1}. Thus, in Example 3.2, it may be con-
venient to present both {Aα,Aγ}1α1β1γ and {Aα,Aγ}1α2β1γ as
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{Aα,Aγ}1α1γ , present both Aβ

1α1β1γ
and Aβ

2α1β1γ
as Aβ

1β
, etc. This

does not lead to complications provided one remembers that,
say, Aα

1α1β1γ
and Aα

1α2β1γ
are identically distributed rather than

identical. One can therefore deal with Aα

1α and Aα

2α in all con-
siderations involving only Aα, or with Aβ

1β
and Aβ

2β
in all con-

siderations involving only Aβ. It would be incorrect, however,
to speak of stochastic relationships between Aα

1α or Aα

2α and
Aβ

1β
or Aβ

2β
: to depict such relationships one needs both Aα and

Aβ to be double-indexed by the factor points involved (unless
we have selective influence in addition to marginal selectivity,
as explained in the next section).

Example 3.3. Continuing Example 3.2, let us return to writ-
ing {A,B,C} instead of

{
Aα,Aβ,Aγ

}
. We can omit the fac-

tor γ when dealing with {A,B} only and write {A,B}1α1β ,
{A,B}1α2β , {A,B}2α1β , {A,B}2α2β . Let the distributions of
these random pairs be

Treatment = 1α1β B = 0 B = 1
A = 0 0.6 0 0.6
A = 1 0 0.4 0.4

0.6 0.4
Treatment = 1α2β B = 0 B = 1
A = 0 0 0.6 0.6
A = 1 0.4 0 0.4

0.4 0.6
Treatment = 2α1β B = 0 B = 1
A = 0 0.3 0.2 0.5
A = 1 0.3 0.2 0.5

0.6 0.4
Treatment = 2α2β B = 0 B = 1
A = 0 0.25 0.25 0.5
A = 1 0.15 0.35 0.5

0.4 0.6
We verify that marginal selectivity holds for A and B and in-
troduce the abridged indexing, A1α ,A2α , etc.:

A1α1β ∼ A1α2β ∼
A = 0 A = 1

0.6 0.4
= A1α ,

A2α1β ∼ A2α2β ∼
A = 0 A = 1

0.5 0.5
= A2α ,

B1α1β ∼ B2α1β ∼
B = 0 B = 1

0.6 0.4
= B1β ,

B1α2β ∼ B2α2β ∼
B = 0 B = 1

0.4 0.6
= B2β .

We can use the abridged indexing in all considerations involv-
ing A alone and B alone. Consider, however, this: from the
joint distribution matrices we have

A1α1β = B1α1β , A1α2β = 1−B1α2β ,

A2α1β⊥B2α1β , ¬
(
A2α2β⊥B2α2β

)
,

where ⊥ indicates stochastic independence and ¬ negation
(i.e., A2α2β and A2α2β are not stochastically independent). If

now we attempt to use in these relations the abridged index-
ing, we will run into a contradiction: from A1α = B1β and
A1α = 1−B2β we conclude B1β = 1−B2β , but then it is impos-
sible for B1β to be independent of A2α and for B2β not to be. It
is therefore necessary to retain the notation A1α1β , A1α2β , etc.
in all considerations involving both A and B even though we
know that the dependence of {A,B} on {α,β} is marginally
selective.

Definition 3.4. Let a set of random entities {Aα}
α∈Φ

indexed
by a set of factors Φ depend on this set of factors. We say that
the set {Aα}

α∈Φ
is selectively influenced by Φ, and write

{Aα}
α∈Φ

" Φ,

if, for some random entity C and every xα ∈ α ∈ Φ there is a
measurable function f xα such that, for every treatment φ,{

Aα
φ

}
α∈Φ

∼ { fxα (C)}xα∈φ
.

Remark 3.5. Alternatively, one could posit, for every treat-
ment φ, {

Aα
φ

}
α∈Φ

=
{

fxα

(
Cφ

)}
xα∈φ

,

where {
Cφ

}
φ∈∏Φ

is a set of pairwise unrelated random entities all distributed
as C. This formulation is more cumbersome but it correctly
emphasizes the stochastic unrelatedness of

{
Aα

φ

}
α∈Φ

for dif-
ferent treatments φ. Definition 3.4, however, is more parsimo-
nious, as the stochastic unrelatedness property is known from
the context.
Remark 3.6. If applied to finite sets Φ, Definition 3.4 becomes
equivalent to the formulations of selective influence given in
Dzhafarov (2003), Dzhafarov and Gluhovsky (2006), and Ku-
jala and Dzhafarov (2008). Even for the finite case, however,
the present definition is mathematically more rigorous, and it
profits from the precision offered by the notation xα = (x, ‘α’)
for factor points. More importantly, it can be seen more imme-
diately than the previous definitions to be reformulable into the
joint distribution criterion for selective influence, as discussed
in the next section.

The following statements are obvious.

Lemma 3.7. If {Aα}
α∈Φ

" Φ, then
(i) {Aα}

α∈Φ1
" Φ1 for any Φ1 ⊂Φ;

(ii) the dependence of {Aα}
α∈Φ

on Φ is marginally selec-
tive.

That is (refer to Section 1.2), selective influence has the
nestedness property and implies marginal selectivity.

The next lemma says that if a set of random entities
{Aα}

α∈Φ
is selectively influenced by Φ, then the set of in-

dividually transformed versions of these random variables is
also selectively influenced by Φ (refer to the first property in
Section 1.2). “Individual transformations” of Aα can be differ-
ent for different factor points xα.

Lemma 3.8. If {Aα}
α∈Φ

" Φ then {Bα}
α∈Φ

" Φ, where, for
any α ∈Φ, any xα ∈ α, and any treatment φ containing xα,

Bα
φ = hxα

(
Aα

φ

)
,

for some measurable function hxα .
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Proof. By definition,{
Aα

φ

}
α∈Φ

∼ { fxα (C)}xα∈φ
,

which implies{
Bα

φ

}
α∈Φ

∼ {hxα ( fxα (C))}xα∈φ
= {gxα (C)}xα∈φ

,

where gxα ≡ hxα ◦ fxα is a measurable function.

4. THE JOINT DISTRIBUTION CRITERION

Definition 3.4 suggests a way of looking at the selective in-
fluence relation directly in terms of the (product) observation
space for the system of the random entities involved, making
the overt reconstruction of C and the functions fxα unneces-
sary (or trivial, as in the proof of the theorem below).

Theorem 4.1. A necessary and sufficient condition for

{Aα}
α∈Φ

" Φ

is the existence of a jointly distributed system

{Hxα}xα∈
S

Φ

such that for every subset φ of
S

Φ that forms a treatment (i.e.,
belongs to ∏Φ),

{Hxα}xα∈φ
∼
{

Aα
φ

}
α∈Φ

.

Remark 4.2. We call this the joint distribution criterion for
selective influence.

Proof. The necessity is proved by observing that if
{Aα}

α∈Φ
" Φ, then the system

{Hxα}xα∈
S

Φ
= { fxα (C)}xα∈

S
Φ

is a jointly distributed system of random entities. To prove the
sufficiency, define

C = {Hxα}xα∈
S

Φ
,

and, for every xα, define

fxα (C) = Projxα (C) = Hxα ,

where Projxα denotes the xαth coordinate projection.

As a very simple application of the joint distribution crite-
rion we prove the following (intuitively quite obvious) state-
ment.

Lemma 4.3. If the dependence of {Aα}
α∈Φ

on Φ is marginally

selective and
{

Aα
φ

}
α∈Φ

is a set of mutually independent ran-

dom entities for every treatment φ, then {Aα}
α∈Φ

" Φ.

Proof. For any factor α ∈ Φ, marginal selectivity implies that
the distribution of Aα

φ
depends only on the factor point xα ∈ φ.

Form the set {Hxα}xα∈
S

Φ
consisting of mutually independent

random entities such that, for any xα, Hxα ∼ Aα

xα . Then, for

every treatment φ, {Hxα}xα∈φ
∼
{

Aα
φ

}
α∈Φ

, and Theorem 4.1

implies {Aα}
α∈Φ

" Φ.

In Section 1.4 we have seen illustrations of the criterion on
interdependent random entities. Here is another example.

Example 4.4. Let Φ = {α,β}, α = {1α,2α}, β =
{

1β,2β
}

,
and let

{
Aφ,Bφ

}
for every treatment φ be a pair of Bernoulli

variables. Consider the distributions below:
Treatment = 1α1β B = 0 B = 1
A = 0 0.5 0 0.5
A = 1 0 0.5 0.5

0.5 0.5

Treatment = 1α2β B = 0 B = 1
A = 0 0 0.5 0.5
A = 1 0.5 0 0.5

0.5 0.5

Treatment = 2α1β B = 0 B = 1
A = 0 0 0.5 0.5
A = 1 0.5 0 0.5

0.5 0.5

Treatment = 2α2β B = 0 B = 1
A = 0 0 0.5 0.5
A = 1 0.5 0 0.5

0.5 0.5
The criterion of the joint distribution of

{
H1α ,H1β ,H2α ,H2β

}
rejects the possibility of {A,B}" {α,β}, as it can be shown
by direct algebra that there are no 16 probabilities Qi jkl gen-
erating the distributions in question (cf. Examples 1.1 and
1.2). We do not need to provide such a demonstration as it
is obvious in this case from probabilistic considerations that{

H1α ,H1β ,H2α ,H2β

}
cannot be jointly distributed and satisfy{

H1α ,H1β

}
∼
{

A1α1β ,B1α1β

}
,
{

H1α ,H2β

}
∼
{

A1α2β ,B1α2β

}
,{

H2α ,H1β

}
∼
{

A2α1β ,B2α1β

}
,
{

H2α ,H2β

}
∼
{

A2α2β ,B2α2β

}
.

Otherwise the four joint distribution matrices shown above
would have implied, respectively, H1α = H1β , H1α = 1−H2β ,
H2α = 1−H1β , and H2α = 1−H2β , which are not mutually
compatible equations.

If we take the numerical values of A and B in the last exam-
ple as they are, then with any exponent ρ≥ 1 (see Section 1.3)
the distance test is passed:

max
{

D1α1β,D1α2β,D2α1β,D2α2β
}

= 1≤ 3
2 =

(
D1α1β +D1α2β +D2α1β +D2α2β

)
/2.

This is just another demonstration that a distance test is only
a necessary condition for selective influence: a dependence of
random entities on external factors can pass such a test but
still fail the joint distribution criterion. It is instructive to see,
however, in reference to Lemma 3.8, that with appropriately
chosen transformations of the random variables the distribu-
tions in question can be made to fail the respective distance
tests. Thus, the possibility of selective influence in Example
4.4 will be rejected if we apply the simple transformation

hyβ

(
Bxαyβ

)
= 1−Bxαyβ , xα = 1α,2α, yβ = 1β,2β,

while leaving Axαyβ untransformed. The distributions then be-
come essentially the same as in Example 1.2. The distance
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tests therefore can be conjectured to have considerable rejec-
tion power if one combines it with adeptly chosen transforma-
tions (see the open question we pose at the conclusion of the
paper). In any case, the exceptional simplicity of these tests
makes it worthwhile to always consider them before applying
the joint distribution criterion.

5. DISTANCE TESTS

In Kujala and Dzhafarov (2008) the distance tests were for-
mulated for two variables influenced by two factors in a two-
by-two factorial design. In this section we generalize these
tests to arbitrary random variables {Aα}

α∈Φ
whose depen-

dence on factors Φ is marginally selective. Perhaps surpris-
ingly, we show that this generalization requires nothing more
and nothing less than applying the original tests to all possible
two-by-two factorial designs one can extract from Φ.

Distance tests can be applied to non-numerical random en-
tities only after they have been numerically transformed (thus,
for the distance test applied to Example 1.2 we transformed
yes into 0 and no into 1). In this section therefore we confine
our discussion to random variables.

We will need some auxiliary notions and notation conven-
tions. Any finite sequence of factor points

(
xα1

1 , . . . ,xαn
n
)

is
called a chain. Chains will be written as strings, xα1

1 . . .xαn
n ,

without commas and parentheses (this generalizes the conven-
tion we have already used for chains which are finite treat-
ments). Chains can be denoted by capital Roman letters,
X = xα1

1 . . .xαn
n (from the second half of the alphabet, to dis-

tinguish them from random variables and entities for which
we use the first half). A chain X may be empty or consist of
a single element (factor point), xα. A subsequence of points
belonging to a chain forms its subchain.

A concatenation of two chains X and Y is written as XY . So,
we can have chains xαXyβ, xαXY yβ, XxαyβY , xαXyβZ, etc.

The number of points in a chain X is its cardinality, |X |, and
any chain with the smallest cardinality within a set of chains
is referred to as a minimal chain (in this set). In particular,
one can speak of a minimal subchain of a chain among all
subchains with a certain property (this notion is used in the
proof of Theorem 5.11 below).

Definition 5.1. Let the dependence of a set of random vari-
ables {Aα}

α∈Φ
on factors Φ be marginally selective. Let ρ≥ 1

be fixed. For any
(
xα,yβ

)
with α 6= β, we define

Dxαyβ =
∥∥∥Aα

xαyβ −Aβ

xαyβ

∥∥∥
ρ

,

where ‖A−B‖
ρ

for any jointly distributed A and B is defined
as

‖A−B‖
ρ

=

{
ρ

√
E
[
|A−B|ρ

]
for 1≤ ρ < ∞,

esssup |A−B| for ρ = ∞.

Remark 5.2. Here esssup is the essential supremum, the low-
est upper bound that holds almost surely; it is the limit of
‖A−B‖ρ as ρ→ ∞.

Remark 5.3. Note that Dxαyβ is well-defined only under the
assumption that the dependence of a set of random variables
{Aα}

α∈Φ
on factors Φ is marginally selective. Otherwise∥∥∥Aα

xαyβ
−Aβ

xαyβ

∥∥∥
ρ

would not be determined by xαyβ only, and

it would not even be legitimate to index the two variables by
xαyβ alone.

We will rely on the following result, whose proof we omit as
its only nontrivial part follows from the Minkowski inequality
(a somewhat abridged proof can be found in Kujala & Dzha-
farov, 2008).

Lemma 5.4. Given a sample space, let R be a set of all ran-
dom variables A,B, . . . (jointly distributed) on this space. For
any ρ≥ 1, ‖A−B‖

ρ
is an extended metric on R, provided we

do not distinguish A,B identical on a set of measure 1.

Remark 5.5. The adjective “extended” means that ∞ is in-

cluded in the set of possible values. The norms ρ

√
E
[
|A−B|ρ

]
and esssup |A−B|, as they only involve non-negative values,
always exist, finite or infinite.

Convention 5.6. In the remainder of this section we will
tacitly assume that the dependence of {Aα}

α∈Φ
on Φ is

marginally selective. We will also tacitly assume that ρ in the
definition of ‖. . .‖

ρ
and D is fixed.

For any chain X = xα1
1 . . .xαn

n such that α1 6= αn and αi 6=
αi+1 for i = 1, . . . ,n−1, define

DX =
n−1

∑
i=1

Dxαixαi+1

(with the understanding that the sum is zero if n is 0 or 1). The
operator D always acts upon the entire chain following it, e.g.,
DuµXvν = Dxµxα1

1 +DX +Dxαnxν.

Definition 5.7. A chain xαXyβ is said to be compliant with the
chain inequality (or simply, compliant) if DxαXyβ ≥ Dxαyβ.
The chain is said to be contravening (the chain inequality) if
DxαXyβ < Dxαyβ.

It follows from this definition that if xαXyβ is contravening
or compliant, then α 6= β (otherwise Dxαyβ is not defined),
and no factor in xαXyβ occurs twice in succession. For a chain
to be contravening, in addition, X must be non-empty (i.e.,∣∣xαXyβ

∣∣ ≥ 3; Lemma 5.9 below shows that in fact
∣∣xαXyβ

∣∣ ≥
4). A non-contravening chain need not be compliant: it may,
e.g., be any chain with fewer than 3 elements, or it can be any
chain of the form xαXyα. Analogously, a non-compliant chain
is not necessarily contravening.7

Lemma 5.8. Let U = XyβY zγZ be a contravening chain with a
compliant subchain yβY zγ. Then U∗ = XyβzγZ (i.e., U without
Y ) is a contravening subchain of U.

Proof. Let xα and uδ be the first and the last elements of U , re-
spectively (then necessarily α 6= δ). Note that xα may coincide
with yβ or uδ with zγ (but not both). From

Dxαuδ > DXyβ +DyβY zγ +DzγZ

7 We cannot resist mentioning at this point a surprising mathematical simi-
larity between the conceptual apparatus of (hence also the notation adopted
in) the present theory, especially in this section, and that of the completely
unrelated theory of “regular well-matched spaces” developed in Dzhafarov
and Dzhafarov (2010) for comparative judgments. In particular, factors
and factor points seem to be formally homologous to “stimulus areas” and
“stimuli,” respectively, and the contravening chains of the present theory
essentially mirror the “soritical” sequences for comparative judgments, so
that the proof of Theorem 5.11 below is almost identical to that of Lemma
3.3 of Dzhafarov and Dzhafarov (2010).
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and

DyβY zγ ≥ Dyβzγ

we get

Dxαuδ > DXyβ +Dyβzγ +DzγZ.

Lemma 5.9. Every triadic chain xαyβzγ with pairwise distinct
α,β,γ is compliant.

Proof. Denoting the random variables corresponding to the
factors α,β,γ by A,B,C, respectively, marginal selectivity im-
plies

Dxαyβ =
∥∥∥Axαyβ −Bxαyβ

∥∥∥
ρ

=
∥∥∥Axαyβzγ −Bxαyβzγ

∥∥∥
ρ

,

Dyβzγ =
∥∥∥Byβzγ ,−Cyβzγ

∥∥∥
ρ

=
∥∥∥Bxαyβzγ −Cxαyβzγ

∥∥∥
ρ

,

Dxαzγ = ‖Axαzγ −Cxαzγ‖
ρ

=
∥∥∥Axαyβzγ −Cxαyβzγ

∥∥∥
ρ

.

Since
{

Axαyβzγ ,Bxαyβzγ ,Cxαyβzγ

}
are jointly distributed, the

statement follows from Lemma 5.4.8

We are ready now to prove the main theorems regarding the
distance tests for selective influence.

Theorem 5.10. Let {Aα}
α∈Φ

be selectively influenced by Φ.
Then any chain xα1

1 . . .xαn
n such that αi 6= αi+1 for i = 1, . . . ,n−

1, and α1 6= αn is compliant,

Dxα1
1 xαn

n ≤
n−1

∑
i=1

Dxαi
i xαi+1

i+1 .

Proof. By the joint distribution criterion, there is a jointly dis-
tributed system {Hxα}xα∈

S
Φ

such that for any
{

xα,yβ
}

within
a treatment (i.e., with α 6= β),{

Aα

xαyβ ,A
β

xαyβ

}
∼
{

Hxα ,Hyβ

}
.

But then

Dxαyβ =
∥∥∥Axαyβ −Bxαyβ

∥∥∥
ρ

=
∥∥∥Hxα −Hyβ

∥∥∥
ρ

,

and the statement of the lemma follows from Lemma 5.4.

For the next theorem, recall that we are following Conven-
tion 5.6.

Theorem 5.11. Every contravening chain X contains a con-
travening tetradic subchain X ′ of the form xαyβvαuβ.

8 One can easily generalize this reasoning to show that every chain xα1
1 . . .xαn

n
with pairwise distinct {α1, . . . ,αn} is compliant. As will be apparent from
the proof of Theorem 5.11, however, in the present development we should
only be concerned with n = 3.

Proof. Let X ′ = xαPuβ be a minimal contravening subchain of
X . Then α 6= β, and by Lemma 5.9, |X ′| ≥ 4. If for some zγ in
X ′ we had α 6= γ 6= β, then the subchains xαQzγ and zγRuβ with
QzγR = P would have to be compliant (otherwise X ′ would not
be minimal). Then, by Lemma 5.8, we would have a contra-
vening triadic chain xαzγuβ, which is impossible by Lemma
5.9. For every zγ in X ′ therefore, either γ = α or γ = β. Since
a contravening chain cannot contain repeating superscripts, X ′

is of the form xαyβvαSuβ. But then vαSuβ must be compli-
ant (otherwise X ′ would not be minimal), and by Lemma 5.8
xαyβvαuβ is contravening. Since X ′ is minimal, we conclude
that S is empty and X ′ = xαyβvαuβ.

It follows that the task of testing the compliance of D with
all possible chain inequalities, as stated in Theorem 5.10, is
reduced to testing the compliance with only the inequalities
involving tetradic chains: if {Aα}

α∈Φ
" Φ, then, for any chain

xµyνuµvν with distinct µ and ν,

Dxµvν ≤ Dxµyν +Dyνuµ +Duµvν,

and if all such inequalities are satisfied, then there can be
no other contravening chains. Given any four factor points
xµ,yν,uµ,vν, one can form four different chains with alternat-
ing factors and four corresponding inequalities,

Dxµvν ≤ Dxµyν +Dyνuµ +Duµvν,

Dxµyν ≤ Dxµvν +Dvνuµ +Duµyν,

Duµyν ≤ Duµvν +Dvνxµ +Dxµyν,

Duµvν ≤ Duµyν +Dyνxµ +Dxµvν.

Following Kujala and Dzhafarov (2008), these are easy to see
(by adding the left-hand sides to themselves and to the right-
hand sides) to be equivalent to the single inequality

max{Dxµyν,Dxµvν,Duµyν,Duµvν}
≤ (Dxµyν +Dxµvν +Duµyν +Duµvν)/2.

We call this a tetradic inequality. Note that it is always
satisfied if xµ = uµ or yν = vν, so we only have to look at
xµ,yν,uµ,vν with two distinct points of each factor.

The theorem below shows that we have to check all such
tetradic inequalities (for any given ρ).

Theorem 5.12. The tetradic inequalities are mutually inde-
pendent, in the sense that any one of them can be violated
while the rest of them hold.

Proof. Let µ and ν be distinct factors in Φ, and let, for all
points xµ and yν,

Aµ
xµ ∼ Aν

yν ∼ E,

where E is some non-singular random variable (i.e., no con-
stant equals E with probability 1). Let 1µ,2µ,1ν,2ν be distinct
fixed points of µ and ν, and let(

Aµ
1µ2ν ,Aν

1µ2ν

)
∼
(
Aµ

2µ1ν ,Aν

2µ1ν

)
∼
(
Aµ

2µ2ν ,Aν

2µ2ν

)
∼ (E,E) .

(9)
Let Aα

xα for any point of any factor α /∈ {µ,ν} be distributed ar-

bitrarily, and let the random variables
{

Aα
φ

}
α∈Φ

be mutually
independent for any treatment φ, except if the latter includes
one of the pairs {1µ,2ν}, {2µ,1ν}, or {2µ,2ν}: in those cases
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the joint distribution of
(
Aµ

uµvν ,Aν

uµvν

)
is given by (9), while{

Aα
φ

}
α∈Φ−{µ}

and
{

Aα
φ

}
α∈Φ−{ν}

remain the sets of mutually

independent variables. It is easy to see that {Aα}
α∈Φ

thus de-
fined satisfy the marginal selectivity property.

Now,

D1µ2ν = D2µ1ν = D2µ2ν = 0, D1µ1ν =
∥∥E−E ′

∥∥> 0,

where E and E ′ are identically distributed and independent.
The tetradic inequality on {1µ,1ν,2µ,2ν} is therefore violated:

max{D1µ1ν,D1µ2ν,D2µ1ν,D2µ2ν}
= ‖E−E ′‖>

‖E−E ′‖
2 = D1µ1ν+D1µ2ν+D2µ1ν+D2µ2ν

2 .

Clearly, the tetradic inequality holds on any set
{

xα,yβ,sα, tβ
}

that does not include {1µ,2ν}, {2µ,1ν}, or {2µ,2ν}, as
this inequality then only involves mutually independent
random variables (Lemma 4.3 and Theorem 5.10). De-
noting by 3µ any point other than 1µ and 2µ (if such a
point exists), and analogously for 3ν, it remains to consider
the cases {1µ,2ν,3µ,3ν}, {1µ,2ν,2µ,3ν}, {1µ,2ν,3µ,1ν},
{2µ,1ν,3µ,3ν}, {2µ,1ν,1µ,3ν}, {2µ,1ν,3µ,2ν}, and
{2µ,2ν,3µ,3ν} (note that the order of the points is im-
material here). It is easy to check that the four distances
in each of these quadruples equal either 0 or ‖E−E ′‖ > 0
(with E,E ′ independent identically distributed), and that the
number of zero distances in these quadruples is never greater
than two. The tetradic inequality, therefore, always holds:
either

max{. . .}=
∥∥E−E ′

∥∥<
3‖E−E ′‖

2
=

sum{. . .}
2

,

or

max{. . .}=
∥∥E−E ′

∥∥=
2‖E−E ′‖

2
=

sum{. . .}
2

.

This completes the proof.

Theorem 5.12 is proved for a fixed ρ≥ 1, and for “untrans-
formed” {Aα}

α∈Φ
. The application scope of the distance tests

can be significantly broadened by using various values of ρ

and by applying to {Aα}
α∈Φ

various transformations as spec-
ified in Lemma 3.8. It is clear that the tetradic inequalities
cannot be independent across all ρ and/or all transformations.
Since a violation of a tetradic inequality means a strict in-
equality, the inequality involving the same quadruple of factor
points will have to hold also for sufficiently close values of ρ

and sufficiently “slight” transformations. This also applies to
ρ = ∞: every violated inequality for ρ = ∞ will have to remain
violated for all sufficiently large values of ρ, since the differ-

ence between esssup |A−B| and ρ

√
E
[
|A−B|ρ

]
can be made

arbitrarily small (or, if the former is infinite, the latter can be
made arbitrarily large).

6. CONCLUSION

We have advanced the theory of selective influence in three
ways.

1. The notion of selective influence (together with the re-
lated but weaker notion of marginal selectivity) has been
generalized to arbitrary sets of random entities whose
joint distributions depend on arbitrary sets of external
factors by which the random entities are indexed (Defi-
nition 3.4).

2. The joint distribution criterion has been formulated for
random entities to be selectively influenced by their in-
dexing external factors: this happens if and only if there
is a jointly distributed set of random entities, one for ev-
ery value of every factor, such that every subset of this
set that corresponds to a treatment is distributed as the
original entities at this treatment (Theorem 4.1).

3. The distance tests previously formulated for pairs of
random variables in two-by-two factorial designs have
been generalized to arbitrary sets of random variables.
For any quadruple of distinct factor points xµ,yν,uµ,vν,
we check whether

max{Dxµyν,Dxµvν,Duµyν,Duµvν}
≤ (Dxµyν +Dxµvν +Duµyν +Duµvν)/2,

where the function D is as in Definition 5.1, for some
choice of ρ≥ 1 and of transformations Aα

φ
7→ hxα

(
Aα

φ

)
as specified in Lemma 3.8. If this tetradic inequality is
violated, the variables are not selectively influenced by
the factors indexing them. It is shown that we do not
need to check for compliance with any other chain in-
equalities (Definition 5.7, Theorems 5.10 and 5.11), and
that the tetradic inequalities for different quadruples of
factor points (for a given ρ and a given set of transfor-
mations) are logically independent (Theorem 5.12).

We conclude by posing an open question. Example 4.4 in Sec-
tion 4 shows that the distance tests can be passed for all values
of ρ while the random variables in question do not selectively
depend on the respective factors. At the same time, in this
example a distance test can be found to fail after the random
variables have been transformed in accordance with Lemma
3.8. The open question is: for random variables which are
not selectively influenced (but whose dependence on the cor-
responding factors is marginally selective), can the distance
test be passed under all possible measurable transformations
of the variables?
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