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Abstract

The way external factors influence distribution functions for the overall time required to perform a mental task (such as

responding to a stimulus, or solving a problem) may be informative as to the underlying mental architecture, the hypothetical

network of interconnected processes some of which are selectively influenced by some of the external factors. Under the assumption

that all processes contributing to the overall performance time are stochastically independent, several basic results have been

previously established. These results relate patterns of response time distribution functions produced by manipulating external

factors to such questions as whether the hypothetical constituent processes in the mental architecture enter AND gates or OR gates,

and whether pairs of processes are sequential or concurrent. The present study shows that all these results are also valid for

stochastically interdependent component times, provided the selective dependence of these components upon external factors is

understood within the framework of a recently proposed theory of selective influence. According to this theory each component is

representable as a function of three arguments: the factor set selectively influencing it, a component-specific source of randomness,

and a source of randomness shared by all the components.

r 2003 Published by Elsevier Inc.
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1. Introduction

Mental processing filling in the interval between
presentation of a stimulus (or problem) and production
of a response (solution) is often thought of as being
effected by a network of variously interconnected
processing units. These hypothetical processing units
can be characterized in a variety of ways. Thus, each of
them can be ascribed a specific function, or resulting
output, such as ‘‘detection of the target’’, ‘‘retrieval of
the next item from memory’’, or ‘‘comparison of the
retrieved item with the target’’. For the purposes of the
present analysis, however, the two relevant character-
istics of a processing unit are its processing time and the
external factors that influence this processing time. By
external factors we understand any set F of observable
variables (each having at least two distinct values) that

can influence the distribution of the overall processing
time T; a random variable with observable values.
External factors may be stimulus attributes, presenta-
tion conditions, experimental instructions, and even
observable outputs of mental processing (i.e., responses
or solutions). The latter example shows that the term
‘‘influence’’ should be understood in a covariational
rather than causal sense: different values of an external
factor correspond to different distributions of T:
If the overall processing time T is known to depend on

a set of external factors F; then the processing time

architecture for the mental process in question (with
respect to factors F) can be characterized by two
relations:

T ¼ HðT1;y;TnÞ;
ðT1;y;TnÞIðG1;y;GnÞ; ð1Þ
where T1;y;Tn ðnX1Þ are the processing times of the
hypothetical component units, H is some composition

rule, and G1;y;Gn are subsets of the factor set F such
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that G1,?,Gn ¼ F: The symbol I introduced in
Dzhafarov (2003a) designates the selective influence

relation between the factor subsets and the correspond-
ing component times: Gi selectively influences Ti ði ¼
1;y; nÞ: In this notation some of the subsets G1;y;Gn

may be empty, and some pairs of these subsets may
overlap. The most interesting cases of selective influence,
however, involve disjoint G1;y;Gn (each of which,
except for empty subsets, may therefore be considered a
single factor with multiple values).1

The meaning of selective influence is simple and clear
when the constituting processing times T1;y;Tn (taken
at any fixed values of the external factors in F) are
assumed to be stochastically independent.2 In this case
saying that Gi selectively influences Ti means that the
marginal distribution of Ti is not influenced by any
factor in F that falls outside the subset Gi:

3 The meaning
of selective influence for stochastically interdependent

T1;y;Tn is less obvious. Its understanding in this paper
is based on a general theory presented in Dzhafarov
(2003a), whose relevant aspects will be recapitulated
later, in Section 2.
The simplest example of a processing time architec-

ture, not surprisingly, is provided by simple response
time to stimulus of variable intensity I : The factor set
here consists of I alone, F ¼ fIg; and it is reasonable to
assume (Dzhafarov, 1992; Dzhafarov & Rouder, 1996)
that the overall response time T is the sum of two
components, an intensity-dependent one and intensity-
independent one,

T ¼ Aþ B;

ðA;BÞIðfIg;+Þ:
The second relationship says that A is selectively
influenced by G1 ¼ fIg; whereas B is (formally speak-
ing) selectively influenced by G2 ¼ +; the empty set.
Sternberg’s (1969) classical theory (see also Ashby &

Townsend, 1980; Roberts & Sternberg, 1993) can be
presented in the form

T ¼ Aþ Bþ CþD;

ðA;B;C;DÞIðfS1;y;Skg; fMg; fRg;+Þ;
where T is the overall time required to (correctly) decide
whether a given target belongs to a previously memor-
ized list of items, A is a component time selectively
influenced by physical characteristics fS1;y;Skg of the
target (such as contrast, duration, etc.), B is a
component time selectively influenced by the size M of

the memorized list, the component time C is selectively
influenced by the choice of response R (Yes or No),
whereas D denotes the processing time for the rest of the
hypothetical processing units, presumably not influ-
enced by any of these factors. Here, in relation to (1),
F ¼ fS1;y;Sk;M;Rg (i.e., T is considered a function
of these k þ 2 factors only), G1 ¼ fS1;y;Skg; G2 ¼
fMg; G3 ¼ fRg; G4 ¼ +:
Considering for a moment just two component times,

T1 ¼ A and T2 ¼ B; it is argued in Dzhafarov and
Schweickert (1995), Dzhafarov and Cortese (1996), and
Dzhafarov (1997) that one can contemplate an infinity
of possible composition rules T ¼ HðA;BÞ; such as

T ¼ aAB; a40;

T ¼ ðAp þ BpÞ1=p; p40;

T ¼ exp log
A

a
þ log

B

a

� �
; a40;

^

Of greatest traditional interest, however, are the
composition rules

T ¼ Aþ B;

T ¼ Amax B;

T ¼ Amin B; ð2Þ
where we write Amax B and Amin B instead of the
more conventional maxðA;BÞ and minðA;BÞ; respec-
tively.4 The reason the composition rules þ; max; min
are of special interest is that they are the combination
rules for process durations when processes are, respec-
tively, connected in series, connected in parallel followed

by an AND gate, and connected in parallel followed by an

OR gate (see Fig. 1). The literature related to these
composition rules is very large (for surveys, see Luce,
1986; Massaro & Cowan, 1993; Schweickert, 1993;
Townsend, 1990; Townsend & Ashby, 1983).
The networks shown in Fig. 1 are the simplest

nontrivial examples of a directed acyclic network. The
nodes of a directed acyclic network represent compo-
nent processes, except for the initial node o and the
terminal node e that mark the beginning and end of the
entire processing (they can be viewed as processes with
zero durations). Some of the nodes are connected by
arrows indicating precedence in time. An arrow directed
from one node to another indicates that the process
represented by the first node precedes the process
represented by the second. A single process can be
viewed as a trivial directed acyclic network (Fig. 2A).
Two examples of a multicomponent directed acyclic
network are shown in Figs. 2B and C. Any two
component processes (nodes) in such a network are
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1Note that the factor set F does not include constants: each factor

has at least two distinct values.
2Here and throughout the paper the term stochastically independent

always means mutually stochastically independent. The same applies to

the term conditionally (stochasticallyÞ independent used later on.
3One could add: ‘‘and is influenced by any factor within Gi’’

(effectiveness requirement, see Dzhafarov, 2001). In the present context,

however, this requirement is not needed.

4This notation is more convenient in the present context as it (a)

shows that max and min are treated as binary operations, and (b)

significantly reduces the number of brackets in long expressions.
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uniquely characterized as being sequential (if one can get
from one of them to another following the arrows) or
concurrent (if this cannot be done). A directed acyclic
network is called a serial–parallel network if it consists of
a single process (node) or if it can be obtained from two
disjoint serial–parallel networks (with no common
nodes) by connecting them serially or in parallel. A
formal introduction to directed acyclic networks can be
found in Fisher and Glasser (1996) and Schweickert,
Fisher, and Goldstein (1992).
If every gate in a directed acyclic network is either an

AND gate or an OR gate, the corresponding composi-
tion rule H in (1) can be written as an algebraic

expression with T1;y;Tn being variously intercon-
nected by operations þ;max;min (see the legend to
Fig. 2 for examples). For a serial–parallel network this
expression can be written so that each of the component
times T1;y;Tn enters in it only once.5 Thus, the
directed acyclic networks shown in Figs. 2A and B are
serial–parallel networks, whereas the one shown in Fig.
2C is not. A serial–parallel network whose composition
rule involves only the operations þ and max is referred
to as a serial–parallel network with all-AND gates; a
serial–parallel network with all-OR gates is defined
analogously (with min replacing max). The respective
composition rules are denoted by SPAND and SPOR: The
composition rule for a serial–parallel network that has
all-AND gates or all-OR gates (without specifying
which) will be denoted by SPAND=OR:
In the present study, we focus on processing time

architectures of the type

T ¼ SPAND=ORðA;B;T1;y;TkÞ;
ðA;B;T1;y;Tk|fflfflfflfflfflffl{zfflfflfflfflfflffl}ÞIða; b;+;y;+|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}Þ; ð3Þ

where kX0; a-b ¼ +; a,ba+; and all remaining
factor subsets are empty. In other words, we deal with
serial–parallel networks with all-AND gates or all-OR
gates in which two component times are selectively
influenced by two specific, distinct factor subsets (that
can be viewed as two distinct single factors, unless one
of the subsets a; b is empty). The distribution of the
overall duration T is viewed here as depending on
factors belonging to F ¼ a,b only, all other factors
that could potentially influence T being held constant.
The problem we address is this: given the distribution

functions for T at different values of factors F ¼ a,b;
and assuming the processing time architecture (3), how
can one decide (a) whether the composition rule is SPAND
or SPOR; and (b) whether A;B are sequential or

concurrent?
Townsend and Nozawa (1995) considered a special

case of this problem, confined to (using our notation)
the composition rules Aþ B; Amax Bþ C; and
Amin Bþ C; with ðA;B;CÞIða; b;+Þ: Schweickert
and Giorgini (1999) and Schweickert, Giorgini and
Dzhafarov (2000) analyzed this problem for arbitrary
serial–parallel networks (and for the Wheatstone bridge
network shown in Fig. 2C) under the assumption that
the component times A;B;T1;y;Tk are stochastically
independent.
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Fig. 2. The directed acyclic networks. (A) A trivial, one-component

network. (B) A network whose processing time architecture is

T43ðT33ððT1 þ T5Þ3T2 þ T6Þ þ T7Þ; where 3 can be replaced by max

(AND gate) or min (OR gate). This is a serial–parallel network

considered in Schweickert and Giorgini (1999). Note that each

component time enters in this expression only once. (C) A network

whose processing time architecture is ðT2 þ T5Þ3ðT13ðT2 þ T3Þ þ T4Þ;
with the same meaning of 3: This is a Wheatstone bridge network (not

serial–parallel) considered in Schweickert and Giorgini (1999). Note

that T2 enters in this expression twice, and the expression cannot be

rewritten to eliminate a repeated component time.
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Fig. 1. Three simplest nontrivial directed acyclic networks. (A)

Sequential connection, with the processing time architecture T ¼
T1 þ T2: (B) Parallel-AND connection: the terminal node is reached

when both processes 1 and 2 are terminated, i.e., the processing time

architecture is T ¼ T1 maxT2: (C) Parallel-OR connection: the

terminal node is reached when either of the processes 1 and 2 is

terminated, T ¼ T1 minT2: Note that the processes are denoted by

nodes of the graphs, rather than by arrows (the latter only serve to

show how the component processes are interconnected). The initial

and terminal nodes, o and e; are ‘‘dummy’’ nodes; they can be viewed

as processes with zero durations.

5A serial–parallel composition rule can, in fact, be given an

inductive definition analogous to that for serial–parallel networks

(given in the previous paragraph). A composition rule is serial–parallel

if it is HðTÞ � T; or if it is the sum, minimum, or maximum of two

serial–parallel composition rules H1ðA1;y;AnÞ and H2ðB1;y;BmÞ
with disjoint sets of arguments. Clearly, an expression consisting of

arguments variously interconnected by operations þ;min;max can be

constructed in this way if and only if no argument enters in it more

than once.
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In the present study this analysis is extended to serial–
parallel networks with stochastically interdependent
components. The earlier results established for stochas-
tically independent component times are shown to hold
for interdependent component times, provided they are
selectively influenced in the sense clarified below. In
particular, the patterns predicted for composition rules
SPAND and SPOR; and for sequential and concurrent
processes are qualitatively the same for the independent
and interdependent cases.

2. Selective influence under interdependence

The first systematic attempt to explain how the
selectiveness of influence can coexist with stochastic
interdependence of the influenced random variables
(here, component times) was made by Townsend, (1984)
(see also Townsend & Thomas, 1994). A mathematical
theory for a generalized version of Townsend’s solution
was presented in Dzhafarov (1999). As pointed out in
that work and in Dzhafarov (2001, 2003a), certain
properties of Townsend’s solution prevent it from being
regarded a viable definition of selective influence. Thus,
if T1;y;Tn are selectively influenced by G1;y;Gn

(respectively) in Townsend’s sense, it does not follow
that, say, T1;T2 are selectively influenced by G1;G2 in
the same sense, or even that the distribution of T1 is
influenced by G1 alone.
A different approach to selective influence was

proposed in Dzhafarov (1997, 2001). The present study
is based on the improved and generalized version of this
approach, presented in Dzhafarov (2003a). The defini-
tion of the selective influence relation

ðT1;y;TnÞIðG1;y;GnÞ ð4Þ
given in Dzhafarov (2003a) is as follows.

Definition 2.1. Selective influence relation (4) means that
T1;y;Tn can be presented as

T1 ¼ f1ðR;S1;G1Þ;y;Tn ¼ fnðR;Sn;GnÞ; ð5Þ
where f1;y; fn are some measurable functions, while
R;S1;y;Sn are mutually stochastically independent
random entities6 whose distributions do not depend on
any factors belonging to F ¼ G1,?,Gn:

Eq. (5) says that the process by which any single
realization ðt1;y; tnÞ of the random vector ðT1;y;TnÞ
is generated for any given value ðG1;y;GnÞ of factor
subsets ðG1;y;GnÞ consists in independently sampling

realizations r; s1;y; sn of, respectively, R;S1;y;Sn; and
computing

t1 ¼ f1ðr; s1;G1Þ;y; tn ¼ fnðr; sn;GnÞ:
The stochastic interdependence of ðT1;y;TnÞ is due to
the fact that r is one and the same in all these
expressions. To generate N realizations of ðT1;y;TnÞ;
for a sequence of N values of ðG1;y;GnÞ (not
necessarily distinct), one should repeat this process N

times.7

Note that if R can only attain a single value, then
T1;y;Tn (for any value of the factor set F) are
stochastically independent. This shows that Definition
2.1 includes stochastic independence as a special case.
In the general case, for any fixed value r of R; the

conditional component times T1jR¼r;y;TnjR¼r can be
presented as

T1jR¼r ¼ f1ðr;S1;G1Þ;y;TnjR¼r ¼ fnðr;Sn;GnÞ:
These conditional component times are stochastically
independent, and their selective dependence on
G1;y;Gn is obvious. As shown in Dzhafarov (2003a),
this property is, in fact, equivalent to Definition 2.1.
Namely, the following lemma holds.

Lemma 2.1. Selective influence relation (4) holds if and

only if one can find a random entity R (whose distribution
does not depend on G1,?,Gn) such that T1;y;Tn are

conditionally independent given any value of R; with their

conditional distributions depending on G1;y;Gn; respec-
tively.

It is this property (alternatively, definition) of selective
influence that is most useful for our purposes. Fig. 3
provides a schematic illustration.
It follows from Lemma 2.1 that for any time values

t1;y; tn (nonnegative reals),

Pr½T1pt1;y;Tnptn;F�

¼
Z
DomðRÞ

Yn
i¼1

PrðTiptijR ¼ r;GiÞ
" #

doðrÞ; ð6Þ

where o is the probability measure imposed on the
domain of R; DomðRÞ: The probability PrðTiptijR ¼
r;GiÞ considered as a function of ti is the conditional
distribution function for Ti; given R ¼ r: The selective-
ness of influence manifests itself in the fact that, for any
ti and r; this function does not depend on factors outside
Gi: If, for any i ¼ 1;y; n; this function is differentiable
in ti (at any r and any value of Gi), then, using c to
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6The term ‘‘random entity’’ (rather than more familiar ‘‘random

variable’’ or ‘‘random vector’’) is used to indicate that each of the

C;S1;y;Sn may take on their values in arbitrary spaces (sets endowed

with probability measures), which are not necessarily mappable on sets

of reals or real-valued vectors.

7To obtain random samples of ðT1;y;TnÞ (as in the simulations

described in Section 7), the successive realizations of ðR;S1;y;SnÞ
should themselves be mutually independent. In general, however, while

the components of ðR;S1;y;SnÞ must be mutually independent and

have fixed distributions, interdependencies among their successive

realizations are consistent with (5), and may have to be allowed to

model sequential effects in the overall processing time T:
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denote probability densities,

c½T1 ¼ t1;y;Tn ¼ tn;F�

¼
Z
DomðRÞ

Yn
i¼1

cðTi ¼ tijR ¼ r;GiÞ
" #

doðrÞ: ð7Þ

It is obvious from (5) that if
ðT1;y;TnÞIðG1;y;GnÞ; then for any subvector of
ðT1;y;TnÞ; say, the one comprised by its first k

components, ðT1;y;TkÞIðG1;y;GkÞ: Eq. (6) there-
fore holds for all subvectors of ðT1;y;TnÞ; and the
same is true for (7), if the densities exist. In particular,

Pr½Tipti;F� ¼
Z
DomðRÞ

PrðTiptijR ¼ r;GiÞ doðrÞ;

c½Ti ¼ ti;F� ¼
Z
DomðRÞ

cðTi ¼ tijR ¼ r;GiÞ doðrÞ:

Also, for any function T ¼ HðT1;y;TnÞ; we have

Pr½Tpt;F� ¼
Z
DomðRÞ

PrðTptjR ¼ r;FÞ doðrÞ;

c½T ¼ t;F� ¼
Z
DomðRÞ

cðT ¼ tjR ¼ r;FÞ doðrÞ: ð8Þ

The importance of this observation is in the fact that
even though T1;y;Tn in T ¼ HðT1;y;TnÞ are sto-
chastically interdependent, the subintegral expressions
PrðTptjR ¼ r;FÞ and cðT ¼ tjR ¼ r;FÞ (if the latter
exists) are computed for stochastically independent
conditional component times T1jR¼r;y;TnjR¼r: As a
result, certain properties of the subintegral expressions
can be transmitted to Pr½Tpt;F� and c½T ¼ t;F�
‘‘automatically’’, which is what is made use of in the
present study.

As shown in Dzhafarov (2003a), Definition 2.1
(equivalently, Lemma 2.1) is restrictive: one can find,
for example, random variables T1;T2 whose joint
distribution depends on G1,G2; whose marginal dis-
tributions (for T1 and for T2) depend on G1 and G2;
respectively, but such that there exists no conditioning
random entity R such that

T1jR¼r ¼ f1ðr;S1;G1Þ; T2jR¼r ¼ f2ðr;S2;G2Þ:
Thus

ðT1;T2Þ ðG1;G2Þ:
With Definition 2.1 and Lemma 2.1 in place, the

general meaning of (1) and (3) is completely specified,
and we can begin our study of the problem posed at the
end of Section 1.

3. Ancillary assumptions

The theory presented in Schweickert, Giorgini, and
Dzhafarov (2000) makes use of certain ancillary
assumptions, of which the main one, the assumption
of stochastic independence among T1;y;Tn; is now
being dropped. The remaining two assumptions are that
component times possess densities and means, and that
a component time at one factor level stochastically
dominates the same component time at another. The use
of the stochastic dominance assumption in the context
of processing time architectures has a long history. It
was pioneered by Sternberg (1973). Some early results
on stochastic dominance can be found in Townsend and
Ashby (1978, 1983, Chapter 8). Schweickert (1977, 1982)
introduced an assumption later shown to be equivalent
to stochastic dominance (Townsend & Schweickert,
1989) and used to analyze mean response times in
directed acyclic networks (Schweickert & Townsend,
1989).
These ancillary assumptions have to be revised to

reflect the new meaning in which we understand the
selective influence relation

ðA;B;T1;y;Tk|fflfflfflfflfflffl{zfflfflfflfflfflffl}ÞIða; b;+;y;+|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}Þ:
The essence of this revision is that the properties of
A;B;T1;y;Tk needed to derive the results in Schweick-
ert et al. (2000) are now ascribed to the independent
conditional component times AjR¼r; BjR¼r;
T1jR¼r;y;TkjR¼r; for all values r of R:

8 This will ensure
that the results derived in Schweickert et al. (2000) will
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Fig. 3. (A) A network with stochastically independent components

selectively influenced by different factor subsets. (B, C) A network

with stochastically interdependent (dashed lines) and selectively

influenced components. R is the hypothetical (unobservable) con-

ditioning entity. Fixing its value makes the components stochastically

independent and selectively influenced, as in (A).

8Here and throughout this paper the quantification ‘‘for all r’’ can

always be replaced with ‘‘for o-almost all r’’, where o is the probability

measure that defines R: The same applies to quantifications ‘‘for all t’’

(with respect to Lebesgue measure) and ‘‘for all t; r’’ (with respect to

the product measure).
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be valid for the conditional overall processing times

TjR¼r ¼ SPAND=ORðAjR¼r;BjR¼r;T1jR¼r;y;TkjR¼rÞ;
whence the validity of these results for unconditional T
will follow by a straightforward argument.

3.1. Conditional densities and means

We assume that all processing times have conditional
densities

cðA ¼ tjR ¼ r; aÞ;cðB ¼ tjR ¼ r; bÞ;
cðT1 ¼ tjR ¼ r;+Þ;y;cðTk ¼ tjR ¼ r;+Þ
and finite conditional means

EðAjR ¼ r; aÞ;EðBjR ¼ r; bÞ;
EðT1jR ¼ r;+Þ;y;EðTkjR ¼ r;+Þ:
The existence of densities and finite means for sums,
maxima, minima, or combinations thereof of the
conditional component times then follows by standard
argument.

3.2. Stochastic dominance

Let aa+: We assume then that a has at least two
distinct values a1 and a2 such that, for every value r of R
and for every nonnegative real t;

PrðAptjR ¼ r; a ¼ a1ÞXPrðAptjR ¼ r; a ¼ a2Þ: ð9Þ
One can say that AjR¼r at a1 stochastically dominates

AjR¼r at a2; for every r: The analogous assumption
applies to BjR¼r and b; provided ba+:

PrðBptjR ¼ r; b ¼ b1ÞXPrðBptjR ¼ r; b ¼ b2Þ: ð10Þ
Occasionally we assume that (9) and (10) hold in

conjunction with both or one of the following proper-
ties: on some interval 0ptpt;

cðA ¼ tjR ¼ r; a1ÞXcðA ¼ tjR ¼ r; a2Þ; ð11Þ
cðB ¼ tjR ¼ r; b1ÞXcðB ¼ tjR ¼ r; b2Þ ð12Þ
for all r:

3.3. Convention

In the following all the ancillary assumptions above
will be assumed tacitly, with the exception of (11) and
(12) which should not be assumed unless stated
explicitly.

4. Single-component results

To make the logic of our analysis transparent,
consider first the special case of (3) when one of the
two factor subsets (say, b) is empty. (This is equivalent
to considering (3) at some fixed value of b:) The process

B in this case has no special status among the rest of the
component times, and (3) can be replaced with

T ¼ SPAND=ORðA;T1;y;TkÞ;
ðA;T1;y;Tk|fflfflfflfflfflffl{zfflfflfflfflfflffl}ÞIða;+;y;+|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}Þ; ð13Þ

with kX0: The question is: how is the dependence of A
on a reflected in the dependence of the overall processing
time T on a?
Let the value r of the conditioning random entity R be

fixed. Define

G1ðtjrÞ ¼ PrðTptjR ¼ r; a ¼ a1Þ;
G2ðtjrÞ ¼ PrðTptjR ¼ r; a ¼ a2Þ:
These are the distribution functions for the conditional
overall processing time TjR¼r; taken at the two values of
a satisfying the stochastic dominance condition (9) with
respect to the target component A:
In accordance with Lemma 2.1, the conditional

component times AjR¼r;T1jR¼r;y;TkjR¼r are mutually
stochastically independent. As a consequence, all the

results established in Schweickert et al. (2000) for the

distribution of the overall processing time in a serial–

parallel network with stochastically independent compo-

nent times must be valid for the distribution of TjR¼r: We
have then the following fact.

Lemma 4.1. If (13) holds, then G1ðtjrÞ � G2ðtjrÞX0; for
all tX0 and for all r:

Proof. See Theorem 1 in Schweickert et al. (2000).9 &

Denote now the unconditional distribution functions
for T as

G1ðtÞ ¼ PrðTptja ¼ a1Þ;
G2ðtÞ ¼ PrðTptja ¼ a2Þ:
In accordance with (8),

G1ðtÞ ¼
Z
DomðRÞ

G1ðtjrÞ doðrÞ;

G2ðtÞ ¼
Z
DomðRÞ

G2ðtjrÞ doðrÞ;

whence it immediately follows that if G1ðtjrÞ �
G2ðtjrÞX0; for all tX0 and for all r; then

G1ðtÞ � G2ðtÞ ¼
Z
DomðRÞ

½G1ðtjrÞ � G2ðtjrÞ� doðrÞX0

for all tX0: Thus we have established the following
result.
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9The theorem in Schweickert et al. (2000) translates, in fact, into a

stronger proposition: if (13) holds, and stochastic dominance (9) holds

on an interval 0ptot; then G1ðtjrÞXG2ðtjrÞ on the same interval

(where t is allowed to be infinite).
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Theorem 4.1. If (13) holds, then G1ðtÞ � G2ðtÞX0; for

all tX0:

The significance of this theorem is easy to under-
stand. It shows that insofar as the stochastic
dominance (9) is concerned, any sub-expression of
SPAND=ORðA;T1;y;TkÞ that contains A can be treated
as a single component time selectively influenced by a:
Note the logic by which this result is obtained. In

Schweickert et al. (2000) the statement of Theorem 4.1
was shown to be valid if A;T1;y;Tk in (13) are
stochastically independent. Due to Lemma 2.1, this
immediately translates into the statement of Lemma 4.1,
conditional upon a single (but arbitrary) value of R:
Then we use the simple integration relation in (8) and
achieve, essentially ‘‘automatically’’, the generalization
of the result by Schweickert et al. (2000) to (13) with
stochastically interdependent A;T1;y;Tk:
To demonstrate that the same logic applies also to

density functions, consider the following statement, in
which g1ðtjrÞ and g2ðtjrÞ denote probability densities for
TjR¼r at, respectively, a ¼ a1 and a ¼ a2: (The existence
of these densities is guaranteed by the ancillary
assumptions, Section 3.)

Lemma 4.2. If (13) holds with the composition rule

SPAND (all-AND gates), and if (11) holds on some

interval 0ptpt; for all r; then g1ðtjrÞ � g2ðtjrÞX0 on the

same interval.

Proof. See Theorem 2 in Schweickert et al.
(2000).10 &

Denote the unconditional densities for T by

g1ðtÞ ¼ cðT ¼ tja ¼ a1Þ;
g2ðtÞ ¼ cðT ¼ tja ¼ a2Þ:
In accordance with (8),

g1ðtÞ ¼
Z
DomðRÞ

g1ðtjrÞ doðrÞ;

g2ðtÞ ¼
Z
DomðRÞ

g2ðtjrÞ doðrÞ;

whence it immediately follows that if g1ðtjrÞ � g2ðtjrÞX0;
for some t and for all r; then

g1ðtÞ � g2ðtÞ ¼
Z
DomðRÞ

½g1ðtjrÞ � g2ðtjrÞ� doðrÞX0;

for the same t: This proves the following proposition.

Theorem 4.2. If (13) holds with the composition rule

SPAND (all-AND gates), and if (11) holds on some

interval 0ptpt; for all r; then g1ðtÞ � g2ðtÞX0 on the

same interval.

5. Two general lemmas

The logic by which the results obtained in Schweickert
et al. (2000) are generalized from networks with
stochastically independent components to networks
with stochastically interdependent but selectively
influenced components can itself be generalized
and presented in the form of two exceedingly simple
lemmas. In these lemmas r; oðrÞ; and DomðRÞ are as
before, while f ðt; rÞ is a measurable function11 whose
integral

FðtÞ ¼
Z
DomðRÞ

f ðt; rÞ doðrÞ

exists for all t:

Lemma 5.1. Let f ðt; rÞX0 for some value of t and for all

values of r: Then at the same value of t;

FðtÞ ¼
Z
DomðRÞ

f ðt; rÞ doðrÞX0:

The statement remains valid if both occurrences ofX0 are
replaced with 40 (or p0; or o0; or ¼ 0).

This is an elementary property of Lebesgue integra-
tion. We did, in fact, use a variant of this property in
both theorems of the previous section. For some of the
results to follow we will need another property.

Lemma 5.2. Let, for all r and for some measurable subset

A of nonnegative reals,Z
A

f ðt; rÞ dtX0:

ThenZ
A

FðtÞ dt ¼
Z
A

Z
DomðRÞ

f ðt; rÞ doðrÞ dtX0;

provided the integral exists. The statement remains valid

if both occurrences of X0 are replaced with 40 (or p0;
or o0; or ¼ 0).

The proof obtains by exchanging the order of
integration, whose validity is guaranteed by the
Fubini theorem (see, e.g., Hewitt & Stromberg, 1965,
pp. 386).
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10This theorem does not require, in fact, the validity of the

stochastic dominance relation (9) for all possible t (which is tacitly

assumed in all other results; see the Convention in Section 3). Note

also that this theorem is valid for SPAND but not for SPOR:

11with respect to the product of the conventional Lebesgue measure

and o:
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6. Interaction contrasts for two selectively influenced

components

Consider now the processing architecture described
by (3), assuming both aa+; ba+: As a result, both
stochastic dominance relations (9) and (10) hold (see the
Convention subsection of Section 3).
Denote the (conditional) distribution and density

functions for TjR¼r by

GijðtjrÞ ¼ PrðTptjR ¼ r; a ¼ ai; b ¼ bjÞ;
gijðtjrÞ ¼ cðT ¼ tjR ¼ r; a ¼ ai; b ¼ bjÞ;

i ¼ 1; 2; j ¼ 1; 2

and the (unconditional) distribution and density func-
tions for T by

GijðtÞ ¼ PrðTptja ¼ ai; b ¼ bjÞ;
gijðtÞ ¼ cðT ¼ tja ¼ ai; b ¼ bjÞ;

i ¼ 1; 2; j ¼ 1; 2:

The conditional and unconditional interaction con-

trasts are defined as, respectively,

cðtjrÞ ¼ G11ðtjrÞ � G12ðtjrÞ � G21ðtjrÞ þ G22ðtjrÞ

and

cðtÞ ¼ G11ðtÞ � G12ðtÞ � G21ðtÞ þ G22ðtÞ:

Clearly,

cðtÞ ¼
Z
DomðRÞ

cðtjrÞ doðrÞ: ð14Þ

In accordance with Lemma 2.1, the validity of the
following lemma immediately follows from Schweickert
et al. (2000).

Lemma 6.1. Assume the processing time architecture (3).
Then the following statements hold true, for all tX0 and

for all r:

1. If the composition rule is SPAND and if A and B are

concurrent, then

cðtjrÞX0:

2. If the composition rule is SPOR and if A and B are

concurrent, then

cðtjrÞp0:

3. If the composition rule is SPAND and if A and B are

sequential, thenZ N

t

cðxjrÞ dxp0:

In particular,Z N

0

cðxjrÞ dxp0:

4. If the composition rule is SPOR and if A and B are

sequential, thenZ t

0

cðxjrÞ dxX0:

At the limit,Z N

0

cðxjrÞ dxX0:

Proof. See Theorems 4 and 6 in Schweickert et al.
(2000). &

The unconditional statements about networks with
stochastically interdependent components are obtained
from this lemma by using (14) and applying Lemma 5.1
to propositions 1, 2 and Lemma 5.2 to propositions 3, 4.

Theorem 6.1. Assume the processing time architecture

(3). Then the following statements hold true for any tX0:

1. If the composition rule is SPAND and if A and B are

concurrent, then

cðtÞX0:

2. If the composition rule is SPOR and if A and B are

concurrent, then

cðtÞp0:

3. If the composition rule is SPAND and if A and B are

sequential, thenZ N

t

cðxÞ dxp0;

includingZ N

0

cðxÞ dxp0:

4. If the composition rule is SPOR and if A and B are

sequential, thenZ t

0

cðxÞ dxX0;

with the limit caseZ N

0

cðxÞ dxX0:

One can see that, under all the assumptions made, one
can use cðtÞ to distinguish the concurrent and sequential
cases if one knows the gates (all-AND or all-OR), and to
distinguish the all-AND case from the all-OR case if one
knows whether the two influenced components are
sequential or concurrent. The new achievement is that
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this can be done without assuming that the component
times are stochastically independent.
One can also see, however, that based on this

theorem one may fail to tell apart some of the four
possible cases. In addition to the trivial observation
that if the interaction contrast is identically zero it is
compatible with all four cases, one also faces two
nontrivial entanglements: the SPAND case with sequen-
tial A;B is compatible with the SPOR case and
concurrent A;B; whereas the SPOR case with sequential
A;B is compatible with the SPAND case and con-
current A;B: The following results employ an additional
assumption to enable one to tell apart the first two
cases.

Lemma 6.2. Assume the processing time architecture (3)
with the composition rule SPAND: Let also, on some

interval 0ptpt; either (11) or (12) hold. Then cðtjrÞX0
on the same interval, for all r:

Proof. See Theorem 5 in Schweickert et al. (2000). &

By (14) and Lemma 5.1, we have then

Theorem 6.2. Assume the processing time architecture (3)
with the composition rule SPAND: Let also, on some

interval 0ptpt; either (11) or (12) hold. Then cðtÞX0 on

the same interval.

With the additional assumption of either (11) or
(12), therefore, concurrent A;B in an SPOR-
network (where the interaction contrast never
exceeds 0) cannot be confused with sequential A;B in
an SPAND-network: in the latter case cðtÞX0 prior
to some moment t (but, if the inequality is strict, it
has to attain negative values on some subsequent
intervals of time, in order to ensure the inequalityRN
t

cðxÞ dxp0).
Unfortunately, no results analogous to Lemma 6.2

and Theorem 6.2 exist for SPOR-networks. As a result,
the problem of telling the SPOR case with sequential
A;B apart from the SPAND case with concurrent A;B
remains unsolved, for both independent and interde-
pendent component times.

7. Illustrations

To illustrate results of Theorem 6.1, consider the
network in Fig. 4. The gate in the network is either an
AND gate or an OR gate, so the composition rule is
either ðT1 þ T2Þmax T3 or ðT1 þ T2ÞminT3: The dura-
tions T1; T2 and T3 are constructed to be stochastically
interdependent but selectively influenced in the sense of
Definition 2.1 and Lemma 2.1. Specifically, let the

component times be generated as

T1 ¼ g1S1R;

T2 ¼ g2S2R;

T3 ¼ g3S3R; ð15Þ
where gi ði ¼ 1; 2; 3Þ are factors with numerical values,
R is uniformly distributed, and Si ði ¼ 1; 2; 3Þ are
identically standard-gamma-distributed, with the den-
sity tm�1e�t=GðmÞ (where m is the mean and G is gamma
function). Information on cumulative distribution func-
tions for directed acyclic networks can be found in
Fisher and Goldstein (1983).
The random variables ðR; S1; S2; S3Þ are mutually

independent and their distributions do not depend on
the factors g1; g2; g3: The stochastic interdependence of
the random variables T1; T2 and T3 is due to their
dependence on the common source of randomness R:
For any given value of R; however, T1jR¼r; T2jR¼r and
T3jR¼r are stochastically independent, with their (condi-
tional) distributions selectively depending on the respec-
tive factors, g1; g2; g3:
Note that all the ancillary assumptions made in

Section 3 are satisfied. In particular, the distribution
function for Ti at a larger value of factor gi ði ¼ 1; 2; 3Þ
dominates the distribution function for Ti at a smaller
value of the same factor, in the sense of (9) and (10). The
dominance relations (11) and (12) too can be easily
checked to hold.
To selectively influence the sequential processes with

durations T1 and T2; we varied g1 � g2 in a 2� 2 design
and kept g3 fixed. Since constants are never included
among the factors influencing the overall processing
time, the selective influence scheme in this case is

ðT1;T2;T3ÞIðfg1g; fg2g;+Þ:
To selectively influence the concurrent processes with
durations T1 and T3; we varied g1 � g3 in a 2� 2 design
and kept g2 fixed. The selective influence scheme in this
case is

ðT1;T2;T3ÞIðfg1g;+; fg3gÞ:
The results shown in Fig. 5 are computed analytically

for the case when m (the mean value for S1;S2;S3) is 1.
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In this case the common distribution of S1;S2;S3 is
standard exponential. When the selectively influenced
components are sequential and the gate is AND
(Fig. 5A), the interaction contrast begins positive, as
predicted by Theorem 6.2, but later becomes negative.
Since the total positive area under this curve is smaller
than the total negative area, it is clear that the net area
under the curve to the right of any time t is negative, in
compliance with Theorem 6.1 (statement 3).
When the selectively influenced components are

sequential and the gate is OR (Fig. 5B), the total
positive area is clearly larger than the total negative
area, whence it follows that the net area to the left of any
time t is positive, in compliance with Theorem 6.1
(statement 4).
When the selectively influenced components are

concurrent, then the interaction contrast is nonnegative
at all times if the gate is AND (Fig. 5C), and it is
nonpositive at all times if the gate is OR (Fig. 5D). This
agrees with Theorem 6.1 (statements 1 and 2).
The results shown in Fig. 6 are computed by means of

computer simulations (performed in EXCEL) for the
case when m is 4. For each combination of the values for
g1; g2; g3 that was used in the simulations, the distribu-
tion function for the overall processing time was
reconstructed from 2000 trials, which corresponds to a
large but still manageable experiment. Each of these
trials consisted of independently sampling a value of R;
a value of S1; a value of S2; and a value of S3 (with
different trials being independent as well; see footnote
7). As in Fig. 5, the results are in good compliance with

Theorem 6.1, in spite of the occasional ‘‘jitters’’ clearly
attributable to sampling error.

8. Concluding remarks

8.1. Selective influence under stochastic interdependence

The notion of selective influence constructed in
Dzhafarov (2003a) has desirable mathematical proper-
ties, some of which are mentioned in Section 2. This is
not, however, the only advantage of this notion over the
previous attempts to define selective influence under
stochastic interdependence (Dzhafarov, 1997, 1999;
Townsend, 1984; Townsend & Thomas, 1994). The
additional claim made in Dzhafarov (2003a) is that the
new theory has a considerably greater working power,
with a greater variety of potential applications. The
mathematical reason for this lies in the fact that
probability distributions for interdependent (but selec-
tively influenced) random variables and for functions
thereof are obtained by integration over expressions
obtained for stochastically independent conditional
random variables. Integration over the domain of the
conditioning random entity R will often preserve
essential properties of the integrands, generalizing them
thereby from stochastically independent variables to
stochastically interdependent variables with the same
pattern of selective influences. Even when this is not the
case, the multiplicative decomposability of the inte-
grands pertaining to (conditionally) stochastically
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independent variables often greatly facilitates theoretical
analysis of the resulting joint distributions.
The claim of greater applied power has been success-

fully tested on the traditional problem of selectively
influenced components of a multivariate normal dis-
tribution (Dzhafarov, 2003a) and on the problem of
stochastically interdependent random images selectively
attributed to distinct stimuli. In the latter case, certain
results were first obtained for independent images
(Dzhafarov, 2003b) and then, using the theory of
selective influence, were shown to almost immediately
generalize to interdependent images (Dzhafarov, 2003c).
The present paper provides a further demonstration of
the same logic, and of the same effectiveness. All
mathematical complexity in the proofs of our theorems
is absorbed by the proofs of the results for independent
component times (given in Schweickert et al., 2000),
their subsequent generalization to interdependent com-
ponent times becoming straightforward.

8.2. Interaction contrast for serial–parallel networks

The main results obtained in this paper need no
summarizing as they are clearly presented as statements
of Theorem 6.1.
One of the weaknesses of these results is that they are

all formulated as nonstrict inequalities. For example,
none of the considered cases prevents cðtÞ from being
identically zero. To investigate the conditions under

which the obtained inequalities are strict, however, is
more tedious than complex. It requires postulating
certain intervals upon which the stochastic dominance
inequalities (9) and (10) are strict, followed by a
meticulous analysis relating these intervals to the
intervals upon which distribution functions for various
component times are increasing.
Another weakness of our results, already mentioned,

is that they do not allow to separate the case of
concurrent selectively influenced components in a net-
work with all-AND gates from the case of sequential
selectively influenced components in a network with all-
OR gates.
Finally, nothing is known about serial–parallel net-

works that may contain both AND and OR gates.

8.3. On Wheatstone bridge networks

Any directed acyclic network that is not serial–
parallel has a Wheatstone bridge subnetwork imbedded
in it (Dodin, 1985; Kaerkes & Mohring, 1978). An
example of a Wheatstone bridge is given in Fig. 2C, with
the composition rule

ðT2 þ T5Þ3ðT13ðT2 þ T3Þ þ T4Þ: ð16Þ
Without getting into details, the Wheatstone bridge
configuration is of interest not only because it is a
directed acyclic network that is not serial–parallel, but
also because some of the sequential pairs of processes in
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it (in our example, T2;T4) may sometimes behave like
concurrent pairs (Schweickert, 1978).12

Schweickert and Giorgini (1999) report several results
related to (16), both analytic and simulation-based.
These results are predicated on the assumption of
stochastic independence, and all of them can be shown
to generalize to stochastically interdependent but
selectively influenced components, using the same logic
as in Section 5. We relegate details to an appendix
because the analysis in Schweickert and Giorgini (1999)
is confined to one specific Wheatstone bridge
configuration only, described by (16). It is clear,
however, that as it is for serial–parallel networks, the
main difficulty in dealing with networks containing
Wheatstone bridges lies in the case of stochastically
independent components, the extension to interdepen-
dent selectively influenced components being relatively
straightforward.

8.4. New developments

Two papers available too recently for us to discuss in
detail use interaction contrasts based on entire distribu-
tion functions to uncover process arrangements. Town-
send and Fific (in press) found evidence that some
individuals change from serial to parallel memory search
when the delay between the memory set and probe is
increased. Schweickert, Fortin and Sung (2003) found
that visual search and reproduction of a time interval
can go on concurrently. Our results here broaden the
class of systems to which the conclusions of these recent
papers apply.
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Appendix A. On Wheatstone bridge network in Fig. 2C

Let

WðT1;T2;T3;T4;T5Þ ¼ ðT2 þ T5Þ3ðT13ðT2 þ T3Þ þ T4Þ:
We will say that the composition rule isWAND (orWOR)
if 3 in this expression is max (respectively, min). If a
statement applies to both, we write WAND=OR: We

consider this composition rule in combination with the
selective influence assumption

ðA;B;C1;C2;C3ÞIða; b;+;+;+Þ;
where ðA;BÞ is some pair of processing times chosen
from ðT1;T2;T3;T4;T5Þ and C1;C2;C3 are the remain-
ing three. We make the same ancillary assumptions as
before (Section 3).

A.1. Concurrent pairs of processes

Let ðA;BÞ be one of the pairs ðT1;T2Þ; ðT1;T3Þ;
ðT3;T5Þ; ðT1;T5Þ; ðT4;T5Þ: Then the following state-
ments hold true, for all tX0:

1. If the composition rule is WAND; then

cðtÞX0:

2. If the composition rule is WOR; then

cðtÞp0:

The proof is obtained by applying Lemma 5.1 to the
observation that these statements hold true for any
given value r of R (which in turn follows from the proofs
given in Schweickert & Giorgini, 1999, for stochastically
independent component times).

A.2. Sequential pairs of processes

Let ðA;BÞ be one of the pairs ðT1;T4Þ; ðT2;T3Þ;
ðT2;T5Þ; ðT3;T4Þ: Then the following statements hold
true, for all tX0:

1. If the composition rule is WAND; thenZ N

t

cðxÞ dxp0:

2. If the composition rule is WOR; thenZ t

0

cðxÞ dxX0:

The proof is obtained by applying Lemma 5.2 to the
observation (following from Schweickert & Giorgini,
1999) that these statements hold true for any given value
r of R:

A.3. The ‘‘special pair’’ ðT2;T4Þ

The pair ðT2;T4Þ is ‘‘special’’ because in the composi-
tion ruleW the two component times are related to each
other by both operation þ and operation 3 (max or
min). Indeed, for constant values of other component
times, W can be written as ½f ðT2Þ þ T4� 3 g ðT2Þ:
For ðA;BÞ ¼ ðT2;T4Þ Schweickert and Giorgini

(1999) present no analytic results but their simulation
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12Observe that, in (16), T2 and T4 are related to each other by both

operation þ and operation 3 (max or min). Indeed, for constant values
of other component times, (16) can be written as ½f ðT2Þ þ T4� 3 gðT2Þ:
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study suggests the following. If the composition rule is
WAND; and if all the component times are stochastically
independent, thenZ t

0

cðxÞ dxX0;

for all tX0: If this statement is true, then it immediately
generalizes to stochastically interdependent networks
with selectively influenced components.
Although no simulation (or analytic) results are

available for the composition rule WOR; it is plausible
to conjecture (see Schweickert & Giorgini, 1999, for
details) that in this caseZ N

t

cðxÞ dxp0;

for all tX0: Again, if this statement is true, its
generalization to stochastically interdependent networks
must be true as well.

A.4. Additional results

Theorem 6.2 has several analogues for our Wheat-
stone bridge configuration.

1. For the composition rule WAND=OR; let A ¼ T2 and
B ¼ T3 or B ¼ T5: If (11) holds on some interval
0ptpt; then

cðtÞX0;

on the same interval.
2. For the composition rule WAND=OR; let B ¼ T4 and

A ¼ T1 or A ¼ T3: If (12) holds on some interval
0ptpt; then

cðtÞX0;

on the same interval.
3. For the composition rule WAND; if ðA;BÞ ¼ ðT2;T4Þ

and if both (11) and (12) hold on some interval
0ptpt; then

cðtÞX0;

on the same interval.
4. For the composition rule WOR; if ðA;BÞ ¼ ðT2;T4Þ

and if both (11) and (12) hold on some interval
0ptpt; then

cðtÞp0;

on the same interval.

The proof consists in applying Lemma 5.1 to the
observation (following from the proofs given in
Schweickert & Giorgini, 1999, for stochastically inde-
pendent component times) that these statements hold
true for any given value r of R:
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