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Abstract We present general principles underlying analysis of the dependence of
random variables (outputs) on deterministic conditions (inputs). Random outputs
recorded under mutually exclusive input values are labeled by these values and con-
sidered stochastically unrelated, possessing no joint distribution. An input that does
not directly influence an output creates a context for the latter. Any constraint im-
posed on the dependence of random outputs on inputs can be characterized by con-
sidering all possible couplings (joint distributions) imposed on stochastically unre-
lated outputs. The target application of these principles is a quantum mechanical
system of entangled particles, with directions of spin measurements chosen for each
particle being inputs and the spins recorded outputs. The sphere of applicability,
however, spans systems across physical, biological, and behavioral sciences.
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1 Introduction

This paper pertains to any system, physical, biological, or behavioral, with random
outputs recorded under varying conditions (inputs). A target example for us is a
quantum mechanical system of two entangled particles, “Alice’s” and “Bob’s.” Al-
ice measures the spin of her particle in one of two directions, α1 or α2, and Bob
measures the spin of his particle in one of two directions, β1 or β2. Here, α and
β are inputs, and each trial is characterized by one of four possible input values
(αi,β j). The spins recorded in each trial are realizations of random variables A and
B, which, in the simplest case, can attain two values each: a1 or a2 for A and b1 or b2
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for B. One can think of many examples in other domains with similar formal struc-
ture, e.g., a psychophysical experiment with an observer responding to stimuli with
varying characteristics α (say, intensity) and β (say, shape). These characteristics
then constitute inputs, while some characteristics of the responses, such as response
time A (with a continuum of values) and response correctness B (with two possible
values), are random outputs.

Accounts of the approach presented in this paper can be found in [5-7], but this
paper is the first one focusing entirely on its basic principles. The approach amounts
to philosophical rethinking (or at least conceptual tweaking) of the foundations of
probability, specifically, of random variables and their joint distributions. Here, it is
presented without technical details (that can be reconstructed from [3-6]).

2 Basic Principles

Let all or some of the random outputs of a system form a random variable X ,1 and
the totality of all inputs be a variable χ . In our target example, χ = (α,β ) with
input values χ1 = (α1,β1), . . ., χ4 = (α2,β2), whereas X can be (A,B) with values
x1 = (a1,b1), . . ., x4 = (a2,b2), or A with values a1,a2, or B with values b1,b2. If
χ itself is a random variable, so that χ1,χ2, . . . occur with some probabilities, we
ignore these probabilities and simply condition the recorded outputs X on values
of χ . In other words, we have a distribution of X given that χ = χ1, a distribution
of X given that χ = χ2, etc., irrespective of whether we can control and predict
the values of χ , or they occur randomly. Now, this conditioning upon input values
means that X is indexed by different values of χ . We obtain thus, “automatically,”
a set of different random variables in place of what we previously called a random
variable X . We have Xχ1 (or X1, if no confusion is likely) which is X when χ = χ1,
Xχ2 (or X2) which is X when χ = χ2, etc. Let us formulate this simple observation
as a formal principle.

Principle 1 Outputs recorded under different (hence mutually exclusive) input val-
ues are labeled by these input values and considered different random variables.
These random variables are stochastically unrelated, i.e., they possess no joint dis-
tribution.

Thus, in our target example, we have four random variables Ai j, four random
variables Bi j, and four random variables (A,B)i j = (Ai j,Bi j) corresponding to the
four input values χk = (αi,β j). The principle holds irrespective of how the distri-
bution of Xk depends on χk. Thus, the variables Ai1 and Ai2 remain different even if
their distributions are identical (as they should be if Bob’s choice cannot influence
Alice’s measurements). One must not assume that they are one and the same ran-
dom variable, Ai = Ai1 = Ai2. The latter would mean that Ai1 and Ai2 have a joint

1 Random variables are understood in the broadest sense, so that a vector of random variables (or
any set thereof, or a random process) is a random variable too.
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distribution, because of which the probabilities Pr [Ai1 = Ai2] are well defined, and
that these probabilities equal 1. But Ai1 and Ai2 do not have a joint distribution. In-
deed, two random variables X and Y have a joint distribution only if their values
can be thought of as observed “in pairs,” i.e., if there is a scheme of establishing
correspondence x(i) ↔ y(i) between observations x(1),x(2), . . . of X and y(1),y(2), . . .
of Y . In our example, the correspondence is defined by the two measurements being
simultaneously performed on a given pair of entangled particles. Each such a pair of
measurements corresponds to a certain input value, e.g., A21 and B21 correspond to
χ = (α2,β1). Therefore, no measurement outputs corresponding to different input
values, such as Ai1 and Ai2, or Ai1 and Bi2 co-occur in the same sense in which, say,
Ai1 co-occurs with Bi1.

However, given any two random variables X and Y , one can impose on them a
joint distribution, and create thereby a random variable Z = (X ,Y ), referred to as a
coupling for X and Y . By definition, the distribution of a coupling Z agrees with the
distributions of X and Y as its marginals.

Principle 2 Stochastically unrelated outputs recorded under mutually exclusive in-
put values can be coupled (imposed a joint distribution upon) arbitrarily. There are
no privileged couplings.

Thus, in our target example, the famous Bell-type theorems [1,3,8] implicitly
impose on (A11,B11), . . ., (A22,B22) a coupling with Ai1 = Ai2 and B1 j = B2 j. This

amounts to considering a random variable (A′
1,A

′
2,B

′
1,B

′
2) such that

(
A′

i,B
′
j

)
is dis-

tributed as (Ai j,Bi j). The Bell-type theorems show that such a coupling exists if and
only if the distributions of the coupled pairs (A11,B11), . . ., (A22,B22) satisfy certain
constraints (Bell-type inequalities, known to be violated in quantum mechanics). In
our approach, however, except possibly for simplicity considerations, this coupling
has no privileged status among all possible coupling for (A11,B11), . . ., (A22,B22).
Thus, any distribution of spins satisfying Bell-type inequalities is also compatible
with the coupling in which (A11,B11), . . ., (A22,B22) are stochastically independent
pairs of random variables, as well as with an infinity of other couplings in which
Pr [Ai1 = Ai2] and Pr

[
B1 j = B2 j

]
may be different from 1.

If the distributions of Ai1 and Ai2 are not the same for i = 1 or i = 2, the situation
is simple: the output A is influenced by both inputs α and β (and analogously for
B1 j and B2 j). If, however, the distributions of Ai1 and Ai2 are always the same, and
if, moreover, substantive considerations (e.g., laws of special relativity) prevent the
possibility of interpreting β as “directly” influencing A, then we can say that β forms
a context for the dependence of A on α (and analogously for α creating a context
for the dependence of B on β ). Principle 1 ensures that this contextuality is intro-
duced “automatically,” by labeling all outputs by all conditions under which they
are recorded. The degree and form of contextuality in a given system (e.g., those
with constraints more relaxed than the Bell-type inequalities [2,9]) can be charac-
terized by considering all possible probabilities Pr [Ai1 = Ai2] and Pr

[
B1 j = B2 j

]
,

called connection probabilities in [5-7]. This approach allows one to embark on a
deeper investigation of the relationship between the classical probability theory and
quantum mechanics than in the Bell-type theorems.
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3 Apparent Problems with the Approach

Two objections can be raised against our approach. One is that it requires to label
random variables by circumstances that cannot possibly be relevant. If reaction time
X to a given stimulus is recorded in conjunction with measurements of the temper-
ature on Mars with the values χ1 = low and χ2 = high, would it be meaningful to
“automatically” split X into stochastically unrelated Xlow and Xhigh? The answer is: it
is meaningful. If the temperature on Mars affects the distribution of X , then consid-
ering Xlow and Xhigh as different random variables is clearly useful for understanding
of X . If, as we suspect, the temperature on Mars does not affect the distribution of
X , then one can impose on

(
Xlow,Xhigh

)
an arbitrary coupling, including one with

Xlow = Xhigh = X . The latter choice amounts to ignoring the temperature on Mars
altogether.

The other objection is that if we apply Principle 1 systematically, we have to
consider different realizations of a random variable X as stochastically unrelated
random variables. X occurring in trial 1 as x(1) is labeled X1 and considered stochas-
tically unrelated to X2 that occurs in trial 2 as x(2), and so on. But this is perfectly rea-
sonable, and moreover, it is a standard issue in the probabilistic theory of couplings
[6]. Once a coupling (e.g., the commonly used iid one) is imposed on X1,X2, . . .,
it creates a new random variable Y = (X1,X2, . . .), of which we have a single re-
alization y =

(
x(1),x(2), . . .

)
. One can then investigate whether this y is statistically

plausible in view of the distribution of Y using standard statistical reasoning.
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