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Abstract

Dissimilarity on a finite set is a function that assigns to every pair
of points (stimuli) a nonengative number vanishing if and only if the two
points are identical. For any two points in a finite set, the minimum of the
length of all finite chains connecting these points is a quasimetric (i.e., it
satisfies all metric axioms except for symmetry). The computation of the
quasimetric from a dissimilarity can be viewed as a data-analytic proce-
dure of “correcting” dissimilarities into (quasi)distances, an alternative to
nonmetric Multidimensional Scaling: the procedure simply replaces the
dissimilarity between any two points with the shortest length across all
chains of points connecting them. It is shown in this paper that this pro-
cedure can be equivalently described as a series of recursive corrections for
violations of the triangle inequality across all triples of points considered
in an arbitrary order.

Keywords: asymmetric metric, dissimilarity, metric, Multidimensional
Scaling, quasimetric, stimulus space, triangle inequality.

This note deals with the Dissimilarity Cumulation (DC) theory presented in
Dzhafarov and Colonius (2007) and Dzhafarov (2008a, b). The central notions
of this theory are those of a dissimilarity function on an arbitrary set and of the
(generalized) metric it induces by means of the “dissimilarity cumulation” along
finite chains of points. Like in the Finsler-geometric tradition from which the
DC theory has descended (see, e.g., Shen, 2001), the notion of a metric in it falls
between the notions of a conventional, symmetric metric and of a quasimetric
(see Dzhafarov, submitted). The nuanced definitions, however, although briefly
mentioned below, are not essential for the present paper as it deals with finite
sets only. On a finite set, any nonnegative function of pairs of points that
vanishes if and only if the two points are identical is a dissimilarity function
(although a dissimilarity function on an arbitrary set is defined by two additional
properties, mentioned below in footnote 2); and any quasimetric on a finite set
is a metric in the sense of the DC theory (although on an arbitrary set a metric
in this theory is defined as a quasimetric which is, in addition, “symmetric in the
small,” as explained below in footnote 3). Consequently in this paper we are able
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to use the relatively well-established term “quasimetric” in all contexts where
the general DC theory would refer to a metric which may not be symmetric.1

Any data set being finite, the DC theory for finite sets can be viewed as a data-
analytic tool alternative to nonmetric Multidimensional Scaling (MDS): rather
than seeking a nonlinear transformation of a given set of dissimilarities into a
metric of a prescribed kind (usually Euclidean), the DC replaces the dissimilar-
ity value for each ordered pair of points with the shortest length (“cumulated
dissimilarity”) of a finite chain of points connecting the first element of the pair
with the second one (Dzhafarov & Colonius, 2006). This shortest length as a
function of pairs of points is a quasimetric, and it is referred to as the quasimet-
ric induced by the dissimilarity function. The purpose of this note is to show
that the procedure of computing quasidistances from dissimilarities can also be
described in terms of a series of recursive corrections of the dissimilarity values
for violations of the triangle inequality.

At each step of this recursive procedure one creates a sequence of ordered triads
of points, arbitrary insofar as all triads are included, with repetitions allowed
insofar as the sequence is finite, and with the sequence being generally differ-
ent at different steps. A step is divided into substeps, each substep dealing
with one oriented triangle (oriented because the dissimilarities assigned to their
sides are generally asymmetric) and consisting in replacing the largest side of
the triangle with the sum of two other sides if (and only if) they violate the
triangle inequality. At the beginning of the first step the values of the sides
of all triangles are the original dissimilarities, whereas each subsequent substep
of the same or subsequent steps deals with the sides as computed by the end
of the previous substep. The procedure terminates if at some step the triangle
inequality is violated at no substep. (Many heuristic shortcuts for this proce-
dure are available, but we are not concerned with computational effectiveness
in this note.) The claim is that the procedure does terminate, and that when
it terminates all dissimilarities have been replaced with the quasidistances in-
duced by them. If symmetric distances are required, e.g., for the purpose of
isometrically embedding a stimulus set into a low-dimensional Euclidean space
(see Dzhafarov & Colonius, 2006), then the symmetrization can be achieved in
accordance with the general theory of DC, as the sum of the quasidistances “to
and fro.”

Notation conventions. Let S be a set of stimuli (points), denoted by boldface
lowercase letters x,y, . . .. A chain, denoted by boldface capitals, X,Y, . . .,
is a finite sequence of points. The set

⋃∞
k=0 Sk of all chains with elements

in S is denoted by S. It contains the empty chain and one-element chains
(identified with their elements, so that x ∈ S is also the chain consisting of x).

1Note, however, that there is considerable variance in the use of metric-related terminology,
e.g., the terms “distance” and “quasidistance.” In the present paper, metric (quasimetric) al-
ways refers to a function, whereas distance (respectively, quasidistance) is understood to mean
the value of this function. Thus, (quasi)metric = (quasi)metric function = (quasi)distance
function, but one can only use “(quasi)distance” rather than “(quasi)metric” in conjunction
with “from a to b.”
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Concatenations of two or more chains are presented by concatenations of their
symbols, XY, xYz, etc. Binary functions S × S → R (where R denotes real
numbers) are presented as Dxy, Mxy, Gxy, ... Given a chain X = x1, . . .xn

and a binary (real-valued) function F , the notation FX stands for

n−1∑
i=1

Fxixi+1,

with the obvious convention that the quantity is zero if n is 1 (one-element
chain) or 0 (empty chain).

1. Preliminaries

As in this note we only deal with finite stimulus sets S, a dissimilarity is any
real-valued function D : S × S → R such that Daa = 0 (zero property) and
Dab > 0 (positivity) for any distinct a,b ∈ S.2 A dissimilarity need not be
symmetric and need not satisfy the triangle inequality.

A dissimilarity M on a finite set S is a quasimetric if it satisfies the triangle
inequality,

Mab + Mbc ≥Mac

for all a,b, c ∈ S.

Definition 1. Given a dissimilarity D on a finite set S, the quasimetric G
induced by D is defined as

Gab = min
X∈S

DaXb,

for all a,b ∈ S.

That G is a quasimetric is easy to prove (see, e.g., Dzhafarov & Colonius, 2006,
2007).3

2The other two defining axioms of dissimilarity are the intrinsic uniform continuity and
the chain property. Formulated in terms of sequences {an}, {a′

n, } {bn}, {b′
n} in S and se-

quences of chains {Xn} in S, the intrinsic uniform continuity means that Da′
nb′

n−Danbn →
0 whenever Dana′

n → 0 and Dbnb′
n → 0; the chain property is that Danbn → 0 whenever

DanXnbn → 0. On finite sets (more generally, on uniformly discrete sets, in which no dis-
similarity between nonidentical points falls below some positive value) these two properties
trivially follow from the positivity and zero properties.

3Outside the context of finite or uniformly discrete sets the min in the definition of G should
be replaced with inf. G on an arbitrary set is not just a quasimetric, it is also symmetric in
the small: i.e., Ganbn → 0 implies Gbnan → 0 for any sequences {an}, {bn} in S. This
property being critical for topological, uniformity, and geometric considerations (whereas the
global symmetry is relatively unimportant), Dzhafarov (submitted) proposed to use the term
“metric” for a quasimetric which is symmetric in the small, and to use the term “symmetric
metric” for the conventional metric.
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The quantity
G∗ab = Gab + Gba

is a (symmetric) metric on S. It can also be defined directly:

G∗ab = min
X,Y∈S

DaXbYa = min
X,Y∈S

DbXaYb.

Let us illustrate these computations on a toy example. Let S be {a,b, c,d},
and let the dissimilarity function D be

D a b c d
a 0 1 3 4
b 2 0 1 3
c 4 2 0 1
d 7 5 2 0

 .

To compute Gab one contemplates all possible chains aXb and finds out that
DaXb ≥ Dab always. Hence Gab = Dab = 1. For ad the situation is
different: it is easy to verify that the for any chain X (including the empty
chain), DaXd ≥ Dabcd. So we put Gad = Dabcd = 3. Proceeding in this
manner for all ordered pairs from {a,b, c,d} we arrive at the matrices below:


X a b c d
a · · b bc
b · · · c
c · · · ·
d c c · ·




G a b c d
a 0 1 2 3
b 2 0 1 2
c 4 2 0 1
d 6 4 2 0

 .

The left matrix shows for every x,y ∈ {a,b, c,d} a chain X such that DxXy =
Gxy (the dots indicating the empty chain, when Dxy = Gxy). The matrix on
the right shows the values of G, the quasimetric induced on {a,b, c,d} by the
dissimilarity D.

One of the obvious features of matrix G is that it is not symmetric, which
makes it impossible to visualize {a,b, c,d} as a configuration of points isomet-
rically embedded in a low-dimensional Euclidean space. To achieve the latter
we additively symmetrize the quasimetric as described above to obtain

G∗ a b c d
a 0 3 6 9
b 3 0 3 6
c 6 3 0 3
d 9 6 3 0

 .

Figure 1 shows the isometric embedding (by means of metric MDS) of {a,b, c,d}
endowed with G∗ into a Euclidean space: clearly a unidimensional configuration.

4



‐0.06 

0.06 

‐0.6  0.6 

‐0.06 

0.06 

‐0.6  0.6 ‐6  6 ‐6 6 

‐0.6  ‐0.6 

0.6  0.6 

a 

a 

b 

b 

c 

c 

d 

d 

Figure 1: Embeddings of {a,b, c,d} of our toy example into a 2D Euclidean
space. Left: embedding (by means of metric MDS) that preserves the values of
the symmetric distances G∗ induced by the dissimilarity function D. Right: em-
bedding (by means of nonmetric MDS) that preserves the order of the additively
symmetrized dissimilarities D∗. The stress value is zero in both cases.

For comparison, the figure also shows a nonmetric MDS performed on additively
symmetrized initial dissimilarities, D∗ab = Dab + Dba.

Clearly, there is no need to try different chains X for every pair of points if the
dissimilarity D is known to be a quasimetric: in this case the triangle inequality
implies

Gab = min
X∈S

aXb = Dab.

This means that one can always begin by looking at the ordered triads of points
only, and determining whether any of them violates the triangle inequality. If
there are no violations, then D ≡ G. If violations are observed, however, a
direct application of the definition of G (and G∗) means that one now has to
deal with all possible chains of points rather than with the ordered triads only.
Details aside, this is what is done by the software packages designed to perform
Fechnerian Scaling, the main psychophysical application of DC.4

This procedural discrepancy (all finite chains versus just triads) raises the ques-
tion of whether the computation of G from D when the two do not coincide can
be recast entirely in terms of “correcting” the dissimilarities for the violations of
the triangle inequality in ordered triads, i.e., replacing Dac with Dab + Dbc
in every abc with Dac > Dab + Dbc. The answer turns out to be affirmative,
provided that the procedure may apply to one and the same triangle repeatedly,
with D being gradually redefined until it becomes G.5 The procedure and the
proof that it works are presented next.

4This includes the R-language package “fechner” described in Ünlü, Kiefer, &
Dzhafarov, 2009 and available at CRAN; a program FSCAMDS available at
http://www1.psych.purdue.edu/~ehtibar/Links.html; and a Matlab toolbox available at
http://www.psychologie.uni-oldenburg.de/stefan.rach/31856.html

5To prevent misunderstanding, the issue here is not one of computational effectiveness: we
are not concerned with whether repeated “corrections” of triangles take less or more time than
computations of chain lengths. Rather we pose a question of principle: can one deal with
dissimilarities in terms of the triangle inequality alone? Put differently, we are interested in
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2. Correcting for Violations of Triangle Inequal-
ity

Let S contain k ≥ 3 distinct elements. The cases with k = 0, 1, 2 are trivial
and need not be considered. Let S3 denote the set of k (k − 1) (k − 2) ordered
triads of pairwise distinct points of S. The elements of S3 will be referred to
as ordered triads, or triangles, the pairwise distinctness being implied tacitly.

For n = 0, 1, . . ., let T(n) denote a sequence of tn elements of S3 which con-
tains the entire S3. For each n, we index the triads in T(n) by double indices
(n, 1) , (n, 2) , . . . , (n, tn), and we order all such pairs, for n = 0, 1, . . ., lexico-
graphically: (n, i)′, the successor of (n, i), is (n, i + 1) if i < tn, so that the
(n, i)′th triad is in T(n), and (n, tn)′ is (n + 1, 1), so that the (n, tn)′th triad is
the first one in T(n+1). In the following we will tacitly assume that the double-
indexed sequences T(n) for n = 0, 1, . . . are fixed. As stated below in Corollary
1 to Theorem 1, however, one’s choice of these sequences is inconsequential for
the end result of one’s computations.

Definition 2. Let S be endowed with a dissimilarity function D. The dissimi-
larity function M (n,i) for n = 0, 1, . . . and i = 1, 2, . . . , tn is defined by induction
as follows. M (0,i) ≡ D for i = 1, 2, . . . , t0. Let M (n,i) be defined for some
(n, i) ≥ (0, t0). Then M (n,i)′xy = M (n,i)xy for all x,y ∈ S except, possibly,
for M (n,i)′ac in the (n, i)′th triad abc, which is “corrected” as

M (n,i)′ac = min{M (n,i)ac, M (n,i)ab + M (n,i)bc}.

This completes the definition of M (n,i) (referred to as the corrected dissimilarity
function) for n = 0, 1, . . . and i = 1, 2, . . . , tn.

If M (n,i) for some (n, i) is a quasimetric on S, then we call M ≡ M (n,i) the
terminal corrected dissimilarity function.

Lemma 1. M (n,i) is the terminal corrected dissimilarity function for some
i ≤ tn if and only if M (n+1,tn+1) ≡M (n,tn).

Proof. The “only if” part is obvious: M (n,i) being a quasimetric, M (m,j) ≡
M (n,i) for any (m, j) ≥ (n, i). To proof the “if” part, it follows from Definition
2 that for any x,y ∈ S, if (m, j) ≥ (n, i) then M (m,j)xy ≤ M (n,i)xy. Hence
M (n+1,tn+1) ≡ M (n,tn) implies M (n+1,1) ≡ M (n,tn), whence M (n,i) contains no
violations of the triangle inequality.

Lemma 2. For any n = 0, 1, . . ., any i = 1, 2, . . . , tn, and any a,b ∈ S, there
is a chain aXb such that

M (n,i)ab = DaXb.

whether dissimilarities on finite sets can be viewed as “imperfect” quasidistances which can
be transformed into true quasidistances by “correcting” them, one by one and recursively, for
every violation of the triangle inequality.
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Proof. By induction on the lexicographically ordered (n, i). The statement is
clearly true for n = 0. Let it be true for all double indices up to and including
(n, i) ≥ (0, t0). Then, if abc is the (n, i)′th triad, the statement must hold for
M (n,i)′ac whether it equals M (n,i)ac or M (n,i)ab + M (n,i)bc; and it must hold
for any other (x,y) because then M (n,i)′xy = M (n,i)xy.

Theorem 1. A terminal corrected dissimilarity function M exists. It coincides
with the quasimetric G induced by the initial dissimilarity function D.

Proof. Deny the existence of M , and then, by Lemma 1, M (n+1,tn+1) and
M (n,tn) do not coincide for all n = 0, 1, . . .. Since S2 is finite, there should
exist a pair of nonidentical a,b ∈ S and an infinite sequence of positive integers
n1 < n2 < . . . for which

Dab 6= M(n1,tn1)ab 6= M(n2,tn2)ab 6= . . . .

It follows then from the definition of M (n,i)that

Dab > M(n1,tn1)ab > M(n2,tn2)ab > . . . .

This implies, by Lemma 2, that there is an infinite sequence of chains Xn1 ,Xn2 , . . .
such that

M(ni,tni)ab = DaXni
b, i = 1, 2, . . . ,

and
Dab > DaXn1b > DaXn2b > . . . .

But this is clearly impossible, as the set of chains in a finite set whose lengths
are below a given value is finite. This proves the existence of M . To prove that
M ≡ G, observe that for any a,b ∈ S and any chain X ∈ S,

DaXb ≥MaXb.

Since the triangle inequality holds for M , we have

Mab ≤MaXb,

whence

Mab ≤ DaXb.

Combined with Lemma 2 this means that

Mab = min
X∈S

DaXb,

and the latter quantity is Gab by definition.

Corollary 1. The terminal corrected dissimilarity function M does not depend
on the choice of the sequences T(n) for n = 0, 1, . . ..
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Proof. Immediately follows from the fact that M ≡ G and G is uniquely deter-
mined by D (as is apparent from Definition 1).

This concludes the analysis. We have seen that dissimilarities on finite sets
can be viewed as “imperfect” quasidistances, and the dissimilarity cumulation
procedure can be recast as a transformation of these dissimilarities into true
quasidistances by means of a series of recursive corrections for the violations of
the triangle inequality. 6

Let us illustrate the correction procedure on the toy example of the previous
section, with S = {a,b, c,d} and the dissimilarity function

D a b c d
a 0 1 3 4
b 2 0 1 3
c 4 2 0 1
d 7 5 2 0

 .

Let us form a single sequence of all ordered triads to be used as T(n) for n =
0, 1, . . . (see footnote 6). This can be done, e.g., by cycling through the first
element (4 values), subcycling through the last element (3 values), and sub-
subcycling through the middle element (2 values), in the alphabetic order. This
yields

T = {acb,adb,abc,adc, . . . ,dac,dbc} .

Putting T(1) = T and testing the triangles in the order shown, the first violation
of the triangle inequality occurs in the triangle #3, abc:

3 = Dac > Dab + Dbc = 1 + 1.

We “correct” the value of Dac therefore by replacing 3 with 2 (shown in paren-
theses in matrix M (1,3) below, the superscript indicating the third triangle in

6The possibilities that the sequence T(n) of the triads may contain several replications of
one and the same triad, and that T(n) and T(m) may be different for m 6= n, are allowed for
the sake of generality only. It is probably always more convenient to use a fixed permutation
of the elements of S3. Moreover, the requirement that T(n) should include the entire S3 does
not mean that all triads have to be examined in every sequence (on every step). It can be
seen from the procedure and the proofs that if the triangle inequality is found to be violated
in a triad abc, then one may skip all subsequent triads axc in the same sequence, or even
terminate the step altogether and move on to the next one. These observations may help to
make the procedure more efficient (but see footnote 5).
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the sequence T(1) = T).
D a b c d
a 0 1 3 4
b 2 0 1 3
c 4 2 0 1
d 7 5 2 0

⇒


M (1,3) a b c d
a 0 1 (2) 4
b 2 0 1 3
c 4 2 0 1
d 7 5 2 0



⇒


M (1,20) a b c d

a 0 1 2 4
b 2 0 1 3
c 4 2 0 1
d (6) 5 2 0

⇒


M (1,22) a b c d
a 0 1 2 4
b 2 0 1 3
c 4 2 0 1
d 6 (4) 2 0

 .

The next violation occurs in the triangle #20, dca:

7 = M (1,19)da > M (1,19)dc + M (1,19)ca = 2 + 4,

where M (1,19) ≡ M (1,18) ≡ . . . ≡ M (1,3). So we correct M (1,19)da from 7 to 6,
as shown in matrix M (1,20). We deal analogously with the third violation of the
triangle inequality, in the triangle #22, dcb:

5 = M (1,21)db > M (1,21)dc + M (1,21)cb = 2 + 2,

where M (1,21) ≡ M (1,20) ≡ M (1,19). At the remaining two substeps before the
first sequence of the triangles has been exhausted, M (1,23) and M (1,24), no values
change, so M (1,24) ≡ M (1,23) ≡ M (1,22) is the matrix submitted to the second
step of the procedure.

At the second step, using T(2) = T, the first and only violation occurs at the
triangle #5, abd:

4 = M (2,4)ad > M (2,4)ab + M (2,4)bd = 1 + 2,

where M (2,4) ≡ . . . ≡ M (2,1) ≡ M (1,24). So the final “correction” occurs in
matrix M (2,5), as shown below.

M (1,24) a b c d
a 0 1 2 4
b 2 0 1 3
c 4 2 0 1
d 6 4 2 0

⇒


M (2,5) a b c d
a 0 1 2 (3)
b 2 0 1 3
c 4 2 0 1
d 6 4 2 0

 .

It is easy to verify that M (2,5) is a quasimetric on S = {a,b, c,d}, so that M (2,6)

and higher-indexed corrected dissimilarities remain identical to M (2,5). The
latter therefore is the terminal corrected dissimilarity M , and its comparison
with the computations made in the previous section shows that it coincides with
G, the quasimetric induced by the initial dissimilarity function D.
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