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Abstract Contextuality is a property of systems of random variables. The identity
of a random variable in a system is determined by its joint distribution with all other
random variables in the same context. When context changes, a variable measuring
some property is instantly replaced by another random variable measuring the same
property, or instantly disappears if this property is not measured in the new con-
text. This replacement/disappearance requires no action, signaling, or disturbance,
although it does not exclude them. The difference between two random variables
measuring the same property in different contexts is measured by their maximal
coupling, and the system is noncontextual if one of its overall couplings has these
maximal couplings as its marginals.

1 Preamble

Quantum physicists like telling people (perhaps even themselves) that their field
is strange and counterintuitive. Contextuality, especially when it takes the form of
nonlocality, is one of its strange and counterintuitive notions. Indications of contex-
tuality, such as violations of the Bell-type inequalities, are sometimes referred to as
paradoxes. Like everything else in quantum physics, contextuality involves proba-
bilities, hence random variables. And these, unlike the physical issues described by
them, are usually taken to be clear and well-known: nothing strange or counterin-
tuitive about random variables, they are merely mathematical tools, on a par with
derivatives and integrals.

However, if I had any propensity to mystify my readers, I would argue that ran-
dom variables are very strange objects. A random variable is a pure potentiality until
it is realized, i.e., until it “collapses” into a single value being observed. Why is it
less intriguing that the measurement problem in quantum physics (the wonderment
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at why the Schrödinger wave, which is essentially a special way of describing a
random variable with a spatiotemporal distribution, collapses into a specific value
being observed)? The textbook definition says that a random variable is a function
from a probability space to a measurable space, but one would look in vain for any
utilization of this fact in the quantum physical literature. What are these probability
spaces on which the random variables are defined? How does one know that two
observations belong to a single random variable rather than two different variables?
Can one speak of values of a random variable counterfactually, in terms of what
its value might have been, had it not been what it was observed to be? Questions
and wonderments like this can be multiplied. I am not, however, into mystifying my
readers. All these questions have clear answers, but this clarity is not of an evident
variety, one cannot achieve it without nontrivial conceptual work. And once one
achieves clarity about random variables, I will argue, this clarity is imparted on the
substantive issues they describe, contextuality including.

One researcher who forcefully argued that contextuality and nonlocality are pri-
marily matters of probability theory rather than physics was Andrei Khrennikov
[1,2]. He does not seem to maintain this position currently, and his arguments when
he maintained it were different from those presented in this paper. Nevertheless, I
think my views are close to Khrennikov’s former views in spirit.

2 Random variables within a system

In 1989 David Mermin published a popular-level discussion of the nonlocal form
of contextuality [3] (based on his 1981 work, added to [3] as an appendix). I will
present Mermin’s reasoning in a modified form. Consider the well-known Alice-Bob
scenario, in which Alice chooses between two settings, denoted 1 and 2, and Bob
chooses between his two settings, also denoted 1 and 2. The outcomes of Alice’s
measurements at either setting can be +1 or −1, and the same is true for Bob’s
measurements. Because of the way the experiment is set up (e.g., with Alice’s and
Bob’s measurements being spacelike separated), Alice’s choice of a setting cannot
influence Bob’s measurements, and vice versa. Let us use the term “context i j” to
describe the situation in which Alice chooses setting i ∈ {1,2} and Bob chooses
setting j ∈ {1,2}. Suppose that the outcomes of the two measurements in the four
contexts have the following probabilities:
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context 22
Bob’s

outcome =+1
Bob’s

outcome =−1

Alice’s outcome =+1 0 1/2 1/2

Alice’s outcome =−1 1/2 0 1/2
1/2 1/2

contexts 11, 12, 21
Bob’s

outcome =+1
Bob’s

outcome =−1

Alice’s outcome =+1 1/2 0 1/2

Alice’s outcome =−1 0 1/2 1/2
1/2 1/2

. (1)

This describes what is commonly referred to as a PR-box [4], a highly contextual
system by all reasonable measures [5], and one that violates the CHSH inequali-
ties [6] to the maximal extent algebraically possible (I will explain this in Section
3). Mermin’s reasoning is aimed at showing that there is something paradoxical
(“extremely perplexing,” he says) about such a system of random variables.1

We begin with context 11, and denote the two random variables representing the
outcomes of Alice’s and Bob’s measurements as follows:

context 11

Alice’s setting 1 random variable A1

Bob’s setting 1 random variable B1

Pr [A1 = B1] = 1. (2)

That the probability of A1 =B1 is 1 follows from the joint distribution (1) for context
11.

Now, Mermin proposes what he calls the Strong Baseball Principle (SBP),2 that
I will formulate as follows:

(SBP) if Alice’s random variable at her setting i can in no way be influenced by
Bob’s choice of his setting, then the same random variable can represent her
measurement outcomes in both context i1 and context i2; analogously, Bob’s
measurement outcomes at his setting j can be represented by the same random
variable in both context 1 j and context 2 j.

In particular, in context 12, Alice’s measurement outcomes can be represented by the
same A1 as they are in context 11, and in context 21, Bob’s measurement outcomes
can be represented by the same B1 as they are in context 11:

1 Mermin does mention the distributions (1), with perfect correlations and anticorrelations, but
for a detailed reasoning he uses the distributions in which the joint probabilities 1/2 and 0 are
replaced with (1+ cos π

4 )/4 and (1− cos π

4 )/4, respectively. The difference is not significant for
my presentation.
2 So dubbed because of the simile with the belief that watching a baseball game on one’s TV cannot
affect the game’s outcome.
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context 12
[

Bob’s setting 2 ?
Alice’s setting 1 A1

context 11

Alice’s setting 1 A1

Bob’s setting 1 B1

Pr [A1 = B1] = 1

context 21
[

Bob’s setting 1 B1
Alice’s setting 2 ?

. (3)

We can easily fill in the places held by the question marks. We know from (1) that
the two random variables in context 12 are perfectly correlated, so once we have
determined one of them, the other must copy it (and the same holds for context 21):

context 12

 Bob’s setting 2 B2
Pr [A1 = B2] = 1

Alice’s setting 1 A1

context 11

Alice’s setting 1 A1
Pr [A1 = B1] = 1

Bob’s setting 1 B1

context 21

 Bob’s setting 1 B1
Pr [A2 = B1] = 1

Alice’s setting 2 A2

. (4)

Then we apply SBP once again, and conclude that in context 22 the measurements
by Alice and Bob can be represented by the same random variables A2 and B2 as
they are in contexts 21 and 12, respectively:

context 22

Alice’s setting 2 A2

Bob’s setting 2 B2

Pr [A2 = B2] = 1. (5)

That the probability of A2 = B2 is 1 follows from the chain

Pr [A2 = B1] = 1,Pr [B1 = A1] = 1,Pr [A1 = B2] = 1. (6)

But we know from (1) for context 22 that the probability of A2 = B2 is zero, not 1.
We have run into a contradiction.

A contradiction always means that some of the assumptions made in the process
of reasoning, perhaps unawares, are wrong. The first impulse one might have is
to declare that the random variables with the distributions (1) are impossible, but
this can easily be dismissed. One way to do this is to note that the same reasoning
with the same contradiction at the end can be obtained with distributions that are
empirically observed and codified by a well-established theory. This is the argument
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chosen by Mermin, who uses distributions that are predicted by quantum mechanics
for a certain choice of the four settings (directions in which spins are measured) in
the standard EPR/Bohm experiment with spin-1/2 particles [6] (see footnote 1). Of
course, one can always challenge the validity of quantum mechanics and the veracity
of the experiments corroborating its predictions (which one would have to do if the
contradiction we arrived at could not be dissolved by any other means). A much
better argument therefore would be to simply note that the random variables with
distributions (1) exist mathematically, as appropriately chosen functions on certain
probability spaces. We will get to this later, however.

Assuming we are satisfied there is nothing wrong with our distributions, where
else can one seek the cause of the contradiction we derived? One might try to deny
the possibility that Bob’s setting have no influence on Alice’s measurements (which
probably remains the most commonly held interpretation of nonlocality among non-
physicists). However, this would be wrong (“disquieting,” Mermin says) in view
of what physics says about information propagation: e.g., it is ruled out if Alice’s
and Bob’s measurements are spacelike separated. Note that Alice has no means to
infer Bob’s setting because in contexts i1 and i2 the random variables representing
the outcomes of her measurements have indistinguishable distributions (+1 and −1
occurring with equal probabilities). Therefore the hypothetical ways in which Bob’s
setting would influence Alice’s measurements would have to be contrived to remain
hidden, in addition to contradicting physical theory.

Mermin too dismisses the “hidden action at a distance” resolution of the contra-
diction he derives, and he suggests that the culprit is SBP.

Many people want to conclude from this [the contradiction – E.D.] that what happens at A
does depend on how the switch is set at B, which is disquieting in view of the absence of
any connections between the detectors. The conclusion can be avoided, if one renounces
the Strong Baseball Principle, maintaining that indeed what happens at A does not depend
on how the switch is set at B, but that this is only to be understood in its statistical sense,
and most emphatically cannot be applied to individual runs of the experiment. To me this
alternative conclusion is every bit as wonderful as the assertion of mysterious actions at a
distance. I find it quite exquisite that, setting quantum metaphysics entirely aside, one can
demonstrate directly from the data and the assumption that there are no mysterious actions
at a distance, that there is no conceivable way consistently to apply the Baseball Principle
to individual events (p. 49).

While it is quite obvious to me that SBP is wrong, I do not think Mermin’s explana-
tion is sufficiently transparent. Let us try to understand it. Mermin says “individual
runs” because in his exposition he does not even mention random variables, speak-
ing instead of very long sequences of realizations thereof. If treated informally, this
only obfuscates analysis, and if treated rigorously, complicates it. A sequence of
realizations of a random variables is a random process, an indexed set of identically
distributed random variables. I suggest therefore that Mermin’s transplantation of a
sequence of realizations from one context to another should simply be understood
as placing in these contexts one and the same random variable, the way we have
done this in (4) and (5). And this is what must not be done, Mermin says based on
the contradiction this led us into, and I think there is no reasonable way to disagree
with this prohibition. Consider any single context, say, 11 in (2). The realizations
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of A1 and B1 there come in pairs, they have therefore a well-defined joint distribu-
tion. In particular, one has an opportunity to decide, by looking at a long enough
sequence of the paired realizations, whether they are perfectly correlated. By con-
trast, in (4), if one looks at A1 in context 11 and A1 in context 12, their realizations
cannot co-occur, because context 11 and 12 are mutually exclusive. One has no non-
arbitrary way of pairing a value of A1 in context 11 with a value of A1 in context
12. There is no meaningful sense of asking whether they are correlated, perfectly
or otherwise. But then it means that we have made a mistake by denoting them by
the same symbol: A1 is a single random variable, even if mentioned many times,
and A1 = A1 holds with probability 1. In contexts 11 and 12 therefore we have two
different random variables with one and the same distribution. This is, I suggest,
how one could understand Mermin’s assertion “that indeed what happens at A does
not depend on how the switch is set at B, but that this is only to be understood in its
statistical sense.”

How should we amend the representations (4) and (5) to avoid contradiction?
The answer is simple: we should use different symbols for A1 in context 11 and A1
in context 12, e.g., denote them by A11

1 and A12
1 , respectively (and analogously for

other pairs of random variables transplanted from one context to another by SBP).3

One can write A11
1 ∼ A12

1 , where ∼ means “is distributed as”, but statements like
A11

1 = A12
1 , A11

1 6= A12
1 , A11

1 +A12
1 = 2, etc. are all void of meaning because A11

1 and
A12

1 posses no joint distribution. The system of random variables in our example can
now be presented as follows:

A11
1

Pr[A11
1 =B11

1 ]=1
B11

1

B11
1 ∼B21

1

A12
1

A12
1 ∼A11

1

B21
1

Pr[A21
2 =B21

1 ]=1

B12
2

Pr[A12
1 =B12

2 ]=1

A21
2

A21
2 ∼A22

2

B22
2

B22
2 ∼B12

2

A22
2

Pr[A22
2 =B22

2 ]=0

(7)

We are no longer driven into contradiction: the value of Pr
[
A22

2 = B22
2
]

can in no way
be inferred from other components of this diagram, because none of them contains
the variables A22

2 and B22
2 . If my interpretation of Mermin’s conclusion is deemed

3 This notation for the random variables has redundancy in it: the subscripts can be recovered from
the superscripts (contexts) and the symbol (A or B) used for the random variable. Thus, A11

1 could
simply be written as A11, and B12

2 as B12. I leave the notation redundant by a deliberate choice,
however, to make the structure of the random variables maximally transparent.
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reasonable, his was a valuable observation for the 1980s, although I doubt it could
be well understood the way it was formulated.

To generalize, a random variable within a system of random variables is identi-
fied not only by what it measures (e.g., A11

1 and A12
1 both measure the same property,

say, the spin of a particle in Alice’s direction 1) but also by the context in which it is
recorded (here, by the directions chosen by both Alice and Bob for their measure-
ments). Let me dispel two possible objections to this general statement.

One is that we still can write A1 for both A11
1 and A12

1 but keep in mind that we
deal with two different sequences of realizations of A1. Indeed, one might argue,
there is nothing wrong in saying that one records a random variable today, and then
the same random variable is recorded tomorrow. The response to this argument is
that it is acceptable only if one is allowed to be informal, hoping this will not lead
to confusion. A rigorous treatment of random variables requires that whenever one
attaches different contexts to them (in this example, day of the measurement, today
or tomorrow), one deals with different random variables. After all, to say “A1 to-
day” and “A1 tomorrow” means to denote them differently, albeit sloppily. They are
(perhaps) identically distributed, but they are distinct and have no joint distribution.
Recall that the rigorous definition of a sequence of realizations of a random variable
R (a sample of its values) is the sequence of different random variables, R1,R2, . . .,
each of which is distributed as R. The fact that in most applications they are also as-
sumed to be independent is more subtle, and its mathematical meaning is captured
through the notion of couplings that we will discuss later.

Another, often heard objection is that by saying that A11
1 and A12

1 are different
random variables, one somehow admits that something in the contexts causes A11

1 to
transform into A12

1 as context 11 is replaced with context 12. So in the EPR/Bohm
scenario, one might argue, we still have some kind of an action at a distance. This
objection is merely a play on the words “causes” and “transforms.” If A11

1 and A12
1 are

identically distributed, Alice has no means to distinguish them. Which means that
no information, no action is transferred from Bob’s setting to Alice’s measurements.
A11

1 and A12
1 are different random variables only for someone who, like Mermin, gets

information from both Alice and Bob, both about their settings chosen and outcomes
obtained. What changes when context 11 is replaced with context 12 is the relation
between Alice’s measurements and Bob’s measurements, and this, because of the
fundamentally relational nature of random variables (as explained below), means
that Mermin knows that in contexts 11 and 12 Alice deals with two different random
variables.

Having dealt with these objections, can we say that with my interpretation of
Mermin’s analysis we, at least informally (because a more formal treatment is to
follow), have explained the strangeness of contextuality in terms of random vari-
ables? The answer is, we have not. In fact, unexpected as this might come, Mer-
min’s conclusion in my interpretation equally applies to any and all systems of ran-
dom variables, contextual or not. Consider, e.g., the following modification of the
distributions (1):
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contexts 11, 12, 21, 22
Bob’s

outcome =+1
Bob’s

outcome =−1

Alice’s outcome =+1 1/2 0 1/2

Alice’s outcome =−1 0 1/2 1/2
1/2 1/2

. (8)

This system is clearly noncontextual. It can be viewed as describing a single pair
of perfectly correlated random variables, with setting choices being fake. It is still
true, however, that the contexts 11 and 12 are mutually exclusive, and insofar as
these settings are not ignored, Alice’s measurements in these contexts must be rep-
resented by different (though identically distributed) random variables that have no
joint distribution. The diagram representing this situation is identical to (7), except
Pr
[
A22

2 = B22
2
]

is now 1 rather than zero. This makes no difference for how one treats
the random variables because in both cases Pr

[
A22

2 = B22
2
]

is completely unrelated
to other elements of the diagrams.

A11
1

Pr[A11
1 =B11

1 ]=1
B11

1

B11
1 ∼B21

1

A12
1

A12
1 ∼A11

1

B21
1

Pr[A21
2 =B21

1 ]=1

B12
2

Pr[A12
1 =B12

2 ]=1

A21
2

A21
2 ∼A22

2

B22
2

B22
2 ∼B12

2

A22
2

Pr[A22
2 =B22

2 ]=1

(9)

Somewhat paradoxically, therefore, having resolved the contradiction brought in
by SBP, Mermin (or at least my interpretation of his analysis) loses the distinction
between contextual and noncontextual systems. There is no way, e.g., to derive Bell-
type inequalities for systems like (7) and (9), because the joint distributions involved
of the four pairs of random variables(

A11
1 ,B11

1
)
,
(
A21

2 ,B21
1
)
,
(
A22

2 ,B22
2
)
,
(
A12

1 ,B12
2
)
, (10)

are logically unrelated to each other.
Some researchers derive from this that the notion of contextuality is flawed. In

particular, Bell-type inequalities, according to this view, are simply invalid, based
on the mistake of following SBP. It seems that this is also Andrei Khrennikov’s view
[7], although his implementation of the context-dependence of random variables is
different from the one presented here [8].

While one is free not to make distinctions one finds uninteresting, I find this
position less than constructive. It is true that the context-indexing of random vari-
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ables precludes the naive notion of contextuality, but what one better get rid of is
the naivety rather than the notion. As it turns out, there is a conceptual and math-
ematical tool that enables us to readily distinguish systems like (7) from those like
(9). As a bonus, this tool, while incompatible with SBP, justifies and formalizes the
counterfactual reasoning on which SBP is based. The questions like “what would
the outcome of one’s measurement be if it were made in a context other than the
one in which it is made” translate into rigorous and non-controversial mathematical
problems.

3 Sample spaces and couplings

The mathematical tool in question is (probabilistic) coupling. Before introducing
it, however, let us make sure we understand why two random variables in different
contexts do not have a joint distribution (from which it follows also that they can
never be one and the same random variable).

All random variables in this paper are assumed to be dichotomous,4 because of
which a random variable is defined as a function X : S→{−1,1}, with the following
properties:

1. S belongs to a probability space (S,Σ ,µ), where Σ is a sigma algebra of subsets
of S, and µ a probability measure Σ → [0,1];

2. X−1 ({1})∈Σ , and Pr [X = 1] = µ
(
X−1 ({1})

)
; X−1 ({−1})∈Σ , and Pr [X =−1] =

µ
(
X−1 ({−1})

)
;

3. Pr [X = 1]+Pr [X =−1] = 1.

The set S is often called a sample space, but I prefer to use this term for the proba-
bility space (S,Σ ,µ). Random variables X and Y are jointly distributed if and only
if they are functions on the same sample space. If they are, then

Pr [X = 1,Y = 1] = µ
(
X−1 ({1})∩Y−1 ({1})

)
. (11)

Realizations of X and Y are then defined in pairs. If they are not on the same sample
space, Pr [X = 1,Y = 1] is undefined, and no pairing scheme for their realizations
exists.

We see that, by definition, to construct a set of jointly distributed random vari-
ables means to specify a sample space and define these random variables as func-
tions on this sample space. What usually remains unclear to a student of these
textbook definitions is the nature of a sample space. What is it and how can it be
(re)constructed? The answer to this question is so simple that it can be surprising.
Let us discuss this answer in detail, using a system of the same format as above, but

4 In my favorite theory of contextuality, confining the consideration to dichotomous variables is
not a loss of generality, because all random variables within a system have to be replaced by sets
of jointly distributed dichotomous variables before the system can be subjected to contextuality
analysis [9, 10].
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this time with more arbitrary joint distributions in the four contexts: for i ∈ {1,2}
and j ∈ {1,2},

context i j Bi j
j =+1 Bi j

j =−1
Ai j

i =+1 ri j pi− ri j pi

Ai j
i =−1 q j− ri j 1− pi−q j + ri j 1− pi

q j 1−q j

. (12)

The only constraint imposed by my notation here is that the distribution of Ai j
i is the

same for j = 1 and j = 2 (in both cases Pr
[
Ai j

i = 1
]
= pi), and analogously for the

distribution of Bi j
j . This property of a system of random variables is called consistent

connectedness, or no-disturbance. This is precisely the property that guarantees that
Alice has no way of distinguishing Ai1

i and Ai2
i , the difference being only available

to someone who receives information about both Alice’s and Bob’s settings and
outcomes.

We assume, of course, that the distribution in (12) is well-defined, that is, all
probabilities shown are numbers between 0 and 1. As it turns out, this is all one
needs to say that the random variables Ai j

i and Bi j
j with this joint distribution exist as

mathematical objects. Indeed, consider the following probability space (S,Σ ,µi j)
for context i j: S = {a,b,c,d}, Σ = 2S, and µi j is defined by the probability mass
function

x = a b c d
µi j ({x}) = ri j pi− ri j q j− ri j 1− pi−q j + ri j

. (13)

The random variables are now defined as the functions

Ai j
i (x) =

{
+1 if x ∈ {a,b}
−1 if x ∈ {c,d} ,Bi j

j (x) =
{
+1 if x ∈ {a,c}
−1 if x ∈ {b,d} . (14)

The resulting system of random variables can be presented in the form of the fol-
lowing content-context matrix:

A11
1 B11

1 context 11
A12

1 B12
2 context 12

A21
2 B21

1 context 21
A22

2 B22
2 context 22

Alice’s 1 Alice’s 2 Bob’s 1 Bob’s 2 Alice-Bob system

. (15)

The term content (of a random variable) refers to that which the random variable
is measuring, or settings from which the measured property can be deduced. In the
matrix above, the contents are listed at the bottom.

Clearly, up to the labeling of the values of S, this construction is unique. More-
over, any other sample space

(
S′i j,Σ

′
i j,µ

′
i j

)
on which Ai j

i and Bi j
j can be defined is

reducible to this (S,Σ ,µi j), in the following sense: denoting by Xa the pre-image
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of
[
Ai j

i =+1,Bi j
j =+1

]
in S′i j, by Xb the pre-image of

[
Ai j

i =+1,Bi j
j =−1

]
, etc.,

one can map Xa into a, Xb into b, and so on, to define Ai j
i and Bi j

j as functions on
(S,Σ ,µi j). The latter therefore is the most economic sample space possible. The
general logic of the construction should be clear. Whenever a joint distribution of
hypothetical random variables is well-defined, these random variables exist as func-
tions defined on a sample space, and the most economic version of the latter can
be uniquely constructed from the joint distribution. There is never a situation in
which one can say that random variables with a given joint distribution do not exist
(provided no a priori constraints are imposed on their sample space).

It is also clear from this construction why Ai1 and Ai2 are distinct random vari-
ables even if they are identically distributed. They are defined on different sample
spaces: even if one chooses to denote the elements of the sample set in the same
way, {a,b,c,d}, the respective measures µi1 and µi2 are as distinct as are the joint
distributions in contexts i1 and i2 in (12).

In the previous section I mentioned “the fundamentally relational nature of ran-
dom variables,” because of which the identity of random variables cannot be the
same in different contexts. One can see now that this expression has a precise math-
ematical meaning: the sample space on which a given random variable is defined
is determined by its joint distribution with all other random variables in the same
context. A reasonable analogy is provided by a set of points in a metric space with-
out coordinates. Each point is characterized by its distances to the rest of the points,
so moving even one of the latter changes the point in question instantly. No spooky
transfer of information is involved, these are changes that occur by definition. Of
course, like all analogies, this one also has its drawbacks. In particular, it is possible
to say that “this point” (one pointed at) changes its identity when other points change
their positions. In a system of random variables one can only say that a random vari-
able in one context is different from a random variable that measures the same thing
in a different context. However, it seems to me that the analogy with distances does
a very good job in dispelling remnants of mystery in the term “nonlocality.”

Let me now introduce the conceptual tool that would allow us to speak of contex-
tual and noncontextual systems. A coupling of several random variables X1, . . . ,Xn
is a set of jointly distributed variables Y1, . . . ,Yn such that Yi ∼ Xi for i = 1, . . . ,n.
Note that X1, . . . ,Xn need not be jointly distributed, and in fact in all applications
we are interested in, they are not. In other words, each of Xi is defined on its own
sample space, whereas all Y ’s are defined on yet another sample space. Using the
term “stochastically unrelated” for random variables no two of which possess a
joint distribution, X1, . . . ,Xn, and (Y1, . . . ,Yn) viewed as a single random variable,
are stochastically unrelated. In relation to our discussion of Mermin’s SBP, cou-
plings can be thought of as answers to the counterfactual question “How could these
random variables be jointly distributed if they were jointly distributed?”

Any set X1, . . . ,Xn of random variables has a coupling, and generally it has an
infinity of couplings, i.e., infinity of (Y1, . . . ,Yn) with different joint distributions
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(but the same marginal distributions, because by definition, Yi ∼ Xi for i = 1, . . . ,n).5

Therefore, to use couplings as a means for categorizing the sets X1, . . . ,Xn, one
should only be interested in whether a set X1, . . . ,Xn has a coupling subject to some
specified constraints [11], as we will see shortly .

In the Contextuality-by-Default (CbD) theory, the notion of a coupling is applied
to a system of random variables in two ways. We first construct couplings for all
pairs of the same-content random variables. We have four of them in system (15):{

A11
1 ,A12

1
}
,
{

A21
2 ,A22

2
}
,
{

B11
1 ,B21

1
}
,
{

B12
2 ,B22

2
}
. (16)

Denoting a coupling of
{

A11
1 ,A12

1
}

by
(
Ã11

1 , Ã12
1
)
, we look among these couplings

for one in which the probability of Ã11
1 = Ã12

1 is as large as possible, given the
individual distribution of Ã11

1 ∼ A11
1 and Ã12

1 ∼ A12
1 . The reason one is interested

in such maximal couplings is that the maximal probability in question is a natural
measure of similarity between A11

1 and A12
1 , when they are taken in isolation from

their respective contexts. Put counterfactually, “if they were jointly distributed and
no other random variables existed,” they could coincide as often as this maximal
probability. Suppose we have computed these maximal probabilities, and

maxPr
[
Ã11

1 = Ã12
1
]
= ω1, maxPr

[
Ã21

2 = Ã22
2
]
= ω2,

maxPr
[
B̃11

1 = B̃21
1
]
= ω3, maxPr

[
B̃12

2 = B̃22
2
]
= ω4,

(17)

where each of the maxima is taken over all possible couplings of the corresponding
pair in (15).

We next construct a coupling for the entire system (15), or more precisely, a
coupling of the four stochastically unrelated random variables

X1 =
(
A11

1 ,B11
1
)
,X2 =

(
A12

1 ,B12
2
)
,X3 =

(
A21

2 ,B21
1
)
,X4 =

(
A22

2 ,B22
2
)
. (18)

Such a coupling consists of the jointly distributed random variables

Y1 =
(
Ā11

1 , B̄11
1
)
,Y2 =

(
Ā12

1 , B̄12
2
)
,Y3 =

(
Ā21

2 , B̄21
1
)
,Y4 =

(
Ā22

2 , B̄22
2
)
, (19)

with Yi ∼ Xi (i = 1, . . . ,4). There are generally an infinity of such couplings, and in
each of them we can compute

Pr
[
Ā11

1 = Ā12
1
]
= ω ′1, Pr

[
Ā21

2 = Ā22
2
]
= ω ′2,

Pr
[
B̄11

1 = B̄21
1
]
= ω ′3, Pr

[
B̄12

2 = B̄22
2
]
= ω ′4.

(20)

Obviously,
ω
′
1 ≤ ω1,ω

′
2 ≤ ω2,ω

′
3 ≤ ω3,ω

′
4 ≤ ω4. (21)

What we need to determine is whether there is a coupling in which all these inequal-
ities become equalities, i.e.,

5 One could, obviously, create many copies of (Y1, . . . ,Yn), identically distributed but defined on
different sample spaces. We should agree therefore that we make no distinction between them: a
coupling is entirely identified by its distribution.



Contextuality and Random Variables 13

Pr
[
Ā11

1 = Ā12
1
]
= ω1, Pr

[
Ā21

2 = Ā22
2
]
= ω2,

Pr
[
B̄11

1 = B̄21
1
]
= ω3, Pr

[
B̄12

2 = B̄22
2
]
= ω4.

(22)

In other words, we seek couplings of system (15) that preserve both the distributions
within the contexts (as they should by the definition of a coupling) and the similarity
values (17) between the content-sharing variables. If no such couplings exist, one
can say that the contexts make the content-sharing random variables to be more
dissimilar than they are when they were taken in isolation. Such a system is called
contextual. Otherwise, if such a coupling exists (generally not uniquely), the system
is noncontextual.

This simple and, I would argue, highly intuitive logic of (non)contextuality is
sufficient to restore all the contextuality results obtained in the literature and then
go much further, doing so without compromising the rigorous mathematics of ran-
dom variables and, in particular, without falling into the SBP trap. For a consistently
connected system, as in (12), the elements of each pair in (16) are identically dis-
tributed, and it is easy to see that in this case

ω1 = ω2 = ω3 = ω4 = 1. (23)

Indeed, the maximal coupling
(
Ã11

1 , Ã12
1
)

of
{

A11
1 ,A12

1
}

, e.g., has the distribution

content 1 of Alice Ã12
1 =+1 Ã12

1 =−1
Ã11

1 =+1 p1 0 p1

Ã11
1 ,=−1 0 1− p1 1− p1

p1 1− p1

. (24)

It follows that in this case we seek couplings (Y1,Y2,Y3,Y4) in (19) such that
Pr
[
Ā11

1 = Ā12
1
]
= 1, Pr

[
B̄11

1 = B̄21
1
]
= 1, and so on. Equivalently, we seek a reduced

coupling [12] in which the variables Ā11
1 and Ā12

1 can be replaced with a single Ā1,
the variables B̄11

1 and B̄21
1 can be replaced with a single B̄1, etc.

With this reformulation, one comes as close to the intuition underlying SBP as it
is possible without committing the logical error of the original SBP. Thus, the sys-
tem in our opening example, with distributions (1), is contextual because otherwise
it would have to have a coupling in which
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Ā11
1

Pr[Ā11
1 =B̄11

1 ]=1
B̄11

1
Pr[B̄11

1 =B̄21
1 ]=1

Ā12
1

Pr[Ā12
1 =Ā11

1 ]=1

B̄21
1

Pr[Ā21
2 =B̄21

1 ]=1

B̄12
2

Pr[Ā12
1 =B̄12

2 ]=1

Ā21
2

Pr[Ā21
2 =Ā22

2 ]=1

B̄22
2

Pr[B̄22
2 =B̄12

2 ]=1

Ā22
2

Pr[Ā22
2 =B̄22

2 ]=0

(25)

A chain of equalities it contains,

Pr
[
Ā11

1 = B̄11
1
]
= 1, . . . ,Pr

[
Ā22

2 = B̄22
2
]
= 0, . . . ,Pr

[
Ā12

1 = Ā11
1
]
= 1, (26)

is obviously impossible.
As shown in detail in [13], the language of probabilisitic couplings, when applied

to consistently connected systems, allows one to formalize both the counterfactual
formulation of contextuality and its formulation in terms of the hidden variable mod-
els with noncontextual mapping. I will not be repeating this discussion here. The
Bell-type inequalities for consistently connected systems are derived in essentially
the same way as they are derived traditionally. For instance, system (15) with dis-
tributions (12) can be shown to be contextual (i.e., not to have a coupling with the
stipulated properties) if and only if

max
(
±
〈
A11

1 B11
1
〉
±
〈
A12

1 B12
2
〉
±
〈
A21

2 B21
1
〉
±
〈
A22

2 B22
2
〉)

> 2, (27)

where the maximum is taken over all choices between + and − in front of each
expected value 〈. . .〉 such that the number of the minus signs is odd [14, 15]. This is
the well-known CHSH inequality, except it is commonly written as

max(±〈A1B1〉±〈A1B2〉±〈A2B1〉±〈A2B2〉)> 2. (28)

The latter form, however, is logically flawed, as it employs SBP and places the
same random variable in different contexts. In fact, this inequality simply cannot be
satisfied, because the variables A1,A2,B1,B2 in it must be jointly distributed (defined
on the same sample space) by the following diagram:
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A1

same sample space
B1

sam
e

sam
ple

space

B2

sa
m

e
sa

m
pl

e
sp

ac
e

A2same sample space

(29)

4 Overt influences vs contextuality (or on the magic of words)

There is one situation in which SBP cannot even be considered. It is the case of
inconsistently connected systems, or systems with disturbance. Using again the sys-
tem (15) as an example, suppose that the distributions of the random variables are
as follows: for i ∈ {1,2}, j ∈ {1,2},

context i j Bi j
j =+1 Bi j

j =−1
Ai j

i =+1 ri j pi j− ri j pi j

Ai j
i =−1 qi j− ri j 1− pi j−qi j + ri j 1− pi j

qi j 1−qi j

. (30)

The difference between this and (12) is in the marginal distributions: they are no
longer necessarily the same for Ai1

i and Ai2
i (generally, pi1 6= pi2), nor are they nec-

essarily the same for B1 j
j and B2 j

j (generally, q1 j 6= q2 j).6 Suppose, e.g., that in the
EPR/Bohm experiment, Alice’s and Bob’s measurements are timelike separated,
i.e., transmission of information from settings of one of them to measurement out-
comes of another is possible. Say, Bob sends certain π-rays of frequency 1 when
he chooses setting 1, and he sends π-rays of frequency 2 when he chooses setting
2, so that the outcomes of Alice’s measurements, Ai1

i and Ai2
i , can be affected by

these rays differently. Clearly, we have here dependence of Alice’s measurements
not only on her choice of a setting i but on the entire context i j. By definition, one
can speak of context-dependence here.

But does this context-dependence necessarily mean that the system (15) with dis-
tributions (30) is contextual? Some researchers think that the answer to this ques-
tion must be affirmative, unless the distributions are reduced to (12), in which case
a system may be contextual or noncontextual. However, unless some unknown to
me laws compel the meaning of the word “contextuality” to be derived from the

6 The use of “not necessarily” here is to indicate that consistently connected systems, with dis-
tributions (12), are merely a special case of the inconsistently connected ones, with distributions
(30).
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way it sounds, or its closeness to “context-dependence,” this is not the only possi-
ble answer. A more constructive approach would be to consider contextuality as a
form of context-dependence, and to ask whether it can be separated from and stud-
ied together with inconsistent connectedness, viewed as another form of context-
dependence, on the level of marginal distributions.

The definition of contextuality given in the previous section is in fact formulated
for (generally) inconsistently connected systems. The values of ω1,ω2,ω3,ω4 de-
fined in (17) generally are not all equal to 1. Thus, the maximal couplings of the
content-sharing pair

{
A11

1 ,A12
1
}

now has the distribution

content 1 of Alice Ã12
1 =+1 Ã12

1 =−1
Ã11

1 =+1 min(p11, p12) p11−min(p11, p12) p11

Ã11
1 ,=−1 p12−min(p11, p12) 1− p11− p12 +min(p11, p12) 1− p11

p12 1− p12

,

(31)
whence

ω1 = maxPr
[
Ã11

1 = Ã12
1
]
= 1−|p11− p12| . (32)

Similar formulas hold for other content-sharing pairs. In all other respects, however,
the logic of contextuality remains precisely as previously described: one seeks an
overall coupling of the system subject to the constraints (22), and the system is
contextual if and only if no such couplings exist. The interpretation of contextuality
also remains the same as it was for consistently connected systems: contextuality
means that the content-sharing random variable within their respective contexts (i.e.,
considered jointly distributed with other variables) are more dissimilar than when
they are isolated from their contexts. An inconsistently connected system can be
contextual or noncontextual, by precisely the same logic as in the special case when
the system is consistently connected.

This approach is more constructive than simply declaring any inconsistently con-
nected system contextual, because it provides greater differentiation among systems
of random variables, while properly reducing to special cases when more restricted
definitions apply. One can offer specific arguments in favor of our definition of con-
textuality [5, 11, 16–20], of which I will mention one. First, observe that some con-
textual systems are more contextual than others, with respect to the following, intu-
itively plausible way of measuring contextuality. Consider the value

ω ′ = max(ω ′1 +ω ′2 +ω ′3 +ω ′4)
= max

(
Pr
[
Ā11

1 = Ā12
1
]
+Pr

[
Ā21

2 = Ā22
2
]
+Pr

[
B̄11

1 = B̄21
1
]
+Pr

[
B̄12

2 = B̄22
2
])

(33)
with the maximum taken over all possible couplings of system (15). This value
cannot exceed

ω1+ω2+ω3+ω4 = 4−|p11− p12|−|p21− p22|−|q11−q21|−|q12−q22| , (34)

because of which the nonnegative quantity
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CNTX= ω1 +ω2 +ω3 +ω4−ω
′ (35)

can be taken for a measure of contextuality. A system is noncontextual if this quan-
tity is zero. In this paper’s opening example, system (15) with distributions (1) is
consistently connected, so ω1 = ω2 = ω3 = ω4 = 1. This system is contextual be-
cause, as we have seen, it is not possible for a coupling to satisfy the chain of equal-
ities in (25). The value of CNTX for this system can be shown to be 1, and this can
be shown to be the highest possible value of CNTX across all systems of format
(15) [5, 15, 21].

Now, let us introduce a small disturbance in our example, making the distribu-
tions

context 22 B22
2 =+1 B22

2 =−1
A22

2 =+1 0 1/2+ ε 1/2+ ε

A22
2 =−1 1/2− ε 0 1/2− ε

1/2− ε 1/2+ ε

contexts i j = 11,12,21 Bi j
j =+1 Bi j

j =−1
Ai j

i =+1 1/2 0 1/2

Ai j
i =−1 0 1/2 1/2

1/2 1/2

. (36)

Intuition tells us that the degree of contextuality in this system should be only
slightly different from the value of CNTX in the previous case, for ε = 0. And
indeed, the degree of contextuality here is

CNTX= 1−2ε. (37)

We would not have such a smooth change of the degree of contextuality with ε→ 0
if we based the contextuality of the system with ε > 0 on the difference of the
marginal probabilities alone.

On the other hand, in our second example, system (15) with distributions (8)
is noncontextual, i.e., CNTX = 0. If we introduce the same small perturbation as
above, the distributions will be

context 22 B22
2 =+1 B22

2 =−1
A22

2 =+1 1/2+ ε 0 1/2+ ε

A22
2 =−1 0 1/2− ε 1/2− ε

1/2− ε 1/2+ ε

contexts i j = 11,12,21 Bi j
j =+1 Bi j

j =−1
Ai j

i =+1 1/2 0 1/2

Ai j
i =−1 0 1/2 1/2

1/2 1/2

(38)
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It can be shown that this system remains noncontextual, CNTX = 0, as ε increases
from 0 to 1/2. Again, this is what one should expect based on the definition of con-
textuality. Zero CNTX at ε = 0 means that the system has a coupling in which the
value of ω ′ reaches ω1 +ω2 +ω3 +ω4, which in this case has the maximal possible
value, 4. Clearly, this is even easier to achieve if ω1 +ω2 +ω3 +ω4 has a smaller
value, 4−2ε .

As we have seen, an inconsistently connected system can be contextual or non-
contextual, and this lays the ground for a richer classification of systems than the
indiscriminate notion of context-dependence. It seems reasonable to maintain that
being able to make finer differentiations is always desirable, provided it is done in a
principled way. Nevertheless some researchers keep coming up with the revelatory
insight that it is possible to present both contextuality and inconsistent connected-
ness as context-dependence and to refuse to distinguish them. Sometimes this is
presented as the only position consistent with the “ontological” (or “ontic”) models,
in which (continuing to use our example) Ai j

i and Bi j
j are presented as functions

Ai j
i = f (i, j,λ ) ,Bi j

j = g(i, j,λ ) , (39)

where λ is some “hidden” variable. The term “ontological/ontic” is supposed to hint
at something happening in reality, as opposed to purely mathematical descriptions.
However, as a general approach, (39) is purely descriptive rather than explanatory,
because it is trivially applicable to any system of random variables. It is in fact noth-
ing more than a mathematically lax version of constructing an unconstrained overall
coupling for system (15). We know that this is always possible. Recall, that to make(

Ai j
i ,B

i j
j

)
for i, j ∈ {1,2} jointly distributed they have to be presented as functions

on the same sample space. The random variable λ is nothing but the identity func-
tion on this sample space. More rigorously, of course, one has to write

Āi j
i = f (i, j,λ ) , B̄i j

j = g(i, j,λ ) , (40)

or (
Ai j

i ,B
i j
j

)
∼ ( f (i, j,λ ) ,g(i, j,λ )) , (41)

because
(

Ai j
i ,B

i j
j

)
for different i, j are stochastically unrelated.

One source of misunderstanding leading some to considering (39) as an alterna-
tive to CbD is the suggestive terminology I and my colleagues coined for inconsis-
tent connectedness: we called it (the manifestation of) direct influences, as opposed
to contextual influences [22–25]. For instance, the distribution of Ai1

i may be differ-
ent from that of Ai2

i because Bob sends his π-rays that affect the outcomes of Alice’s
measurements. This intuition leads some to point out, as if this were a discovery of
a flaw in CbD, that the π-rays can also account for contextuality. One needs noth-
ing but the π-rays, according to this reasoning. It is simply that some effects of the
π-rays are overt, and are reflected in the differences of marginal distributions, while
other effects of π-rays are hidden, and we call them (mistakenly, according to this
criticism) contextuality [26]. This assertion is being justified, not surprisingly, by the
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very same possibility of representing a system by (39). One can construct various
toy examples to demonstrate this, but the fact remains that (39) is applicable univer-
sally. As I have mentioned, it is simply a restatement of the possibility to construct
an unconstrained overall coupling of any system.

To see that all of this is completely off target, it would suffice to replace the
term direct influence with overt influence. In retrospect, this would have been a bet-
ter term, and I intend to use it in the future. The criticism in question then would
look like this: CbD distinguishes overt effects (observable on the level of marginal
distributions) and contextual effects in systems of random variables, while we (the
critics) say that some context-dependence in such systems can be overt and some
hidden. This is no more than a terminological quibble, provided the hidden influ-
ences are to be revealed by means of the CbD-based contextuality analysis. How-
ever, the criticism in question seems to lead its proponents to simply lump together
all context-dependence for systems that are not known to be consistently connected.
If one accepts this position, in physics, contextuality analysis will be reserved to
situations when no physical transfer of information from Bob’s settings to Alice’s
measurements (and vice versa) is allowed by laws of physics. If tomorrow the physi-
cists concluded that superluminal transmission is possible after all, the EPR/Bohm
contextuality would have to be suspect. In systems like the original Kochen-Specker
one [27] or KCBS system [28], where the measurements in each context are made
on the same particle, contextuality is inherently suspect, as there it hinges on the fact
that the current quantum mechanical accounts of these systems involve no forces or
other forms of interference. In CbD, however, contextuality does not depend on the
state of substantive theories: e.g., the EPR/Bohm system with certain choices of di-
rections by Alice and Bob is contextual in both contemporary quantum theory and
in Bohmian mechanics, where hidden superluminal transmission is built in. All of
this is discussed and explained in our earlier publications, e.g. [17]. Quoting from
the latter work,

[...] to defend a definition is a difficult task. A good definition of a term should be intuitively
plausible (although sometimes one’s intuition itself should be “educated” to make it plau-
sible), it should include as special cases all examples and situations that are traditionally
considered to fall within the scope of the term, it should lead to productive development (to
allow one to prove nontrivial theorems), and have a growing set of applications. I believe
contextuality in the sense of CbD satisfies all these desiderata (p. 14).

To summarize:

1. (Non)contextuality is a property of systems of random variables. It is a special
form of context-dependence, the other form of context-dependence being incon-
sistent connectedness.

2. Being a purely mathematical property, (non)contextuality of a system does not
depend on substantive theories of the empirical situations represented by the sys-
tem.

3. The identity of a random variable in a system is determined by its joint distribu-
tion with all other random variables in the same context. When context changes, a
variable measuring some property is instantly replaced by another random vari-
able measuring the same property (in the language of CbD, having the same
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content), or it instantly disappears (if the property is not measured in the new
context).

4. In particular, if the measurements described by the random variables in each con-
texts are separated by spacelike intervals, then the disappearance or replacement
of a random variable by another random variable with the same content occurs
instantly in response to spacelike separated changes in the context. No action at
a distance is involved.

5. The difference between two random variables having the same content in differ-
ent contexts is measured by their maximal coupling, and the system is noncontex-
tual if one of its overall couplings has these maximal couplings as its marginals.

6. A contextual system, by contrast, makes the content-sharing random variables in
different contexts more dissimilar than they are in isolation.

7. A system can be contextual or noncontextual irrespective of whether it is consis-
tently connected.
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