
ARTICLE IN PRESS

Journal of Mathematical Psychology 49 (2005) 1–50

Psychophysics without physics: a purely psychological theory of
Fechnerian scaling in continuous stimulus spaces

Ehtibar N. Dzhafarova,b,�, Hans Coloniusc

aDepartment of Psychological Sciences, Purdue University, 703 Third Street, WestLafayette, IN 47907-2081, USA
bSwedish Collegium for Advanced Studies in Social Sciences

cUniversity of Oldenburg

Received 9 February 2004; received in revised form 16 August 2004

Abstract

The theory of Fechnerian scaling, as developed by the present authors, uses ‘‘same-different’’ discrimination probabilities defined

on a stimulus set to derive from them a measure of local discriminability (of each stimulus from its neighbors), and by cumulating

this measure along special paths in the stimulus space it obtains subjective (Fechnerian) distances among stimuli. Previously the

theory has been developed for two kinds of stimulus spaces: (A) ‘‘continuous spaces’’, that were understood as connected regions of

Euclidean space (such as the amplitude–frequency space of tones, or the CIE color triangle), and (B) discrete stimulus spaces (such

as alphabets or words). In the former case the theory is psycho-physical rather than purely psychological, in the sense that the

resulting subjective distances are based not only on discrimination probabilities but also on certain properties provided by physical

measurements of stimuli. Thus, the two-dimensionality of the amplitude–frequency space of tones, its vectorial structure, and its

Euclidean topology are all physical properties, and Fechnerian computations make use of them. This is an unsatisfactory situation,

as the definition of a subjective distance between two stimuli should not critically depend on how these stimuli are measured by

physicists. The theory of Fechnerian scaling for discrete stimulus spaces is, in contrast, purely psychological: the discreteness of a

stimulus space and all Fechnerian computations can be defined there entirely in terms of discrimination probabilities. In the present

work we show how to construct Fechnerian scaling as a purely psychological theory for arcwise connected (intuitively,

‘‘continuous’’) spaces of arbitrary nature, including spaces with infinite-dimensional or nondimensional physical descriptions (such

as spaces of pictures or motions). As in the Euclidean special case, this general theory of Fechnerian scaling is based on the defining

property of discrimination, called Regular Minimality, and on the idea of regular variation of psychometric differentials, with all

previously derived main theorems of Fechnerian scaling remaining valid.
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1. Introduction

In the world-view of classical psychophysics (‘‘mind-
view’’, perhaps, being a better term), sensory perception
is essentially characterized by a collection of unidimen-
sional continua representable by axes of nonnegative
real numbers. Each such a continuum corresponds to a
certain ‘‘sensory quality’’ (loudness, spatial extent,
saturation, etc.) any two values of which, ‘‘sensory
magnitudes’’, are comparable in terms of ‘‘ less than or
equal to’’. Moreover, each such a continuum has a
primary ‘‘physical correlate’’, an axis of nonnegative
reals representing intensity, or spatiotemporal extent of
a particular physical attribute: the sensory attribute is
related to its physical correlate monotonically and (with
an appropriate choice of physical measures) smoothly,
starting from the value of the absolute threshold (see
Fig. 1). The subjective distance between two stimulus
values according to this point of view is simply the
difference between the corresponding sensory magni-
tudes. This ‘‘ mind-view’’ characterized psychophysics at
its inception (Fechner, 1860, 1887), has been dominant
throughout one and a half century of its development
(Stevens, 1975), and is very much well and alive at
present (see, e.g., Luce, 2002, 2004).
The theory of multidimensional Fechnerian scaling

(MDFS) developed by the present authors (Dzhafarov,
2001a,b; 2002a–d; 2003a–c; Dzhafarov & Colonius,

1999, 2001) has its historical roots in another ‘‘ mind-
view’’, whose classical implementations can be found in
Helmholtz’s (1891) and Schrödinger’s (1920, 1920/1970,
1926/1970) geometric models of color space. These
models lay the foundation of the modern color science
(Indow, 1993; Indow & Morrison, 1991; Indow,
Robertson, von Grunau, & Fielder, 1992; Izmailov,
1995; Izmailov & Sokolov, 1991, 2003; Wyszecki &
Stiles, 1982). Physically, colors are functions relating
radiometric energy to wavelength, but even if their
representation by means of one of the traditional color
diagrams (such as CIE or Munsell) is considered their
physical description, and even if the subjective repre-
sentation of colors is thought of in terms of a finite
number of unidimensional attributes (such as, in the
case of aperture colors, their hue, saturations, and
brightness), the mapping of physical descriptions into
subjective ones is clearly that of one multidimensional
space into another. In this context the notions of
‘‘sensory magnitudes’’ ordered in terms of ‘‘greater-less’’
and of psychophysical functions like those shown in
Fig. 1 become artificial, if applicable at all. The notion of
subjective dissimilarity, by contrast, acquires the status of
a natural and basic concept, whose applicability allows
for but does not presuppose any specific system of color
coordinates, either physical or subjective. The natural
operationalization of the discrimination of similar colors
in this context is their judgment in terms of ‘‘same or
different’’, rather than ‘‘greater or less’’. (For a detailed
discussion of the ‘‘greater-less’’ versus ‘‘same-different’’
comparisons, see Dzhafarov, 2003a.)
The reason MDFS includes the adjective ‘‘Fechner-

ian’’ in its name is in that MDFS, the same as
Helmholtz’s and Schrödinger’s color geometries, bor-
rows from Fechner the fundamental idea of computing
subjective dissimilarities among stimuli from the ob-
servers’ ability to tell apart very similar stimuli. When
stimulus space is a unidimensional continuum, this is
done by means of cumulating a ‘‘local discriminability’’
(or ‘‘distinctiveness’’) measure as one moves from one
stimulus to another through all intermediate positions
(see Fig. 2). However, to generalize this basic idea to
multidimensional stimulus spaces (open connected
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Fig. 1. The view of sensory perception in classical psychophysics.
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regions of Ren; with axes representing independent
physical attributes), MDFS has to radically depart from
Fechner’s original theory in several respects, the two
most conspicuous departures being as follows.

1. The local discriminability measure (assigned to every
point in stimulus space and every possible direction of
change attached to it) is computed from the
discrimination probabilities of the ‘‘ same-different’’
kind,

cðx; yÞ ¼ Pr½xand y are judged to be
different from each other�:

This necessary switch from the ‘‘greater-less’’ to
‘‘same-different’’ judgments does not deprive one
from the possibility of dealing with semantically
unidimensional attributes of stimuli, such as loudness
or brightness: as explained later (Section 3.2), cðx; yÞ
may have a variety of methodological versions,
including the one in which the sameness or difference
of x and y is judged with respect to a single
designated quality (say, brightness), ignoring every-
thing else.

2. Any two stimuli a; b in Ren can be generally
connected by an infinite number of well-behaved
paths, and the integration of the local discriminability
measure along them yields the ‘‘subjective lengths’’ of
these paths rather than the subjective distance
between a and b: To compute the latter, one has to
take the infimum of the ‘‘ subjective lengths’’ of all
closed loops leading from a to b and back. The logic
of this computation is explained in Dzhafarov
(2002d) and, in much greater detail and greater
generality, in the present paper.
Like Fechner’s original theory, MDFS is not a model

aimed at explaining or predicting specific phenomena.
Rather it is a combination of a theoretical language with

a measurement procedure: it explicates the intuitions
behind the notion of a ‘‘subjective distance’’ and
provides a procedure by which subjective distances can
be computed from standardized observable judgments
(‘‘same’’ or ‘‘different’’) in response to pairs of stimuli.
As stated in Dzhafarov and Colonius (2001), ‘‘what
motivates this theory [MDFS] is the vague belief that,
the discrimination among stimuli being arguably the
most basic cognitive function and the probability of
discrimination being a universal measure of discrimin-
ability, distances computed from discrimination prob-
abilities should have a fundamental status among
behavioral measurements’’.
MDFS is based on certain assumptions about the

properties of discrimination probabilities cðx; yÞ; and
some of these assumptions or properties derived there-
from can be empirically tested (see Dzhafarov, 2002d;
see also Sections 4.4 and 11.6 in the present paper). One
property of discrimination probabilities underlying
MDFS (Regular Minimality, first formulated in Dzha-
farov (2001a, 2002d) and prominently discussed in the
present paper) we believe to be the fundamental law of
perceptual discrimination: it has, especially when
combined with another important property of discrimi-
nation, Nonconstant Self-Dissimilarity, far-reaching
and rather unexpected consequences for possible shapes
of discrimination probability functions and possible
ways of modeling the process of perceptual discrimina-
tion. MDFS has proved to be useful in addressing and
conceptually clarifying several traditional problems of
psychophysics, such as the number of jnd’s between
isosensitivity curves (Dzhafarov, 2001b; Dzhafarov &
Colonius, 1999), the so-called ‘‘Fechner problem’’ in
unidimensional and multidimensional settings (the
hypothesis that discrimination probabilities are mono-
tonically related to subjective distances, see Dzhafarov,
2002b), the definition and properties of perceptually
separable stimulus dimensions, (Dzhafarov, 2002c,
2003c), and the representability of perceptual images
of stimuli by random entities in a hypothetical
perceptual space (Dzhafarov, 2003a,b).
We do not recapitulate here the main points of the

Fechnerian analysis of these problems, referring the
reader to the literature cited. The purpose of the present
paper is far from being an overview: it is to identify and

overcome, by means of a more general and comprehensive

theoretical construction, the main limitation of MDFS,
the fact that this theory is ‘‘psycho-physical’’ rather than
‘‘purely psychological’’.

1.1. Psycho-physical versus purely psychological

We use the hyphenated term ‘‘psycho-physical’’ to
designate a theoretical construct that is based both on
subjective judgments about stimuli and on a specific
choice of physical measurements for these stimuli. The
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Fig. 2. Fechner’s basic idea: the subjective distance from a to b isR b

a
dðxÞdx; where dðxÞ is the degree of discriminability of xþ dx from x

(shown by spikes and the solid curve). In a modern interpretation of

Fechner’s theory (Dzhafarov, 2001b; Dzhafarov and Colonius, 1999),

dðxÞ is computed as the growth rate of xðx; yÞ (the probability of

judging y to be greater than x) taken at xðx; yÞ ¼ 1
2
: Fechner

approximated dðxÞ by the reciprocal of the ‘‘just noticeable difference’’
(jnd) at x, and he was primarily interested in the case when a is at the

absolute threshold.
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classical psychophysical functions shown in Fig. 1 are
psycho-physical constructs in this sense. Fechner’s
logarithmic function and Stevens’s power function
presuppose that one confines stimulus measurements
to a certain class, namely, the conventional measures of
energy, mass, and spatial or temporal extent (multiplied
by constants or raised to powers). This constraint
applies irrespective of what kind of subjective judgments
the scaling theory utilizes, be it magnitude estimates
taken to directly provide scale values, or ‘‘greater-less’’
judgments used to compute jnd’s or other local
discriminability measures that have to be cumulated to
provide scale values. In contrast, multidimensional
scaling (MDS; see, e.g., Kruskal & Wish, 1978) is an
example of a purely psychological theory. Whatever the
means by which subjective interstimulus dissimilarities
are obtained, the resulting spatial configuration in an
MDS solution is invariant under all possible changes of
stimulus descriptions.
MDFS belongs to the first of these two classes.

Although this theory does not involve the notion of
‘‘normative’’ physical measurements for stimulus attri-
butes, it is still a psycho-physical theory as it utilizes
some of the weaker physical properties of stimuli, such
as the dimensionality of stimulus space, its topology,
and its vectorial structure.
To illustrate, consider a space of visually presented

rectangular objects varying in their horizontal and
vertical dimensions h and v (see Fig. 3). In MDFS, the
Fechnerian distance Gða; bÞ between rectangles a ¼
ðh1; v1Þ and b ¼ ðh2; v2Þ is computed in such a way that
it is invariant with respect to all possible diffeomorphic
transformations (continuously differentiable transfor-

mations with continuously differentiable inverses).
Thus, assuming the values of h and v fill in some
interval ðm;MÞ; the distances Gða; bÞ remain the same if
one redefines stimuli x ¼ ðh; vÞ as x ¼ ðh=v; hvÞ; or as x ¼
ðh0:3v2; h2v0:3Þ (see Fig. 4). This seems to be a desirable
property, since the definition of a subjective distance
between two rectangles should not depend on whether
physicists measure them by their width and height ðh; vÞ
or, say, by their aspect ratio and area ðh=v; hvÞ:
This logic, however, breaks down when considering

nondiffeomorphic transformations, such as the one
shown in the left-hand panel of Fig. 5. Even though
this transformation is bijective, moreover, homeo-
morphic (continuous with a continuous inverse), Fech-
nerian distances computed in accordance with MDFS
from these two equivalent representations for the space
of rectangles will not generally coincide. The situation
worsens when one contemplates nontopological (i.e.,
discontinuous) transformations. Let, for example,
0oho1; 0ovo1; and let x0 for x 2 ð0; 1Þ be obtained
from x by permuting its first two digits after the decimal
point (with some convention eliminating either indefi-
nitely repeated 9’s or indefinitely repeated 0’s). The
overall space of ðh0; v0Þ vectors remains the same as that
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Fig. 3. A stimulus space for visually presented rectangles varying in

their horizontal ðhÞ and vertical ðvÞ dimensions (mohoM; movoM).

Two stimuli are shown with a smooth arc connecting them.

a
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b

Fig. 4. Diffeomorphic transformations of the space shown in Fig. 3,

with the same two points and the arc connecting them. Left: ðh; vÞ !
ðh=v; hvÞ: Right: ðh; vÞ ! ðh0:3v2; h2v0:3Þ:

a
a

b
b

Fig. 5. Non-diffeomorphic bijective transformations of the space

shown in Fig. 3, with the same two points and the arc connecting them.

Left: ðh; vÞ ! ðh; v maxfv; cþ ðc� hÞ sin h
c�hgÞ; where c ¼ ðmþMÞ=2:

This transformation is homeomorphic. Right: ðh; vÞ ! ðhPðhþ
v; 2c;mÞ; vÞ; where Pðx; y; zÞ is defined as x if x4y and z if xpy:
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of ðh; vÞ vectors (Fig. 3, with m ¼ 0; M ¼ 1), but the
Fechnerian distances between a ¼ ðh1; v1Þ and b ¼
ðh2; v2Þ and between a ¼ ðh01; v01Þ and b ¼ ðh02; v02Þ will
have nothing in common, even though these two
representations for rectangles can be uniquely recon-
structed from each other (note that an arc in one of
these representations will not generally be an arc in
another). The transformation of ðh; vÞ shown in the right
panel of Fig. 5 provides an example where Fechnerian
distances in the transformed space are not even defined
in the sense of the ‘‘standard’’ MDFS (Dzhafarov&
Colonius, 2001; Dzhafarov, 2002b, d), because the new
representation no longer forms a connected region
of Ren:
Granting that none of the three latter examples is a

likely candidate for a useful parametrization of varying
rectangles, the situation they reveal is clearly unsatis-
factory. The requirement ‘‘The definition of a subjective

distance between two stimuli should not depend on one’s
choice of their physical descriptions’’ should be expected
to apply universally, and not only to diffeomorphic
transformations of specially chosen descriptions. This
requirement accords with the ‘‘invariance principle’’
formulated by Narens and Mausfeld (1992). Quoting
from their paper, this principle ‘‘is based on the fact that
(a) from the point of view of theoretical physics the
stimulus can be characterized in many different but
physically equivalent ways, and (b) the physical theory
does not depend on which of these equivalent ways are
used in the formulation. Thus, from this point of view, it
is only a matter of convention which equivalent way is
used to characterize the stimulus in psychophysics, and
psychological conclusions in psychological settings
should be invariant under equivalent physical formula-
tions; that is, one should reach the same conclusion no
matter which equivalent formulation of the physical
stimulus is used’’ (p. 468).
To understand why this requirement fails in our

examples, one should be reminded the basics of MDFS.
The computation of Fechnerian distances in this

theory is critically based on the possibility of connecting
any two points a; b in a stimulus space by piecewise
continuously differentiable paths xðtÞ; t 2 ½0; 1�; xð0Þ ¼
a; xð1Þ ¼ b: This notion is purely physical, and is
predicated on the possibility of subtracting one stimu-
lus-point from another, in order to form ratios

xðtþ sÞ � xðtÞ
s

and to evaluate their limits as s! 0þ : This subtraction
operation is well-defined if the stimulus space in
question is vectorial, which is trivially satisfied for
subspaces of Ren; where each stimulus is described by n

real components,

x ¼ ðx1;x2; . . . ;xnÞ:

Moreover, the differentiation requires that the space be
endowed with certain topology, so that xðtþ sÞ ! xðtÞ
as s! 0þ : Again, this notion is uniquely defined in
Ren if the latter is endowed with the usual (Euclidean)
topology. This topology allows one to define the
stimulus space as a connected region of Ren; and to
utilize the fact that in such a region any two points can
be connected by (generally an infinity of) piecewise
continuously differentiable paths.
The psychological part of the theory begins with using

a discrimination probability function cðx; yÞ to assign to
every line element ðxðtÞ; _xðtÞÞ on path xðtÞ (i.e., a pair
consisting of a stimulus on this path and a vector of its
change along this path) two local discriminability
measures

F1ðxðtÞ; _xðtÞÞ ¼ lim
s!0þ

F½cðxðtÞ;xðtþ sÞÞ � cðxðtÞ;xðtÞÞ�
s

;

F2ðxðtÞ; _xðtÞÞ ¼ lim
s!0þ

F½cðxðtþ sÞ; xðtÞÞ � cðxðtÞ;xðtÞÞ�
s

:

(For the sake of brevity we omit here the discussion of
the overall psychometric transformation F; as well as of
Regular Minimality and Points of Subjective Equality
upon which this computation is based; these notions will
be systematically introduced later, in a much more
general framework.)
Fechnerian distance Gða; bÞ is defined as the infimum

(greatest lower bound) of quantitiesZ 1

0

F 1ðxðtÞ; _xðtÞÞdtþ
Z 1

0

F1ðyðtÞ; _yðtÞÞdt

taken across all piecewise continuously differentiable
paths xðtÞ and yðtÞ connecting, respectively, xð0Þ ¼ a to
xð1Þ ¼ b; and yð0Þ ¼ b to yð1Þ ¼ a: This happens to be a
well-defined distance function, and is shown (Dzhafar-
ov, 2002d) to coincide with the infimum of all quantitiesZ 1

0

F 2ðxðtÞ; _xðtÞÞdtþ
Z 1

0

F2ðyðtÞ; _yðtÞÞdt:

As discussed later (Section 11), the equality of these two
infima is one of the most important results of the
Fechnerian scaling theory (the invariance of Fechnerian
metric with respect to ‘‘ observation area’’).1For now,
however, we are focusing on the invariance of this
metric with respect to transformations of stimulus space,
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1This result follows from the identity

Z 1

0

F1ðxðtÞ; _xðtÞÞdtþ
Z 1

0

F1ðyðtÞ; _yðtÞÞdt

¼
Z 1

0

F2ðxðtÞ;� _xðtÞÞdt

þ
Z 1

0

F2ðyðtÞ;�_yðtÞÞdt

which holds for all paths xðtÞ and yðtÞ connecting a and b (Dzhafarov,
2002d).
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x! fðxÞ: It is easy to see that the reason why Gða; bÞ
remains unchanged under all diffeomorphisms of
stimulus space (Dzhafarov & Colonius, 2001) is that
diffeomorphisms preserve the topology of Ren; the
connectedness of the region constituting the stimulus
space, and the continuous differentiability of paths xðtÞ
in this space. Clearly, transformations that do not have
these properties need not preserve Fechnerian distances
and may very well lead to spaces where Fechnerian
distances are not defined.
The issue is not only in the possible transformations

of stimulus spaces representable by regions of Ren; but
also in the possibility of generalizing Fechnerian scaling
to spaces of greater complexity, those that cannot be
represented in this way. Thus, a natural representation
of a human face (or ‘‘facial mask’’, like the one shown in
Fig. 6) is by a function Re2! Re (elevation of the facial
surface versus coordinates of its coronal cross-section).
More generally, a set of monocular visual stimuli can be
described as a set of functions Re3 ! Re3;

cðxÞ ¼ ðc1ðx1; x2;x3Þ; c2ðx1;x2;x3Þ; c3ðx1; x2; x3ÞÞ;
mapping, say, the azimuth, elevation, and time coordi-
nates ðx1; x2; x3Þ into, say, a pair of CIE color
coordinates ðc1; c2Þ and photometric intensity ðc3Þ: A
set of binaural auditory stimuli can be analogously
described by a set of pairs of functions pðtÞ : Re! Re
(one for each ear) mapping time ðtÞ into air pressure ðpÞ:
The generalization of Fechnerian scaling from con-
nected regions of Ren to such spaces of functions or
function pairs is neither trivial nor unique.
In view of this variety and complexity of physical

descriptions, it is highly desirable to develop a theory
that would not have to be adapted separately and
specifically to each newly introduced stimulus space or a
physical description thereof. This would mean a
Fechnerian theory formulated for an abstract ‘‘contin-

uous’’ stimulus space, with all its primitives and
computations, including the property of its ‘‘continu-
ity’’, being defined solely in terms of discrimination
probabilities. The construction of such a Fechnerian
theory is the task we undertake in this paper.

1.2. Example: Fechnerian scaling of discrete object sets

A simple prototype for this construction can be found
in the theory of Fechnerian scaling of discrete object sets
(FSDOS) recently proposed in Dzhafarov and Colonius
(submitted). FSDOS applies to stimulus spaces com-
prised of ‘‘isolated entities’’, such as schematic faces,
letters of an alphabet, brands of consumer products, etc.
As in MDFS, each pair ðx; yÞ of such stimuli is assigned
a probability cðx; yÞ with which they are judged to be
different from each other. The meaning of ‘‘same’’ and
‘‘different’’ in FSDOS may be different in different
contexts: ‘‘x is the same as y’’ may mean that they
appear physically identical (as, e.g., in the case of pairs
of Morse codes), or it may mean that they appear to
belong to the same category or have the same source
(thus, if the objects to be discriminated are writers each
of whom is represented by several handwriting samples,
the meaning of ‘‘same’’ will be that the two handwritings
belong to the same writer).2 Omitting as before, for
brevity, the discussion of Regular Minimality and Points
of Subjective Equality, FSDOS is based on local
discriminability measures

Cð1Þðx; yÞ ¼ cðx; yÞ � cðx; xÞ;
Cð2Þðx; yÞ ¼ cðy; xÞ � cðx; xÞ:
Fechnerian distance Gða; bÞ in FSDOS is defined as the
infimum of identical quantities

Xk
i¼0

Cð1Þðxi;xiþ1Þ þ
Xl

i¼0
Cð1Þðyi; yiþ1Þ

¼
Xk
i¼0

Cð2Þðxiþ1; xiÞ þ
Xl

i¼0
Cð2Þðyiþ1; yiÞ

computed across all possible finite chains of stimuli

a ¼ x0;x1; . . . ; xk; xkþ1 ¼ b ¼ y0; y1; . . . ; yl ; ylþ1 ¼ a
connecting a to b (the x-chain) and b to a (the y-chain).
One can see that in this case we do not make use of

any physical measurements of the stimuli, and do not
even assume that such measurements exist. The only
notion that may at first seem not to be derived from
discrimination probabilities alone is the notion of the
space being ‘‘discrete’’, comprised of ‘‘isolated points’’.
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Fig. 6. Human face as an example of stimuli representable by

functions Re2 ! Re (taken from Spencer-Smith, Townsend, &

Solomon (2000) courtesy of James Townsend). For a theoretical

analysis of such stimuli in terms of a Riemannian geometry on

infinitely dimensional manifolds, see Townsend, Solomon, and

Spencer-Smith (2001).

2In this example all different handwriting samples by a given writer

are considered to be instances of one and the same stimulus, and

cðx; yÞ is estimated by the proportion of handwriting pairs judged to be
written by different writers among all handwriting pairs one of which is

by writer x and another by writer y:
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The discreteness property, however, can be defined as
follows:

x is an isolated point if Cð1Þðx; yÞ and Cð2Þðx; yÞ
computed across all stimuli y do not fall below some
positive quantity; a discrete stimulus space consists of
isolated points.

Since Cð1Þðx; yÞ and Cð2Þðx; yÞ are defined in terms of
cðx; yÞ; we have an example here of a purely psycholo-
gical definition, and FSDOS therefore is an example of a
purely psychological theory.

1.3. To prevent misunderstanding

A purely psychological theory does not free us from
the necessity of using physical measurements for
identifying stimuli whose subjective representations (in
our case, subjective dissimilarities) are being studied.
Unless the stimuli can be identified ostensively, which is
only possible if they are finite in number and physically
available at every demonstration (as it might be, say,
with X-ray films or letters of alphabet), the use of some
form of a systematic physical description is unavoidable.
Thus, in the foregoing examples with visually presented
rectangles, the latter had to be identified in some way,
say, by their areas and aspect ratios (preceded by some
physical description explicating the specific meaning of a
‘‘visually presented rectangle’’ in a given experimental
set-up). In the subsequent discussion we will freely use
conventional representations of stimulus sets by inter-
vals of real numbers to provide examples of discrimina-
tion probability functions or to describe experimental
data. The purely psychological character of our theory,
however, ensures that all its notions and computations
remain precisely the same if one replaces a given
description of stimuli by any other description preser-
ving their identity. Thus, a computational procedure in
this theory cannot include instructions like ‘‘divide the
value of stimulus a by the value of stimulus b’’, or
‘‘consider a series of stimuli xn whose numerical values
converge to that of stimulus a’’, because these instruc-
tions will have different outcomes under different
physical descriptions of the stimuli (bijectively related
to each other). Examples of analogous but purely
psychological instructions might be ‘‘divide the discri-
mination probability cða; bÞ by cða; cÞ’’, or ‘‘consider a
sequence of stimuli xn such that cðxn; aÞ ! 0’’.

2. Notation and plan

2.1. Notation conventions

Italics and Greek letters designate real-valued
quantities.

Boldface lowercase letters x; y; a; . . . always denote
stimuli, or functions mapping into a set of stimuli, as in
xðtÞ : ½a; b� !M: Note that stimuli are treated as
‘‘qualitative’’, nonnumerical entities, even if their vari-
able attributes can be represented by real numbers or
real-component vectors. (Occasionally, in illustrations
or descriptions of experiments, the variable real-valued
attributes of stimuli x; y; a; . . . are denoted by lowercase
italics, x; y; a; . . .)
All sets (of stimuli, real numbers, functions, etc.) are

denoted by Gothic letters M;m;S; s; . . . ; except for the
sets of all reals and of all nonnegative reals, denoted by
Re and Reþ; respectively.
Capital open letters A;B; . . . are used to denote sets of

sets of stimuli.
We use symbol! in three different meanings, clearly

distinguishable by context: to designate mappings (as in
½a; b� !M), to designate convergence of real numbers
(e.g., �n! 0), and to designate convergence of stimuli,
as defined in Section 5 (e.g., xn ! x).
Greek i (occasionally also k) is reserved to represent

‘‘observation area’’ (as defined in Section 4), its value is
always 1 or 2. This symbol, as well as its specific values
(1 or 2) are used either as superscripts (CðiÞ; Cð1Þ; Cð2Þ;
BðiÞ; Bð1Þ; Bð2Þ; etc., parenthesized to distinguish them
from exponents) or as subscripts (F i; F1; F 2; Gi; G1; G2;
etc.). The difference between superscripts and subscripts
in reference to ‘‘observation area’’ is purely decorative.
The logical and set-theoretic symbols are used in a

standard way (thus, ^ denotes conjunction, ) implica-
tion, etc.).
Script letters are used occasionally, for ad hoc

purposes.

2.2. Plan of the paper

The remainder of the paper consists of 11 sections,
presenting a systematic development of the topology,
analytic properties, and the metric of subjective dis-
tances in stimulus sets, all of this being derived from the
discrimination probability functions endowed with
certain properties, presented in the form of seven
axioms.
In Section 3 we introduce the basic distinction

between two observation areas (to which the two stimuli
x; y being compared belong) and explain an important
distinction: discrimination probabilities cðx; yÞ are al-
ways computed across the two observation areas, while
the subjective (Fechnerian) distances Gða; bÞ are com-
puted within each of the observation areas separately.
In Section 4 we define the relation of psychological

equality (indistinguishability) among stimuli and for-
mulate what we consider to be the main property of
discrimination probabilities, the principle of Regular
Minimality. Based on this property we define the notion
of psychometric increments cðx; yÞ � cðx;xÞ; cðy;xÞ �
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cðx; xÞ (of the first and second kind, respectively) used in
all Fechnerian computations.
In Section 5 we use the psychometric increments to

transform the set of stimuli into a topological space,
which turns out to be an arcwise connected Urysohn
space,3 with the discrimination probability function and
psychometric increments being continuous in this space.
In Section 6 we define the notion of a smooth arc in

the stimulus space, a generalization of the continuously
differentiable arcs in Euclidean spaces. The smoothness,
however, is now defined entirely in terms of discrimina-
tion probabilities. Smooth arcs serve to integrate
‘‘infinitesimally small’’ psychometric increments along
their lengths.
In Section 7 we postulate that psychometric incre-

ments along smooth arcs are all comeasurable in the
small (i.e., as they tend to zero, their ratios have finite
positive limits), and establish that psychometric incre-
ments are regularly varying functions. Asymptotically,
these functions differ from each other only in coeffi-
cients that depend on infinitesimally small portions of
smooth arcs.
A power transformation of these coefficients, as

shown in Section 8, can be used as quantities, termed
submetric functions, whose integration along any
piecewise smooth arc yields the psychometric (‘‘sub-
jective’’) length of this arc.
The notion of psychometric length is formally

introduced in Section 9, where we also define the notion
of oriented Fechnerian distances G1ða; bÞ and G2ða; bÞ
(of the first and second kind, according to the kind of
the psychometric increments being integrated).
The basic analytic properties of these Fechnerian

distances (such as their continuity and differentiability
along smooth arcs) are established in Section 10.
In Section 11, we investigate the relationship between

Fechnerian distances of the first and second kind, and
establish what we call the Second Main Theorem of
Fechnerian scaling: Fechnerian distance from a to b and
back is the same for distances of the first and the second
kinds (provided that the Points of Subjective Equality,
as defined in Section 4, are identically labeled in the two
observation areas). This ‘‘to-and-fro’’ distance therefore
is taken to be the ‘‘ true’’ (overall) Fechnerian distance
Gða; bÞ between a and b:
In the concluding two sections we summarize the

main results and discuss some open questions.
The reader may find it convenient, now or as needed,

to complement the above set of pointers by referring to
Section 12 for preview of the corresponding sections of
the paper. The reader may also find useful to consult the
index of the main terms and notation at the end of the
paper.

3. Preliminaries

3.1. On the notion of observation area

Two stimuli presented for a comparison can never be
physically identical. This is an elementary yet often
overlooked fact. Even when we say that two tones or
two color patches presented to an observer are
physically identical in all parameters, one of these
stimuli has to be presented prior to the second, or in
another spatial location. That is why ðx; xÞ can be
viewed as a pair of stimuli rather than a single stimulus.
Strictly speaking, therefore, we are dealing with (at
least) two stimulus sets,M�1 andM�2; rather than a single
one. M�1 may consist of auditory tones or visually
presented rectangles described as ‘‘a tone of intensity A

dB and frequency F Hz presented first’’ or ‘‘a rectangle
of height h and width v presented on the left’’, whereas
elements of M�2 may be described, respectively, as ‘‘a
tone of intensity A dB and frequency F Hz presented
second’’ and ‘‘a rectangle of height h and width v

presented on the right’’. We refer to M�1 as the set of
stimuli belonging to the ‘‘first observation area’’, and to
M�2 as the set of stimuli belonging to the ‘‘second
observation area’’. The adjective ‘‘ first’’ and ‘‘second’’
refer to the ordinal positions of symbols used to
designate the stimulus within a pair ðx; yÞ; rather than
to their chronological order.
The stimuli in the two observation areas may differ in

attributes other than their spatiotemporal location, and
in some cases it is the difference in these attributes that is
used to define the observation areas as first and second,
in addition to or even irrespective of their spatiotem-
poral location. For example, two sequentially presented
tones varying in intensity may have two fixed and
different from one another frequencies, say, 1000 and
1200Hz. In this case the elements of M�1 andM�2 can be
described as, respectively, ‘‘a tone of intensity A dB and
frequency 1000Hz’’ and ‘‘a tone of intensity A dB and
frequency 1200Hz’’, irrespective of their temporal
order.
In all these cases the physical descriptions of stimuli in

M�1 and M�2 are identical except for the difference in
certain properties (such as location) that define the
observation area to which a stimulus belongs. When
comparing two stimuli, the difference between their
observation areas is usually perceptually conspicuous,
and the observer is supposed to ignore it. The
instruction to ignore this difference need not be explicit:
when asked to say whether the stimulus on the left is
identical to the stimulus on the right, the observer would
normally understand that the judgment must not take
into account the difference between the two spatial
locations.
In general one can consider a situation involving more

than just two observation areas. For example, each of
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3All special mathematical terms and their basic properties are briefly

explained on or prior to their first being mentioned in the text.
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the two stimuli can be presented in one of N

perceptually distinct locations, so that the stimulus pair
should be encoded as ððx; aÞ; ðy; bÞÞ; where x; y are labels
identifying the stimuli in all respects except for their
locations, and a; b 2 f1; . . . ;Ng are their locations (with
the proviso that aab). In this paper, however, we
confine our analysis to the situation when stimuli belong
to two fixed observation areas, so that ðx; yÞ always
means ððx; 1Þ; ðy; 2ÞÞ:

3.2. On the notion of discrimination

The empirical object of our analysis is a discrimina-
tion probability function

c� : M�1 �M�2 ! ½0; 1�
interpreted as

c�ðx; yÞ ¼ Pr½x 2M�1 and y 2M�2
are judged to be different�; ð1Þ

whereM�1 andM�2 represent the sets of stimuli presented
to the perceiver in two fixed and distinct observation
areas.
The operational meaning of c�ðx; yÞ given in (1) is not

the only possible one. There are other variants:

c�ðx; yÞ ¼ Pr½x 2M�1 and y 2M�2 are judged

to be different; ignoring property A� ð2Þ
(e.g., ‘‘are these two tones different, ignoring their
difference in pitch?’’), and

c�ðx; yÞ ¼ Pr½x 2M�1 and y 2M�2 are judged

to be different in property

B; ignoring everything else� ð3Þ
(e.g., ‘‘are these two figures different in shape?’’). It
should be clear from our discussion of the two
observation areas, that the ‘‘pure’’ discriminations in
(1) can in fact be viewed as a special case of (2), withA
referring to a subjective representation of the observa-
tion area. The analysis presented in this paper applies to
all forms and versions of c�ðx; yÞ:

3.3. On the logic of Fechnerian scaling

We have just stipulated that a comparison of two
stimuli is always made across two different sets,M�1 and
M�2; and the discrimination probabilities c

� are defined
on their Cartesian product, M�1 �M�2: It may be useful
to emphasize from the outset, however, that Fechnerian
(‘‘subjective’’) distances eventually derived from c� are
computed between stimuli belonging to one and the
same observation area, the first or the second one (see
Fig. 7). Thus, if stimuli a; b are tones characterized by
their intensity and frequency, the Fechnerian distance
between a and b may mean the distance between the two

tones presented first (a; b 2M�1), or the distance between
the two tones presented second (a; b 2M�2), but never
between a 2M�1 and b 2M�2: This stands in a sharp
contrast to the fact that in c�ða; bÞ the two stimuli a; b
necessarily belong to M�1 and M�2; respectively. In
particular, while c�ða; bÞ and c�ðb; aÞ are generally
different quantities, the overall Fechnerian distance
constructed in Section 11 is symmetrical, Gða; bÞ ¼
Gðb; aÞ: Moreover, the Second Main Theorem of
Fechnerian Scaling (Theorem 53) tells us that if the
stimulus inM�2 which is the least discriminable from any
given a 2M�1 is assigned the same label a (that this is
always possible is guaranteed by the Regular Minimality
principle), then Gða; bÞ has the same value in both
observation areas.
To reconcile this difference between c�ða; bÞ and

Gða; bÞ with one’s intuition, one has to realize that
Fechnerian scaling does not presuppose any direct, let
alone monotone, relationship between c�ða; bÞ and
Gða; bÞ: Rather the entire set of Fechnerian distances
Gða; bÞ (where a; b 2M�1 or a; b 2M�2) is computed from
the entire set of the discrimination probabilities c�ðx; yÞ
(where x 2M�1 and y 2M�2), so that for any given a; b
the value of Gða; bÞ is based generally on the values of
c�ðx; yÞ for all possible pairs ðx; yÞ:
One should note an interesting form of duality here.

Intuitively, the Fechnerian distance between a; b belong-
ing to M�1; is based on how different are the discrimina-
tion probabilities c�ða; yÞ and c�ðb; yÞ; taken across all
y 2M�2; while the Fechnerian distance between a; b
belonging to M�2; is based on how different are the
discrimination probabilities c�ðx; aÞ and c�ðx; bÞ; taken
across all x 2M�1: In particular, if c

�ða; yÞ and c�ðb; yÞ
are always equal, then a and b are psychologically
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Fig. 7. Important aspect of Fechnerian scaling: discrimination

probabilities c� are computed across two observations areas, whereas

Fechnerian distances G are computed within observation areas.

Anticipating subsequent development: Gða1; b1Þ and Gða2; b2Þ are sums
of oriented Fechnerian distances, G1ða1; b1Þ þ G1ðb1; a1Þ and

G2ða1; b1Þ þ G2ðb1; a1Þ; respectively; and Gða1; b1Þ ¼ Gða2; b2Þ when a1
and b1 are Points of Subjective Equality for, respectively, a2 and b2
(which means that if the Points of Subjective Equality are assigned

identical labels, Fechnerian distance is observation-area-invariant).
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indistinguishable and should be treated as one and the
same stimulus in the first observation area (and
analogously for the second observation area).

4. Identity of stimuli and the Regular Minimality

principle

4.1. Identity of stimuli

Definition 1. For x; x0 2M�1; we say that the two stimuli
are psychologically equal and write x�1 x0 iff c�ðx; yÞ ¼
c�ðx0; yÞ for any y 2M�2: Analogously, the psychological
equality y�2 y0 for y; y0 2M�2 is defined by c�ðx; yÞ ¼
c�ðx; y0Þ; for any x 2M�1:

Clearly, �1 and �2 are equivalence relations, and we
can partition M�1 and M�2 into corresponding sets of
equivalence classes

~M1 ¼M�1=�
1
; ~M2 ¼M�2=�

1
:

That is, x 2 ~M1 iff x is the equivalence class for some
x 2M�1; and y 2 ~M2 iff y is the equivalence class for
some y 2M�2:
We can introduce now a new discrimination prob-

ability function

~c : ~M1 � ~M2! ½0; 1�
defined as

~cðx;yÞ ¼ c�ðx; yÞ for any x 2 x; y 2 y:

As there is no danger of confusion, we can treat each
equivalence class as a single stimulus, and write x 2 ~M1;
y 2 ~M2; and ~cðx; yÞ instead of x 2 ~M1; y 2 ~M2; ~cðx; yÞ:
Fig. 8 provides a schematic illustration.

The best known example for the transition from M�i
to ~Mi (i ¼ 1; 2) and treating equivalence classes of
stimuli as individual stimuli, is the replacement of
metameric spectral distributions with CIE color coordi-
nates.

4.2. Regular Minimality principle

We introduce now the property of Regular Minim-
ality that we view to be the defining property of
discrimination, in the sense that a function ~cðx; yÞ that
violates this property should not be called a discrimina-
tion probability function.

Axiom 1 (Regular Minimality). There are functions

h: ~M1! ~M2 and g : ~M2! ~M1 such that

(i) ~cðx; hðxÞÞo ~cðx; yÞ for all yahðxÞ;
(ii) ~cðgðyÞ; yÞo ~cðx; yÞ for all xagðyÞ;
(iii) h � g�1:
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Fig. 8. Schematic demonstration of the transition from stimulus sets

M�1 ;M
�
2 to sets ~M1; ~M2 of the psychological equivalence classes

(represented in the picture as ‘‘slices’’). Each ‘‘slice’’ of M�1 (M
�
2) is

mapped into an element of ~M1 ( ~M2). All stimuli within a given ‘‘slice’’

ofM�1 have the same probability c
� of being judged different from any

stimulus within a given ‘‘slice’’ of M�2 ; and this probability is taken as
the value of function ~c for the corresponding elements of ~M1; ~M2:

Fig. 9. Left: an example of discrimination probability function ~cðx; yÞ;
with x; y 2 ð0; 1Þ ¼ ~M1 ¼ ~M2: The function is 1� exp½�Bðx; yÞ=10þ
4�; where Bðx; yÞ ¼ 20jx2 � yj þ sinð4x2 � 2Þ þ cosð10y� 5Þ: PSE func-
tion y ¼ hðxÞ (here, y ¼ x2) is shown by the thick line in the xy-plane.

Right: a canonical transformation cðx; yÞ ¼ ~cðgðxÞ; yÞ ¼ ~cð ffiffiffi
x
p

; yÞ of
this function, with x; y 2 ð0; 1Þ ¼M; PSE function in the xy-plane

transforms into bisector y ¼ x: (The functions ~c;c in this figure are

constructed in accordance with the ‘‘uncertainty blobs’’ model,

described in Dzhafarov, 2003b. They satisfy the cross-unbalanced

version of the Fechnerian theory, as described in Section 11).

Fig. 10. The PSE lines of the previous figure (the lower contours of the

‘‘walls’’) shown together with the corresponding minimum level

functions (the upper contours of the ‘‘walls’’): ~cðx; hðxÞÞ; or
~cðgðyÞ; yÞ; on the left and cðx; xÞ; or cðy; yÞ; on the right.
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The following observation is obvious.

Corollary 1 (to Axiom 1). Mappings h and g are bijective

(one-to-one and onto), and the stimulus sets ~M1 ¼ gð ~M2Þ
and ~M2 ¼ hð ~M1Þ have the same cardinality.

Definition 2. For every x 2 ~M1; its Point of Subjective
Equality (PSE) is the stimulus hðxÞ 2 ~M2: Analogously,
gðyÞ 2 ~M1 is the PSE for y 2 ~M2:

According to this definition, the Axiom of Regular
Minimality states that every stimulus (either in ~M1 or in
~M2) has its unique PSE (in, respectively, ~M2 and ~M1),
and that the relation of ‘‘being the PSE of’’ is
symmetrical. Figs. 9–11 (left panels) provide an example
of a discrimination probability function that satisfies the
Regular Minimality requirement.

4.3. Nonconstant Self-Dissimilarity and Asymmetry

Function ~cðx; hðxÞÞ; or equivalently, ~cðgðyÞ; yÞ; is
called the minimum level function. It is obtained by
confining ~cðx; yÞ to pairs ðx; yÞ of mutual PSEs. The
hypothesis that ~cðx; hðxÞÞ has one and the same value for
all x 2 ~M1 can be called the Constant Self-Dissimilarity

assumption (the prefix ‘‘self’’ referring to PSE relation-
ship rather than physical identity). The Axiom of
Regular Minimality in no way implies that this
assumption holds true. In fact it is well documented
that in general ~cðx; hðxÞÞ does vary with x: We call this

important property Nonconstant Self-Dissimilarity:
~cðx; hðxÞÞ does not have to be constant for all x 2 ~M1

(Dzhafarov, 2002d, 2003a,b).4 This property does not
compel ~cðx; hðxÞÞ to be different for any two distinct
values of x; it merely asserts that there is no law that
compels them to be equal. (Clearly, we could have as
well formulated this property in terms of ~cðgðyÞ; yÞ;
y 2 ~M2:) The property is illustrated in Figs. 9–11 (left
panels).
The value of ~cðx; yÞ is generally different from ~cðy;xÞ;

a property we call Asymmetry, or Order-Unbalance
(Dzhafarov, 2002d). Note that in the special case when
~cðx; yÞ is symmetrical, the PSE function hðxÞ need not be
an identity (i.e., the PSE relationship need not imply
physical identity), and ~cðx; yÞ is still subject to Non-
constant Self-Dissimilarity (i.e. the value of ~cðx; hðxÞÞ
may vary with x).

Convention 1. We treat Constant Self-Dissimilarity and

Symmetry as special cases of Nonconstant Self-Dissim-

ilarity and Asymmetry. We will say that Nonconstant

Self-Dissimilarity (or Asymmetry) is manifest in stimulus

space if there are actual cases when Constant Self-

Dissimilarity (Symmetry) is violated.
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Fig. 11. An illustration of Regular Minimality and Nonconstant Self-Dissimilarity using ~cðx; yÞ and cðx; yÞ shown in Fig. 9. By solid lines the left
upper panel shows two V-shaped cross-sections of ~cðx; yÞ made at two fixed values x1; x2 of x (indicated by dots placed on the y-axis). As y varies,
these functions achieve their minima as some points y1; y2; and these points are indicated by dots on the x-axis in the left lower panel. Looking now at
the V-shaped cross-section of ~cðx; yÞ at the fixed values y1; y2 of y (solid lines in the left lower panel), they achieve their minima precisely at the
‘‘starting’’ values x1; x2 of x. The right panels illustrate Regular Minimality in the same way, but here x1 ¼ y1 and x2 ¼ y2 due to canonical

transformation. Nonconstant self-dissimilarity is apparent in the dashed lines that show the minimum level function, presented as ~cðgðyÞ; yÞ in the left
upper panel and as ~cðx; hðxÞÞ in the left lower panel. Here, hðxÞ ¼ x2; gðyÞ ¼ ffiffiffi

y
p

: On the right, the minimum level functions in the two panels are

identical: cðy; yÞ (top) and cðx; xÞ (bottom).

4In the cited work the property was referred to as Nonconstant Self-

similarity. We find the present version better corresponding to the

definition of function ~c:
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4.4. Empirical evidence

Figs. 13–15 present experimental results illustrat-
ing Regular Minimality and Nonconstant Self-Dis-
similarity in the format of Fig. 10. Relevant details
of experimental set-up and procedures are given in
Fig. 12.
Once, for a given participant in a given experiment,

the matrix shown in Fig. 12 was filled with estimates of
~cðx; yÞ; we determined the PSEs for the five x-values
within the ‘‘main stimulus area’’ (a� 2Dpxpaþ 2D)
by picking the lowest-valued cells in the corresponding
rows. Occasionally, two adjacent cells contained very
close values ~cðx; yÞ and ~cðx; yþ DÞ; and plotting of the
row suggested that the minimum lied in between: in such

cases the PSE for x was set equal to yþ D=2 and the
minimum value of ~c was taken as the smaller of ~cðx; yÞ
and ~cðx; yþ DÞ: The PSEs for five y-values within the
‘‘main stimulus area’’ were determined analogously, by
scanning the corresponding columns of the matrix. A
crude violation of Regular Minimality would have
resulted in two at least partially disparate 5-point PSE
curves, one for x-values and one for y-values. This is not
the case in our plots. Although the data cannot exclude
the possibility of subtle violations, they do not contra-
dict the assumption that Regular Minimality is the
fundamental property of discrimination probabilities.
At the same time the ~cðx; yÞ-values for the PSE pairs in
most of our plots clearly manifest Nonconstant Self-
Dissimilarity (Figs. 12–15).
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Fig. 12. Experimental set-up and procedures for the data presented in Figs. 13–15, and 30. Stimuli to be judged to be ‘‘same’’ or ‘‘different’’ were

pairs of line segments (experiment A), synchronous left-to-right apparent motions of two dots (B), and two successive to-and-fro apparent motions of

a single dot (C). Participants initiated trials by pressing a ‘‘ ready’’ key, and responded by pressing one of two response keys. In A, the ‘‘ready’’ signal

made the fixation cross appear for 1 s and the two lines flash for the second half of this second. In B, the two dots were always present on the screen;

the ‘‘ready’’ signal made them shift to new positions after an interval uniformly distributed between 1 and 2 s; a response made them shift back to

their initial positions. In C, a dot was always present on the screen; the ‘‘ready’’ signal made it shift (0.5 s later) to a new position and (0.5 s later)

back; the second to-and-fro motion followed the first one 1 s later. No feedback was given in any of the experiments. The observers, with normal or

corrected vision, viewed the display binocularly, from a chin rest with forehead support, in a dark room. The lines and dots were blue on a dark gray

flat screen, the intensity and contrast being fixed throughout at comfortable levels. The variable parameter of the stimuli was length of the lines in A,

and amplitude of the position shifts in B and C. The pairs of length/amplitude values ðx; yÞ were chosen from the shaded cells of the matrix shown.

The value of a was 15 pixels and D was 2 pixels (1 pixel � 0:86 min arc), except in the three right-hand panels in Fig. 14 where the respective values
were 11 pixels and 1 pixel. 2n and n are the numbers of replications per pair. The experiment was divided into 300-trial sessions (c. 25min), repeated

many times over several days; in each session n was 6, the sequence of the pairs being otherwise randomized. The total value of n in one experiment

for one participant was between 250 and 300 (except in the data labelled WIN in Fig. 15 where n was about 100).
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4.5. Canonical transformation (relabeling)

Using the axiom of Regular Minimality we can
conveniently redefine the stimulus sets once more, by

assigning identical labels to pairs of mutual PSEs, x ¼
gðyÞ; y ¼ hðxÞ:
Let M be an arbitrary set (called a set of stimulus

labels) having the same cardinality as ~M1 and ~M2: Let
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f1 : M! ~M1 be an arbitrary bijective mapping. Then
f2 � h � f1 is a bijective mapping f2 : M! ~M2 such that
x 2 ~M1 and y 2 ~M2 are mutual PSEs if and only if

x ¼ f1ðzÞ; y ¼ f2ðzÞ
for some stimulus label z 2M: This construction allows
us to introduce a new function,

c : M�M! ½0; 1�;
defined by

cðx; yÞ ¼ ~cðf1ðxÞ; f2ðyÞÞ; (4)

where x; y now denote elements of M (stimulus labels).
This function is referred to as a canonical transformation

of function ~cðx; yÞ: An example of a canonical
transformation is given in the right-hand panels of
Figs. 9–11.
It is easy to see that this newly defined function

satisfies the Regular Minimality axiom in its simplest
version. Namely, function c can be treated as a special
case of the function ~c in the formulation of the axiom,
with ~M1 ¼ ~M2 ¼M and the PSE functions h and g
being identities:

cðx; xÞocðx; yÞ for all yax

cðx; xÞocðy;xÞ for all yax ð5Þ
We will say that Regular Minimality holds here in a
canonical form, and that cðx;xÞ is the minimum level
function in a canonical form.

Two simplest choices of a canonical form are
obtained by putting

M ¼ ~M1; f1 is identity; f2 � h; cðx; yÞ ¼ ~cðx; hðyÞÞ;

and

M ¼ ~M2; f1 � g; f2 is identity; cðx; yÞ ¼ ~cðgðxÞ; yÞ

(recall that g � h�1). In the former construction the
stimuli in the first observation area ( ~M1) serve as labels
for their PSEs in the second observation area ( ~M2); in
the latter construction the relation is reversed. A specific
choice of f1 in (4), however, is immaterial for the
subsequent development.
For brevity sake we use the same terminology for

function c as we did for ~c and, before that, for c�: We
will refer to arguments of cðx; yÞ (i.e., elements ofM) as
stimuli, instead of ‘‘stimulus labels’’, and we will call
cðx; yÞ a discrimination probability function, with the
interpretation

cðx; yÞ ¼ Pr½stimuli x and y are judged to be different�:
(6)

This should lead to no confusion provided one keeps in
mind that the physical identity of x 2M depends on its
ordinal position in an ordered pair. Thus, in ðx; xÞ; the
first x and the second x may be physically distinct, and
their physical identities can be uniquely reconstructed as
f�11 ðxÞ 2 ~M1 and f�12 ðxÞ 2 ~M2; respectively (which in
their turn, it should be recalled, are psychological
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equivalence classes of ‘‘initial’’ physical stimuli, elements
of M�1 and M�2). The fact that these two stimuli
(equivalence classes) are now identically denoted is a
straightforward reflection of the meaning of a PSE. No
stimulus in ~M2 is subjectively closer to f

�1
1 ðxÞ than its

PSE f�12 ðxÞ; and vice versa, no stimulus in ~M1 is
subjectively closer to f�12 ðxÞ than its PSE f�11 ðxÞ; by a
canonical transformation, we can say instead that no
stimulus in M is closer to a given x 2M than x itself.
In relation to the previous subsection, Nonconstant

Self-Dissimilarity in a canonical form means that cðx; xÞ
need not be the same for all x 2M: Note that cðx; yÞ
generally continues to be subject to Asymmetry (Order-
Unbalance): cðx; yÞ and cðy; xÞ need not be the same.

4.6. Psychometric increments

We introduce now the notion that plays a central role
in the subsequent development.

Definition 3. The quantity

Cð1Þðx; yÞ ¼ cðx; yÞ � cðx;xÞ
is called a psychometric increment of the first kind (or,
in the second argument). Analogously,

Cð2Þðx; yÞ ¼ cðy;xÞ � cðx;xÞ
is called a psychometric increment of the second kind
(or, in the first argument).

Due to (5) the psychometric increments of both kinds
are nonnegative, and

Cð1Þðx; yÞ ¼ 0()Cð2Þðx; yÞ ¼ 0()x ¼ y: (7)

Theorem 1. There is a bijective correspondence between

a 2M and any of the functions y! Cð1Þða; yÞ; y!
Cð2Þða; yÞ; x! Cð1Þðx; aÞ; x! Cð2Þðx; aÞ:
Proof. What is stated is that

a1 ¼ a2()½8y : Cð1Þða1; yÞ ¼ Cð1Þða2; yÞ�
()½8y : Cð2Þða1; yÞ ¼ Cð2Þða2; yÞ�
()½8x : Cð1Þðx; a1Þ ¼ Cð1Þðx; a2Þ�
()½8x : Cð2Þðx; a1Þ ¼ Cð2Þðx; a2Þ�:

The proof is obtained by putting y ¼ a2 or x ¼ a2 and
using (7). &

5. Topology

In this section, we use the psychometric increments
Cð1Þðx; yÞ and Cð2Þðx; yÞ to endow the stimulus set M
with a topology and to transform thereby this stimulus
set into a stimulus space.
Recall that a topology on M is a set T of open

subsets of M; that is, a set of subsets satisfying the

following properties:

A � T)
[
A2A

A 2 T ðT1Þ

ðA 2 TÞ ^ ðB 2 TÞ ) A \B 2 T ðT2Þ
+ 2 T ^M 2 T ðT3Þ ð8Þ
A set B of subsets ofM is called a base for a topology

on M if

M ¼
[
B2B

B ðB1Þ

ðA 2 BÞ ^ ðB 2 BÞ ^ ðx 2 A \BÞ
) 9C 2 B : x 2 C � A \B ðB2Þ ð9Þ

The topology for which B is the base is constructed by
taking all possible unions of the base elements,[
A2A�B

A:

A base B2 is a refinement of a base B1 if for every
ðx;A1Þ such that x 2 A1 2 B1 there is a A2 2 B2 such
that x 2 A2 � A1: The topology based on B2 is then also
a refinement of the topology based on B1; in the sense
that every point of every B1-open set is contained in a
B2-open set. Two bases are equivalent if they refine each
other. Equivalent bases induce one and the same
topology.

5.1. Convergence

Axiom 2 (Convergence). As n!1;

Cð1Þðx;xnÞ ! 0()Cð2Þðx; xnÞ ! 0:

Using the definition of psychometric increments, this
means

cðx;xnÞ ! cðx;xÞ()cðxn;xÞ ! cðx;xÞ:
This axiom allows us to define our first topological

notion, that of convergence in stimulus space. It is
convenient for this purpose, as well as for further
topological considerations, to introduce function

Cðx; yÞ ¼ minfCð1Þðx; yÞ;Cð2Þðx; yÞg: (10)

Definition 4. As n!1; we say that xn converges to x;
and write xn! x; if Cðx; xnÞ ! 0:

Fig. 16 (top) provides a schematic illustration.

5.2. Intrinsic continuity of discrimination probability

To postulate the continuity of the discrimination
probability function c in the conventional sense one has
to have a topology imposed on its domain, M�M: As
we do not have this topology yet, we have to follow the
opposite strategy: we will define a property that we call
the intrinsic continuity of c; and then use it to impose the

ARTICLE IN PRESS
E.N. Dzhafarov, H. Colonius / Journal of Mathematical Psychology 49 (2005) 1–5016



topology on M (and, by extension, on M�M). After
that, of course, we have to show that with respect to this
topology c is continuous in the conventional sense. In a
more restrictive context of ‘‘semi-metrics’’ a similar
construction was used by Blumenthal (1953).

Axiom 3 (Intrinsic Continuity). Discrimination probabil-

ity function c is intrinsically continuous:

ðxn! xÞ ^ ðyn! yÞ ) cðxn; ynÞ ! cðx; yÞ:
For an illustration see Fig. 16 (bottom).

Theorem 2. Psychometric increments are intrinsically

continuous,

ðxn! xÞ ^ ðyn! yÞ )
Cð1Þðxn; ynÞ ! Cð1Þðx; yÞ;
Cð2Þðxn; ynÞ ! Cð2Þðx; yÞ;
Cðxn; ynÞ ! Cðx; yÞ:

8><
>:

Proof. Follows from the definition of psychometric
increments and the fact that, by Axiom 3,

xn ! x) ðxn! xÞ ^ ðxn! xÞ ) cðxn;xnÞ
! cðx;xÞ: &

Theorem 3. xn! x implies CðiÞðxn;xÞ ! 0; for i ¼ 1; 2:
Proof. xn! x) ðxn! xÞ ^ ðx! xÞ ) CðiÞðxn;xÞ !
CðiÞðx;xÞ ¼ 0: &

In other words, either of the convergences

cðx;xnÞ ! cðx; xÞ ðfor i ¼ 1Þ;
cðxn; xÞ ! cðx; xÞ ðfor i ¼ 2Þ;
implies both convergences

cðxn; xÞ � cðxn;xnÞ ! 0 ðfor i ¼ 1Þ;
cðx;xnÞ � cðxn;xnÞ ! 0 ðfor i ¼ 2Þ:
Note that the implication does not work in the

opposite direction: we cannot conclude from
CðiÞðxn; xÞ ! 0 that CðiÞðx;xnÞ ! 0 (i.e., CðiÞðxn;xÞ ! 0
does not imply xn! x). It is not difficult to reconcile
this asymmetry with one’s intuition: CðiÞðxn;xÞ ! 0
means that cðxn;xÞ; or cðx; xnÞ; converges to cðxn;xnÞ;
a ‘‘moving target’’. In terms of the relative position of xn
and x; therefore, CðiÞðxn; xÞ ! 0 is less definitive than
CðiÞðx;xnÞ ! 0:

5.3. Open sets

Theorem 4. Each of the three sets of neighborhoods

Bð1Þðx; �Þ ¼ fy : Cð1Þðx; yÞo�g;
Bð2Þðx; �Þ ¼ fy : Cð2Þðx; yÞo�g;
Bðx; �Þ ¼ fy : Cðx; yÞo�g ¼ Bð1Þðx; �Þ [Bð2Þðx; �Þ
(called open balls), taken for all x 2M and all �40;5

forms a base for a topology on M:

Proof. Consider the set of Bðx; �Þ balls. Property (B1) in
(9) being obvious, to demonstrate (B2) one has to show
that if z 2 Bðx; �Þ \Bðy; dÞ; then for some g40;
Bðz; gÞ � Bðx; �Þ \Bðy; dÞ: (In particular, by putting
ðx; �Þ ¼ ðy; dÞ; this would prove that if z 2 Bðx; �Þ; then
for some g40; Bðz; gÞ � Bðx; �Þ:)
Assume the contrary. Then for some sequence gn!

0þ one could find a sequence of points zn 2 Bðz; gnÞ that
all lie outside Bðx; �Þ \Bðy; dÞ: Then there would be a
subsequence gjn ! 0þ such that the corresponding
subsequence of zjn 2 Bðz; gjn Þ either lies outside Bðx; �Þ
or outside Bðy; dÞ: Let it be the former. Since
ðx! xÞ ^ ðzjn ! zÞ, we should have Cðx; zjnÞ !
Cðx; zÞ: This is impossible, however, because all
Cðx; zjnÞ4� while Cðx; zÞo�: The proof for Bð1Þ and
Bð2Þ balls is essentially identical. &

Now we can form a topology (set of open subsets) in
M by taking all possible unions of the open balls Bðx; �Þ;
or of the open balls BðiÞðx; �Þ; for i ¼ 1 or 2. That the
induced topology is one and the same in all three cases is
a straightforward demonstration.
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any interval ð0;EÞ: This property of the topological space is called first

countability.
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Theorem 5. The topological bases formed by open balls

Bð1Þðx; �Þ; Bð2Þðx; �Þ; and Bðx; �Þ; each taken for all x 2M
and all �40; are equivalent.

Proof. By restating Axiom 2 in the standard ‘‘�-d
language’’, the implication Cðx;xnÞ ! 0) Cð1Þðx;xnÞ
! 0 means that for any �40 one can find a d40 such
that z 2 Bðx; dÞ implies z 2 Bð1Þðx; �Þ: Since for every a 2
Bð1Þðx; �Þ there is a Bð1Þða; �0Þ � Bð1Þðx; �Þ; we have
proved that the base of B-balls refines the base of
Bð1Þ-balls. Other implications are dealt with analo-
gously. &

We do not have analogous results for ‘‘reverse balls’’

Bð1Þð�; xÞ ¼ fy : Cð1Þðy; xÞo�g;
Bð2Þð�; xÞ ¼ fy : Cð2Þðy; xÞo�g:
These sets do not, generally, form topological bases (i.e.,
an intersection of two reverse balls does not have to
contain a reverse ball around each of its points). It is
easy to see, however, that reverse balls are open in the
topology just constructed, which means that any of the
two sets of reverse balls above is refined by B-balls
(hence also by Bð1Þ-balls and Bð2Þ-balls).

Theorem 6. For any set BðiÞð�; xÞ (i ¼ 1; 2) and any z 2
BðiÞð�; xÞ there is a ball Bðz; gÞ � BðiÞð�; xÞ:
Proof. Assume the contrary. Then for some sequence
gn! 0þ one could find a sequence of points zn 2
Bðz; gnÞ that all lie outside BðiÞð�; xÞ; that is,
CðiÞðzn;xÞ4�: Since ðzn! zÞ ^ ðx! xÞ; we should have
CðiÞðzn;xÞ4� converging to CðiÞðz;xÞo�; which is im-
possible. &

The topological relations established in this subsec-
tion are schematically summarized in Fig. 17.
Intuitively, for small �40; Bðx; �Þ is a set of points

that are ‘‘close to x’’, and so are Bð1Þðx; �Þ;Bð2Þðx; �Þ �

Bðx; �Þ: The observation below supports the intuition
that points close to x should also be close to each other.
For any nonempty S �M; let

diamS ¼ sup
a;b2S
ðmaxðCð1Þða; bÞ;Cð2Þða; bÞÞÞ:

Theorem 7. As �! 0;

diamBðx; �Þ ! 0; diamBð1Þðx; �Þ ! 0;

diamBð2Þðx; �Þ ! 0:

Proof. Clearly, diamBðiÞðx; �ÞpdiamBðx; �Þ ! 0 (i ¼ 1;
2), so we only need to consider Bðx; �Þ: Assume the
contrary. Then, for some sequence �n! 0þ; one could
find ðan; bnÞ such thatCðan; bnÞ4d40 for all n: But an!
x; bn! x; hence Cðan; bnÞ ! 0: &

5.4. Urysohn and Hausdorff properties

Very briefly: for m �M and x 2M; x is called a
proximate point for m if every open neighborhood of x
intersects with m (not necessarily at a point other than
x); x is called an interior point of m if one of its open
neighborhoods lies within m (hence an interior point is a
proximate point); m is open iff all its points are interior
points; m is closed (and Mnm is open) iff m contains all
its proximate points; the closure of m is a closed set
denoted m and obtained as the union of m and all of its
proximate points.
A neighborhood B½x; �� ¼ fy : Cðx; yÞp�g is called a

closed ball. The next theorem says that such balls are
closed sets with respect to the topology just constructed.

Theorem 8. A closed ball B½x; �� is a closed set that

contains the closure Bðx; �Þ of the open ball Bðx; �Þ:

Proof. Consider a sequence xn belonging to B½x; �� and
converging to a proximate point p of B½x; ��: Since
Cðx;xnÞp� and ðx! xÞ ^ ðxn! pÞ ) Cðx; xnÞ !
Cðx; pÞ; the latter quantity cannot be greater than �:
Hence p 2 B ½x; ��:
That Bðx; �Þ � B½x; �� is obvious, since a proximate

point for Bðx; �Þ is also a proximate point for
B½x; ��: &

Note that it does not follow and we do not postulate
the ‘‘regularity’’ property Bðx; �Þ ¼ B½x; ��: In other
words, one cannot exclude the possibility that Cðx; yÞ ¼
� but a sufficiently small open ball Bðy; gÞ will not
intersect with Bðx; �Þ:
A topological space M is said to be Hausdorff if any

two distinct points a; b 2M can be enclosed in
nonintersecting open balls Bða; �Þ;Bðb; dÞ: M is said to
be Urysohn if for any two distinct points a; b 2M one
can find a continuous function f : M! Re (Urysohn
function) such that f ðaÞ ¼ 0 and f ðbÞ ¼ 1: An Urysohn
space is always a Hausdorff space.
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Fig. 17. Schematic relationship among open balls in stimulus space.

Wide rectangles represent Bð1Þ-balls (‘‘reverse’’ Bð1Þ-balls if shaded),
tall rectangles Bð2Þ-balls (‘‘reverse’’ Bð2Þ-balls if shaded), and crosses
(unions of wide and tall rectangles) representB-balls. Upper row, from
left to right: an intersection of B-balls contains a B-ball around any of
its points (implying that B-balls form a topological base); a B-ball
contains Bð1Þ-balls and Bð2Þ-balls around all its points; a Bð1Þ-ball (and
a Bð2Þ-ball) contains B-balls around all its points. Lower row: a

‘‘reverse’’ Bð1Þ-ball (and a ‘‘reverse’’ Bð2Þ-ball) contains B-balls around
all its points.
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Theorem 9. The topology based on open balls Bðx; �Þ is
Urysohn (hence also Hausdorff).

Proof. Cða; xÞ is continuous in the second argument, in
the conventional sense: if Cða; xÞ 2 ða; bÞ; then x 2
Bða; bÞnB ½a; a�; which is open because Bð a; bÞ is open
while B ½a; a� is closed. Now, for any given a; b; take the
continuous function f ðxÞ ¼ Cða;xÞ

Cða;bÞ as the Urysohn
function. &

Examples of the Urysohn function used in the proof
are given in Fig. 18.

5.5. Conventional continuity

The product topology onM�M is the topology based
on the Cartesian products of open balls Bða; �Þ �
Bðb; dÞ; for all a; b 2M and positive �; d:

Theorem 10. The discrimination probability function

cðx; yÞ is continuous in ðx; yÞ; in the conventional sense:
if cðx; yÞ 2 ða; bÞ; then ðx; yÞ belongs to an open set in the
product topology.

Proof. We prove first that fðx; yÞ : cðx; yÞo�g is open in
the product topology. Let ða; bÞ belong to this set, i.e.,
cða; bÞo�: Consider a sequence of open sets Bða; �nÞ �
Bðb; �nÞ with �n! 0þ; and assume that each of them
contains a point ðan; bnÞ such that cðan; bnÞX�: Then we
would have

ðan! aÞ ^ ðbn! bÞ ) cðan; bnÞ ! cða; bÞ
which is clearly impossible. It follows that for some �n;
cðan; bnÞo� for all ðan; bnÞ 2 Bða; �nÞ �Bðb; �nÞ; and this
means that fðx; yÞ : cðx; yÞo�g is open.
We prove next that the set fðx; yÞ : cðx; yÞp�g is closed

in the product topology. If ða; bÞ is its proximate point,
then any sequenceBða; �nÞ �Bðb; �nÞ with �n! 0 should
contain points ðan; bnÞ such that cðan; bnÞp�: Since
ðan! aÞ ^ ðbn! bÞ; we conclude that cða; bÞp�:
Then fðx; yÞ : Cðx; yÞobgnfðx; yÞ : Cðx; yÞpag must be

open. &

Corollary 2 (to Theorem 10). Psychometric increments

Cð1Þðx; yÞ ¼ cðx; yÞ � cðx; xÞ;
Cð2Þðx; yÞ ¼ cðy; xÞ � cðx; xÞ;
Cðx; yÞ ¼ minfCð1Þðx; yÞ;Cð2Þðx; yÞg;
are continuous in the conventional sense.

5.6. Arc-connectedness

We consider now the global topological structure of
the space M: We wish to confine our analysis to arc-

connected spaces M; in which one can continuously
move from any one stimulus to another.
Recall that an arc connecting a 2M to b 2M is a

homeomorphic function f : ½a; b� !M such that fðaÞ ¼
a; fðbÞ ¼ b:6 The variable t 2 ½a; b� is called the arc’s
parameter. It is convenient to allow for a ¼ b in this
definition, ensuring that any stimulus a is arc-connect-
able to itself. If a is arc-connectable to b; then b is
arc-connectable to a: If a is arc-connectable to b and b is
arc-connectable to c; then a is arc-connectable to c: The
relation ‘‘is arc-connectable to’’ therefore is an equiva-
lence relation.

Axiom 4 (Arc-connectedness). Stimulus space M is arc-

connected, that is, every two of its points are arc-

connectable in M:

By the previous remarks, it would have been sufficient
to require that there is at least one point inM that is arc-
connectable to any point in M:

6. Smooth arcs

In this section, we move from topological to analytic
properties of stimulus space M; by introducing in M an
analogue for the notion of a piecewise continuously
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Fig. 18. Demonstration of Theorem 9 on the stimulus space endowed with the discrimination probability function shown in Fig. 9, right. For any

two points a; b the continuous function Cða;xÞ
Cða;bÞ equals zero at a and 1 at b:

6We could replace ‘‘homeomorphic’’ here with ‘‘continuous’’ and

speak of paths rather than arcs. In Hausdroff spaces pathwise

connectedness is equivalent to arcwise connectedness.
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differentiable arc in a Euclidean space. Since differ-
entiability is involved, we no longer can deal with
minima of psychometric increments and have to
consider Cð1Þ and Cð2Þ separately.

Definition 5. An arc xðtÞ : ½a; b� !M is called smooth if,
for every c 2 ½a; b�;

(i) Cð1ÞðxðcÞ;xðtÞÞ and Cð2ÞðxðcÞ;xðtÞÞ are continuously
differentiable in t on ½a; cÞ [ ðc; b�; and

(ii) dCð1ÞðxðcÞ;xðtÞÞ=dt and dCð2ÞðxðcÞ;xðtÞÞ=dt are nega-
tive on ½c� d; cÞ \ ½a; b� and positive on ðc; cþ d� \
½a; b�; for some d40:
The concept is illustrated in Fig. 19. A few comments.

1. If c ¼ a or c ¼ b; the derivatives dCð1ÞðxðcÞ; xðtÞÞ=dt
and dCð2ÞðxðcÞ;xðtÞÞ=dt should be understood in the
unilateral sense.

2. Nothing is assumed about the unilateral derivatives
dCðiÞðxðcÞ; xðtÞÞ=dt	 at t ¼ c: they are allowed to be
nonzero, zero, or 	1 (they could even be undefined,
but this will be ruled out later).

3. Property (ii) implies that Cð1ÞðxðcÞ;xðtÞÞ and
Cð2ÞðxðcÞ;xðtÞÞ decrease in a left-hand vicinity of c;
reach their minima at c; and increase in some right-
hand vicinity of c:

4. The definition is formally satisfied by point arcs, with
a ¼ b:

5. Since

Cð1ÞðxðcÞ;xðtÞÞ ¼ cðxðcÞ;xðtÞÞ � cðxðcÞ;xðcÞÞ;
Cð2ÞðxðcÞ;xðtÞÞ ¼ cðxðtÞ;xðcÞÞ � cðxðcÞ;xðcÞÞ;
property (i) is equivalent to saying that both
cðxðcÞ;xðtÞÞ and cðxðtÞ; xðcÞÞ are continuously differ-
entiable on ½a; cÞ [ ðc; b�:

Any arc xðtÞ can be reparametrized as yðtÞ ¼ xðtðtÞÞ;
where tðtÞ : ½c; d� ! ½a; b� is a homeomorphism (in
particular, a diffeomorphism).
A finite number of pairwise noncrossing arcs,

x1ðtÞ : ½a1; a2� !M;x2ðtÞ : ½a2; a3� !M; . . . ;

xn�1ðtÞ : ½an�1; an� !M;

with

x1ða2Þ ¼ x2ða2Þ;x2ða3Þ ¼ x3ða3Þ; . . . ;xn�2ðan�1Þ
¼ xn�1ðan�1Þ

can be concatenated into an arc

xðtÞ : ½a1; an� !M:

(‘‘Noncrossing’’ means that two arcs may not have
common points except for the endpoints at which they
are concatenated.) If each of these arcs is smooth, then
the resulting arc is called piecewise smooth.
Finally, by specializing (i.e., restricting) xðtÞ upon a

subinterval ½c; d� � ½a; b� one can form a subarc of xðtÞ;
denoted x½c;d�ðtÞ: In particular, xðtÞ itself can be denoted
x½a;b�ðtÞ:
Theorem 11. If tðtÞ : ½u; v� ! ½a; b� is a positive or

negative diffeomorphism (i.e., t0ðtÞ40 on ½u; v� or

t0ðtÞo0 on ½u; v�; respectively), then the reparametrization

yðtÞ ¼ xðtðtÞÞ of a (piecewise) smooth arc xðtÞ is a

(piecewise) smooth arc. A concatenation of a finite

number of pairwise noncrossing piecewise smooth arcs is

a piecewise smooth arc. A subarc of a (piecewise) smooth

arc is a (piecewise) smooth arc.

Proof. The first statement is obtained by checking

dCðiÞðxðcÞ; yðtÞÞ
dt

¼ dC
ðiÞðxðcÞ;xðtÞÞ

dt

dt

dt
; i ¼ 1; 2; (11)

against Definition 5. The other two statements hold
trivially. &

Definition 6. For m �M; if a 2 m can be connected to
b 2 m by a piecewise smooth arc xðtÞ : ½a; b� ! m; then a
is said to be smoothly connectable to b in m: If this is
true for any two a; b 2 m; then the subset m is said to be
smoothly connected.

Theorem 12. The relation ‘‘is smoothly connectable in m
to’’ is an equivalence relation.

Proof. Reflexivity holds by Comment 4 to Definition 5.
Symmetry is obtained by choosing in (11) any negative
diffeomorphism tðtÞ : ½c; d� ! ½a; b�: To prove the tran-
sitivity, assume without loss of generality that a; b; c are
distinct points in m: Consider xðtÞ : ½a; b� ! m and yðtÞ :
½c; d� ! m (two piecewise smooth arcs) with xðaÞ ¼
a; xðbÞ ¼ yðdÞ ¼ b; yðcÞ ¼ c: If yðcÞ ¼ xðt0Þ; for some t0 2
½a; b�; then the subarc x½a;t0�ðtÞ smoothly connects a to c:
If yðcÞaxðtÞ; for all t 2 ½a; b�; then the equality xðbÞ ¼
yðdÞ implies the existence of t1 2 ½a; b� and t2 2 ½c; d� such
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Fig. 19. Smooth arc xðtÞ : ½a; b� !M : Cð1ÞðxðcÞ; xðtÞÞ (solid thick line)
and Cð2ÞðxðcÞ;xðtÞÞ (dashed thick line) are continuously differentiable
below c and above c; and they both increase for a while as t moves
away from c in either direction.
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that xðt1Þ ¼ yðt2Þ while the two prior subarcs, x½a;t1�ðtÞ
and y½c;t2�ðtÞ; do not cross. Then the concatenation of
x½a;t1�ðtÞ and z½t1;b�ðtÞ; where zðtÞ ¼ yðt2�ct1�b ðt� bÞ þ cÞ; is a
piecewise smooth arc connecting a to c: &

In consequence of this theorem the relation ‘‘is
smoothly connectable in M to’’ partitions M into
equivalence classes fmZgZ2J (with some indexing set J;
not necessarily countable). This partitioning, however,
consists of a single set (M itself) in stimulus spaces
possessing the following property.

Definition 7. Stimulus space M is called locally
smoothly connected if for any a 2M there is a da40
such that a is smoothly connectable in Bða; daÞ to any
b 2 Bða; daÞ:
We do not postulate at this point that stimulus space

M is locally smoothly connected, because it will follow
from a stronger axiom introduced later (Axiom 7).

Theorem 13. In a locally smoothly connected M; for any
a 2M; any two x; y 2 Bða; daÞ are smoothly connectable

in Bða; daÞ:
Proof. Follows from the fact that the relation ‘‘is smoothly
connectable to’’ (in any set) is an equivalence. &

Theorem 14. Stimuli a; b in a locally smoothly connected

M are smoothly connectable iff they are arc-connectable.

Proof. The implication ‘‘smoothly’’! ‘‘arc’’ is trivially
true. To prove the reverse, let a be connected to b by an
arc xðtÞ : ½a; b� !M; and let

t¼ infft 2 ½a; b� : a is not smoothly connectable to xðtÞg:

One can form a sequence tn! t� such that all xðtnÞ are
smoothly connectable to a: By continuity of xðtÞ;
xðtnÞ ! xðtÞ; because of which at some n, xðtnÞ 2
BðxðtÞ; dxðtÞÞ (Definition 7). Then xðtnÞ is smoothly
connectable to both a and xðtÞ; hence a is smoothly
connectable to xðtÞ: If tob; then, by continuity of xðtÞ;
for a sufficiently small a40; xðtþ aÞ 2 BðxðtÞ; dxðtÞÞ;
and xðtþ aÞ would therefore be smoothly connectable
to a: As this would contradict the definition of t; we
have t ¼ b; and b is smoothly connectable to a: &

Corollary 3 (to Theorem 14). A locally smoothly con-

nected stimulus space M is smoothly connected, that is,
any two points of M are smoothly connectable.

7. Regular variation of psychometric increments

7.1. Comeasurability im kleinen

Definition 5 imposes no constraints on the possible
behavior of

CðiÞðxðcÞ; xðcþ aÞÞ
a

; i ¼ 1; 2

as a approaches zero from the left or from the right. In
this section we investigate this behavior in detail, under
the assumption that any two psychometric increments,
taken along any two smooth arcs, are comeasurable im

kleinen (meaning ‘‘in the small’’, as they approach the
point of vanishing).

Axiom 5 (Comeasurability im Kleinen). For any two

smooth arcs xðtÞ : ½a; b� !M and yðtÞ : ½c; d� !M;

0o lim
a!0þ

CðiÞðxðaÞ;xðaþ aÞÞ
Cð1ÞðyðcÞ; yðcþ aÞÞo1; i ¼ 1; 2:

That is, the limit ratios

lim
a!0þ

Cð1ÞðxðaÞ;xðaþ aÞÞ
Cð1ÞðyðcÞ; yðcþ aÞÞ ; lim

a!0þ
Cð2ÞðxðaÞ;xðaþ aÞÞ
Cð1ÞðyðcÞ; yðcþ aÞÞ

exist as positive quantities, and consequently so do the
limit ratios

lim
a!0þ

Cð1ÞðxðaÞ;xðaþ aÞÞ
Cð2ÞðyðcÞ; yðcþ aÞÞ ; lim

a!0þ
Cð2ÞðxðaÞ;xðaþ aÞÞ
Cð2ÞðyðcÞ; yðcþ aÞÞ :

Fig. 20 provides an illustration.

In the axiom’s formulation the psychometric incre-
ments are confined to left endpoints of arcs, and
consequently to positive increments in the arcs’ para-
meters, a! 0þ : It is easy to see that this restriction is
only apparent.

1. Consider a right-end psychometric increment, say
Cð1ÞðxðbÞ;xðb� aÞÞ; a40: By reparametrization
tðuÞ ¼ ðaþ bÞ � u; u 2 ½a; b� we obtain the smooth
arc x�ðuÞ ¼ xðtðuÞÞ such that
Cð1ÞðxðbÞ;xðb� aÞÞ ¼ Cð1Þðx�ðaÞ;x�ðaþ aÞÞ
for any a: Consequently,

lim
a!0þ

Cð1ÞðxðbÞ;xðb� aÞÞ
Cð1ÞðyðcÞ; yðcþ aÞÞ ¼ lim

a!0þ
Cð1Þðx�ðaÞ; x�ðaþ aÞÞ
Cð1ÞðyðcÞ; yðcþ aÞÞ
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and the axiom applies to right-end increments as
well.

2. Consider now any two points t1 2 ða; bÞ; t1 2 ðc; dÞ
and the psychometric increments CðiÞðxðt1Þ;xðt1 	
aÞÞ; i ¼ 1; 2; and CðkÞðyðt1Þ; yðt1 	 aÞÞ; k ¼ 1; 2: To
apply the axiom and the previous comment, all one
needs is to form subarcs x½a;t1�ðtÞ (for t1 � a) and
x½t1;b�ðtÞ (for t1 þ a) of xðtÞ; and do analogously for
yðtÞ:
It is useful to summarize these comments as a general

statement.

Corollary 4 (to Axiom 5). For any two smooth arcs xðtÞ :
½a; b� !M and yðtÞ : ½c; d� !M; and any t 2 ½a; b�; t 2
½c; d�; any of the psychometric increments CðiÞðxðtÞ;xðt	
aÞÞ; i ¼ 1; 2; is comeasurable im kleinen, as a! 0þ; with
any of the psychometric increments CðkÞðyðtÞ; yðt	
aÞÞ; k ¼ 1; 2 (with obvious caveats at the endpoints).

7.2. Codirectionality and arc elements

Clearly, the limit ratio in Axiom 5 does not depend on
the entire arcs xðtÞ : ½a; b� !M and yðtÞ : ½c; d� !M: It
will remain the same if we replace them with their
arbitrarily small subarcs originating at points xðaÞ and
yðcÞ; respectively. Subsequent considerations therefore
require that we deal with ‘‘infinitesimally small’’ subarcs
of smooth arcs, and for this purpose we need to develop
appropriate language and notation.

Definition 8. Two arcs xðtÞ : ½a; b� !M and yðtÞ :
½c; d� !M are called codirectional if a ¼ c and one of
the two arcs is a subarc of another. Given a smooth arc
xðtÞ : ½a; b� !M and t0 2 ½a; bÞ; the equivalence class of
all arcs codirectional with the subarc x½t0;b�ðtÞ is called an
arc element and denoted by ðxðt0Þ;x�ðt0ÞÞ:
Intuitively, arc element ðxðtÞ;x�ðtÞÞ is a conjunction of a

point-stimulus xðtÞ and an attached to it direction of
stimulus change x

�ðtÞ; that can be thought of as an
‘‘infinitesimally small’’ arc. In the present treatment we
never use a direction x

� ðtÞ alone, outside an arc element
ðxðtÞ;x�ðtÞÞ:7
We will also need the following simple operations on

arc elements.

Definition 9. Given a smooth arc xðtÞ : ½a; b� !M;

(i) for any t0 2 ½a; bÞ; ðxðt0Þ; k x�ðt0ÞÞ (k40) denotes the
arc element consisting of all arcs codirectional with
yðtÞ : ½t0; t0 þ b�t0

k
� !M defined by yðt0 þ aÞ ¼

x½t0;b�ðt0 þ kaÞ;
(ii) the arc element ðxðt0Þ; 0 
 x�ðt0ÞÞ is defined as the

singleton set containing the point arc ½t0; t0� !
xðt0Þ:

(iii) for any t0 2 ða; b�; ðxðt0Þ;� x�ðt0ÞÞ denotes the arc
element consisting of all arcs codirectional with
yðtÞ : ½t0; 2t0 � a� !M defined by yðt0 þ aÞ ¼
x½a;t0�ðt0 � aÞ:

According to (ii), if k ¼ 0; the arc element reduces to
a point. This causes no difficulties, as a point on a
smooth arc can be viewed as its smooth subarc.

One can combine (i) and (iii) to form arc elements
ðxðt0Þ;�k x�ðt0ÞÞ:

7.3. Regular variation

For a comprehensive treatment of regular variation
see Bingham, Goldie, and Teugels (1987). The aspects of
the theory of regular variation that are relevant in the
present context can be found in Dzhafarov (2002a).
We summarize some notions and facts. A function

f ðxÞ : Reþ ! Reþ is said to regularly vary at the origin

(i.e., as x! 0þ) with exponent m if

f ðxÞ ¼ xm‘ðxÞ;
where ‘ðxÞ is the slowly varying component of f ðxÞ;
characterized by

lim
x!0þ

‘ðkxÞ
‘ðxÞ ¼ 1 for every k40:

A continuous function f ðxÞ : Reþ ! Reþ regularly
varies if and only if

0o lim
x!0þ

f ðkxÞ
f ðxÞ o1 for every k40:8

Then

lim
x!0þ

f ðkxÞ
f ðxÞ ¼ km;

where m is the exponent of regular variation. As x! 0þ;
f ðxÞ ! 0 if m40;

f ðxÞ ! 1 if mo0:

All forms of asymptotic behavior are possible if m ¼ 0
(i.e., if the function is slowly varying).
If y ¼ f ðxÞ is regularly varying with exponent m and

monotone in some vicinity of x ¼ 0þ; then x ¼ f �1ðyÞ is
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7Both the terminology and the notation here are designed to

resemble the notion of a line element, ðxðtÞ; _xðtÞÞ; in MDFS (see

Introduction). Of course, direction x
�ðtÞ cannot be simply identified

with tangent _xðtÞ: in the general theory the notion of a tangent is not
defined, while in differentiable manifolds (assuming continuously

differentiable arcs are smooth arcs in the sense of Definition 5) two

distinct arc elements ða; x�ðtÞÞ and ða; y�ðtÞÞ at point a may share one and
the same line element, ða; uÞ; with u ¼ _xðtÞ ¼ _yðtÞ: The specialization of
the general theory to MDFS (not dealt with in this paper) essentially

consists in ensuring that arc elements with this property (tangency)

behave identically (i.e., are assigned the same value of the submetric

function of either kind, as defined in Section 8).

8If f(x) increases in the right-hand vicinity of zero, then it is

sufficient that the finiteness of the limit ratio hold for at least two

values of k that are not rational powers of each other.
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regularly varying with exponent 1=m and monotone in
some vicinity of y ¼ 0þ : In this paper we will primarily
deal with positive-exponent regularly varying functions
f ðxÞ that are continuously differentiable in some vicinity
of x ¼ 0þ; with df ðxÞ=dx40:
We write aðxÞ � bðxÞ and say that the two functions

are asymptotically equal to indicate limða=bÞ ¼ 1 as x!
0þ : The term ‘‘asymptotic’’ in the present context will
always mean ‘‘as x! 0þ’’.
Theorem 15. For any smooth arc xðtÞ : ½a; b� !M; as

a! 0þ; CðiÞðxðaÞ;xðaþ aÞÞ; i ¼ 1; 2; regularly varies

with a nonnegative exponent and a slowly varying

component continuously differentiable at sufficiently small

a40:

Proof. Consider smooth arc yðtÞ : ½a; aþ b�a
k
� !M de-

fined by yðaþ aÞ ¼ xðaþ kaÞ; k40; a 2 ½0; b�a
k
�: By

Axiom 5,

0o lim
a!0þ

CðiÞðxðaÞ;xðaþ kaÞÞ
CðiÞðxðaÞ;xðaþ aÞÞ o1;

which, as we know, implies the existence of some real
number m and some positive slowly varying function ‘ðaÞ
such that

CðiÞðxðaÞ; xðaþ aÞÞ ¼ am‘ðaÞ:
Exponent m must be nonnegative because CðiÞðxðaÞ;
xðaþ aÞÞ ! 0 as a! 0þ : Function ‘ðaÞ must be C1

on some interval ð0; dÞ because so is CðiÞðxðaÞ;
xðaþ aÞÞ: &

In this theorem both m and ‘ðaÞ are allowed to be
different for different psychometric increments
CðiÞðxðaÞ; xðaþ aÞÞ; i ¼ 1; 2: The next theorem shows
that in fact m is the same for all psychometric
increments, and ‘ðaÞ is asymptotically the same, up to
scaling coefficients.

Theorem 16. There exist a constant mX0 and a slowly

varying function ‘ðaÞ (continuously differentiable at

sufficiently small a40) such that for any smooth arc xðtÞ :
½a; b� !M one can find V iðxðaÞ;x�ðaÞÞ40 such that, as
a! 0þ;
CðiÞðxðaÞ; xðaþ aÞÞ � V iðxðaÞ; x�ðaÞÞam‘ðaÞ; i ¼ 1; 2:
Constant m is determined uniquely. Slowly varying

function ‘ðaÞ is determined asymptotically uniquely

up to multiplication by a positive constant (say, l),
and the coefficient V iðxðtÞ; x� ðtÞÞ is determined

uniquely up to multiplication by the reciprocal con-

stant (1=l).

Proof. Let C0ðaÞ be a psychometric increment (of
either kind) taken on an arbitrarily chosen smooth arc.
By the previous theorem, C0ðaÞ ¼ am‘ðaÞ and
CðiÞðxðaÞ; xðaþ aÞÞ ¼ am

�
‘�ðaÞ (where m� and ‘�; for

now, may depend on i and on the smooth arc x½a;b�).

By Axiom 5,

lim
a!0þ

am
�
‘�ðaÞ

am‘ðaÞ ¼ V iðx½a;b�Þ40:

Ratio ‘�ðaÞ
‘ðaÞ is a slowly varying function, for

‘�ðkaÞ=‘ðkaÞ
‘�ðaÞ=‘ðaÞ ¼

‘�ðkaÞ=‘�ðaÞ
‘ðkaÞ=‘ðaÞ ! 1:

The expression am
��m ‘�ðaÞ

‘ðaÞ therefore tends to 1 if m�om
and it tends to 0 if m�4m: Hence m� ¼ m: The ratio ‘�ðaÞ

‘ðaÞ
then tends to V iðx½a;b�Þ; and we have
CðiÞðxðaÞ; xðaþ aÞÞ � V iðx½a;b�Þam‘ðaÞ:
Obviously, if also

CðiÞðxðaÞ; xðaþ aÞÞ � V�i ðx½a;b�Þam‘�ðaÞ;
then for some l40; ‘�ðaÞ � l‘ðaÞ and V�i ðx½a;b�Þ ¼
V iðx½a;b�Þ=l: Finally, since V iðx½a;b�Þ is the same for all
subarcs of xðtÞ : ½a; b� !M that have the same initial
point, V iðx½a;b�Þ can be written as V iðxðaÞ;x�ðaÞÞ: &

Written in a more general (but obviously equivalent)
form, the asymptotic decomposition of psychometric
increments is

CðiÞðxðtÞ;xðtþ aÞÞ � V iðxðtÞ;x�ðtÞÞam‘ðaÞ; i ¼ 1; 2:
(12)

We know that V iðxðtÞ;x�ðtÞÞ is always positive. The
next theorem establishes that V iðxðtÞ;x� ðtÞÞ has a
property resembling Euler homogeneity of order m:

Theorem 17. For any arc element ðxðtÞ;x� ðtÞÞ; any k40;
and for i ¼ 1; 2;
V iðxðtÞ; k x�ðtÞÞ ¼ kmV iðxðtÞ;x�ðtÞÞ:
Proof.

CðiÞðxðtÞ;xðtþ aÞÞ � V iðxðtÞ;x�ðtÞÞam‘ðaÞ;
whence

CðiÞðxðtÞ; xðtþ kaÞÞ � V iðxðtÞ;x�ðtÞÞðkaÞm‘ðkaÞ
� kmV iðxðtÞ;x�ðtÞÞam‘ðaÞ:

But

CðiÞðxðtÞ;xðtþ kaÞÞ � V iðxðtÞ; k x�ðtÞÞam‘ðaÞ;
and the result obtains from

kmV iðxðtÞ; x�ðtÞÞam‘ðaÞ � V iðxðtÞ; k x�ðtÞÞam‘ðaÞ: &

Two comments.

1. V iðxðtÞ; k x�ðtÞÞ ¼ 0 when k ¼ 0: This is clearly
implied by CðiÞðxðtÞ;xðtÞÞ ¼ 0 and

V iðxðtÞ; k x�ðtÞÞ ¼ lim
a!0þ

CðiÞðxðtÞ;xðtþ kaÞÞ
am‘ðaÞ :

2. No relationship is postulated or can be derived
between V iðxðtÞ;x�ðtÞÞ and V iðxðtÞ;� x�ðtÞÞ: By using
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the latter’s definition, however, one can see that for
any arc element ðxðtÞ;� x�ðtÞÞ;
V iðxðtÞ;�k x�ðtÞÞ ¼ kmV iðxðtÞ;� x� ðtÞÞ; k40; i ¼ 1; 2:

(13)

Note also that Axiom 5 (Comeasurability im Kleinen)
can now be written as stating that for any two arc
elements ðxðtÞ;x�ðtÞÞ; ðyðtÞ; y�ðtÞÞ;

lim
a!0þ

CðiÞðxðtÞ; xðt	 aÞÞ
CðkÞðyðtÞ; yðtþ aÞÞ

¼ V iðxðtÞ;	x� ðtÞÞ
VkðyðtÞ; y�ðtÞÞ

; i ¼ 1; 2;k ¼ 1; 2: ð14Þ

Definition 10. Constant mX0 in Theorem 16 is called the
psychometric order of stimulus space M:

8. Submetric functions

8.1. Basic properties

The comeasurability im Kleinen axiom does not
exclude the possibility of psychometric order m ¼ 0;
which is the possibility that psychometric increments are
slowly varying functions. It is excluded, however, by the
following assumption.

Axiom 6 (Double Continuity). Coefficient V iðxðtÞ; x� ðtÞÞ
in the asymptotic decomposition

CðiÞðxðtÞ;xðtþ aÞÞ � V iðxðtÞ; x�ðtÞÞam‘ðaÞ; i ¼ 1; 2
has the following properties:

(i) for any smooth arc xðtÞ : ½a; b� !M; V iðxðtÞ; x� ðtÞÞ is
continuous in t 2 ½a; b�; for i ¼ 1; 2;

(ii) V iðxðtÞ; k x�ðtÞÞ ! 0 as k! 0þ at least for one arc

element ðxðtÞ;x�ðtÞÞ and for i ¼ 1 or 2:
Strictly speaking, V iðxðtÞ;x�ðtÞÞ is not defined at t ¼ b

(see Definitions 8 and 9). Saying that V iðxðtÞ; x� ðtÞÞ is
continuous in t 2 ½a; b� therefore is a short version of
saying

V iðxðtÞ; x� ðtÞÞ is both continuous and bounded
on ½a; bÞ and V iðxðbÞ;x�ðbÞÞ is defined as
limt!b�V iðxðtÞ; x� ðtÞÞ:

Convention 2. In the following we will tacitly assume

thatV iðxðtÞ;x�ðtÞÞ (and its continuous transformations) are
defined on the entire interval ½a; b� for any smooth arc

xðtÞ : ½a; b� !M:

Part (i) of the axiom will play a critical role in
constructing Fechnerian distances, as this construction
involves Riemann integrals of continuously transformed
V iðxðtÞ; x� ðtÞÞ: Part (ii) is needed to establish the
following result.

Theorem 18. Psychometric order m of stimulus space M is

positive. As a consequence, the following statements hold

for all arc elements ðxðtÞ;x�ðtÞÞ:

(i) V iðxðtÞ; k x�ðtÞÞ ! 0 as k! 0þ (i ¼ 1; 2);
(ii) V iðxðtÞ; k x�ðtÞÞ=V iðxðtÞ;x�ðtÞÞ as a function of k40 is

not identically 1.
Proof. Let V iðxðtÞ; k x�ðtÞÞ satisfy part (ii) of Axiom 6 for
some arc element ðxðtÞ;x�ðtÞÞ and i ¼ 1 or 2. Since
V iðxðtÞ;x�ðtÞÞ40; and V iðxðtÞ; k x�ðtÞÞ ¼ kmV iðxðtÞ; x�ðtÞÞ;
the latter expression converges to zero if and only if
m40: Statements (i) and (ii) of the theorem now follow
from the fact that Theorem 17 holds for all arc elements
and both i ¼ 1; 2: &

Since function ‘1=mðaÞ with m40 is slowly varying
provided ‘ðaÞ is, we can rewrite the asymptotic decom-
position of psychometric increments, (12), in yet another
form, better suited for our purposes: as a! 0þ;
CðiÞðxðtÞ;xðtþ aÞÞ � ½F iðxðtÞ; x� ðtÞÞRðaÞ�m; i ¼ 1; 2;

(15)

where

F iðxðtÞ;x�ðtÞÞ ¼ V 1=m
i ðxðtÞ;x

�ðtÞÞ
and

RðaÞ ¼ a‘1=mðaÞ;
a unit-exponent regularly varying function.
For completeness, we should also present here a new

form for (13): as a! 0þ;
CðiÞðxðtÞ;xðt� aÞÞ � ½F iðxðtÞ;�x� ðtÞÞRðaÞ�m; i ¼ 1; 2:

(16)

Definition 11. Function RðaÞ is called the characteristic
function of space M:

Definition 12. Let S be the set of all arc elements
ðxðtÞ; x� ðtÞÞ that can be formed in space M: Functions
F i : S! Reþnf0g; i ¼ 1; 2; defined in (15) are called
(Fechnerian) submetric functions (of the first and second
kind).9

The following characterizations immediately follows
from Theorems 15 and 16.

Corollary 5 (to Theorems 15 and 16). Submetric func-

tions F i (i ¼ 1; 2) and characteristic function RðaÞ are
determined, respectively, uniquely and asymptotically
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Dzhafarov, 2002a,d) F was referred to as metric function (or

Fechner– Finsler metric function). The use of this term requires that

one strictly distinguish the metric function and the metric of the

stimulus space derived from it (distance function). We think that the

present terminology (submetric function) is more convenient and

prevents possible confusions. We also drop the adjective ‘‘Finsler’’

because the present development is too far beyond the initial context of

Finsler geometry (Dzhafarov & Colonius, 1999).
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uniquely, up to multiplications by two reciprocal positive

constants.

In other words, one can only replace F i (for both
i ¼ 1 and i ¼ 2) with lF i (l40) and RðaÞ with R�ðaÞ
such that R�ðaÞ=RðaÞ ! 1=l; as a! 0þ :

Corollary 6 (to Theorems 15 and 16). Characteristic
function RðaÞ vanishes at a ¼ 0 and can always be chosen

to be continuously differentiable at sufficiently small

values of a40; with dRðaÞ=da40:

Proof. Use Theorem 15 to choose RðaÞ so that
CðiÞðxðaÞ; xðaþ aÞÞ ¼ ½F iðxðaÞ;x� ðaÞÞRðaÞ�m for an arbitra-
rily chosen psychometric increment (of either kind). &

It follows from Theorem 17 and the fact that m40
that an analogue of Euler homogeneity (of the first
order) holds for submetric functions.

Corollary 7 (to Theorem 17 and Axiom 6). For any arc

element ðxðtÞ;x�ðtÞÞ; any k40; and for i ¼ 1; 2;
F iðxðtÞ; k x�ðtÞÞ ¼ kF iðxðtÞ;x�ðtÞÞ:
We also have the following consequence of Axiom 6

(of Double Continuity). Recall Convention 2 above.

Corollary 8 (to Axiom 6). For any smooth arc xðtÞ :
½a; b� !M; F iðxðtÞ;x� ðtÞÞ is continuous in t and bounded,

for i ¼ 1; 2:

8.2. Overall psychometric transformation

The following lemma is needed for the theorem
proved next.

Lemma 1. Let f ðxÞ be a positive-exponent regularly

varying function increasing in some vicinity of x ¼ 0þ :
Let aðxÞ ! 0þ and bðxÞ ! 0þ as x! 0þ; and let

aðxÞ � bðxÞ: Then f ½aðxÞ� � f ½bðxÞ�:10

Proof. 11Assume the contrary. Then, for all elements of
some sequence xn! 0þ; either
f ½aðxnÞ�
f ½bðxnÞ�

41þ �

or

f ½aðxnÞ�
f ½bðxnÞ�

o1� �;

where �40: Assume the former (the other case being
treated analogously), that is,

f ½aðxnÞ�4ð1þ �Þf ½bðxnÞ�:

As xn! 0þ;

ð1þ �Þf ½bðxnÞ�
f 1þ �

2

� �1=n
bðxnÞ

� � ¼ 1þ �

1þ �

2



1þ �

2

� �
f ½bðxnÞ�

f 1þ �

2

� �1=n
bðxnÞ

� �

! 1þ �

1þ �

2

41;

where n40 is the exponent of regular variation for f.
Because of this sequence xn can be redefined (by deleting
a finite number of its elements) so that

ð1þ �Þf ½bðxnÞ�4f 1þ �

2

� �1=n
bðxnÞ

� �

for all n. It follows then that

f ½aðxnÞ�4f 1þ �

2

� �1=n
bðxnÞ

� �
:

Since sequence xn can always be redefined so that aðxnÞ
and ð1þ �Þ1=nbðxnÞ are all sufficiently small, and since f is
increasing at such values, we have

aðxnÞ4 1þ �

2

� �1=n
bðxnÞ

whence

lim
xn!0þ

aðxnÞ
bðxnÞ

X 1þ �

2

� �1=n
41

contrary to the premise aðxÞ � bðxÞ: &

We now formulate what in the previous publications
was referred to as the ‘‘main theorem’’ of Fechnerian
Scaling, and which we now call ‘‘the first main
theorem’’, in view of another important result, to be
derived later (Theorem 53).

Theorem 19 (First Main Theorem of Fechnerian Sca-

ling). There is a function FðhÞ : Reþ ! Reþ (called the

overall psychometric transformation) vanishing at h ¼ 0
and possessing continuous positive derivative at suffi-

ciently small values of h40; such that for any arc element

ðxðtÞ; x� ðtÞÞ;
F½CðiÞðxðtÞ; xðtþ aÞÞ� � F iðxðtÞ; x�ðtÞÞa; i ¼ 1; 2:
Any other transformation F�ðhÞ such that

F�½CðiÞðxðtÞ; xðtþ aÞÞ� � F�i ðxðtÞ;x
�ðtÞÞa; i ¼ 1; 2;

satisfies the relations

F�ðhÞ � kFðhÞ;
F�i ðxðtÞ;x

�ðtÞÞ ¼ kF iðxðtÞ;x� ðtÞÞ
for some k40:

Remark. What the theorem says is that there is a well-
behaved transformation of psychometric increments
(one and the same for all of them, of both kinds) that
makes them all comeasurable im kleinen with the arc
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10Note that this will not hold just for any positive increasing

continuous f ðxÞ vanishing as x! 0þ : For a counterexample,

consider f ðxÞ ¼ expð�1=xÞ (that does not vary regularly at the origin)
and asymptotically equal aðxÞ ¼ x and bðxÞ ¼ xþ x2:
11We are grateful to Jun Zhang for identifying a mistake in the

original proof.
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parameter, a; that the submetric function F i is the
coefficient of asymptotic proportionality between
the transformed psychometric increments and a; and
that this transformation is essentially asymptotically
unique. Fig. 21 provides an illustration (G denotes the
‘‘gamma increment’’ function introduced in the next
subsection).

Proof of Theorem 19. By Corollary 6 to Theorems 15
and 16, choose the characteristic function RðaÞ in (15) to
be continuously differentiable at sufficiently small values
of a40; with dRðaÞ=da40: Define

FðhÞ ¼ R�1ðh1=mÞ:
This function regularly varies with exponent
1=m40; and it is continuously differentiable at suffi-
ciently small values of h40; with dFðhÞ=dh40:
Applying this function to both sides of (15) and

using Lemma 1,

F½CðiÞðxðtÞ;xðtþ aÞÞ� � R�1½F iðxðtÞ;x�ðtÞÞRðaÞ�;
� F iðxðtÞ x�ðtÞÞR�1½RðaÞ� ¼ F iðxðtÞ; x� ðtÞÞa:
Now, if

F½CðiÞðxðtÞ;xðtþ aÞÞ� � F iðxðtÞ;x�ðtÞÞa;
F�½CðiÞðxðtÞ;xðtþ aÞÞ� � F�i ðxðtÞ;x

�ðtÞÞa;
then

F�i ðxðtÞ; x
�ðtÞÞ

F iðxðtÞ; x�ðtÞÞ
� lim

a!0þ
F�½CðiÞðxðtÞ; xðtþ aÞÞ�
F½CðiÞðxðtÞ; xðtþ aÞÞ� ¼ lim

h!0þ
F�ðhÞ
FðhÞ ;

whence the uniqueness statement of the theorem. &

It is useful to extract from the proof the following
information.

Corollary 9 (to Theorem 19). Overall psychometric

transformation is a regularly varying function with

exponent reciprocal to the psychometric order m of space

M: Specifically, FðhÞ ¼ R�1ðh1=mÞ; where R is the

characteristic function of space M:

8.3. Gamma-increments

The overall psychometric transformation FðhÞ is only
asymptotically unique (up to multiplication by a positive
constant). When considered on a finite interval h 2
½0;H� rather than in an arbitrarily small vicinity of h ¼
0; we can choose different variants of F: One of the
properties of regularly varying functions is that a variant
can always be chosen to be arbitrarily smooth (e.g.,
infinitely differentiable) everywhere except, perhaps, at
zero.

Convention 3. In the following we will tacitly assume that

if the domain of FðhÞ is to be extended to an interval

½0;H�; then the term ‘‘variant of F’’ means a variant that

possesses continuous positive derivative on ð0;H�:
Lemma 2. Any variant F�ðhÞ of FðhÞ defined on h 2 ½0;H�
satisfies

F�ðhÞ ¼ f ½FðhÞ�;
where f : ½0;FðHÞ� ! ½0;F�ðHÞ� is vanishing at zero and

continuously differentiable on Reþ; with f 0ðxÞ40 for all

x 2 ½0;FðHÞ�:
Proof. For positive FðhÞ this follows from the above
convention. The existence of f 0ð0Þ40 follows from the
uniqueness part of Theorem 19, with f 0ð0Þ ¼ k: &

Definition 13. For any variant of the overall psycho-
metric transformation FðhÞ; the transformed
psychometric increments F½CðiÞðxðtÞ;xðtþ aÞÞ�; i ¼ 1; 2;
are called gamma-increments and denoted GðiÞðxðtÞ;
xðtþ aÞÞ:
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Ψ(ι)(x(a), x(t))

Γ(ι)(x(a), x(t))

Ψ(κ)(y(c), y(�))

Ψ(1)(x(a), x(t))

Ψ(κ)(y(c), y(�))

Γ(κ)(y(c), y(�))

Fig. 21. Schematic illustration for overall psychometric transforma-

tion F: Shown are very small pieces of the parametric domains of two
arcs, xðtÞ : ½a; b� !M and yðtÞ : ½c; d� !M; together with the corre-
sponding psychometric increments with respect to left endpoints, of

either kind (i ¼ 1; 2; k ¼ 1; 2). M is of psychometric order 2:5 (top) or
0:25 (bottom). As a! 0; both u1=u2 and v1=v2 tend to positive finite
limits in accordance with Axiom 5. The quantities u1; u2; v1; v2 are not,
however, comeasurable with a! 0: the derivatives at the origin equal

0 in the case of m ¼ 2:5 and equal 1 in the case of m ¼ 0:25: Overall
psychometric transformation (different for m ¼ 0:25 and for m ¼ 2:5)
makes these derivatives positive and finite (middle panels, G � F �C);
their values are taken as those of submetric function, F iðxðaÞ;x�ðaÞÞ and
FkðyðcÞ; y�ðcÞÞ: Anticipating subsequent development: the possibility of
m41 will be ruled out, and the cross-unbalanced version of the theory,

supported by empirical evidence, is only compatible with m ¼ 1 and
with R (characteristic function) being identity (in this case F is also

identity, and the notions of C and G coincide).
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It is worth emphasizing again that the notion of
gamma-increments GðiÞðxðtÞ; xðtþ aÞÞ for finite values of
a; being dependent on the choice of F; is inherently
nonunique. But the choice of F makes no difference for
limit propositions, as a! 0þ : In particular, the
following properties hold universally.

Theorem 20. For any smooth arc xðtÞ : ½a; b� !M; any
t 2 ½a; bÞ and i ¼ 1; 2; GðiÞðxðtÞ;xðt	 aÞÞ is differentiable

at a ¼ 0þ; with
dGðiÞðxðtÞ;xðt	 aÞÞ

da

����
a¼0þ
¼ F iðxðtÞ;	 x� ðtÞÞ:

Proof. This is essentially a restatement of the asympto-
tic decomposition in Theorem 19. &

Theorem 21. For any smooth arc xðtÞ : ½a; b� !M and

every c 2 ½a; b�; one can find c� 2 ½a; cÞ and c� 2 ðc; b� such
that both Gð1ÞðxðcÞ;xðtÞÞ and Gð2ÞðxðcÞ; xðtÞÞ are negative

diffeomorphisms on ½c�; c� and positive diffeomorphisms

on ½c; c��:

Proof. Follows from Definition 5 and the previous
theorem. &

Comparing this result with Definition 5 we see that
the only change in switching from CðiÞ to GðiÞ occurs at
point c itself: Gð1ÞðxðcÞ;xðtÞÞ and Gð2ÞðxðcÞ;xðtÞÞ possess
nonzero unilateral derivatives at t ¼ c:

Theorem 22. For any positive diffeomorphic reparame-

trization of any smooth arc xðtÞ ¼ xðtðtÞÞ ¼ yðtÞ;

F iðyðtÞ; y�ðtÞÞ ¼ F iðxðtÞ; x� ðtÞÞt0ðtÞ; i ¼ 1; 2:
Proof. We have

GðiÞðyðtÞ; yðtþ bÞÞ � F iðyðtÞ; y�ðtÞÞb;
but also

GðiÞðyðtÞ; yðtþ bÞÞ ¼ GðiÞðxðtÞ;xðtþ ðt0ðtÞ þ of1gÞbÞÞ
� F iðxðtÞ;x�ðtÞÞðt0ðtÞ þ of1gÞb
� F iðxðtÞ;x�ðtÞÞt0ðtÞb:

Hence the statement of the theorem. &

The following immediate consequence of this theorem
is of crucial importance for the construction of
Fechnerian distances.

Theorem 23. For any positive diffeomorphic reparame-

trization of any smooth arc xðtÞ ¼ xðtðtÞÞ ¼ yðtÞ;

F iðyðtÞ; y�ðtÞÞdt ¼ F iðxðtÞ;x�ðtÞÞdt; i ¼ 1; 2;
at any point t ¼ tðtÞ:

Proof. From the previous theorem,

F iðyðtÞ; y�ðtÞÞdt ¼ F iðxðtÞ; x� ðtÞÞt0ðtÞdt
¼ F iðxðtÞ; x� ðtÞÞdt: &

8.4. Boundedness of growth

To introduce our last axiom we need a new
notion. According to Definition 5, if a smooth arc xðtÞ
originates at a; CðiÞða;xðtÞÞ varies along the arc in a
continuously differentiable way. With any variant
of the overall psychometric transformation FðhÞ;
the same can be said about GðiÞða;xðtÞÞ ¼
F½CðiÞða;xðtÞÞ�: The rate of its change, dGðiÞða;xðtÞÞ=dt;
will depend on the parametrization of the arc. If
we normalize this rate by the submetric func-
tion F iðxðtÞ;x�ðtÞÞ; however, we get a parametrization-
invariant measure of the change rate.

Definition 14. For any smooth arc xðtÞ : ½a; b� !M; the
quantity

DðiÞðxðaÞ;xðtÞÞ ¼ dG
ðiÞðxðaÞ; xðtÞÞ

F iðxðtÞ;x�ðtÞÞdt

is called the relative growth rate of GðiÞðxðaÞ; xðtÞÞ:

Theorem 24. Relative growth rate is invariant with

respect to positive diffeomorphic reparametrizations.

Proof. Let yðtÞ ¼ xðtðtÞÞ; be such a reparametrization,
with yðcÞ ¼ xðaÞ: Then

DðiÞðxðaÞ; xðtÞÞ ¼ dGðiÞðxðaÞ;xðtÞÞ=dt
F iðxðtÞ;x� ðtÞÞ

¼
dt

dt
dGðiÞðxðaÞ;xðtÞÞ=dt
dt

dt
F iðxðtÞ;x�ðtÞÞ

¼ dGðiÞðyðcÞ; yðtÞÞ=dt
F iðyðtÞ; y�ðtÞÞ

¼ DðiÞðyðcÞ; yðtÞÞ: &

The first part of the next axiom says, in essence, that
the relative rate of growth in GðiÞðxðaÞ;xðtÞÞ; computed
for all smooth arcs within a sufficiently small ball,
cannot get arbitrarily large (in absolute value). The
second part of the axiom says that two sufficiently close
to each other points a and b can be connected by a
smooth arc on which GðiÞðxðaÞ;xðtÞÞ increases at a
sufficiently fast relative rate. These special arcs are
analogous to short segments of straight lines in the
Fechnerian theory for finite-dimensional Euclidean
spaces.
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Axiom 7 (Local boundedness). For any p 2M one can

find positive constants �p;Cp; cp such that,

(i) for any smooth arc xðtÞ : ½a; b� ! Bðp; �pÞ and for any

t 2 ½a; b�;
jDðiÞðxðaÞ; xðtÞÞjoCp; i ¼ 1; 2;

(ii) for any a; b 2 Bðp; �pÞ; with a ¼ p or b ¼ p; there are

smooth arcs (called straight arcs) xðiÞðtÞ : ½a; b� !
Bðp; �pÞ (i ¼ 1; 2) with a ¼ xðiÞðaÞ; b ¼ xðiÞðbÞ; such

that for any t 2 ½a; b�;
DðiÞða;xðiÞðtÞÞ4cp; i ¼ 1; 2:

A schematic illustration is provided by Fig. 22. A few
remarks are due.

1. Clearly, if �p;Cp; cp conform with this axiom, then it is
also satisfied
(a) for �p taken with any finite C0p4Cp and any

positive c0pocp;
(b) for any �o�p taken with some

Cpð�ÞpCp; cpð�ÞXcp:

2. The definition of a straight arc depends on i ¼ 1; 2;
and on the initial and terminal points a; b (one of

which is p). One should, therefore, distinguish
straight arcs of the first kind and of the second kind,
and we impose no upper limit on the number of
straight arcs of either kind connecting two given
points. Note that by replacing cp with c0pocp we may
add new straight arcs (without losing the ‘‘old’’ ones)
for any given a; b and i ¼ 1; 2:

3. One should not assume that a subarc of a straight arc
is a straight arc. Nor should one assume in general
that a straight arc remains straight if traversed in the
opposite direction (i.e., when subjected to a negative
diffeomorphic reparametrization).

4. Writing xðiÞðtÞ : ½aðiÞ; bðiÞ� ! Bðp; �pÞ would be more
general but is not necessary, because the two
parametric domains can always be made coincide
by a diffeomorphic transformation (that does not
change relative growth rate).

5. For a straight arc xðiÞðtÞ; (i) and (ii) imply bounded-
ness by positive numbers on both sides,
cpoDðiÞða; xðiÞðtÞÞoCp:

6. Anticipating Definition 16 given in the next section,
DðiÞðxðaÞ;xðtÞÞ can be viewed as d

dt
GðiÞðxðaÞ; xðtÞÞ

computed for xðtÞ parametrized by the psychometric
length of the arc (of the ith kind) measured from xðaÞ
to xðtÞ: In this parametrization,

t ¼
Z t

a

F iðxðuÞ;x� ðuÞÞdu:

Part (ii) of the axiom implies, of course, that any p 2
M can be connected to any point within a sufficiently
small ball Bðp; �pÞ by a smooth arc, so �p can be taken to
be dp of Definition 7. This deserves to be stated formally.

Corollary 10 (to Axiom 7). Stimulus space M is locally

smoothly connected (hence smoothly connected).

As a result, Theorems 13 and 14 of Section 6 can now
be considered valid for stimulus space M without
qualifications.
Definition 14 of DðiÞðxðaÞ;xðtÞÞ involves function

GðiÞðxðaÞ;xðtÞÞ without stipulating t! a: The value of
DðiÞ therefore will depend on one’s choice of the overall
psychometric transformation F which we know to be
only asymptotically unique. This raises the question of
whether Axiom 7 is well-formed, that is, whether its
validity can be shown to not depend on the variant of F:

Theorem 25. The validity of Axiom 7 does not depend on

the variant of FðhÞ:
Proof. Let two variants F and F� be defined on an
interval including ½0;H�: By Theorem 7 and by the first
remark following Axiom 7, �p can always be chosen so
that diamBðp; �pÞoH: According to Lemma 2,

F�ðhÞ ¼ f ½FðhÞ�;
where f 0 is positive and continuous on ½0;FðHÞ�:
Then for any smooth arc xðtÞ : ½a; b� ! Bðp; �pÞ; with
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Fig. 22. Schematic illustration for Axiom 7. Left: an open ball Bðp; �pÞ
shown with points a and b connected by an arbitrary smooth arc. The

plot below illustrates part (i) of the axiom: relative growth rate along

any smooth arc within the ball is bounded. Note that the relative

growth rate begins at level 1 (because F iðxðaÞ;x�ðaÞÞ ¼
dGð1ÞðxðaÞ;xðtÞÞ=dt at t ¼ aþ), and the bound CpX1: Right: the same
open ball with the same points a and b connected with p by straight

arcs of the first or second kind. The plot below illustrates part (ii) of

the axiom: relative growth rate along a straight arc does not fall below

some positive level cpp1:
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a ¼ xðaÞ;
df ½GðiÞða;xðtÞÞ�

dt
¼ f 0½GðiÞða; xðtÞÞ� dG

ðiÞða;xðtÞÞ
dt

:

As a continuous function, f 0ðxÞ is bounded between
mp ¼ min

x2½0;FðHÞ�
f 0ðxÞ40

and

Mp ¼ max
x2½0;FðHÞ�

f 0ðxÞo1:

By Theorem 19 and Lemma 2, F�i ðxðtÞ;x
�ðtÞÞ correspond-

ing to F� equals kF iðxðtÞ;x� ðtÞÞ; with k ¼ f 0ð0Þ: As a
result,

dGðiÞða; xðtÞÞ
F iðxðtÞ;x�ðtÞÞdt

oCp

) df ½GðiÞða;xðtÞÞ�
kF iðxðtÞ;x� ðtÞÞdt

oMp dGðiÞða;xðtÞÞ
kF iðxðtÞ; x� ðtÞÞdt

oMpCp

k
;

dGðiÞða; xðtÞÞ
F iðxðtÞ;x�ðtÞÞdt

4cp ) df ½GðiÞða; xðtÞÞ�
kF iðxðtÞ;x�ðtÞÞdt

4
mp dGðiÞða;xðtÞÞ
kF iðxðtÞ;x� ðtÞÞdt

4
mpcp

k
:

All statements of Axiom 7 therefore should be as
applicable to f ½GðiÞða;xðtÞÞ� as they are to
GðiÞða;xðtÞÞ: &

As remarked earlier, if some �p;Cp; cp conform with
Axiom 7, then it is also satisfied for any �o�p with some

Cpð�ÞpCp; cpð�ÞXcp:

We have the following estimate for Cpð�Þ and cpð�Þ:
Theorem 26. For any p 2M and any �p�p;
cpð�Þp1pCpð�Þ:
Proof. For any straight arc xðtÞ : ½a; b� ! Bðp; �Þ origi-
nating at p;

cpð�ÞpDðiÞðxðaÞ; xðtÞÞpCpð�Þ;
for all t. But

DðiÞðxðtÞ; xðtÞÞ ¼ dG
ðiÞðxðaÞ;xðtÞÞ=dtjt¼aþ
F iðxðaÞ; x� ðtÞÞ

¼ 1: &

Note that it cannot be concluded that, as �! 0þ;
cpð�Þ ! 1 or Cpð�Þ ! 1: In other words, the inequalities

lim
�!0þ

cpð�Þp1

and

lim
�!0þ

Cpð�ÞX1

may very well be strict. The limits, of course, exist
because cpð�Þ and Cpð�Þ are monotone.

Definition 15. Stimulus spaceM is called quasi-convex if

lim
�!0þ

Cpð�Þ ¼ lim
�!0þ

cpð�Þ ¼ 1:

The term ‘‘quasi-convexity’’ is due to the fact that this
property in certain respects generalizes the notion of
connected open regions of Ren endowed with submetric
functions with convex indicatrices (Dzhafarov &
Colonius, 2001). Most of the results in this paper do
not make use of this quasi-convexity assumption.

9. Psychometric lengths and oriented Fechnerian

distances

9.1. Lengths

Definition 16. For any piecewise smooth arc xðtÞ :
½a; b� !M; its psychometric length (of the first kind or
second kind) is defined as the Riemann integralZ b

a

F iðxðtÞ; x� ðtÞÞdt ¼ LðiÞ½x½a;b��; i ¼ 1; 2:

The definition is valid because F iðxðtÞ; x�ðtÞÞ is a
piecewise continuous function on a closed interval.
Fig. 23 provides an illustration.

Theorem 27. Psychometric length LðiÞ½x½a;b�� has the

following properties: for i ¼ 1; 2;

(i) LðiÞ½x½a;b��X0;
(ii) LðiÞ½x½a;b�� ¼ 0 if and only if the domain of xðtÞ is a

singleton (i.e., a ¼ b);
(iii) if zðtÞ : ½a; c� !M is the concatenation of xðtÞ :
½a; b� !M and yðtÞ : ½b; c� !M; then

LðiÞ½z½a;c� ¼ LðiÞ½x½a;b�� þ LðiÞ½y½b;c��;

(iv) LðiÞ½x½a;b�� is invariant under all positive diffeomorphic

reparametrizations.
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parametric domain of this arc (right). Psychometric length of xðtÞ (of
the ith kind) is the area subtended by the right-hand figure.
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Proof. (i)–(iii) being obvious, (iv) states that for any
positive diffeomorphism tðtÞ : ½c; d� ! ½a; b�;

LðiÞ½x½a;b�� ¼ LðiÞ½y½c;d��;

where yðtÞ ¼ xðtðtÞÞ: That is,

LðiÞ½y½c;d�� ¼
Z d

c

F iðyðtÞ; y�ðtÞÞdt ¼
Z b

a

F iðxðtÞ; x�ðtÞÞdt

¼ LðiÞ½x½a;b��:

This follows from Theorem 23. &

Psychometric length is a property of oriented piece-
wise smooth arcs: LðiÞ½x½a;b�� is the length of the piecewise
smooth arc from a ¼ xðaÞ to b ¼ xðbÞ: To compute the
length ‘‘in the opposite direction’’ one has to apply the
definition to a reparametrization of xðtÞ by any negative
diffeomorphism, say, yðtÞ ¼ xð�tþ ðaþ bÞÞ;

LðiÞ½y½a;b�� ¼
Z b

a

F iðyðtÞ; y�ðtÞÞdt:

Equivalently, using Definition 9, one can write

LðiÞ½�x½a;b�� ¼
Z b

a

F iðxðtÞ;� x� ðtÞÞdt (17)

where �xðtÞ is a natural way of indicating that the
length is being computed ‘‘in the opposite direction’’.

9.2. Distances

Recall that a function dða; bÞ is called an oriented

distance function (or oriented metric) if

dða; bÞX0 ðnonnegativityÞ;
dða; bÞ ¼ 0()a ¼ b ðzero propertyÞ;
dða; bÞ þ dðb; cÞXdða; cÞ ðtriangle inequalityÞ:
The oriented distance is distance (or metric) proper if, in
addition,

dða; bÞ ¼ dðb; aÞ ðsymmetryÞ:
Definition 17. For any a; b 2M; the (oriented) Fechner-
ian distance (of the first kind or second kind) from a to b
is defined as

Giða; bÞ ¼ inf
x½a;b�2Xða;bÞ

LðiÞ½x½a;b��; i ¼ 1; 2;

where Xða; bÞ is the set of all piecewise smooth arcs
connecting a to b:

Fechnerian metrics are intrinsic metrics in Aleksandrov’s
sense: distance is defined as infimum of the lengths of
specially chosen arcs (see, e.g., Aleksandrov & Zalgaller,
1967). Intrinsic metrics are also called ‘‘inner’’ and ‘‘
internal’’ (Dzhafarov, 2002b). The legitimacy of the
present construction is demonstrated in the next
theorem.

Theorem 28. G1ða; bÞ and G2ða; bÞ are oriented metrics.

Proof. That Giða; bÞ (i ¼ 1; 2) is nonnegative, satisfies
the triangle inequality, and that a ¼ b implies Giða; bÞ ¼
0; is shown trivially. The only nontrivial aspect is the
implication aab) Giða; bÞ40: Let �a40 be any radius
conforming with Axiom 7 (putting p ¼ a), and let d be
any positive number less than minfFð�aÞ;GðiÞða; bÞg: For
any smooth arc xðtÞ connecting a to b; due to the
continuity of GðiÞða;xðtÞÞ; there must be a point c 2 ða; bÞ
such that GðiÞða; xðcÞÞ ¼ d while GðiÞða;xðtÞÞod for all
toc: Let J be the closure of the set

t 2 ½a; c� : dG
ðiÞða;xðtÞÞ
dt

40

� �
:

That is, J is the subset of ½a; c� on which GðiÞða;xðtÞÞ
increases. Clearly,Z
t2J

dGðiÞða; xðtÞÞXd

(equality being achieved iff GðiÞða;xðtÞÞ does not decrease
between different open subintervals on which it in-
creases). We have

LðiÞ½x½a;b��4LðiÞ½x½a;c�� ¼
Z c

a

F iðxðtÞ;x�ðtÞÞdt

X
Z
t2J

F iðxðtÞ; x� ðtÞÞdt

¼
Z
t2J

F iðxðtÞ; x� ðtÞÞdt
dGðiÞða;xðtÞÞ dGðiÞða; xðtÞÞ

X
Z
t2J

1

Ca
dGðiÞða;xðtÞÞX d

Ca
40;

where we have used the fact that by Axiom 7 (i),

F iðxðtÞ;x�ðtÞÞdt
dGðiÞða;xðtÞÞ X

1

Ca

within Bða; �aÞ wherever it is nonnegative. That is, the
length of every arc connecting a to b exceeds a positive
quantity. Then Giða; bÞ; being the infimum of these
lengths, cannot fall below this quantity. &

The following results will be used in Section 10 to
study topological and analytic properties of metrics
Giða; bÞ (i ¼ 1; 2); �a in the formulation of these results is
any radius conforming with Axiom 7 (putting p ¼ a).

Theorem 29. For any a 2M and any 0olp�a;

CðiÞða; bÞXl) Giða; bÞX
FðlÞ
CaðlÞ

CðiÞða; bÞpl) Giða; bÞp
FðlÞ
caðlÞ

; i ¼ 1; 2:

Proof. The first implication immediately follows from
the proof of Theorem 28 (on replacing �a with l).
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To prove the second implication, consider Bða; lÞ: By
part (ii) of Axiom 7 (with p ¼ a), a can be connected to
any b 2 Bða; lÞ by a straight arc xðiÞðtÞ : ½a; b� ! Bða; lÞ:
Its length is

LðiÞ½xðiÞ½a;b�� ¼
Z b

a

F iðxðiÞðtÞ; x�
ðiÞðtÞÞdt

¼
Z b

a

F iðxðtÞ; x�ðtÞÞdt
dGðiÞða;xðtÞÞ dGðiÞða; xðtÞÞ

p
Z b

a

1

caðlÞ
dGðiÞða;xðtÞÞ

p FðlÞ
caðlÞ

40;

where we use the fact that, for a straight arc in Bða; lÞ;
F iðxðtÞ; x� ðtÞÞdt
dGðiÞða;xðtÞÞ p 1

caðlÞ
andZ b

a

dGðiÞða; xðtÞÞpFðlÞ:

Giða; bÞ; by definition, cannot exceed any LðiÞ½xðiÞ½a;b��: &

Theorem 30. For any a 2M one can find a function �ðlÞ
such that �ðlÞ ! 0þ as l! 0þ; and

CðiÞða; bÞpl) Giðb; aÞp
Fð�ðlÞÞ
caðlÞ

; i ¼ 1; 2

for all 0olp�a:

Proof. By part (ii) of Axiom 7 (with p ¼ a), any point
b 2 Bða; lÞ for lp�a can be connected to a by a straight
arc xðiÞðtÞ : ½u; v� ! Bða; lÞ: Its length is

LðiÞ½xðiÞ½u;v�� ¼
Z v

u

F iðxðiÞðtÞ;x�
ðiÞðtÞÞdt

¼
Z v

u

F iðxðiÞðtÞ;x�
ðiÞðtÞÞdt

dGðiÞðb;xðiÞðtÞÞ dGðiÞðb;xðiÞðtÞÞ

p 1

caðlÞ
Z v

u

dGðiÞðb; xðiÞðtÞÞ

¼ FðCðiÞðb; aÞÞ
caðlÞ

pFð�ðlÞÞ
caðlÞ

;

where �ðlÞ ¼ supb2Bða;lÞ fCðiÞðb; aÞg: Giðb; aÞ; by defini-
tion, cannot exceed any LðiÞ½xðiÞ½u;v��: That �ðlÞ ! 0 as l!
0 follows from either of Theorems 3 and 7. &

10. Basic properties of oriented Fechnerian distances

10.1. Metrization property and continuity of Fechnerian

metrics

It is easy to see that any oriented metric d : M�M!
Reþ induces two topologies, based on the sets of

metrics balls

Dðx; �Þ ¼ fy : dðx; yÞo�g;
Dð�; xÞ ¼ fy : dðy;xÞo�g: ð18Þ
Lemma 3. Sets of metric balls fDðx; �Þgx2M;�2Reþnf0g and
fDð�; xÞgx2M;�2Reþnf0g are topological bases.

Proof. Refer to (9), and consider, say, fDð�;
xÞgx2M;�2Reþnf0g (the proof for the other set of subsets is
essentially identical). Property (B1) being obvious, we
have to show that if c 2 Dð�; aÞ \Dðd; bÞ then there is a
l40 such that Dðl; cÞ � Dð�; aÞ \Dðd; bÞ: Assuming the
contrary, there should be a sequence dðcn; cÞ ! 0
such that all dðcn; aÞ4� or all dðcn; bÞ4d: Let it be the
former. Then dðc; aÞo�; dðcn; cÞ can be made arbitrarily
small, but dðcn; aÞ4�: This contradicts the triangle
inequality. &

Note that a priori the two topologies need not
coincide, and that if they do not, dða; bÞ need not be
continuous with respect to either of them. It is, however,
continuous in the product topology based on open balls
Dðx; �Þ \Dð�; xÞ: Clearly, this is a topological base, and
Dðx; �Þ \Dð�; xÞ ¼ fy : maxfdðx; yÞ; dðy;xÞgo�g: (19)

Lemma 4. Oriented metric dða; bÞ is continuous in the

product topology based on fDðx; �Þ \Dð�; xÞgx2M;�2Reþnf0g:

Proof. By triangle inequality,

� dðxn; aÞ � dðb; ynÞpdða; bÞ � dðxn; ynÞ
pdða; xnÞ þ dðyn; bÞ
so if maxfdða;xnÞ; dðxn; aÞg ! 0 and maxfdðb; ynÞ;
dðyn; bÞg ! 0 then dða; bÞ � dðxn; ynÞ ! 0: &

This property of oriented metrics generalizes the well-
known fact about conventional (symmetric) metrics,
that they are continuous in the product topology they
induce.
It follows that the oriented Fechnerian metrics

G1ða; bÞ and G2ða; bÞ constructed above induce four
topologies, based on open metric balls

Gð1Þðx;rÞ ¼ fy : G1ðx; yÞorg;
G
ð2Þðx;rÞ ¼ fy : G2ðx; yÞorg;

Gð1Þðr;xÞ ¼ fy : G1ðy; xÞorg;
Gð2Þðr;xÞ ¼ fy : G2ðy; xÞorg ð20Þ
and that these two metrics are continuous with respect
to the product topologies induced by, respectively, the
sets of open balls

Gð1Þðx;rÞ \Gð1Þðr;xÞ; Gð2Þðx; rÞ \Gð2Þðr; xÞ:
The question arises: what is the relationship among
all these topologies, and what is their relationship
with the topology of space M constructed in
Section 5? Recall that this latter topology is based on
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open balls

Bðx; �Þ ¼ fy : Cðx; yÞo�g;

where C is defined by (10). We will denote this topology
by T:

Theorem 31 (Metrization Property). The bases fGð1Þ
ðx;rÞgx2M;r2Reþnf0g and fGð2Þðx;rÞgx2M;r2Reþnf0g induce

topology T:

Proof. What is to be proved is that every Bða; �Þ-ball
contains a Gð1Þða;rÞ-ball and a Gð2Þða;rÞ-ball; and vice
versa, every G

ðiÞða;rÞ-ball (i ¼ 1; 2) contains a Bða; �Þ-
ball.
Consider Bða; �Þ; and without loss of generality

assume that 0o�p�a as defined in Axiom 7. By

Theorem 29, for any beBða; �Þ; Giða; bÞX Fð�Þ
Ca

(i ¼ 1; 2).
Hence, if ro Fð�Þ

Ca
; then G

ðiÞða;rÞ � Bða; �Þ:
Consider GðiÞða; rÞ; for i ¼ 1 or 2, and choose any

0o�pminfF�1ðrcaÞ; �ag: Then both �p�a and rX Fð�Þ
ca

;
whence, by Theorem 29, Bða; �Þ � G

ðiÞða;rÞ: &

The name of the theorem (Metrization Property) is
due to the fact that a metric is said to metrize a topology
if it induces this topology. In the case of an oriented
metric one should specify which of the two topologies it
induces is meant. Both G1 and G2 metrize topology T if
one considers the topology based on Gð1Þðx; �Þ and
Gð2Þðx; �Þ balls. Put equivalently,

xn! x()G1ðx;xnÞ ! 0()G2ðx;xnÞ ! 0: (21)

For the topologies based on ‘‘reverse metric balls’’
Gð1Þð�; xÞ and Gð1Þð�; xÞ these equivalences do not hold

and should be replaced with a single one-way implica-
tion,

xn ! x)
G1ðxn; xÞ ! 0;

G2ðxn; xÞ ! 0:

(
(22)

Theorem 32. Topology T refines the topologies based on

fGð1Þðr;xÞgx2M;r2Reþnf0g and on fGð2Þðr;xÞgx2M;r2Reþnf0g:

Proof. We should prove that every GðiÞðr; aÞ-ball
(i ¼ 1; 2) contains a Bða; lÞ-ball. By Theorem 30, it is
sufficient to choose lp�a so that �ðlÞoF�1ðrcaÞ: This is
always possible since �ðlÞ ! 0þ as l! 0þ : &

Fig. 24 summarizes these results.
We can now state the main theorem of this subsec-

tion. Recall that T� T is the product topology induced
by T (i.e., the topology based on Cartesian products of
open B-balls).

Theorem 33. Fechnerian metrics G1ða; bÞ and G2ða; bÞ are
continuous in the product topology T� T:

Proof. What we have to prove is that

ðxn! aÞ ^ ðyn! bÞ ) Giðxn; ynÞ ! Giða; bÞ; i ¼ 1; 2:

This follows from

�Giðxn; aÞ � Giðb; ynÞpGiða; bÞ � Giðxn; ynÞ
pGiða; xnÞ þ Giðyn; bÞ

(a consequence of triangle inequality) and

xn! a) ½Giða; xnÞ ! 0� ^ ½Giðxn; aÞ ! 0�;
yn! b) ½Giðb; ynÞ ! 0� ^ ½Giðyn; bÞ ! 0�: &
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Fig. 24. Schematic relationship amongG andB balls in stimulus space. Wide ellipses represent Gð1Þ-balls (‘‘reverse’’Gð1Þ-balls if shaded), tall ellipses
Gð2Þ-balls (‘‘reverse’’ Gð2Þ-balls if shaded). Crosses represent B-balls (see Fig. 17). Left four figures: an intersection of G-balls of any kind (Gð1Þ; Gð2Þ;
‘‘normal’’ or ‘‘reverse’’) contains a G-ball of the same kind around any of its points (implying that G-balls of any kind form a topological base).

Middle four figures: a G-ball of any kind contains B-balls around all its points. Rightmost figure: a B-ball contains G
ð1Þ
-balls and G

ð2Þ
-balls (but not

‘‘reverse’’ ones) around all its points.
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Note that due to Theorem 31, ðxn ! aÞ ^ ðyn! bÞ in
the proof of the last theorem means both

½CðiÞða; xnÞ ! 0� ^ ½CðiÞðb; ynÞ ! 0�

and

½Giða;xnÞ ! 0� ^ ½Giðb; ynÞ ! 0�:

10.2. Differentiability of Fechnerian metrics

Here, we consider the differentiability of functions
G1ða; bÞ and G2ða; bÞ with respect to parameters of
smooth arcs along which we move the points a; b: In
other words, we ask whether functions GiðxðtÞ; yðtÞÞ
(i ¼ 1; 2) are differentiable in t and in t:
Recall that the (right-hand) upper and lower Dini

derivatives of f ðxÞ at x ¼ aþ are defined as, respectively,

Dþf ðxÞjx¼a ¼ lim
h!0þ

sup
f ðaþ hÞ � f ðaÞ

h

¼ inf
h!0þ

sup
f ðaþ gÞ � f ðaÞ

g
: 0ogph

� �
;

Dþf ðxÞjx¼a ¼ lim
h!0þ

inf
f ðaþ hÞ � f ðaÞ

h

¼ sup
h!0þ

inf
f ðaþ gÞ � f ðaÞ

g
: 0ogph

� �
:

Using h! 0� in place of h! 0þ defines left-hand
(upper and lower) Dini derivatives, D�f ðxÞjx¼a and
D�f ðxÞjx¼a: A Dini derivative always exists, as a finite
number or 	1:
In the following, the quantities �a and CaðlÞ; for lp�a;

have the same meaning as in Theorem 29.

Theorem 34. For a smooth arc xðtÞ : ½a; b� !M; any t 2
½a; bÞ; and for i ¼ 1; 2;

1

C�xðtÞ
F iðxðtÞ;x�ðtÞÞpDþGiðxðtÞ;xðtþ aÞÞja¼0

pDþGiðxðtÞ;xðtþ aÞÞja¼0pF iðxðtÞ; x�ðtÞÞ;

where

C�xðtÞ ¼ lim
l!0þ

CxðtÞðlÞ:

Proof. Let GðiÞðxðtÞ;xðtþ aÞÞ ¼ FðlaÞ: Since GðiÞðxðtÞ;
xðtþ aÞÞ is continuous, we can choose b 2 ð0; b� t� so
that lap�xðtÞ for all a 2 ½0; b�: Then, by Theorem 29,

GiðxðtÞ;xðtþ aÞÞX FðlaÞ
CxðtÞ ðlaÞ

and

DþGiðxðtÞ;xðtþ aÞÞja¼0
¼ lim

a!0þ
inf

GiðxðtÞ; xðtþ aÞÞ
a

X lim
t!aþ

inf
FðlaÞ

CxðtÞðlaÞa

¼ lim
a!0þ

1

CxðtÞðlaÞ
lim
a!0þ

GðiÞðxðtÞ;xðtþ aÞÞ
a

¼ 1

C�xðtÞ
F iðxðtÞ;x�ðtÞÞ:

On the other hand,

GiðxðtÞ;xðtþ aÞÞ
a

p
R tþa
t

F iðxðuÞ;x�ðuÞÞdu
a

¼ F iðxðtþ xaaÞ;x
� ðtþ xaaÞÞ;

where 0oxao1: It follows that:

DþGiðxðtÞ;xðtþ aÞÞja¼0
¼ lim

a!0þ
sup

GiðxðtÞ; xðtþ aÞÞ
a

p lim
a!0þ

F iðxðtþ xaaÞ;x
� ðtþ xaaÞÞ

¼ F iðxðtÞ;x�ðtÞÞ: &

By a trivial modification of the argument, we extend
this result to the convergence from the left.

Theorem 35. For a smooth arc xðtÞ : ½a; b� !M; any t 2
ða; b�; and for i ¼ 1; 2;
1

C�xðtÞ
F iðxðtÞ;� x�ðtÞÞpDþGiðxðtÞ;xðt� aÞÞja¼0

pDþGiðxðtÞ;xðt� aÞÞja¼0
pF iðxðtÞ;� x� ðtÞÞ;

where C�xðtÞ is the same as in Theorem 34.

In keeping with the previous development, this result
is stated in terms of positive a being subtracted rather
than negative a being added. Left-hand Dini derivatives
proper, D�GiðxðtÞ;xðtþ aÞÞja¼0 and D�GiðxðtÞ; xðtþ
aÞÞja¼0; present no separate problem, as
D�GiðxðtÞ;xðtþ aÞÞja¼0 ¼ �DþGiðxðtÞ;xðt� aÞÞja¼0
D�GiðxðtÞ;xðtþ aÞÞja¼0 ¼ �DþGiðxðtÞ;xðt� aÞÞja¼0:
In quasi-convex stimulus spaces (Definition 15),

liml!0þCaðlÞ ¼ 1 at all points, and we have the
following strengthening of the previous results.

Corollary 11 (to Theorems 34 and 35). If stimulus space

M is quasi-convex, then G1ðxðtÞ; xðt	 aÞÞ and

G2ðxðtÞ; xðt	 aÞÞ are differentiable at a ¼ 0þ; with the

derivatives equal, respectively, F 1ðxðtÞ;	 x� ðtÞÞ and

F 2ðxðtÞ;	 x�ðtÞÞ:
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This fact allows one to view the property of quasi-
convexity as a generalization of the convexity of
indicatrices in stimulus spaces that are regions of Ren

endowed with Euclidean topology (Dzhafarov & Colo-
nius, 2001).
Analogous theorems for Dini derivatives of Giðxðt	

aÞ;xðtÞÞ do not hold, but we have the following weaker
result.

Theorem 36. For a smooth arc xðtÞ : ½a; b� !M; any t 2
ða; bÞ; and for i ¼ 1; 2;
0pDþGiðxðt	 aÞ;xðtÞÞja¼0
pDþGiðxðt	 aÞ;xðtÞÞja¼0
pF iðxðtÞ;� x�ðtÞÞ:
Proof. The left bound being obvious, the right bound is
obtained in the same way as in Theorems 34 and 35, by
observing that

Giðxðtþ aÞ;xðtÞÞ
a

p
R tþa
t

F iðxðuÞ;� x�ðuÞÞdu
a

;

Giðxðt� aÞ;xðtÞÞ
a

p
R t

t�a F iðxðuÞ; x� ðuÞÞdu
a

and utilizing the mean value theorem. &

Interestingly, the asymmetry between the first and the
second argument of the Fechnerian distance functions
all but disappears when we investigate the behavior of
GiðxðtÞ; yðtÞÞ (i ¼ 1; 2), with xðtÞ and yðtÞ being generally
different points on different smooth arcs.

Lemma 5. Given smooth arcs xðtÞ : ½a; b� !M and yðtÞ :
½c; d� !M; any t 2 ða; bÞ; t 2 ðc; dÞ; and i ¼ 1; 2;
� F iðyðtÞ;� y�ðtÞÞ
pDþGiðxðtÞ; yðt	 aÞÞja¼0
pDþGiðxðtÞ; yðt	 aÞÞja¼0
pF iðyðtÞ;	 y�ðtÞÞ;
� F iðxðtÞ;	x� ðtÞÞ
pDþGiðxðt	 aÞ; yðtÞÞja¼0
pDþGiðxðt	 aÞ; yðtÞÞja¼0
pF iðxðtÞ;� x�ðtÞÞ:

Proof. By triangle inequality,

�Giðyðt	 aÞ; yðtÞÞ
a

pGiðxðtÞ; yðt	 aÞÞ � GiðxðtÞ; yðtÞÞ
a

pGiðyðtÞ; yðt	 aÞÞ
a

:

On applying lima!0þ sup and lima!0þ inf to these three
ratios, we get

�DþGiðyðt	 aÞ; yðtÞÞja¼0pDþGiðxðtÞ; yðt	 aÞÞja¼0
pDþGiðyðtÞ; yðt	 aÞÞja¼0

and

�DþGiðyðt	 aÞ; yðtÞÞja¼0pDþGiðxðtÞ; yðt	 aÞÞja¼0
pDþGiðyðtÞ; yðt	 aÞÞja¼0:

But by Theorems 34 and 35,

DþGiðyðtÞ; yðt	 aÞÞja¼0pDþGiðyðtÞ; yðt	 aÞÞja¼0
pF iðyðtÞ;	 y�ðtÞÞ

and

�DþGiðyðt	 aÞ; yðtÞÞja¼0X�DþGiðyðt	 aÞ; yðtÞÞja¼0
X� F iðyðtÞ;� y�ðtÞÞ:

This proves the first statement of the theorem. The
second statement is proved analogously, by using

�GiðxðtÞ;xðt	 aÞÞ
a

pGiðxðt	 aÞ; yðtÞÞ � GiðxðtÞ; yðtÞÞ
a

pGiðxðt	 aÞ;xðtÞÞ
a

as a departure point. &

Theorem 37. Given smooth arcs xðtÞ : ½a; b� !M and

yðtÞ : ½c; d� !M; Fechnerian distance GiðxðtÞ; yðtÞÞ
(i ¼ 1; 2) is differentiable in t and in t almost everywhere

on, respectively, ½a; b� and ½c; d�: Moreover,

qGiðxðtÞ; yðtÞÞ
qt

����
����pminfF iðyðtÞ; y�ðtÞÞ;F iðyðtÞ;� y�ðtÞÞg;

qGiðxðtÞ; yðtÞÞ
qt

����
����pminfF iðxðtÞ;x� ðtÞÞ;F iðxðtÞ;� x�ðtÞÞg;

wherever these derivatives exist.

Proof. Follows from Lemma 5, on invoking the fact
(see, e.g., Saks, 1937) that if two Dini derivatives of a
function on the same side (i.e., right or left) are finite on
an interval, then the function is differentiable on this
interval almost everywhere (with respect to the Lebesgue
measure). &

10.3. Psychometric length as Burkill integral

In this subsection we establish a simple but important
fact: psychometric length of a smooth arc xðtÞ can be
approximated to any degree of precision by a sum of
gamma increments GðiÞðxðtj�1Þ;xðtjÞÞ computed for a
chain of points xðt0Þ; . . . ; xðtkÞ taken on the arc. This fact
bridges continuous stimulus spaces with discrete stimu-
lus spaces (not considered in this paper; see Dzhafarov
& Colonius, submitteda,b).
Consider a smooth arc xðtÞ : ½a; b� !M: For any

finite segmentation of ½a; b�;
I ¼ fa ¼ t0; t1; . . . ; tk�1; tk ¼ bg;
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define

LðiÞðIÞ ¼
Xk
j¼1

GðiÞðxðtj�1Þ;xðtjÞÞ (23)

and

DðIÞ ¼ max
j
½tj � tj�1�: (24)

The Burkill integral (see Saks (1937) for the general
theory) of function GðiÞ over xðtÞ is defined as

BðiÞ½x½a;b�� ¼ lim
DðIÞ!0

LðiÞðIÞ; (25)

where the limit is taken over all possible segmentations
of ½a; b�: This limit may or may not exist, and if it does, it
may be zero, infinity, or a positive number. In this
subsection we prove that BðiÞ½x½a;b�� equals the psycho-
metric length LðiÞ½x½a;b��:
Lemma 6. For i ¼ 1 or 2, and any fixed segmentation

fa ¼ s0; s1; . . . ; sn�1; sn ¼ bg; if
BðiÞ½x½sj�1;sj �� ¼ bj 2 ð0;1Þ
for j ¼ 1; . . . ; n; then Burkill integral BðiÞ½x½a;b�� exists and
equals

Pn
j¼1 bj :

Proof. Follows from the observation that any segmen-
tation I ¼ fa ¼ t0; t1; . . . ; tn�1; tk ¼ bg can be refined by
forming its ordered union with fa ¼ s0; s1; . . . ;
sn�1; sn ¼ bg: &

Lemma 7. Let Bðp; �pÞ be as in Axiom 7, and let xðtÞ be
any smooth arc ½a; b� ! Bðp; �pÞ: Then
jGðiÞðxðaÞ; xðbÞÞj

b� a
pconsto1; i ¼ 1; 2:

Proof.

GðiÞðxðaÞ;xðbÞÞ
b� a

¼ 1

b� a

Z b

a

dGðiÞðxðaÞ;xðtÞÞ
dt

dt

¼ dG
ðiÞðxðaÞ;xðtÞÞ

dt

����
t¼t

;

where aptpb: By Axiom 7,

dGðiÞðxðaÞ;xðtÞÞ
dt

����
����
t¼t

����oCpF iðxðtÞ;x�ðtÞÞpMCp;

whereM ¼ maxt F iðxðtÞ; x�ðtÞÞ; which must exist as F i is
a continuous function on a closed interval. &

Lemma 8. For any smooth arc xðtÞ : ½a; b� ! Bðp; �pÞ and
any t 2 ða; bÞ;

lim
a!0þ
b!0þ

GðiÞðxðt� aÞ;xðtþ bÞÞ
aþ b

¼ F iðxðtÞ; x�ðtÞÞ; i ¼ 1; 2:

Proof.

GðiÞðxðt� aÞ;xðtþ bÞÞ
aþ b

� F iðxðt� aÞ;x�ðt� aÞÞ

� F iðxðtÞ;x� ðtÞÞ;
where we have used the continuity of F i: &

Our main theorem is illustrated in Fig. 25.

Theorem 38. For any smooth arc xðtÞ : ½a; b� !M;

BðiÞ½x½a;b�� ¼ LðiÞ½x½a;b��; i ¼ 1; 2:
Proof. We have to show that the Burkill integral
BðiÞ½x½a;b�� as defined by (25) exists and equals the
Riemann integralZ b

a

F iðxðtÞ; x� ðtÞÞdt:

Using Lemma 6, note first that it suffices to prove this
for an arc whose codomain is within Bðp; �pÞ; where p is
any point. Indeed, given xðtÞ : ½a; b� !M; for any t 2
½a; b� one can find a dt such that

u 2 ðt� dt; tþ dtÞ \ ½a; b� ) xðuÞ 2 BðxðtÞ; �xðtÞÞ:
Interval ½a; b� being compact, one can choose t1o 
 
 
otl
such that

½a; b� �
[l
j¼1
ðtj � dtj ; tj þ dtj Þ:

Assuming, with no loss of generality, that none of the
intervals ðtj � dtj ; tj þ dtj Þ is a subset of another, xðtÞ can
then be partitioned into subarcs

x½a;t1þdt1 �ðtÞ; x½t1þdt1 ;t2þdt2 �ðtÞ; . . . ;x½tl�1þdtl�1 ;b�ðtÞ
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Fig. 25. Psychometric length of a piecewise smooth arc as Burkill

integral. As segmentation of ½a; b� gets progressively finer, the sum of

the gamma-increments gets progressively closer to the psychometric

length of the arc.
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which map their domains into, respectively,

Bðxðt1Þ; �xðt1ÞÞ;Bðxðt2Þ; �xðt2ÞÞ; . . . ;Bðxðtl�1Þ; �xðtl�1ÞÞ:
So, let xðtÞ : ½a; b� ! Bðp; �pÞ: Consider a sequence of
segmentations

IZ ¼ fa ¼ t0Z; t1Z; . . . ; tkZ�1;Z; tkZZ ¼ bg; Z ¼ 1; 2; . . . ;
with DðIZÞ ! 0 as Z!1: For each such a segmenta-
tion IZ we define on interval ½a; b� the function

f ðiÞZ ðtÞ ¼
GðiÞðxðtj�1;ZÞ;xðtjZÞÞ

tjZ � tj�1;Z
for tj�1;ZptotjZ;

j ¼ 1; . . . ; kZ:
Clearly,Z b

a

f ðiÞZ ðtÞdt ¼
XkZ
j¼1

GðiÞðxðtj�1;ZÞ;xðtjZÞÞ ¼ LðiÞðIZÞ:

By Lemma 8,

f ðiÞZ ðtÞ ! F iðxðtÞ;x�ðtÞÞ;
as Z!1; and because by Lemma 7 f ðiÞZ ðtÞ is bounded
on a closed interval, we invoke Lebesgue’s dominated
convergence theorem to conclude

LðiÞðIZÞ !
Z b

a

F iðxðtÞ; x�ðtÞÞdt ¼ LðiÞ½x½a;b��

as Z!1: &

10.4. Internal consistency of Fechnerian metrics

We now replicate the construction of the previous
subsection but with Gi-distances replacing gamma-
increments. Consider a smooth arc xðtÞ : ½a; b� !M:
For any finite segmentation of ½a; b�;
I ¼ fa ¼ t0; t1; . . . ; tk�1; tk ¼ bg;
define

lðiÞðIÞ ¼
Xk
j¼1

Giðxðtj�1Þ;xðtjÞÞ

and

gðiÞ½x½a;b�� ¼ lim
DðIÞ!0

lðiÞðIÞ;

where the limit is taken over all possible segmentations
of ½a; b�: This is the Burkill integral of function Gi over
xðtÞ:
Theorem 39. gðiÞ½x½a;b�� (i ¼ 1; 2) exists as a finite

nonnegative quantity for any smooth arc xðtÞ : ½a; b� !
M: It equals zero if and only if a ¼ b:

Proof. Due to triangle inequality, if segmentation I0

refines segmentation I;

lðiÞðI0ÞXlðiÞðIÞ:

Since any two segmentations have a common refinement
(namely, any refinement of the ordered union of the two
segmentations), gðiÞ½x½a;b�� is either a finite nonnegative
quantity or 1: But

lðiÞðIÞpLðiÞ½x½a;b�� ¼
Z b

a

F iðxðtÞ; x� ðtÞÞdt

for any segmentation I ¼ fa ¼ t0; t1; . . . ; tk�1; tk ¼ bg;
because

Giðtj�1; tjÞ ¼ inf
Z tj

tj�1
F iðyðtÞ; y�ðtÞÞdt;

where the infimum is taken over all piecewise smooth
arcs connecting xðtj�1Þ to xðtjÞ: Hence
gðiÞ½x½a;b��pLðiÞ½x½a;b��:
This proves the first statement of the theorem. By
triangle inequality,

GiðxðaÞ; xðbÞÞplðiÞðIÞ;
whence we get

GiðxðaÞ; xðbÞÞpgðiÞ½x½a;b��pLðiÞ½x½a;b��
and the second statement of the theorem. &

This result leads to an important question. Denoting
by x the set of all piecewise smooth arcs connecting a to
b; what is the relationship between

inf
xðtÞ2x

gðiÞ½x½a;b��

and Giða; bÞ? If these two quantities could be different,
we would have what might be considered an internal
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inconsistency in the construction of Fechnerian dis-
tances. It is easy to show, however, that this is not the
case (see Fig. 26).

Theorem 40. Let x be the set of all piecewise smooth arcs

connecting a to b: Then

inf
xðtÞ2x

gðiÞ½x½a;b�� ¼ Giða; bÞ; i ¼ 1; 2:

Proof. From

Giða; bÞpgðiÞ½x½a;b��pLðiÞ½x½a;b��
we conclude

Giða; bÞp inf
xðtÞ2x

gðiÞ½x½a;b��p inf
xðtÞ2x

LðiÞ½x½a;b�� ¼ Giða; bÞ;

whence the result. &

This is a generalization of what Dzhafarov and
Colonius (2001) called the Busemann–Mayer identity
(based on Busemann & Mayer, 1941).

11. Overall Fechnerian metric

We have now constructed a theory for two kinds of
Fechnerian metrics, G1ða; bÞ and G2ða; bÞ; computed for
stimuli in the first observation area and in the second
observation area, respectively. The investigation below
will reveal their mutual relationships. This investigation,
moreover, will lead us to a definition of the ‘‘overall’’
Fechnerian metric, the metric Gða; bÞ that will be

1. symmetrical, Gða; bÞ ¼ Gðb; aÞ; and
2. independent of the observation area.

11.1. Decomposition of the minimum level function

Recall that due to the Axiom of Regular Minimality
and the canonical representation of discrimination
probability functions,

arg min
y2M

cðx; yÞ ¼ arg min
y2M

cðy;xÞ ¼ cðx; xÞ; (26)

which is just another way of putting (5). Recall that
cðx; xÞ is the minimum level function (in the canonical
form).
Recall also that we assume Nonconstant Self-Dissim-

ilarity: cðx; xÞ need not be the same for all x 2M (see
Section 4.3, especially Convention 1).
Consider changes in the minimum level value cðx; xÞ

as x moves along a smooth arc xðtÞ : ½a; b� !M;

OaxðtÞ ¼ cðxðtþ aÞ;xðtþ aÞÞ � cðxðtÞ;xðtÞÞ;
O�axðtÞ ¼ cðxðt� aÞ; xðt� aÞÞ � cðxðtÞ; xðtÞÞ;

(
a40:

(27)

Theorem 41. 12 As a! 0þ;

OaxðtÞ

¼
½Fm

1ðxðtÞ;x
�ðtÞÞ � F

m
2ðxðtÞ;� x

�ðtÞÞ�RmðaÞ þ ofRmðaÞg
½Fm

2ðxðtÞ;x
�ðtÞÞ � F

m
1ðxðtÞ;� x

�ðtÞÞ�RmðaÞ þ ofRmðaÞg

8<
:

and

O�axðtÞ

¼
½Fm

1ðxðtÞ;� x
�ðtÞÞ � F

m
2ðxðtÞ; x

�ðtÞÞ�RmðaÞ þ ofRmðaÞg
½Fm

2ðxðtÞ;� x
�ðtÞÞ � F

m
1ðxðtÞ; x

�ðtÞÞ�RmðaÞ þ ofRmðaÞg

8<
: :

Proof. As a! 0þ; OaxðtÞ can be decomposed in two
ways:

OaxðtÞ ¼ ½cðxðtÞ;xðtþ aÞÞ � cðxðtÞ;xðtÞÞ�
þ ½cðxðtþ aÞ; xðtþ aÞÞ � cðxðtÞ; xðtþ aÞÞ�

¼ Cð1ÞðxðtÞ; xðtþ aÞÞ �Cð2Þðxðtþ aÞ;xðtþ a� aÞÞ
¼ ½Fm

1ðxðtÞ;x
�ðtÞÞRmðaÞ þ ofRmðaÞg�

� ½Fm
2ðxðtþ aÞ;�x� ðtþ aÞÞRmðaÞ þ ofRmðaÞg�

¼ F
m
1ðxðtÞ;x

� ðtÞÞRmðaÞ
� F

m
2ðxðtÞ;� x

�ðtÞÞRmðaÞ þ ofRmðaÞg

and

OaxðtÞ ¼ ½cðxðtþ aÞ;xðtÞÞ � cðxðtÞ;xðtÞÞ�
þ ½cðxðtþ aÞ; xðtþ aÞÞ � cðxðtþ aÞ;xðtÞÞ�

¼ Cð2ÞðxðtÞ; xðtþ aÞÞ �Cð1Þðxðtþ aÞ;xðtþ a� aÞÞ
¼ ½Fm

2ðxðtÞ;x
�ðtÞÞRmðaÞ þ ofRmðaÞg�

� ½Fm
1ðxðtþ aÞ;�x� ðtþ aÞÞRmðaÞ þ ofRmðaÞg�

¼ F
m
2ðxðtÞ;x

� ðtþÞÞRmðaÞ
� F

m
1ðxðtÞ;� x

�ðtÞÞRmðaÞ þ ofRmðaÞg:

We made use in these derivations of the asymptotic
decompositions (15)–(16), and the continuity of sub-
metric functions. The decomposition of O�axðtÞ is
established analogously. &

Theorem 42. For any arc element ðxðtÞ; x�ðtÞÞ;
F

m
1ðxðtÞ;x

�ðtÞÞ � F
m
2ðxðtÞ;� x

�ðtÞÞ
¼ F

m
2ðxðtÞ;x

�ðtÞÞ � F
m
1ðxðtÞ;� x

�ðtÞÞ
or equivalently,

F
m
1ðxðtÞ;x

�ðtÞÞ þ F
m
1ðxðtÞ;� x

�ðtÞÞ
¼ F

m
2ðxðtÞ;x

�ðtÞÞ þ F
m
2ðxðtÞ;� x

�ðtÞÞ:
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Proof. Immediately follows from equating the two
asymptotic decompositions of OaxðtÞ in the previous
theorem. &

Definition 18. Stimulus space M is called cross-unba-
lanced if for some arc elements ðxðtÞ;x� ðtÞÞ;

F1ðxðtÞ;x�ðtÞÞaF 2ðxðtÞ;�x� ðtÞÞ:
Otherwise, M is called cross-balanced.

We first consider the cross-unbalanced case.

11.2. Cross-unbalanced case: local properties

Theorem 43. If stimulus space M is cross-unbalanced,

then for every arc element at which F1ðxðtÞ;x�ðtÞÞa
F2ðxðtÞ;� x�ðtÞÞ; as a! 0þ;

OaxðtÞ �
½Fm

1ðxðtÞ;x
�ðtÞÞ � F

m
2ðxðtÞ;� x

�ðtÞÞ�RmðaÞ
½Fm

2ðxðtÞ;x
�ðtÞÞ � F

m
1ðxðtÞ;� x

�ðtÞÞ�RmðaÞ

8<
:

and

O�axðtÞ

�
½Fm

1ðxðtÞ;� x
� ðtÞÞ � F

m
2ðxðtÞ; x

� ðtÞÞ�RmðaÞ
½Fm

2ðxðtÞ;� x
� ðtÞÞ � F

m
1ðxðtÞ; x

� ðtÞÞ�RmðaÞ

8<
: � �OaxðtÞ:

Proof. This is an immediate consequence of
Theorem 41. &

Theorem 44. If stimulus space M is cross-unbalanced, its
psychometric order m ¼ 1 and its characteristic function

RðaÞ ¼ a:

Proof. Let xðtÞ : ½a; b� !M be a smooth arc with
F1ðxðaÞ;x� ðaÞÞaF 2ðxðaÞ;�x� ðaÞÞ:Without loss of general-
ity, let

F1ðxðaÞ;x� ðaÞÞ4F2ðxðaÞ;� x�ðaÞÞ:
By continuity of the submetric functions, then

F1ðxðaþ tÞ;x�ðaþ tÞÞ4F2ðxðaþ tÞ;� x�ðaþ tÞÞ
on a sufficiently small interval t 2 ½0; t�: By Theorem 43,

Oaxðaþ tÞ � ½Fm
1ðxðaþ tÞ;x�ðaþ tÞÞ
� F

m
2ðxðaþ tÞ;� x�ðaþ tÞÞ�RmðaÞ:

By definition,

Oaxðaþ tÞ ¼ cðxðaþ tþ aÞ;xðaþ tþ aÞÞ
� cðxðaþ tÞ;xðaþ tÞÞ;

OtþaxðaÞ ¼ cðxðaþ tþ aÞ;xðaþ tþ aÞÞ � cðxðaÞ;xðaÞÞ;
OtxðaÞ ¼ cðxðaþ tÞ;xðaþ tÞÞ � cðxðaÞ;xðaÞÞ;

whence

Oaxðaþ tÞ ¼ OtþaxðaÞ � OtxðaÞ:
So

OtþaxðaÞ � OtxðaÞ � ½Fm
1ðxðaþ tÞ;x�ðaþ tÞÞ

� F
m
2ðxðaþ tÞ;� x�ðaþ tÞÞ�RmðaÞ40:

It follows that for every t 2 ½0; t� and all sufficiently
small a40; OtþaxðaÞ � OtxðaÞ40; which means that
OtxðaÞ is strictly increasing in t on t 2 ½0; t�:
Now,

OtþaxðaÞ � OtxðaÞ
a

� ½Fm
1ðxðaþ tÞ;x�ðaþ tÞÞ

� F
m
2ðxðaþ tÞ;� x�ðaþ tÞÞ�R

mðaÞ
a

:

By Lebesgue’s theorem, an increasing function has a
finite derivative almost everywhere, because of which

lim
a!0þ

OtþaxðaÞ � OtxðaÞ
a

¼ dOtxðaÞ
dtþ

should be a finite number almost everywhere. This
implies that

lim
a!0þ

RmðaÞ
a
¼ lim

a!0þ
am�1‘ðaÞ

is a finite number. Obviously, this limit cannot be zero,
because then we would have dOtxðaÞ=dtþ ¼ 0 every-
where, contrary to OtxðaÞ being increasing. But we know
that

lim
a!0þ

am�1‘ðaÞ ¼
1 if mo1;

0 if m41;

(

whence we have to conclude m ¼ 1: We have now
dOtxðaÞ
dtþ ¼ ½F1ðxðaþ tÞ;x� ðaþ tÞÞ

� F2ðxðaþ tÞ;� x�ðaþ tÞÞ� lim
a!0þ

‘ðaÞ;

where lima!0þ‘ðaÞ must be a positive number, say, k.
Hence RðaÞ � ka; k40: By Corollary 5 to Theorems 15
and 16, characteristic function RðaÞ and submetric
functions F1;F2 can be multiplied by reciprocal positive
constants. We can therefore put k ¼ 1 and write RðaÞ �
a: Since the uniqueness of RðaÞ is only asymptotic, we
can simply put RðaÞ ¼ a: &

On recalling, from the First Main Theorem of
Fechnerian Scaling (see Corollary 9 to Theorem 19)
that the overall psychometric transformation is

FðhÞ ¼ R�1ðh1=mÞ;
which in our case means

FðhÞ ¼ h;

we obtain the following result.
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Corollary 12 (to Theorem 44). If stimulus space M is

cross-unbalanced, gamma-increments coincide with psy-

chometric increments,

GðiÞðxðtÞ;xðtþ aÞÞ ¼ F½CðiÞxðtÞ; xðtþ aÞÞ�
¼ CðiÞðxðtÞ;xðtþ aÞÞ; i ¼ 1; 2;

and the asymptotic decomposition in the First Main

Theorem of Fechnerian Scaling assumes the form

CðiÞðxðtÞ;xðtþ aÞÞ � F iðxðtÞ; x� ðtÞÞa; i ¼ 1; 2:

Corollary 13 (to Theorem 44). If stimulus space M is

cross-unbalanced,

F 1ðxðtÞ;x� ðtÞÞ þ F1ðxðtÞ;� x�ðtÞÞ
¼ F 2ðxðtÞ;x� ðtÞÞ þ F2ðxðtÞ;� x�ðtÞÞ:

Proof. Immediately follows from Theorem 42 on put-
ting m ¼ 1: &

Theorem 45. If stimulus space M is cross-unbalanced,
then for any smooth arc xðtÞ : ½a; b� !M; the minimum

level function cðxðtÞ; xðtÞÞ is continuously differentiable at

every point t; with

dcðxðtÞ;xðtÞÞ
dt

¼ F 1ðxðtÞ;x� ðtÞÞ � F2ðxðtÞ;� x�ðtÞÞ

¼ F 2ðxðtÞ;x� ðtÞÞ � F1ðxðtÞ;� x�ðtÞÞ:
This derivative is nonzero at some points of some smooth

arcs.

Proof. Consider first an arc element ðxðtÞ;x�ðtÞÞ at which
F1ðxðtÞ;x�ðtÞÞaF 2ðxðtÞ;�x� ðtÞÞ: From Theorems 43 and
44, and the previous corollary, as a! 0þ;

OaxðtÞ � ½F 1ðxðtÞ;x� ðtÞÞ � F 2ðxðtÞ;� x�ðtÞÞ�a
¼ ½F 2ðxðtÞ;x� ðtÞÞ � F 1ðxðtÞ;� x�ðtÞÞ�a;

whence

lim
a!0þ

OaxðtÞ
a
¼ F 1ðxðtÞ;x� ðtÞÞ � F2ðxðtÞ;� x�ðtÞÞ

¼ F 2ðxðtÞ;x� ðtÞÞ � F1ðxðtÞ;� x�ðtÞÞ:
But

lim
a!0þ

OaxðtÞ
a
¼ lim

a!0þ
cðxðtþ aÞ; xðtþ aÞÞ � cðxðtÞ; xðtÞÞ

a

¼ dcðxðtÞ; xðtÞÞ
dtþ :

From Theorem 43,

lim
a!0þ

O�axðtÞ
a
¼ � lim

a!0þ
OaxðtÞ

a
:

At the same time

lim
a!0þ

O�axðtÞ
a
¼ lim

a!0þ
cðxðt� aÞ;xðt� aÞÞ � cðxðtÞ;xðtÞÞ

a

¼ � dcðxðtÞ;xðtÞÞ
dt� :

It follows that both unilateral derivatives exist as finite
nonzero numbers, and

dcðxðtÞ;xðtÞÞ
dtþ ¼ dcðxðtÞ;xðtÞÞ

dt� ¼ dcðxðtÞ;xðtÞÞ
dt

:

The last statement of the theorem holds because such
arc elements should exist in a cross-unbalanced space.
Consider now an arc element ðxðtÞ;x� ðtÞÞ at which

F1ðxðtÞ; x� ðtÞÞ � F 2ðxðtÞ;� x�ðtÞÞ
¼ F 2ðxðtÞ; x� ðtÞÞ � F 1ðxðtÞ;� x�ðtÞÞ ¼ 0:

The proof will be complete if we show that at such arc
elements,

dcðxðtÞ;xðtÞÞ
dt

¼ 0:

But this immediately follows from combining
Theorem 41 with m ¼ 1 and RðaÞ ¼ a (Theorem 44):

OaxðtÞ ¼ ofag;
O�axðtÞ ¼ ofag: &

We see from this result that Nonconstant Self-
Dissimilarity is a consequence of cross-unbalancedness.
Since this property is global rather than local, however,
we formulate it in the next subsection.

11.3. Cross-unbalanced case: global properties

Theorem 46. In a cross-unbalanced stimulus space M;
Nonconstant Self-Dissimilarity is manifest in M; that is,
cðb; bÞacða; aÞ for some pairs a; b 2M:

Proof. Otherwise along any smooth arc xðtÞ we would
have

dcðxðtÞ;xðtÞÞ
dt

¼ 0;

which would contradict Theorem 45. &

It is convenient at this point to introduce simplified
notation. Let xðtÞ : ½a; b� !M be a piecewise smooth arc
connecting a to b: This arc can be presented as a!
x½a;b� ! b: In most cases the parametric domain ½a; b�
does not matter, and we can write simply a! x! b: If
an arc a! x! b is traversed ‘‘in the opposite
direction’’, it will then be written as b! x! a:
Psychometric lengths of these arcs then will be denoted
by LðiÞ½a! x! b� and LðiÞ½b! x! a�; i ¼ 1; 2:
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Theorem 47. If stimulus space M is cross-unbalanced,
then for any piecewise smooth arc a! x! b;

Lð1Þ½a! x! b� � Lð2Þ½b! x! a�
¼ Lð2Þ½a! x! b� � Lð1Þ½b! x! a�
¼ cðb; bÞ � cða; aÞ:

Proof. Let x be defined on some interval ½a; b�:We have

Lð1Þ½a! x! b� ¼
Z b

a

F 1ðxðtÞ;x�ðtÞÞdt;

Lð2Þ½b! x! a� ¼
Z b

a

F 2ðxðtÞ;� x�ðtÞÞdt;

Lð2Þ½a! x! b� ¼
Z b

a

F 2ðxðtÞ;x�ðtÞÞdt;

Lð1Þ½b! x! a� ¼
Z b

a

F 1ðxðtÞ;� x�ðtÞÞdt:

Using Theorem 45,

Z b

a

F 1ðxðtÞ; x� ðtÞÞdt�
Z b

a

F2ðxðtÞ;� x�ðtÞÞdt

¼
Z b

a

F2ðxðtÞ;x�ðtÞÞdt�
Z b

a

F1ðxðtÞ;� x� ðtÞÞdt

¼
Z b

a

dcðxðtÞ;xðtÞÞ
dt

dt ¼ cðb; bÞ � cða; aÞ: &

Theorem 48. If stimulus space M is cross-unbalanced,
then for any two piecewise smooth arcs a! x! b and

a! y! b;
Lð1Þ½a! x! b� þ Lð1Þ½b! y! a�
¼ Lð2Þ½a! y! b� þ Lð2Þ½b! x! a�:

In particular,

Lð1Þ½a! x! b� þ Lð1Þ½b! x! a�
¼ Lð2Þ½a! x! b� þ Lð2Þ½b! x! a�:

Proof. Follows from

Lð1Þ½a! x! b� � Lð2Þ½b! x! a� ¼ cðb; bÞ � cða; aÞ;
Lð2Þ½a! y! b� � Lð1Þ½b! y! a� ¼ cðb; bÞ � cða; aÞ;

which is true by Theorem 47. &

This result deserves a commentary. Any pair of
piecewise smooth arcs a! x! b and b! y! a can
be called a piecewise smooth loop (formally introduced
later, in Definition 20). The theorem says that the
psychometric length of any such a loop in one
observation area is the same as the psychometric length
of this loop when traversed in the opposite direction in
another observation area.

Theorem 49. For any a; b in a cross-unbalanced stimulus

space M;

G1ða; bÞ � G2ðb; aÞ ¼ G2ða; bÞ � G1ðb; aÞ
¼ cðb; bÞ � cða; aÞ

and

G1ða; bÞ þ G1ðb; aÞ ¼ G2ða; bÞ þ G2ðb; aÞ:
Proof. By Theorem 47,

Lð1Þ½a! x! b� � Lð2Þ½b! x! a� ¼ cðb; bÞ � cða; aÞ:

Clearly then

G1ða; bÞ ¼ inf Lð1Þ½a! x! b�
¼ inf Lð2Þ½b! x! a� þ ½cðb; bÞ � cða; aÞ�
¼ G2ðb; aÞ þ ½cðb; bÞ � cða; aÞ�:

The proof for G2ða; bÞ and G1ðb; aÞ is identical. &

11.4. Cross-balanced case

We now consider the case when

F 1ðxðtÞ;x� ðtÞÞ ¼ F2ðxðtÞ;�x� ðtÞÞ
for all arc elements ðxðtÞ;x� ðtÞÞ:
Theorem 50. If stimulus space M is cross-balanced, then

(i) for any piecewise smooth arc a! x! b;
Lð1Þ½a! x! b� ¼ Lð2Þ½b! x! a�;

(ii) for any a; b 2M;

G1ða; bÞ ¼ G2ðb; aÞ:

Proof. By simpler versions of the arguments in Theorem
47 and 49. &

As immediate algebraic consequences of (i) and (ii) in
this theorem, we obtain (i) and (ii) of the following
corollary.

Corollary 14 (to Theorem 50). If stimulus space M is

cross-balanced, then

(i) for any two piecewise smooth arcs a! x! b and

a! y! b;
Lð1Þ½a! x! b� þ Lð1Þ½b! y! a�
¼ Lð2Þ½a! y! b� þ Lð2Þ½b! x! a�;

(ii) for any a; b 2M;

G1ða; bÞ þ G1ðb; aÞ ¼ G2ða; bÞ þ G2ðb; aÞ:

The significance of these two observations is that they
coincide with the statements of Theorems 48 and 49.
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These statements therefore hold for all stimulus spaces,
cross-balanced as well as cross-unbalanced.

The relationship between cross-balancedness and Non
Constant Self-Dissimilarity is straightforward only in
one direction.

Theorem 51. If cðx;xÞ � const (Constant Self-Dissim-

ilarity), then stimulus space M is cross-balanced.

Proof. This is merely the contraposition of
Theorem 46. &

The reverse, however, does not hold: cross-balanced-
ness does not imply Constant Self-Dissimilarity.

Lemma 9. If Nonconstant Self-Dissimilarity is manifest

inM; then one can find a smooth arc xðtÞ : ½a; b� !M and

t 2 ½a; bÞ such that OaxðtÞ attains nonzero values within

any right-hand vicinity of a ¼ 0:
Proof. If for some xðtÞ connecting a to b and any t 2
½a; bÞ one could find a right-hand vicinity of a ¼ 0 on
which OaxðtÞ � 0; then cðxðtÞ; xðtÞÞ would be constant
throughout the arc, and cða; aÞ ¼ cðb; bÞ: Since there are
a; b for which this is not the case, the statement of the
lemma must hold. &

Theorem 52. If stimulus space M is cross-balanced, then

Nonconstant Self-Dissimilarity may be manifest in M
only in two cases: if psychometric order mo1; or else if

m ¼ 1 but characteristic function RðaÞ ¼ a‘ðaÞ with
lim
a!0þ

sup ‘ðaÞ ¼ 1:

Proof. From Theorem 41, on putting F 1ðxðtÞ;x�ðtÞÞ ¼
F2ðxðtÞ;� x�ðtÞÞ and F 1ðxðtÞ;� x�ðtÞÞ ¼ F 2ðxðtÞ;x� ðtÞÞ; we
get

OaxðtÞ ¼ ofRmðaÞg
for all points of all smooth arcs. If m41; then RmðaÞ ¼
ofag; and
OaxðtÞ ¼ ofag:
As this implies

lim
a!0þ

OaxðtÞ
a
¼ 0;

which would contradict Lemma 9, we conclude that
mp1:
Consider the possibility m ¼ 1; and let xðtÞ and t be

chosen as stated in Lemma 9. Then for some sequence
an! 0þ;

lim
n!1

OanxðtÞ
an

a0:

As OaxðtÞ ¼ ofa‘ðaÞg; where a‘ðaÞ ¼ RðaÞ; we must have,
for the same sequence an ! 0þ;

0 ¼ lim
n!1

OanxðtÞ
an‘ðanÞ

¼ lim
n!1

OanxðtÞ=an
‘ðanÞ

;

whence it follows that ‘ðanÞ ! 1: The latter implies
lima!0þ sup ‘ðaÞ ¼ 1: &

11.5. Overall Fechnerian distance

The results obtained in the previous subsections can
be summarized as follows.

Theorem 53 (Second Main Theorem of Fechnerian

Scaling). For any a; b 2M and any piecewise smooth

arcs a! x! b and a! y! b;

(i) Lð1Þ½a! x! b� þ Lð1Þ½b! y! a� ¼
Lð2Þ½a! y! b� þ Lð2Þ½b! x! a�;

(ii) G1ða; bÞ þ G1ðb; aÞ ¼ G2ða; bÞ þ G2ðb; aÞ:
This is merely a restatement of the identical con-

sequent parts of Theorems 48 and 49 and Corollary 14.
The reason this is called a main theorem is that it
justifies the introduction and interpretation of the
following notion.

Definition 19. The quantity Gða; bÞ ¼ G1ða; bÞ þ G1ðb; aÞ
¼ G2ða; bÞ þ G2ðb; aÞ is called the (overall) Fechnerian
distance between a and b:

Theorem 54. Fechnerian distance Gða; bÞ is a (symme-

trical) metric on space M; invariant with respect to the

observation area.

Proof. Obvious. &

Definition 20. A pair of piecewise smooth arcs a! x!
b; b! y! a forms a piecewise smooth loop containing

a and b; denoted by a
! x!
 y b: The quantity

L a
! x!
 y b

" #
¼ Lð1Þ½a! x! b� þ Lð1Þ½b! y! a�

¼ Lð2Þ½a! y! b� þ Lð2Þ½b! x! a�

¼ L a
! y!
 x 

b

" #
:

is called the psychometric length of this loop.

Theorem 55. Gða; bÞ ¼ inf L½a
! x!
 y b�; where the in-

fimum is taken over all piecewise smooth loops containing

a and b:

Proof. Obvious. &

Fig. 27 illustrates these results.
A word of caution is due here. Refer to Section 4.

Fechnerian distance Gða; bÞ between a and b is the same
in the first and in the second observation area only in
space M; where mutual PSEs are labelled by the same
stimulus labels (which only for convenience are referred
to as stimuli). This means that ða; bÞ in the first
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observation area may very well be physically different
from ða; bÞ in the second observation area.

11.6. Empirical evidence

Although we do not make use of this fact in the
present paper, the results of the experiments described in
Fig. 12 strongly favor the cross-unbalanced version of
the theory over the cross-balanced one. The predictions
of the two versions are shown in Figs. 28 and 29. We
assume here that stimulus set M is an interval of reals,
that the Fechnerian topology coincides with the

conventional one, and that for any two stimuli apb

the smooth arcs connecting them are diffeomorphisms
½a0; b0� ! ½a; b� and ½a0; b0� ! ½b; a�: With no loss of
generality, we can choose these diffeomorphisms so that
their derivatives identically equal 1 and �1 in these two
cases, respectively. We deal here with the unidimen-
sional case of MDFS (the previously developed specia-
lization of the present theory to vectorial spaces with
Euclidean topology, as described in Introduction), and
details of the predictions shown in the left upper panels
of Figs. 28 and 29 can be found in Dzhafarov (2002d).
The lower panels of these two figures illustrate the fact

that our testing of these predictions based on the
experiments described in Fig. 12 is rather crude, both
due to the necessity of estimating tangent slopes by
slopes of corresponding cords, and due to the only
approximate determinability of the endpoints of these
cords. There are three reasons for the latter: statistical
deviation of frequencies from probabilities, crudeness in
determining stimulus values at which discrimination
probabilities reach their minima, and crudeness in
canonically transforming these probabilities using the
PSE curves shown in Figs. 13–15. What makes our
empirical testing possible is that the number of
computed points in Fig. 30 is very large: one ‘‘blue’’
point ðC1þ � C2�Þ vs. ðK1 þ K2Þ=2 and one ‘‘red’’ point
ðC2þ � C1�Þ vs. ðK1 þ K2Þ=2 per every PSE pair shown
in Figs. 13–15. As it turns out, the regression line drawn
through these points is almost precisely the bisector, as
predicted in Fig. 28, and very definitely is not the
abscissa line predicted in 29.
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Note that it could have happened that the regression

line was clearly different from both the bisector and the

abscissa, in which case the present theory would have been

empirically falsified.

Fig. 31 provides an additional illustration. The results
are taken from a pilot series for experiment B,
conducted on a coarser spatial scale. The point of the
demonstration is that the straight lines satisfying the
prediction of the cross-unbalanced version of the theory,
jright slopej � jleft slopej ¼ 1 (due to specially trans-
formed abscissa), do have the visual appearance of

tangent lines drawn to the three cross-sections of cðx; yÞ
at their minima.

11.7. Metrically equivalent transformations

Definition 21. Two discrimination probability functions
cðx; yÞ and cyðx; yÞ are called weakly metrically equiva-
lent if they induce identical Fechnerian metrics Gða; bÞ
and Gyða; bÞ; up to multiplication by a positive constant,
Gyða; bÞ ¼ kGða; bÞ; k40:

Two discrimination probability functions cðx; yÞ and
cyðx; yÞ are called strongly metrically equivalent if any
arc xðtÞ : ½a; b� !M which is smooth with respect to c is
also smooth with respect to cy; and for any arc element
ðxðtÞ; x� ðtÞÞ;
F yiðxðtÞ;x� ðtÞÞ ¼ kF iðxðtÞ; x�ðtÞÞ; k40; i ¼ 1; 2:
where F i;F yi are submetric functions induced by,
respectively, c and cy:

Two comments.

1. That strong metric equivalence implies weak metric
equivalence is obvious.

2. Submetric functions, in accordance with Theorem 19,
are determined by discrimination probability func-
tions uniquely up to multiplication by a positive
constant. The constant k in the definition therefore
can always be eliminated (put equal to 1) by
appropriate rescaling.
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On the level of generality of the present theory the
notion of weak metric equivalence seems too complex to
analyze. A priori, one can think of the possibility that
cðx; yÞ and cyðx; yÞ induce different sets of smooth
curves, different submetric functions, perhaps even
different oriented Fechnerian distances, but Gyða; bÞ at
the end happens to be equal to kGða; bÞ: Having
mentioned this for completeness sake, we will not
pursue this topic. Instead we will focus here on the
strong metric equivalence, and pose the following
question:

what are necessary and sufficient conditions for an

increasing transformation B½cðx; yÞ� of cðx; yÞ to be

strongly metrically equivalent to cðx; yÞ?

The reason this is of interest is that the transition from
cðx; yÞ to B½cðx; yÞ� in this case can be viewed as a result
of changed response bias (propensity to responding
‘‘different’’) that leaves intact all perceptual dissimila-
rities among the stimuli.
We need a definition and a lemma.

Definition 22. Set

s½c� ¼ fx : x ¼ cðxðaÞ;xðtÞÞ for some smooth arc
xðtÞ : ½a; b� !M and some t 2 ½a; bÞg

is called the smooth codomain of discrimination
probability function cðx; yÞ:

Lemma 10. Smooth codomain s½c� of cðx; yÞ includes
interval ðinfx cðx;xÞ; supx cðx;xÞÞ and points minx c
ðx;xÞ; maxx cðx;xÞ if they exist.

Proof. By Corollary 10 to Axiom 7, for any a 2M one
can find a sufficiently close b 2M such that xðtÞ :
½a; b� !M is a smooth arc, xðaÞ ¼ a;xðbÞ ¼ b; and aab:
This means that cða; aÞ 2 s½c�: Since cðx;xÞ is contin-
uous, its values form an interval. &

Theorem 56. Discrimination probability function cðx; yÞ
is strongly metrically equivalent to its increasing trans-

formation B½cðx; yÞ� if and only if

BðxÞ ¼ kxþ l þ f ðmaxfx;MgÞ;
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where

1. M ¼ supx cðx; xÞ;
2. k40 and l are some constants;
3. f ðxÞ is a positive, increasing, and continuous function,

with f ðMÞ ¼ f 0ðMÞ ¼ 0;
4. f ðxÞ is continuously differentiable at all x 2 s½c�;

xXM:
Proof. We prove the necessity first. By Comment 5 to
Definition 5, both cðxðaÞ;xðtÞÞ and B½cðxðaÞ;xðtÞÞ�
are continuously differentiable on ða; b�; for any
smooth arc xðtÞ : ½a; b� !M: It follows that BðxÞ is
continuously differentiable at all x 2 s½c�: In particular,
it is differentiable on ðinfx cðx;xÞ; supx cðx;xÞÞ [
fminx cðx;xÞ;maxx cðx;xÞg; where the second set may
be empty, a singleton, or a pair (Lemma 10). For every
smooth arc xðtÞ : ½a; b� !M then, as a! 0þ;
B½cðxðaÞ;xðaþ aÞÞ� � B½cðxðaÞ; xðaÞÞ�
¼ B½fcðxðaÞ; xðaþ aÞÞ � cðxðaÞ;xðaÞÞg þ cðxðaÞ;xðaÞÞ�
� B½cðxðaÞ;xðaÞÞ�
� B0½cðxðaÞ;xðaÞÞ�½cðxðaÞ;xðaþ aÞÞ � cðxðaÞ; xðaÞÞ�
� B0½cðxðaÞ;xðaÞÞ�½F 1ðxðaÞ; x� ðaÞÞRðaÞ�m:

Due to strong metric equivalence, we also should have

B½cðxðaÞ;xðaþ aÞÞ� � B½cðxðaÞ; xðaÞÞ�
� ½hF1ðxðaÞ;x� ðaÞÞR0ðaÞ�m0

for some h40; m040 and some characteristic function
R0ðaÞ: Hence
B0½cðxðaÞ; xðaÞÞ�½F 1ðxðaÞ; x� ðaÞÞRðaÞ�m

� ½hF1ðxðaÞ;x� ðaÞÞR0ðaÞ�m0
and

B0½cðxðaÞ; xðaÞÞ�Fm
1ðxðaÞ;x

�ðaÞÞ � F
m0
1 ðxðaÞ;x

� ðaÞÞ ½ha‘0ðaÞ�
m0

½a‘ðaÞ�m ;

where ‘ðaÞ; ‘0ðaÞ are the slowly varying components of
RðaÞ ¼ a‘ðaÞ and R0ðaÞ ¼ a‘0ðaÞ: Clearly, this is possible
if and only if

½ha‘0ðaÞ�m0
½a‘ðaÞ�m ! k40;

whence m0 ¼ m (otherwise the ratio will tend to 0 or 1)
and ‘0ðaÞ � k

h
‘ðaÞ: From

B0½cðxðaÞ;xðaÞÞ�Fm
1ðxðaÞ;x

�ðaÞÞ � F
m
1ðxðaÞ;x

� ðaÞÞk
we conclude

B0½cðxðaÞ;xðaÞÞ� ¼ k:

The function BðxÞ described in the statement of the
theorem is obviously the only function satisfying this
condition, and increasing, continuous, and continuously
differentiable on s½c�:

The sufficiency is verified directly:

B½cðxðaÞ; xðaþ aÞÞ� � B½cðxðaÞ;xðaÞÞ�
� k½cðxðaÞ;xðaþ aÞÞ � cðxðaÞ; xðaÞÞ�
� kF

m
1ðxðaÞ;x

�ðaÞÞRðaÞ;
B½cðxðaþ aÞ;xðaÞÞ� � B½cðxðaÞ;xðaÞÞ�
� k½cðxðaþ aÞ;xðaÞÞ � cðxðaÞ; xðaÞÞ�
� kF

m
2ðxðaÞ;x

�ðaÞÞRðaÞ: &

Corollary 15 (to Theorem 56). An increasing and

strongly metrically equivalent transformation B½cðx; yÞ�
of cðx; yÞ induces the same psychometric order m and

asymptotically the same characteristic function RðaÞ as
cðx; yÞ:
Proof. As follows from the proof of the theorem,
R0ðaÞ � RðaÞ 
 const; where the constant can be set to 1
by Theorem 19. &

In Theorem 56, for reasons to become apparent in
Section 13, we ignored the fact that the codomains of
cðx;xÞ and B½cðx; yÞ� are confined to interval ½0; 1�:
Clearly, nothing changes in the proof if we stipulate that
k; l; and f ðxÞ should be chosen to ensure
0pkcðx; yÞ þ l þ f ðmaxfcðx; yÞ;MgÞp1

for all x; y:
It is interesting to note that, as a special case, strong

metric equivalence of B½cðx; yÞ� and cðx;xÞ is satisfied
by linear transformations

B½cðx; yÞ� ¼ kcðx; yÞ; 0okp1

and

B½cðx; yÞ� ¼ kcðx; yÞ þ ð1� kÞ; 0okp1

corresponding to the two branches of Luce’s (1963) two-
state model for response bias (of which the second
branch accords with Blackwell’s (1953) ‘‘guessing’’
model).

12. Brief overview

This completes the construction of Fechnerian metric
in stimulus space M: It was effected by purely
psychological means, without referring to any physical
properties of stimuli involved. The highlights of this
construction are as follows.
We begin with stimulus spacesM�1;M

�
2 corresponding

to two observation areas, with discrimination probabil-
ities c� : M�1 �M�2 ! ½0; 1�: We lump together psycho-
logically equal stimuli, those that cannot be
distinguished in terms of the values of c� (Definition 1).
We thus form two ‘‘reduced’’ spaces (of equivalence
classes of stimuli, also referred to as stimuli) ~M1; ~M2; and
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the corresponding discrimination probability function ~c :
~M1 � ~M2! ½0; 1�:
In terms of this function we formulate the defining

property of discrimination, Regular Minimality (Axiom
1): every stimulus x 2 ~M1 has its PSE (point of
subjective equality) hðxÞ 2 ~M2; every stimulus y 2 ~M2

has its PSE gðyÞ 2 ~M2; and h � g�1: PSE for a given
stimulus a is the stimulus least discriminable from a:
Regular Minimality is the cornerstone of the present
development.
Based on Regular Minimality we relabel our stimuli

(i.e., bijectively map M�1 and M�2 onto M; a space of
stimulus labels) so that stimuli in M�1 and M�2 that are
mutually PSEs map into identical labels. We obtain thus
a new space M (of stimulus labels, for brevity also
referred to as stimuli) and the corresponding discrimi-
nation probability function c : M�M! ½0; 1�: In this
‘‘canonical representation’’, Regular Minimality has its
simplest possible form, (5) or (26). We stipulate that in
general cðx; xÞ can vary with x (Nonconstant Self-
Dissimilarity) and cðy;xÞ need not equal cðx; yÞ
(Asymmetry).
Regular Minimality also ensures that psychometric

increments Cð1Þðx; yÞ; Cð2Þðx; yÞ of the first and second
kind (Definition 3), our basic building blocks, are
nonnegative quantities vanishing only at x ¼ y: Psycho-
metric increments allow us to define convergence in
stimulus space M (Axiom 2 and Definition 4), and to
postulate that with respect to this convergence cðx; yÞ is
a continuous function. We thus impose on stimulus
space M a topology, which turns out to be Urysohn
(hence also Hausdorff). We can now define home-
omorphic images of real intervals in M (arcs
xðtÞ : ½a; b� !M), and we postulate thatM is an arcwise
connected space (Axiom 4).
Next we define smooth arcs xðtÞ : ½a; b� !M; those

along which Cð1ÞðxðtÞ;xðt0ÞÞ and Cð2ÞðxðtÞ; xðt0ÞÞ have
certain differentiability properties (Definition 5). We
assume further that any two psychometric increments

CðiÞðxðtÞ;xðt	 aÞÞ and CðkÞðyðtÞ; yðt	 aÞÞ
(where i;k ¼ 1 or 2), taken along any two smooth arcs
are asymptotically comeasurable, that is, their ratio
tends to a finite positive number as a! 0þ (Axiom 5).
Using the very conservatively defined notion of an arc
element ðxðtÞ;x�ðtÞÞ (Definition 8) and a quasi-multi-
plication operation ðxðtÞ; k x� ðtÞÞ on its directional com-
ponent (Definition 9), we can denote the asymptotic
ratio of CðiÞðxðtÞ;xðt	 aÞÞ (varying across all possible
points on all possible smooth arcs) to a fixed
CðkÞðyðtÞ; yðtþ aÞÞ by V iðxðtÞ;	 x�ðtÞÞ; i ¼ 1; 2: We en-
dow this quantity with certain continuity properties
(Axiom 6), and we derive the asymptotic decomposition
of psychometric increments (along smooth arcs),

CðiÞðxðtÞ;xðt	 aÞÞ ¼ V iðxðtÞ;	 x� ðtÞÞRmðaÞ; i ¼ 1; 2;

where m40 is the psychometric order of stimulus space
M and RðaÞ is its characteristic function, unit-exponent
regularly varying (Definitions 10 and 11).
The quantity

F iðxðtÞ;	 x� ðtÞÞ ¼ V1=m
i ðxðtÞ;	 x

� ðtÞÞ; i ¼ 1; 2
is called the submetric function (Definition 12), and its
properties (derived from Axioms 6 and 7) allow us to
integrate it along any piecewise smooth arc to obtain the
psychometric length of this arc (of the first or second
kind, according as i ¼ 1 or 2; Definition 16).
The infimum of psychometric lengths of the ith

kind taken across all piecewise smooth arcs connecting
a to b is taken as oriented Fechnerian distance Giða; bÞ
from a to b (in the ith observation area; Definition 17).
This metric is shown to metrize the previously con-
structed (in Section 5) topology of stimulus space M
(i.e., metrics G1 and G2 induce this topology). In
Section 10 we establish a variety of properties of G1

and G2: In particular, GiðxðtÞ; yðtÞÞ (i ¼ 1; 2) is differ-
entiable in t and in t almost everywhere. The internal
consistency of Fechnerian metric is established by
showing that Giða; bÞ equals the infimum of Burkill
integrals of function Gi over all piecewise smooth arcs
connecting a to b:
In Section 11 we prove the ‘‘second main theorem of

Fechnerian scaling’’, according to which

G1ða; bÞ þ G1ðb; aÞ ¼ G2ða; bÞ þ G2ðb; aÞ ¼ Gða; bÞ
and we propose to take this symmetric and observation-
area-invariant quantity Gða; bÞ as the Fechnerian dis-
tance between a and b: Gða; bÞ is the infimum of the
psychometric lengths of all piecewise smooth loops
containing a and b:
Finally, at the end of Section 11 we consider the

question of characterizing the monotone transforma-
tions of cðx; yÞ that preserve the set of smooth arcs and
the numerical values of the submetric functions (then
they obviously preserve all Fechnerian distances, both
oriented and overall, and we prove that they also
preserve the psychometric order and characteristic
function of the stimulus space).

13. Some open questions

13.1. Transformations of c and response bias

The reader may have noticed that the theory
presented in this paper makes no critical use of the
fact that the values of cðx; yÞ are probabilities, or
even that they are confined to the interval ½0; 1�:
Axioms 1–7 and all the definitions may very well
apply to a function fðx; yÞ with another codomain.
In particular, if the theory applies to cðx; yÞ; then it
will also apply to any continuously differentiable
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transformation thereof,

fðx; yÞ ¼ j½cðx; yÞ�:
Any arc xðtÞ : ½a; b� !M which is smooth (straight)
with respect to c will also be smooth (straight) with
respect to f; and submetric functions (hence also the
oriented and overall Fechnerian distances) will be as
well-defined for f as they are for c; with all theorems of
the present development applying without modifica-
tions. The numerical values of the submetric func-
tions, however (hence also those of the oriented
and overall Fechnerian distances) will be different for
f and for c: The question arises therefore: is there a
principled way of choosing the ‘‘right’’ transformation
j½cðx; yÞ� of cðx; yÞ? In particular, is there a principled
way of justifying the use of ‘‘raw’’ discrimination
probabilities?
One possible approach to this issue is to relate it to

another issue: to that of the possibility of experi-
mental manipulations or spontaneous changes of con-
text that change discrimination probabilities but leave
intact subjective dissimilarities among the stimuli. In
other words, we relate the issue of possible transfor-
mations of discrimination probabilities to that of
response bias.
Suppose that according to some theory of response

bias, discrimination probability functions can be pre-
sented as cBðx; yÞ; where B is value of response bias,
varying within some abstract set (of reals, real-valued
vectors, functions, etc.). Intuitively, this means that
although cB1

ðx; yÞ and cB2
ðx; yÞ for two distinct

response bias values may be different, the difference is
not in ‘‘true’’ subjective dissimilarities but merely in the
‘‘overall readiness’’ of the perceiver to respond ‘‘differ-
ent’’ rather than ‘‘same’’. If Fechnerian distances are to
be interpreted as ‘‘true’’ subjective dissimilarities, one
should expect then that Fechnerian metrics correspond-
ing to cB1

ðx; yÞ and cB2
ðx; yÞ are identical (up to

multiplication by positive constants). This may or may
not be true for Fechnerian metrics computed directly
from cBðx; yÞ; and if it is not, it may be true for
Fechnerian metrics computed from some transforma-
tion j½cBðx; yÞ� thereof. The solution for the problem of
what transformations of discrimination probabilities
one should make use of can now be formulated as
follows:

choose fBðx; yÞ ¼ j½cBðx; yÞ� so that Gða; bÞ computed

from fBðx; yÞ is invariant (up to positive scaling) with
respect to B:

Based on Theorem 56, this idea can be developed
further if we agree to understand response bias in
the sense of strong metric equivalence (Definition 21);
that is, if we require that not only Gða; bÞ but also
the sets of smooth arcs and the submetric func-
tions F 1ðxðtÞ; x� ðtÞÞ;F2ðxðtÞ;x�ðtÞÞ remain invariant as we

change B: The solution then acquires the following
form:

choose fBðx; yÞ ¼ j½cBðx; yÞ� so that

fBðx; yÞ ¼ kBfðx; yÞ þ lB þ f Bðmaxffðx; yÞ;MgÞ;
where fðx; yÞ is fBðx; yÞ at some specific value of B;
coefficients kB; lB; and function f B are as in Theorem

56, and M ¼ supx fðx; xÞ:
It is easy to verify that any two transformations

j1½cBðx; yÞ�;j2½cBðx; yÞ� with this property will be
strongly metrically equivalent, which means that j; if
it exists, is determined essentially uniquely.
The approach proposed is, of course, open-ended, as

the solution now depends on one’s theory of response
bias, independent of Fechnerian scaling. Thus, if one
adopts Luce’s (1963) or Blackwell’s (1953) linear model
of bias, j is essentially the identity function and one
should deal with ‘‘raw’’ discrimination probabilities. If
one adopts the conventional d 0 measure of sensitivity, j
can be chosen as the inverse of the standard normal
integral,

cðx; yÞ ¼ 1ffiffiffiffiffiffi
2p
p

Z j½cðx;yÞ�

�1
e�z

2=2 dz:

As we do not know which model of response bias should
be preferred, the question of whether and how one
should transform c before computing Fechnerian
distances should be viewed as open.

13.2. Overall psychometric transformation in the large

As explained in Section 8.3, the overall psychometric
transformation F of psychometric increments is deter-
mined by discrimination probabilities c only asympto-
tically uniquely. One is free to choose its variant in the
large, and the question arises whether there is a
principled way for doing this. We mention this issue
for completeness sake only, as it is not important in the
present context, for arcwise connected stimulus spaces:
in most of our considerations FðhÞ only interests us in
the arbitrarily small vicinity of h ¼ 0 where it vanishes;
in the remaining cases the choice of F is shown to be
irrelevant. When developing more general theory,
however, in which stimulus spaceM need not be arcwise
connected, the issue becomes critical. Its analysis is
given elsewhere (Dzhafarov & Colonius, in press).

13.3. ‘‘Adaptation’’ or ‘‘representative design’’ ?

It is easier to introduce this problem using the special
case of the theory when stimulus space MðkÞ is an open
connected region of Euclidean space Rek; with the
ordinary continuously differentiable arcs playing the
role of smooth arcs. Suppose that we have computed
Fechnerian distances GðkÞða; bÞ in this space, using a
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discrimination probability function cðkÞðx; yÞ: Suppose
now that we fix some of the coordinates of this space at
certain values, so that the remaining, variable dimen-
sions form a subspace MðlÞ of MðkÞ; an open connected
region of Rel ; lok: Formally, we can now use the
projection cðlÞðx; yÞ of cðkÞðx; yÞ on these variable
dimensions to compute Fechnerian distances GðlÞða; bÞ
for all a; b 2MðlÞ: The theory applies to this reduced
space as well as it does to the original, ‘‘complete’’ one.
(Of course, this ‘‘complete’’ space itself is obtained by
fixing all but some k of potential dimensions along
which stimuli could vary.) For any two points a; b lying
in MðlÞ; however, the new Fechnerian distance GðlÞða; bÞ
in space MðlÞ will not be the same as the original
Fechnerian distance GðkÞða; bÞ computed in spaceMðkÞ: It
is easy to see that GðlÞða; bÞXGðkÞða; bÞ; because the set of
piecewise smooth closed loops inMðlÞ that contain a and
b is only a subset of those in MðkÞ: Does this mean that
by excluding some of the physical dimensions of stimuli
from consideration we get Fechnerian distances
‘‘wrong’’ ? There seem to be three different ways of
approaching this problem.

1. Pragmatic (or formalist) approach. One can simply
posit that Fechnerian distances are always defined
with respect to some stimulus space, however
arbitrarily chosen, and insofar as Fechnerian dis-
tances can be computed (i.e., the space satisfies all our
axioms) these distances cannot be ‘‘incorrect’’.

2. ‘‘Adaptation-to-space’’ approach. A similar but less
formalistic position is to assume that perceptual
dissimilarities among stimuli may change depending
on which parameters of stimuli are held constant in
an experiment and which vary. As pointed out to one
of us by Jun Zhang (personal communication, April
2002), it is likely that in a real experiment cðlÞðx; yÞ for
x; y 2MðlÞ will not be equal to cðkÞðx; yÞ: In other
words, cðlÞðx; yÞ will not be merely the projection of
cðkÞðx; yÞ on l variable dimensions, it may very well be
an entirely different function, ‘‘ adapted’’ specifically
to space MðlÞ: GðlÞða; bÞ then may very well be smaller
than GðkÞða; bÞ; for some or all stimulus pairs. Even if
this is not the case, however, and cðlÞðx; yÞ happens to
equal cðkÞðx; yÞ for all x; y 2MðlÞ; one can still view
Fechnerian distances GðlÞða; bÞ as reflecting ‘‘true’’
perceptual dissimilarities among stimuli in MðlÞ; with
these dissimilarities being generally different from
those when the same stimuli are viewed in the context
of a larger stimulus space.

3. ‘‘Representative design’’ approach. Another approach
is to consider the possibility that any given type of
stimuli is associated with a ‘‘representative design’’
(borrowing the term from Brunswick, 1956), a space
MðlÞ such that for any a; b 2MðlÞ and any MðkÞ that
contains MðlÞ as its subspace, if the Fechnerian
distance between a and b computed in MðkÞ is

Gða; bÞ; then there are piecewise smooth closed loops
lying entirely in MðlÞ whose psychometric lengths
converge to Gða; bÞ: In other words, there might be a
‘‘correctly chosen’’ stimulus space MðlÞ; in the sense
that if immersed in a larger space, the Fechnerian
distance between any two of its points does not
change (because MðlÞ contains all the loops whose
psychometric lengths converge to the Fechnerian
distance between any two of its points). This happens,
for example, when subspace MðlÞ is perceptually

separable from the complementary subspace Mðk�lÞ

of a larger space MðkÞ; in the sense of Dzhafarov
(2002c, 2003c). In the case when for every pair of
points a; b 2MðkÞ one can find a geodesic loop, the
piecewise smooth loop containing a and b whose
psychometric length equals Gða; bÞ; the representative
design can be defined even simpler: a stimulus
space that with every pair of stimuli it contains
also contains the geodesic loop between them. It is
noteworthy that the language of Fechnerian
scaling allows one to define Brunswick’s notion of
‘‘representative design’’ in rigorous mathematical
terms.
This discussion is trivially generalizable to arbitrary

arcwise connected stimulus spaces M and their sub-
spaces (i.e., subsets ofM satisfying the same axioms), as
well as to still more general spaces. The choice among
the three approaches just mentioned remains an open
issue.
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