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Abstract

The computation of subjective (Fechnerian) distances from discrimination probabilities involves cumulation of appropriately

transformed psychometric increments along smooth arcs (in continuous stimulus spaces) or chains of stimuli (in discrete spaces). In

a space where any two stimuli that are each other’s points of subjective equality are given identical physical labels, psychometric

increments are positive differences cðx; yÞ � cðx; xÞ and cðy; xÞ � cðx; xÞ; where xay and c is the probability of judging two stimuli

different. In continuous stimulus spaces the appropriate monotone transformation of these increments (called overall psychometric

transformation) is determined uniquely in the vicinity of zero, and its extension to larger values of its argument is immaterial. In

discrete stimulus spaces, however, Fechnerian distances critically depend on this extension. We show that if overall psychometric

transformation is assumed (A) to be the same for a sufficiently rich class of discrete stimulus spaces, (B) to ensure the validity of the

Second Main Theorem of Fechnerian Scaling in this class of spaces, and (C) to agree in the vicinity of zero with one of the possible

transformations in continuous spaces, then this transformation can only be identity. This result is generalized to the broad class of

‘‘discrete-continuous’’ stimulus spaces, of which continuous and discrete spaces are proper subclasses.
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1. Introduction

Fechnerian Scaling is a measurement procedure by
which one can compute interstimulus distances (termed
Fechnerian distances and interpreted as ‘‘subjective
dissimilarities’’) from the probabilities with which ‘‘very
similar’’ stimuli are discriminated from each other, in
the ‘‘same-different’’ sense. This paper proposes a
principled way of extending the theory of Fechnerian
Scaling from continuous stimulus spaces to discrete
ones. Discrete stimulus spaces are significant for two
reasons: (A) stimulus spaces are discrete in a wide
variety of applications; (B) discrete spaces serve as a
universal tool for performing Fechnerian computations
in stimulus spaces of any other kind: empirically,
discrimination probabilities can only be estimated on a
discrete (moreover, finite) subset of a stimulus space. We
will also show how to extend the theory of Fechnerian
Scaling to stimulus spaces comprised of continuous
‘‘chunks’’ isolated from each other. This kind of spaces
contains discrete and continuous spaces as special cases.

The theory of Fechnerian Scaling was originally
developed for stimulus spaces that form open connected
regions of a Euclidean space Ren (i.e., the set of n-
dimensional vectors of real numbers endowed with the
conventional topology).1 This Euclidean version of the
theory is presented in Dzhafarov and Colonius (1999,
2001) and Dzhafarov (2002a–d; 2003a–c).

Recently (Dzhafarov and Colonius, 2005) Fechnerian
Scaling was extended to a much wider variety of
‘‘smoothly connected’’ stimulus spaces (intuitively,
spaces in which one can ‘‘smoothly’’ move from one
point to another). Such spaces are generically referred to
as continuous. Unlike the Euclidean version in which the
theory is based on physical properties of stimuli (such as
the n-dimensionality of the space, its Euclidean topol-
ogy, and the analytic properties of smooth arcs
connecting points), the general theory of Fechnerian
Scaling for continuous spaces is purely psychological:
physical measurements of stimuli are only used to
identify (assign labels to) stimuli, whereas all topologi-
cal, analytic, and metric properties of a space are defined
entirely in terms of the discrimination probabilities on a
set of pairs of physical labels. In particular, all
propositions of this theory are invariant under arbitrary
identity-preserving transformations of the space (rela-
beling of stimuli).

Another recent extension of Fechnerian Scaling
(Dzhafarov & Colonius, submitted) deals with stimulus
spaces comprised of isolated from each other points.
Such spaces are generically referred to as discrete. This
theory is also purely psychological, in the same sense: all
properties of stimuli (except for their identity)2 are
defined entirely in terms of discrimination probabilities.

The relationship between these two parts of the purely
psychological theory of Fechnerian Scaling (continuous
and discrete) has not been, however, made sufficiently
clear. We know that both of them have vast areas of
application, and that discrete stimulus spaces can be used
for approximating continuous ones (because psychometric
length of an arc is the limit for the lengths of discrete
chains of stimuli). A certain critical choice made in the
discrete theory, however, seems to be there more arbitrary
than in the continuous theory: as explained below, we
speak here of the choice of an appropriate transformation
of psychometric increments, called the overall psycho-

metric transformation. The issue becomes especially
apparent when properties of continuous and discrete
spaces are combined in more general spaces (introduced in
Section 6). The present paper is aimed at filling in this gap.
timulus

ological
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The familiarity with our previous papers on Fechner-
ian Scaling (especially, Dzhafarov, 2002d; Dzhafarov
and Colonius, 2005) would be helpful but is not strictly
necessary.

The structure of the paper: In the first three sections
following this introduction we briefly recapitulate some
of the notions and facts pertaining to the purely
psychological construction of Fechnerian Scaling (based
on Dzhafarov and Colonius, 2005). Then we introduce a
certain ‘‘principle of theory construction,’’ according to
which a theory of Fechnerian Scaling should not be
restricting the class of possible stimulus spaces ‘‘too
much,’’ in some well-defined sense. We show that in the
case of discrete spaces this principle is compatible only
with the variant of their theory proposed in Dzhafarov
& Colonius (submitted), while in the case of continuous
spaces it is only compatible with the ‘‘cross-unbalanced’’
version of the theory as specified in Dzhafarov (2002d)
and Dzhafarov and Colonius (2005). Finally, we show
how to extend the Fechnerian theory to a broad class of
stimulus spaces we call ‘‘discrete-continuous.’’

Notation: With minor variations we follow the
notation conventions adopted in Dzhafarov and Colo-
nius (2005).

Italics and Greek letters designate real-valued quan-
tities, with the exception of indexing variables in the
definition of discrete-continuous spaces, in Section 6.

Boldface lowercase letters x; y; a; . . . always denote
stimuli, or functions mapping into a set of stimuli, as in
xðtÞ : ½a; b� ! M:

Sets of stimuli are denoted by Gothic letters M;
m; . . . ; and, with a few exceptions (intervals of reals in
Section 5, Re and Reþ for, respectively, the sets of reals
and nonnegative reals), we use Gothic letters for
numerical sets as well. Open symbol D is used to denote
a certain set of stimulus spaces (Section 5).

Greek i is reserved to represent ‘‘observation area’’ (as
defined in Section 2), its value is always 1 or 2. This
symbol, as well as its specific values (1 or 2) are used
either as superscripts (CðiÞ; Cð1Þ; Cð2Þ; etc., parenthesized
to distinguish them from exponents) or as subscripts (Gi;
G1; G2; etc.). The difference between superscripts and
subscripts in reference to ‘‘observation area’’ is purely
decorative.

We use symbol ! in four different meanings, clearly
distinguishable by context: to designate mappings (as in
½a; b� ! M), to designate convergence of real numbers
(e.g., h ! 0), to designate convergence of stimuli (e.g.,
xn ! x), and to schematically represent an arc or chain
of stimuli connecting a to b (e.g., a! x! b).

2. General notions

First we briefly review some of the basic notions of
Fechnerian Scaling that apply to both continuous and
discrete stimulus spaces (as well as the discrete-
continuous spaces introduced in Section 6). For details
one should refer to Dzhafarov and Colonius (2005): here
we mention only those aspects of the construction that
are directly relevant to our present purposes.

2.1. Observation areas and discrimination probabilities

The main experimental paradigm for Fechnerian
Scaling is that of the ‘‘same-different’’ judgments in
response to pairwise presented stimuli. A discrimination
probability function is a function

c� : M�
1 	 M�

2 ! ½0; 1�

interpreted as

c�
ðx; yÞ ¼ Pr½x 2 M�

1 and y 2 M�
2

are judged to be different�, ð1Þ

where M�
1 and M�

2 represent the sets of stimuli presented
to the perceiver in two fixed and perceptually distinct
observation areas (e.g., M�

1 may contain all stimuli
presented chronologically first or spatially ‘‘below,’’ in
which cases M�

2 contains all stimuli presented, respec-
tively, chronologically second and spatially ‘‘above’’).

The notion of two distinct observation areas is crucial
for Fechnerian Scaling. Stimulus sets M�

1 and M�
2 are

usually (but not necessarily) identical in all respects
other than the observation area. The judgments ‘‘x and
y are different’’ and ‘‘x and y are the same’’ are
supposed to ignore the difference in the observation
area. The perceivers may be asked, in addition, to ignore
some other properties of stimuli in their judgments, or to
pay attention to certain properties only. For a detailed
discussion see Dzhafarov and Colonius (2005).

2.2. Psychological identity of stimuli

If, for x; x0 2 M�
1;

c�
ðx; yÞ ¼ c�

ðx0; yÞ for any y 2 M�
2,

we say that stimuli x and x0 are psychologically equal (or
indistinguishable). Analogously, y; y0 2 M�

2 are psycho-
logically equal if

c�
ðx; yÞ ¼ c�

ðx; y0Þ for any x 2 M�
1.

We assume in the following that all stimuli forming an
equivalence class of psychologically equal stimuli are
labelled identically. Thus redefined stimulus spaces for
the two observation areas are denoted by ~M1 and ~M2; so
that x 2 ~M1 (or y 2 ~M2) is in fact an equivalence class of
physically distinct stimuli (unless the class is a single-
ton). We retain notation x; y for elements of ~M1

and ~M2; and we redefine the discrimination probability
function as

~c : ~M1 	
~M2 ! ½0; 1�,
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with ~cðx; yÞ being equal to the value of c� taken for any
element of M�

1 and any element of M�
2 belonging to the

equivalence classes x and y; respectively.
2.3. Regular Minimality

Regular Minimality is the cornerstone principle of
Fechnerian Scaling.

Axiom 1 (Regular Minimality). There are functions h :
~M1 !

~M2 and g : ~M2 !
~M1 such that
(i)
 ~cðx; hðxÞÞo ~cðx; yÞ for all x and yahðxÞ;

(ii)
 ~cðgðyÞ; yÞo ~cðx; yÞ for all y and xagðyÞ;

(iii)
 h 
 g�1:
For every x 2 ~M1; hðxÞ 2 ~M2 is its Point of Subjective

Equality (PSE). Analogously, gðyÞ 2 ~M1 is the PSE for
y 2 ~M2: The principle therefore says that y0 is the
(unique) PSE for x0 if and only if x0 is the (unique) PSE
for y0:

y0 ¼ arg min
y2 ~M2

~cðx0; yÞ () x0 ¼ arg min
x2 ~M1

~cðx; y0Þ.

The principle ensures that ~M1 and ~M2 have the same
cardinality, and h and g are bijections.

Empirical evidence for the principle of Regular
Minimality is presented in Dzhafarov (2002d) and
Dzhafarov and Colonius (2005).
3Without formally involving modal logic, the expression ‘‘is not

necessarily constant’’ means that (a) there are stimulus spaces in which

one can find x and y with cðx;xÞacðy; yÞ; but (b) stimulus spaces in

which cðx;xÞ 
 const may exist. To say, therefore that we assume

Nonconstant Self-Dissimilarity is equivalent to saying that we do not

assume Constant Self-Dissimilarity, a law according to which cðx;xÞ 

const in all stimulus spaces.

4Ali Ünlü, in a review of this paper, pointed out to us that we could

define the convergence by xn ! x()Cð1Þðx; xnÞ ! 0 and replace

Axiom 2 with a weaker statement,

Cð2Þðx;xnÞ ! 0¼)Cð1Þðx; xnÞ ! 0.

The reverse implication then would have followed from Axiom 3, given

below. We prefer the present version for purely esthetic reasons.
2.4. Canonical relabeling

Canonical relabeling consists in assigning the same
label to x 2 ~M1 and y 2 ~M2 whenever these stimuli are
PSEs of each other. This is always possible due to
Regular Minimality. For example, one can leave ~M1

intact but relabel every y 2 ~M2 into gðyÞ: More
generally, we introduce a ‘‘common’’ stimulus space M

(arbitrary in all respects except for being equipotent
with ~M1 and ~M2) and form bijective maps

f1 : M ! ~M1; f2 : M ! ~M2

so that f1ðaÞ and f2ðaÞ are mutual PSEs for every a 2 M:
This allows us to redefine the discrimination probability
function as

c : M 	 M ! ½0; 1�,

where

cðx; yÞ ¼ ~cðf1ðxÞ; f2ðyÞÞ. (2)

The canonical form of Regular Minimality is

cðx; xÞo
cðx; yÞ;

cðy;xÞ

(
(3)
for all x and yax: As a result, quantities

Cð1Þðx; yÞ ¼ cðx; yÞ � cðx; xÞ,

Cð2Þðx; yÞ ¼ cðy; xÞ � cðx; xÞ

are always nonnegative and vanish only at x ¼ y: They
are called psychometric increments, respectively, of the
first kind (or, in the second argument) and of the second

kind (or, in the first argument).
Convention: In the following we will only deal with

stimulus spaces canonically relabeled. In other words,
the term ‘‘stimulus space’’ will always mean a ‘‘com-
mon’’ stimulus space M endowed with a discrimination
probability function cðx; yÞ satisfying (3).
2.5. Nonconstant Self-Dissimilarity

There is ample empirical evidence (see Dzhafarov,
2002d; Dzhafarov & Colonius, 2005, submitted) that
cðx;xÞ is not generally the same for all x: This property
is called Nonconstant Self-Dissimilarity (cðx; xÞ is not
necessarily a constant across all x 2 M).3 Note that the
formulation of the property here assumes that function
c is in a canonical form. Otherwise we would have to
say instead that ~cðx; yÞ is not necessarily the same for all
PSE pairs ðx; yÞ: The conjunction of Regular Minimality
and Nonconstant Self-Dissimilarity turns out to have
surprisingly restrictive consequences (Dzhafarov, 2002d,
2003a, b; Dzhafarov and Colonius, 2005).
2.6. Topology
Axiom 2 (Convergence). As n ! 1;

Cð1Þðx;xnÞ ! 0 () Cð2Þðx;xnÞ ! 0.

The convergence in stimulus space M is defined by

xn ! x () CðiÞðx; xnÞ ! 0; as n ! 1, (4)

where i may be 1 or 2. 4This notion of convergence
induces on M a topology based on open balls

Bðx; eÞ ¼ fy : minfCð1Þðx; yÞ;Cð2Þðx; yÞgoeg (5)
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taken for all possible values of x and e40 (for
details see Dzhafarov and Colonius, 2005). It follows
from the next axiom that discrimination probability
function cðx; yÞ is continuous with respect to this
topology.

Axiom 3 (Intrinsic continuity). Discrimination probabil-

ity function c is intrinsically continuous:

ðxn ! xÞ ^ ðyn ! yÞ ) cðxn; ynÞ ! cðx; yÞ.

Psychometric increments CðiÞðx; yÞ (i ¼ 1; 2) are then
also continuous.
2.7. Overall psychometric transformation

An arc, denoted xðtÞ or x½a;b�; is defined as a
homeomorphic (i.e., continuous with a conti-
nuous inverse) mapping of a real interval into stimulus
space, xðtÞ : ½a; b� ! M; where we allow a ¼ b (so that a
single stimulus can be viewed as the graph of a
‘‘degenerate’’ arc). Arc xðtÞ is said to connect xðaÞ ¼ a
to xðbÞ ¼ b:

Note that we do not postulate here that any two
points in M can be connected by an arc (by definition
this is true for spaces we call continuous, but not in
general). It is even possible that no two distinct points in
M can be connected by an arc (as is the case in discrete
spaces, considered later). Even then, however, the axiom
and theorem stated below are formally valid (not
violated).
b

a

b

c

x(c)

a

0

1

Ψ(1)(x(c), x(t))

Ψ(2)(x(c), x(t))

Fig. 1. A smooth arc xðtÞ : ½a; b� ! M shown in conjunction with

psychometric increments Cð1ÞðxðcÞ; xðtÞÞ (solid thick line) and

Cð2ÞðxðcÞ;xðtÞÞ (dashed thick line). Psychometric increments are

continuously differentiable below c and above c; and they both

increase as t slightly moves away from c in either direction.
Refer to Fig. 1. An arc xðtÞ : ½a; b� ! M is called
smooth if, for every c 2 ½a; b�;
(i)
5‘‘

Dzh

the

discu
6R

lim
h!0þ

for s

h !

Dzh
7‘‘
Cð1ÞðxðcÞ;xðtÞÞ and Cð2ÞðxðcÞ;xðtÞÞ are continuously
differentiable in t on ½a; cÞ [ ðc; b�; and
(ii)
 dCð1ÞðxðcÞ; xðtÞÞ=dt and dCð2ÞðxðcÞ;xðtÞÞ=dt are nega-
tive on ½c � d; cÞ \ ½a; b� and positive on ðc; c þ d� \
½a; b�; for some d40:
A degenerate arc (a ¼ b) can be formally viewed as a
smooth arc.

Axiom 4 (Comeasurability im Kleinen). 5For any two

nondegenerate smooth arcs xðtÞ : ½a; b� ! M and yðtÞ :
½c; d� ! M;

0o lim
a!0þ

CðiÞðxðaÞ;xða þ aÞÞ

Cð1ÞðyðcÞ; yðc þ aÞÞ
o1; i ¼ 1; 2.
The following consequence of this axiom is essentially
an excerpt from what we call the First Main Theorem of

Fechnerian Scaling, combined with some of its corol-
laries (Dzhafarov and Colonius, 2005).

Theorem 1. There is a function FðhÞ : ½0; 1� ! Reþ

(called overall psychometric transformation, Reþ being

the set of nonnegative reals) such that, for any non-

degenerate smooth arc xðtÞ : ½a; b� ! M and any t 2 ½a; bÞ;

0o lim
a!0þ

F½CðiÞðxðtÞ;xðt þ aÞÞ�
a

o1; i ¼ 1; 2.

Function FðhÞ is
(i)
 regularly varying at h ¼ 0 with a positive exponent,
x;6
(ii)
 continuous and increasing7 on some interval ½0; eÞ; with

Fð0Þ ¼ 0;

FðhÞ is determined asymptotically uniquely (as

h ! 0þ), that is, any other function F�ðhÞ with the same
properties satisfies

lim
h!0þ

F�ðhÞ

FðhÞ
¼ k40.

2.8. Sets versus spaces

At this point it may be useful to point out that both in
the foregoing and subsequent text we follow the
Im kleinen’’ means ‘‘in the small,’’ in the vicinity of zero. In

afarov and Colonius (2005) this axiom is numbered 5, following

axiom of arc-connectedness (which defines continuous spaces,

ssed below).

egular variation at zero with exponent x40 means that

FðhÞ

hxLðhÞ
¼ 1

ome function LðhÞ such that for every l40; LðlhÞ=LðhÞ ! 1 as

0þ : Examples of FðhÞ include hx; hx log 1
h
; hx þ h2x; etc. See

afarov (2002a) for details.

Increasing’’ in this paper always means ‘‘strictly increasing.’’
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x(t1)

a= t0 t2 t3 t4

x(t2)
x(t3)

x(t4)

x(t0)

x(t5)

Fig. 2. A piecewise smooth arc xðtÞ : ½a; b� ! M: An arrow leading

from xðtj�1Þ to xðtjÞ indicates the value of GðiÞðxðtj�1Þ;xðtjÞÞ ¼

F½CðiÞðxðtj�1Þ;xðtjÞÞ�: As segmentation of ½a; b� gets progressively finer,

the sum of these values gets progressively closer to the psychometric

length of the arc.

E.N. Dzhafarov, H. Colonius / Journal of Mathematical Psychology 49 (2005) 125–141130
established mathematical ‘‘tradition’’ of referring to
spaces by their sets alone, without explicitly mentioning
their space-forming structure (in our case, the discrimi-
nation probability function). Thus, in Sections 2.2 and
2.3 we speak of ‘‘stimulus spaces’’ ~M1; ~M2 whereas it
would have been more correct to speak of a single
stimulus space ð ~M1; ~M2; ~cÞ; consisting of two sets and
one function. Following a canonical transforma-
tion (Section 2.4) it would have been more correct to
use the term ‘‘stimulus space’’ for ðM;cÞ rather than
for M: It should be kept in mind, therefore, that
such expressions as ‘‘space of auditory tones’’ or ‘‘space
of letters’’ mentioned below refer not to the sets of
physical entities per se but rather to these sets taken
together with discrimination probability functions.
One and the same set of stimuli presented to two
different observers will generally create two different
stimulus spaces (possibly differently relabeled to achieve
canonical forms).
9Scaling constant k is associated with the choice of overall
3. Continuous stimulus spaces

The most obvious examples of continuous sti-
mulus spaces include the unidimensional continua of
Fechner’s original theory (with stimuli identified
by their intensity or extent) and multi-attribute spaces
of colors, tones, or parametrized shapes. In the
construction presented in Dzhafarov and Colonius
(2005) the ‘‘continuity’’ of such spaces is defi-
ned in terms of the discrimination probabilities
cðx; yÞ; without resorting to the physical properties of
stimuli x; y:

Formally, space M is called continuous if it is arc-

connected, that is, if any two points in it can be
connected by an arc. The axioms of Fechnerian Scaling
for continuous spaces8 ensure that M is also smoothly

connected, which means that any two points in M can be
connected by a piecewise smooth arc (an arc xðtÞ :
½a; b� ! M whose domain can be partitioned into a finite
number of intervals upon each of which xðtÞ is smooth).

In reference to Fig. 2, let xðtÞ : ½a; b� ! M be a
piecewise smooth arc. Consider

LðiÞ½x½a;b�� ¼ lim
DðIÞ!0

Xk

j¼1

GðiÞðxðtj�1Þ; xðtjÞÞ, (6)

where the limit is taken over all possible segmentations
I of ½a; b�;

I ¼ fa ¼ t0ot1o � � �otk�1otk ¼ bg,
8These axioms include the four given in the previous section and

some additional assumptions that we do not discuss in this paper

(because they involve a variety of notions we do not use in the present

development). The reader should consult Dzhafarov & Colonius

(2005) for details.
DðIÞ denotes maxj ½tj � tj�1�; and

GðiÞðx; yÞ ¼ F½CðiÞðx; yÞ�; i ¼ 1; 2. (7)

That is, overall psychometric transformation F is
applied to psychometric increments, of both kinds. It
is shown in Dzhafarov and Colonius (2005) that limit
LðiÞ½x½a;b�� exists as a finite nonnegative quantity, vanish-
ing only at degenerate arcs (a ¼ b). This quantity is
taken to be the psychometric length of arcxðtÞ of the ith
kind ði ¼ 1; 2Þ: Positive diffeomorphic reparametriza-
tions of x½a;b� (i.e., arcs yðtÞ : ½c; d� ! M such that
yðtðtÞÞ ¼ xðtÞ; where tðtÞ is a bijective mapping ½a; b� !
½c; d� with t0ðtÞ40) are all equivalent, in the sense that
they do not change its psychometric length.

When confusion is excluded by context, arc xðtÞ :
½a; b� ! M connecting a to b can be written as a!
x! b: Then ‘‘the same arc’’ traversed ‘‘in the opposite
direction’’ (i.e., any arc yðtÞ : ½c; d� ! M such that
yðtðtÞÞ ¼ xðtÞ; where tðtÞ is a bijective mapping ½a; b� !
½c; d� with t0ðtÞo0) can be written as b! x! a:
Psychometric lengths LðiÞ½a! x! b� and LðiÞ½b! x!

a� are generally different quantities (i ¼ 1; 2).
The infimum Giða; bÞ of the psychometric lengths (of

the ith kind) taken over all piecewise smooth arcs a!
x! b is shown to be an oriented metric (of the ith kind):
it is nonnegative, vanishing at a ¼ b only, and it satisfies
the triangle inequality. Discrimination probabilities c
determine the oriented Fechnerian distances uniquely,
up to multiplication by arbitrary k40:9
psychometric transformation F (see the uniqueness part of Theorem

1). In order not to have to mention this trivial rescaling every time, we

will assume henceforth that for some fixed a; b in M; G1ða; bÞ or

G2ða; bÞ is equated to 1. This makes the oriented Fechnerian distances

within a given space unique. Equivalently, this forces k ¼ 1 in the

uniqueness part of Theorem 1.



ARTICLE IN PRESS
E.N. Dzhafarov, H. Colonius / Journal of Mathematical Psychology 49 (2005) 125–141 131
The following two results (Dzhafarov and Colonius,
2005) play the central role in the subsequent develop-
ment.

Theorem 2 (Second Main Theorem for Continuous

Spaces). For any a; b 2 M;
(E1)
10On

in a ca

in the fi

labeled

respect

precise

spaces
11In

would
12Th

be a m
13If x
Lð1Þ½a! x! b� þ Lð1Þ½b! y! a� ¼ Lð2Þ½b!

x! a� þ Lð2Þ½a! y! b�; for all piecewise smooth

arcs a! x! b and b! y! a;

(E2)
 G1ða; bÞ þ G1ðb; aÞ ¼ G2ða; bÞ þ G2ðb; aÞ:
The second statement of this theorem is, of course, an
immediate consequence of the first. Due to this theorem,
overall Fechnerian distance Gða; bÞ can be defined as

Gða; bÞ ¼ G1ða; bÞ þ G1ðb; aÞ ¼ G2ða; bÞ þ G2ðb; aÞ. (8)

Clearly, Gða; bÞ is a well-defined metric: nonnegative,
vanishing at a ¼ b only, symmetrical, and satisfying the
triangle inequality. The significance of (8) is in the fact
that G1ða; bÞ þ G1ðb; aÞ has the natural interpretation of
the ‘‘to and fro’’ distance between stimuli a and b

belonging to the first observation area; while G2ða; bÞ þ
G2ðb; aÞ is interpreted as the ‘‘to and fro’’ distance
between the same two stimuli10 within the second
observation area. The numerical equality of these
distances means that (following a canonical relabeling)
we can simply speak of the overall Fechnerian distance
between a and b; without mentioning their observation
area.

In the next theorem x has the same meaning as in
Theorem 1 (the exponent of regular variation for F).

Theorem 3. Nonconstant Self-Dissimilarity is only con-

sistent with one of two possibilities:11
(P1)
 x ¼ 1 and lim FðhÞ
h

¼ 1 as h ! 0þ;12
(P2)
 xX1 and lim inf FðhÞ
h

¼ 0 as h ! 0þ :13
In case P1, for any piecewise smooth arc a! x! b;

Lð1Þ½a! x! b� � Lð2Þ½b! x! a�

¼ Lð2Þ½a! x! b� � Lð1Þ½b! x! a�

¼ cðb; bÞ � cða; aÞ.
e must not forget that the stimulus space here is assumed to be

nonical form, because of which ‘‘one and the same stimulus’’ a

rst and second observation areas is in fact a pair of identically

mutual PSEs, x and y; in the pre-canonical spaces ~M1 and ~M2;
ively. x and y may very well be physically distinct stimuli (more

ly, non-identical equivalence classes of stimuli in the original

M�
1 and M�

2).

reference to footnote 3, this means that any other possibility

force Constant Self-Dissimilarity.

e limit could be ‘‘more generally’’ written as k40; but it would
atter of trivial normalization to set it equal to 1 (see footnote 9).

41; limFðhÞ=h ¼ 0:
In case P2, for any piecewise smooth arc a! x! b;

Lð1Þ½a! x! b� � Lð2Þ½b! x! a�

¼ Lð2Þ½a! x! b� � Lð1Þ½b! x! a� ¼ 0.

The latter equality is also implied by Constant Self-

Dissimilarity.

It is easy to verify that the statements of Theorem 2
are satisfied in either case. Note that possibility P2
implies G1ða; bÞ ¼ G2ðb; aÞ (and the same is implied by
Constant Self-Dissimilarity).

Empirical analysis presented in Dzhafarov and
Colonius (2005) strongly supports Nonconstant Self-
Dissimilarity and strongly favors possibility P1 (the so-
called ‘‘cross-unbalanced’’ case) over possibility P2 (the
‘‘cross-balanced ’’ case).

In view of the subsequent development (especially,
Theorems 4, 5, and 8), it is useful to note the following
immediate consequence of Theorem 3.

Corollary 1. If overall psychometric transformation F is

identity, FðhÞ ¼ h; then

Lð1Þ½a! x! b� � Lð2Þ½b! x! a�

¼ Lð2Þ½a! x! b� � Lð1Þ½b! x! a�

¼ cðb; bÞ � cða; aÞ.

Proof. Under Nonconstant Self-Dissimilarity, FðhÞ ¼ h

agrees with P1 and not with P2. Under Constant Self-
Dissimilarity, the differences of the LðiÞ’s equal zero, and
so does cðb; bÞ � cða; aÞ: &
4. Discrete stimulus spaces

Examples of discrete spaces are numerous: letters of
alphabet, schematic faces, brands of a consumer
product, categories of lung dysfunctions depicted in X-
ray films, etc. (each of these sets taken with a
discrimination probability function). The judgment ‘‘x
is the same as y’’ may have different meanings
depending on context and procedure. Thus, each
stimulus may have a fixed physical realization (say, a
Morse code for a letter, auditorily presented) in which
case ‘‘x is the same as y’’ may signify overall identity (the
same code) or identity in a particular respect (say, the
code of the same length). In other applications each
stimulus may be represented by a finite or infinite
number of samples, or realizations, treated as replica-
tions of this stimulus (e.g., each lung dysfunction may be
represented by a series of X-ray films exhibiting this
dysfunction, or each author can be represented by a
series of handwritings), and in such cases ‘‘x is the same
as y’’ means that the two samples being presented
belong to the same category, have the same source, or
the same significance. All these differences are immater-
ial for the present theory, insofar as the resulting
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product is a set of stimuli endowed with a function of
stimulus pairs satisfying the axioms given in Section 2.

Definition 1. Point x in stimulus space M is called
isolated if

inf
y2Mnfxg

minfCð1Þðx; yÞ;Cð2Þðx; yÞg40.

Space M is discrete if it consists of isolated points.

Observe that this definition is purely psychological: it
is given entirely in terms of discrimination probabilities,
with no reference to physical properties of the stimuli
involved.

Observe also that with respect to the topology
introduced in Section 2.6, based on open balls

Bðx; eÞ ¼ fy : minfCð1Þðx; yÞ;Cð2Þðx; yÞgoeg,

stimulus space M which is discrete in the sense of
Definition 1 is also discrete in the conventional
topological sense: every singleton fxg in M is an open
set. Because of this our Axioms 2 and 3 are satisfied
trivially.

As the only continuous mapping xðtÞ : ½a; b� ! M

with M being topologically discrete is xðtÞ ¼ x0 (a
constant), it follows that in a discrete M the only arcs
xðtÞ : ½a; b� ! M (homeomorphisms) are degenerate arcs
(a ¼ b). Because of this Axiom 4 is also satisfied
trivially.

We conclude that in discrete stimulus spaces the only
axiom whose validity has to be postulated (in empirical
applications, checked) is Regular Minimality. It is easy
to see that Regular Minimality implies that every finite
M is discrete.14

A chain connecting a to b is any finite sequence ða ¼

x1;x2; . . . ;xk ¼ bÞ; where the elements need not be
distinct. By analogy with continuous spaces, and
especially in view of the construction depicted in Fig.
2, it is natural to define the psychometric length (of the
ith kind) of a chain as

LðiÞ½ðx1; x2; . . . ;xkÞ� ¼
X

GðiÞðxi;xiþ1Þ; i ¼ 1; 2, (9)

where GðiÞðx; yÞ ¼ F½CðiÞðx; yÞ�; FðhÞ being a function
continuous and increasing in the vicinity of h ¼ 0:
Denoting a chain connecting a to b by a! x! b;

Giða; bÞ ¼ inf
all a!x!b

LðiÞ½a! x ! b�; i ¼ 1; 2, (10)

is the oriented Fechnerian distance of the ith kind. It is
trivial to show that Giða; bÞ satisfies all properties of a
metric except for symmetry.
14We can always assume that M contains at least two elements, but

formally, a single-element space is discrete because the infimum in

Definition 1 is sought over an empty set. Single-element M can also be

shown to be formally continuous. (If M is empty itself, to be

meticulous, it can be viewed as discrete, continuous, or possessing any

other structure.)
Here, however, the analogy with the continuous
theory ends. Overall psychometric transformation F in
the continuous theory is specified asymptotically un-
iquely. The choice (or ‘‘variant’’) of its extension beyond
an arbitrarily small vicinity of zero is immaterial for the
validity of Theorem 2 and for the ensuing definition of
the overall Fechnerian distance, Gða; bÞ in (8). In the
case of a discrete stimulus space, however, F should
generally be defined on the entire interval ½0; 1�; and
different choices of F result in different (not multi-
plicatively transformable into each other) values of
LðiÞ½ðx1;x2; . . . ;xkÞ� in (9). Consequently, they result in
different (not multiplicatively transformable into each
other) oriented Fechnerian distances Giða; bÞ ði ¼ 1; 2Þ:
Moreover, with an arbitrary extension of F the analogue
of Theorem 2 for discrete spaces will not generally hold.

In Dzhafarov and Colonius (submitted) F is implicitly
chosen to be identity, so that GðiÞðx; yÞ ¼ CðiÞðx; yÞ:15 In
reference to Theorem 3, clearly, F 
 identity agrees im
kleinen (in the vicinity of zero) with possibility P1 but
not with possibility P2. Moreover, we have the following
analogue of Corollary 1.

Theorem 4. If overall psychometric transformation F is

identity, then for any a; b 2 M and any chain a! x! b;

Lð1Þ½a! x! b� � Lð2Þ½b! x! a�

¼ Lð2Þ½a! x! b� � Lð1Þ½b! x! a�

¼ cðb; bÞ � cða; aÞ.

It immediately follows that the discrete-space analo-
gue of Theorem 2 then holds in its entirety. In the
formulation below, if a! x! b is ðx1;x2; . . . ;xkÞ; then
b! x! a (‘‘the same chain in the opposite direction’’)
is ðy1; y2; . . . ; ykÞ with yi ¼ xk�iþ1:

Theorem 5 (Main Theorem for Discrete Spaces). If

overall psychometric transformation F is identity, then

for any a; b 2 M;
(E1)
15To

only s
Lð1Þ½a! x! b� þ Lð1Þ½b! y! a� ¼ Lð2Þ½b!

x! a� þ Lð2Þ½a! y! b�; for all chains a! x!

b and b! y! a;

(E2)
 G1ða; bÞ þ G1ðb; aÞ ¼ G2ða; bÞ þ G2ðb; aÞ:
As a result, overall Fechnerian distance Gða; bÞ can be
defined as in (8). In some cases it is convenient to
concatenate the chains a! x! b and b! y! a into
closed loops a! x! b! y! a (when traversed in the
opposite direction, a! y! b! x! a) and present
Equation E1 in the form

Lð1Þ½a! x! b! y! a� ¼ Lð2Þ½a! y! b! x! a�.

(11)
remind, putting FðhÞ ¼ kh and GðiÞðx; yÞ ¼ kCðiÞðx; yÞ would be

uperficially more general. See footnote 9.
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It is easy to see that putting F 
 identity is not a
necessary condition for satisfying Equations E1 � E2 in
Theorem 5. Consider, for example, a discrete space on
which cðx; yÞ ¼ c0 for all xay; and cðx;xÞ ¼ cx; a
variable quantity less than c0: Clearly, in this space
Equations E1 � E2 are satisfied for any choice of
(increasing) function F: Given any finite stimulus
space, psychometric increments Cð1Þðx; yÞ;Cð2Þðx; yÞ at-
tain altogether only finite number of values,
0 ¼ C0oC1o � � �oCN : clearly, if FðCiÞ ¼ Ci for all i;
Equations E1 � E2 are satisfied irrespective of how F is
interpolated between Ci and Ciþ1 or extrapolated above
CN : If a stimulus space consists of three points, given
virtually any function F one can choose discrimination
probabilities for the nine ordered pairs so that Equa-
tions E1 � E2 are satisfied.

In all such examples, however, the possibility of using
nonidentity (non-proportionality) F capitalizes on what
can be intuitively seen as ‘‘numerical accidents.’’ In
reference to the examples just given, the values of cðx; yÞ
for xay in general need not equal a constant; the gaps
between successive values for Cð1Þðx; yÞ and Cð2Þðx; yÞ
may be different for different cðx; yÞ; function F chosen
for a particular set of nine probabilities in a three-point
configuration will not be suitable for another set of nine
probabilities. In other words, even though overall
psychometric transformation F can sometimes be
chosen to be nonidentity, for some stimulus spaces, it
cannot be so chosen without ceasing to be suitable for
some other stimulus spaces, those involving different
stimulus sets or different discrimination probability
functions defined on the same set.
5. Extending continuous theory to discrete spaces

The preceding observation suggests the following
guiding desiderata in constructing an analogue of the
continuous theory for discrete spaces.

Desiderata. Overall psychometric transformation F :
½0; 1� ! Reþ should be chosen so that
(D1)
16Th

would

Theore

out, h

deduce
FðhÞ be one and the same function for a sufficiently
rich set of discrete stimulus spaces;
(D2)
 FðhÞ be continuous and increasing on some
interval ½0; eÞ; with Fð0Þ ¼ 0;16
(D3)
 Equation E1 (hence also Equation E2) in Theorem
5 be satisfied.
is desideratum merely replicates property (ii) in Theorem 1. It

be natural to require more: that F also agree with property (i) in

m 1 and with one of the two possibilities in Theorem 3. It turns

owever, that with our approach such an agreement can be

d rather than required.
We have to explicate now the notion of a ‘‘sufficiently
rich set’’ of discrete stimulus spaces. The examples of
‘‘numerical accidents’’ given in the previous section
prompt the following approach: in a sufficiently rich set
of discrete stimulus spaces discrimination probabilities
associated with different pairs of stimuli do not
constrain each other ‘‘too tightly.’’

We can assume that every stimulus space contains
at least two elements, and we consider all pairs of
distinct elements ða; bÞ taken across all discrete sti-
mulus spaces M (all in canonical forms) within
some collection of spaces D: Recall that different spaces
M in D may but need not involve different sets of
stimuli: for a given set of stimuli, we have potentially
as many spaces M as we have different observers
and observation conditions leading to different sets of
discrimination probabilities. A pair of distinct stimuli
ða; bÞ in M 2 D is associated with four positive
psychometric increments, Cð1Þða; bÞ; Cð1Þðb; aÞ;
Cð2Þða; bÞ; Cð2Þðb; aÞ; and it follows from their defini-
tion that

Cð1Þða; bÞ þCð1Þðb; aÞ ¼ Cð2Þða; bÞ þCð2Þðb; aÞ. (12)

We denote

T ð1Þða; bÞ ¼ ðCð1Þða; bÞ;Cð1Þðb; aÞ;Cð2Þða; bÞÞ,

T ð2Þða; bÞ ¼ ðCð2Þða; bÞ;Cð2Þðb; aÞ;Cð1Þða; bÞÞ. ð13Þ

We say that a collection of spaces D is sufficiently rich
if the three psychometric increments in T ðiÞða; bÞ; i ¼
1; 2; do not interdetermine each other. Intuitively, we
expect that if T ðiÞ ða; bÞ ¼ ðx; y; zÞ for some pair ða; bÞ in
some set of stimuli presented (pairwise) to some
observer, then for any ðx0; y0; zÞ taken sufficiently close
to ðx; y; zÞ; it should be possible to find a gene-
rally different pair ða0; b0Þ in a generally different
stimulus set presented to a generally different observer,
for which T ðiÞða0; b0Þ ¼ ðx0; y0; zÞ (with the same z). In
addition, we assume that for any x 2 ð0; 1� one can
find in D a psychometric increment (of the first or
of the second kind) whose value is x: In other words,
we assume that in D the union of set Sð1Þ of all
possible values for Cð1Þða; bÞ and of set Sð2Þ of all
possible values for Cð2Þða; bÞ is the entire interval ð0; 1�
(no gaps).

Definition 2. A set of discrete stimulus spacesD (with all
spaces in canonical forms) is called sufficiently rich if the
following two conditions are satisfied:
(i)
 denoting by DðiÞ the set of all possible values for
T ðiÞða; bÞ in D (i ¼ 1; 2), if ðx; y; zÞ 2 DðiÞ; then any
ðx0; y0; zÞ 2 DðiÞ; with ðx0; y0Þ taken in a sufficiently
small neighborhood of ðx; yÞ open with respect to
ð0; 1� 	 ð0; 1�;
(ii)
 denoting by SðiÞ the set of all possible values for
CðiÞða; bÞ in D (i ¼ 1; 2), Sð1Þ

[ Sð2Þ
¼ ð0; 1�:
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A few remarks are due.
1.
 Unless z ¼ 1; fixing the value of z in ðx0; y0; zÞ 2 DðiÞ

does not imply that any of the four discrimination
probabilities cða; bÞ; cðb; aÞ; cða; aÞ; cðb; bÞ remains
fixed. As ðx0; y0Þ varies within a neighborhood of
ðx; yÞ; all four probabilities may covary, subject to
holding constant cðb; aÞ � cða; aÞ ¼ Cð2Þða; bÞ (if
i ¼ 1) or cða; bÞ � cða; aÞ ¼ Cð1Þða; bÞ (if i ¼ 2).
2.
 Our definition of D implies Nonconstant Self-
Dissimilarity (see Section 2.5): if it were the case that
cða; aÞ ¼ cðb; bÞ across all spaces in D; then we would
always have Cð1Þða; bÞ ¼ Cð2Þðb; aÞ: This would mean
that y ¼ z in both T ð1Þða; bÞ and T ð2Þða; bÞ; contrary to
the requirement that y can vary with z fixed. The
definition does not, however, imply asymmetry: (i)
and (ii) can hold even if cða; bÞ ¼ cðb; aÞ across all
spaces in D (a desirable property as it allows for the
practice of averaging across observation areas, i.e.,
replacing cða; bÞ with ðcða; bÞ þ cðb; aÞÞ=2;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cða; bÞcðb; aÞ
p

; etc.). This dovetails with the greater

theoretical importance we attach to Nonconstant
Self-Dissimilarity than to asymmetry (Dzhafarov,
2002d, 2003a, b; Dzhafarov and Colonius, 2005).
3.
 The openness of the neighborhood in (i) is under-
stood with respect to ð0; 1� 	 ð0; 1� rather than Re	
Re: Thus, ð1

2
� d; 1

2
þ dÞ 	 ð1� Z; 1� (d; Z being small

positive numbers) is an open neighborhood of ðx ¼
1
2
; y ¼ 1Þ: With no loss of generality, an open
neighborhood of ðx; yÞ can always be taken to be a
rectangle, I ðiÞxyz 	 J ðiÞ

xyz;

I ðiÞxyz ¼ ðx � d; x þ dÞ \ ð0; 1�,

J ðiÞ
xyz ¼ ðy � Z; y þ ZÞ \ ð0; 1� ð14Þ

for some positive d; Z (that generally depend on x; y; z;
and i). Property (ii) implies, obviously,[
i¼1;2

[
ðx;y;zÞ2DðiÞ

I ðiÞxyz ¼ Sð1Þ
[ Sð2Þ

¼ ð0; 1�. (15)
4.
17
It is critical for our analysis that Sð1Þ
[ Sð2Þ is an

interval, and that it has 0 as its left endpoint
(exclusive). The right endpoint, however, could very
well be replaced with any 0oMo1; inclusive or
exclusive. Moreover, the theory does not make
critical use of the restriction Mp1: This is important
in view of the possibility, mentioned in the Con-
clusion, of applying Fechnerian Scaling to trans-
formed probabilities (in which case M may concei-
vably be 1).
For the theorem below, we will need the following

simple topological property of intervals.

The use of the Pexider functional equation in establishing our

main result was prompted by a suggestion made by Jun Zhang

(personal communication, November 16, 2004). Although the sugges-

tion was made in the context of a different approach, we owe to Jun

Zhang our gratitude.
Lemma 1. Let C be a cover of ½a;bÞ (bp1) by finite

intervals open with respect to ½a; bÞ: Then ½a;bÞ is covered
by a sequence of intervals In in C ðn ¼ 1; 2; . . .Þ such that

In \ Inþ1a; and sup In form a nondecreasing sequence

converging to b: The analogous property holds for ða;b�
(aX�1), with inf In forming a nonincreasing sequence

converging to a:

Proof. Consider sequence a ¼ a0oa1p � � �panp � � �

defined by

an ¼ sup
I2C

fsup I : I 3 an�1g; n ¼ 1; 2; . . .

If an ! b0ob; then for any C 3 I 3 b0; I 3 an�1 for a
sufficiently large n; whence, by definition of an;
sup Ipan: But anpb0o sup I : So, an ! b: For n ¼

1; 2; . . . ; take any C 3 I 3 an and put I ¼ I2n: For n ¼

1; 2; 3; . . . ; take for I2n�1 any C 3 I 3 an�1 such that
sup IX sup I2n�2 (if n41Þ and I \ I2na; (exists by
definition of an). The resulting sequence satisfies the
requirements of the lemma. The proof for ða;b� is
analogous. &

The reader should also recall certain facts about

f ðxÞ þ gðyÞ ¼ hðx þ yÞ; ðx; yÞ 2 I 	 J, (16)

a Pexider functional equation restricted to rectangle I 	

J (Aczèl, 1987).17

Lemma 2. Let (16) hold for I ; J open in Re:
(A)
 If f ðxÞ is continuous at least at one point in I, then,
for some a; b; k;

f ðxÞ ¼ a þ kx; x 2 I ,

gðyÞ ¼ b þ ky; y 2 J.
(B)
 If f ðxÞ ¼ a þ kx on a subinterval of I ; then the same

is true for entire I.

(C)
 If f ðxÞ ¼ a þ kx on I ¼ ða; bÞ; bo1; then f ðbÞ ¼

a þ kb:
Proof. For (A) see Aczèl (1987, Chapter 5). (B)
immediately follows from (A). To prove (C), observe
first that, due to (A), f ðxÞ ¼ a þ kx on I implies gðyÞ ¼

b þ ky on J. Then, for some inf Joyo sup J and a
sufficiently small d40;

f ðbÞ þ ðb þ kyÞ ¼ f ðbÞ þ gðyÞ ¼ hðbþ yÞ

¼ f ðb� dÞ þ gðy þ dÞ

¼ ða þ kðb� dÞÞ þ ðb þ kðy þ dÞÞ,

and the proof obtains by simple algebra. &
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We are ready now to prove our main result.18

Theorem 6. Desiderata D1–D3 are satisfied in D if and

only if overall psychometric transformation F is identity.

Proof. The ‘‘if’’ part is simple: identity function clearly
satisfies D1 and D2, and it satisfies D3 by Theorem 5
(which is valid for any discrete stimulus space).

To prove the ‘‘only if’’ part, we construct two
sequences

fðxn; yn; znÞ; ingn¼0;�1;�2;...; fðxn; yn; znÞ; ingn¼0;1;2;...,

termed, respectively, the left sequence and the right
sequence, with in ¼ 1 or 2, and ðxn; yn; znÞ 2 DðinÞ: By
Remark 3 to Definition 2, each ððxn; yn; znÞ; inÞ is
associated with open rectangle In 	 Jn (denoting In ¼

I ðinÞxnynzn
; Jn ¼ J ðinÞ

xnynzn
; as defined in (14)). The initial

element, ððx0; y0; z0Þ; i0Þ; is chosen so that x0oe; where
e is defined as in D2. By Definition 2(ii), such an element
should exist: otherwise Sð1Þ

[ Sð2Þ would not include
values below e:

Having chosen ðx0; y0; z0Þ and i0; we construct the
right sequence so that sup In ! 1 as n ! 1; and

sup In�1o1¼) inf Ino sup In�1p sup In,

n ¼ 1; 2; . . . .

By Lemma 1, this is always possible because, due to (15),
intervals I ðiÞxyz provide an open cover for ½x0; 1�:

19 If
sup In�1 ¼ 1 and In�1 3 1; the sequence stops at
ððxn�1; yn�1; zn�1Þ; in�1Þ (formally, all subsequent ele-
ments replicate it). If sup In�1 ¼ 1 and In�1L1; then
the sequence stops at ððxn; yn; znÞ; inÞ; chosen so that xn ¼

1: This should always be possible, because Sð1Þ
[ Sð2Þ

includes 1.
The left sequence is constructed so that inf In ! 0 as

n ! �1; and

inf Inþ140¼) inf Inp inf Inþ1o sup In,

n ¼ �1;�2; . . . .

By Lemma 1, this is always possible because, due to (15),
intervals I ðiÞxyz provide an open cover for ð0;x0�: If
inf Inþ1 ¼ 0 (0 is never included), the sequence stops at
ððxnþ1; ynþ1; znþ1Þ; inþ1Þ:

For definiteness, let i0 ¼ 1; that is, ðx0; y0; z0Þ 2 Dð1Þ:
By D3, for any ðx; yÞ 2 I0 	 J0 one can find a; b 2 M 2

D such that

Lð1Þ½ða; b; aÞ� ¼ FðxÞ þ FðyÞ ¼ Fðz0Þ þ Fðx þ y � z0Þ

¼ Lð2Þ½ða; b; aÞ�.
18The proof of this result has greatly benefited from comments made

by Ali Ünlü in his review of an earlier draft of the paper.
19Due to the compactness of ½x0; 1� we could, in fact, speak of the

right sequence as being finite. In view of Remark 4 to Definition 2,

however, we prefer a proof that would apply to any M replacing 1,

exclusive or inclusive.
z0 being fixed, we have

FðxÞ þ FðyÞ ¼ R0ðx þ yÞ; ðx; yÞ 2 I0 	 J0,

which is a restricted Pexider equation. Due to D2; F is
continuous at x0oe; whence, by Lemma 2(A),

FðxÞ ¼ m þ kx; x 2 I0.

We take this as our induction basis for extending this
solution to interval ½0; 1� and specifying m and k in the
process.

Dealing with the left sequence first, let this solution be
established on I0 [ � � � [ In for some np0;

FðxÞ ¼ m þ kx; x 2 I0 [ � � � [ In; np0.

If inf In40; then this solution holds on ðI0 [ � � � [ InÞ \

In�1 ¼ ðinf In; sup In�1Þ; whence, by Lemma 2(B), it
extends to entire In�1: If inf In ¼ 0; the process stops.
By this induction step we conclude that

FðxÞ ¼ m þ kx; x 2 ð0; sup I0Þ.

Moreover, D2 implies that m ¼ 0; because F is
continuous on ½0; eÞ and Fð0Þ ¼ 0; and k40; because F
is increasing on the same interval. We have, therefore,

FðxÞ ¼ kx; x 2 ½0; sup I0Þ; k40.

Turning now to the right sequence, let this solution be
established on I0 [ � � � [ In for some nX0;

FðxÞ ¼ kx; x 2 I0 [ � � � [ In; nX0.

If sup Ino1; then this solution holds on ðI0 [ � � � [ InÞ \

Inþ1 ¼ ðinf Inþ1; sup InÞ; whence it extends to entire
Inþ1nfsup Inþ1g by Lemma 2(B). If sup In ¼ 1 and
InL1; then the solution extends to x ¼ 1 by Lemma
2(C). Finally, if In 3 1; the process stops. By this
induction step we conclude that

FðxÞ ¼ kx; x 2 ðinf I0; 1�; k40

and combining this with the result for the left sequence,

FðxÞ ¼ kx; x 2 ½0; 1�; k40.

Finally, by trivial rescaling (see footnote 9 and Theorem
3, possibility P1), we can always put k ¼ 1 to obtain
FðhÞ ¼ h: &

Identity F clearly satisfies properties (i) and (ii) in
Theorem 1, and it agrees with possibility P1 (but not P2)
of Theorem 3. We state this important result formally.

Corollary 2. Desiderata D1–D3 agree with possibility P1
and exclude possibility P2 in Theorem 3.

It is worth observing that the exclusion of possibility
P2 by Theorem 6 is only based on the form of function
F in the vicinity of zero: lim inf FðhÞ=h is 1 and not 0 for
FðhÞ ¼ h: As stated in Theorem 3, however, possibility
P2 in the case of continuous spaces also includes the
statement of ‘‘cross-balancedness’’:

Lð1Þ½a! x! b� ¼ Lð2Þ½b! x! a�



ARTICLE IN PRESS

a

b

Fig. 3. Schematic representation of a space containing continuous components isolated from each other. Some of the components may be isolated

points. The set of the components need not be finite or countable. The solid lines connected by dashed lines represent the graph of a chain-of-arcs

connecting a to b:
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for any piecewise smooth arc a! x! b: It is
easy to show that in the case of discrete spaces this
identity too would have to be excluded, as not
compatible with Nonconstant Self-Dissimilarity. In-
deed, by taking any two-element chain ða; bÞ; the identity
above implies

F½cða; bÞ � cða; aÞ� ¼ F½cða; bÞ � cðb; bÞ�,

and consequently (F being increasing) cða; aÞ ¼ cðb; bÞ:
20See footnote 8. We do not need a complete list of axioms for the

present development. It will suffice to note that all results presented in

Section 3 apply to any component mo:
21This definition and related aspects of the subsequent development

have greatly benefited from comments made by Ali Ünlü in his review

of an earlier draft of the paper.
6. Spaces with isolated continuous components

We now consider a class of spaces of which both
continuous spaces and discrete spaces are proper
subclasses. A schematic representation of such a
‘‘discrete-continuous’’ space is given in Fig. 3. Intuitively,
one can expect a space to be discrete-continuous if, for
example, it is comprised of stimuli one characteristic
whereof is discrete while other characteristics vary
continuously for each value of the discrete one (e.g., a
finite set of simple shapes varying in color, or letters of
alphabet with continuously deformed graphical ele-
ments).

In the definition to follow it is tacitly assumed that, as
any other stimulus space, a discrete-continuous space
satisfies Axioms 1–4 given in Section 2. In particular, it
satisfies Regular Minimality and can therefore be put in
a canonical form.
Definition 3. Stimulus space M (in a canonical form) is
discrete-continuous if

M ¼
[
o2H

mo,

where H is any indexing set, o ! mo is bijective, and
for any o 2 H;
(i)
 mo is arc-connected and satisfies all axioms for
continuous spaces;20S
(ii)
 on denoting Mno ¼ o02Hnfog mo0 ;

inf
x2mo
y2Mno

minfCð1Þðx; yÞ;Cð2Þðx; yÞg40.

For any o 2 H; mo is referred to as an (isolated
continuous) component of M:21
Any discrete space formally satisfies all the require-
ments of this definition because a single isolated
stimulus is formally an arc-connected component.
Discrete space therefore is a special case of discrete-
continuous space. That continuous space is another
special case (with H a singleton) is obvious.
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Theorem 7. Continuous components of discrete-continu-

ous space M are disjoint open sets. No two points

belonging to different components can be connected

by an arc.

Proof. That mo;mo0 with oao0 do not intersect is
obvious from property (ii) of Definition 3.

The openness of mo is understood with respect to the
topology based on open balls

Bðx; eÞ ¼ fy : minfCð1Þðx; yÞ;Cð2Þðx; yÞgoeg

(Section 2.6). It is proved by denoting the infimum in (ii)
by ro and observing that Bðx; roÞ � mo for any x 2 mo:

Finally, assume that a 2 mo and b 2 mo0 (oao0)
could be connected by arc xðtÞ : ½a; b� ! M: Consider set

So ¼ ft 2 ½a; b� : t0pt¼)xðt0Þ 2 mog.

It is nonempty (because a 2 So) and s ¼ supSopb: If
xðsÞ 2 mo; then sob; and every interval ½s; b0

Þ; b0ob;
contains a point s0 at which xðs0Þ 2 Mno; as defined in
(ii). Making b0

! sþ will induce s0 ! sþ and, by
continuity of xðtÞ; xðs0Þ 2 Mno ! xðsÞ 2 mo: This con-
tradicts (ii). If xðsÞ 2 Mno; then s4a and xðsÞ 2 mo00 ; for
some o00ao: We arrive at a contradiction by consider-
ing s0 ! s� leading to xðs0Þ 2 mo ! xðsÞ 2 mo00 : &

The notions of a chain for discrete spaces and an arc
for continuous ones, in discrete-continuous spaces are
generalized into the notion of a chain-of-arcs (see Figs. 3
and 4).
a

Fig. 4. A continuous component may contain more than one arc of a chain-o

be degenerate, single-point (as in the chain-of-arcs connecting c to d). But a
Definition 4. A chain-of-arcs in a discrete-continuous
space ð

S
o2H mo;cÞ is a finite sequence of arcs

ðxðiÞðtÞ : ½ai; bi� ! moi
Þi¼1;...;k,

where oiaoiþ1 ði ¼ 1; . . . ; k � 1Þ but i ! oi is not
necessarily one-to-one. A chain-of-arcs is said to
connect a ¼ xð1Þða1Þ 2 mo1

to b ¼ xðkÞðbkÞ 2 mok
: A

chain-of-arcs is called allowable if all its arcs are
piecewise smooth.

As in the case of arcs and chains, when no confusion
is possible a chain-of-arcs can be written as

½a! x! b� ¼ ðai ! xðiÞ ! biÞi¼1;...;k.

‘‘The same’’ chain-of-arcs but traversed ‘‘in the opposite
direction’’ then can be denoted by

½b! x! a� ¼ ðbk�iþ1 ! xðk�iþ1Þ ! ak�iþ1Þi¼1;...;k.

Definition 5. Given an allowable chain-of-arcs ðxðiÞðtÞ :
½ai; bi� ! moi

Þi¼1;...;k connecting a to b (and representa-
ble therefore as a! x! b), its psychometric length of
the ith kind (i ¼ 1; 2) is

LðiÞ½a! x! b� ¼
Xk

i¼1

LðiÞ½x
ðiÞ
½ai ;bi �

� þ
Xk

i¼2

GðiÞðbi�1; aiÞ,

where ai ¼ x
ðiÞðaiÞ; bi ¼ x

ðiÞðbiÞ; LðiÞ½x
ðiÞ
½ai ;bi �

� is defined by
(6), and GðiÞðbi�1; aiÞ ¼ F½CðiÞðbi�1; aiÞ�; F being overall
psychometric transformation.
c

b

d

f-arcs (as in the one connecting a to b). An arc within a component may

‘‘jump’’ cannot be made within a component.
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In other words, the psychometric length of a chain-of-
arcs is simply the sum of the lengths of its arcs (defined
as in the continuous theory) and of the lengths of the
two-element chains, or ‘‘jumps,’’ connecting the succes-
sive arcs (defined as in the discrete theory).

Since Axiom 4 is assumed to hold for entire space M;
it applies to any two nondegenerate smooth arcs xðtÞ :
½a; b� ! mo and yðtÞ : ½c; d� ! mo0 ; whether or not o ¼

o0: If M contains some nondegenerate components (i.e.,
M is not entirely discrete), then, by Theorem 1, overall
psychometric transformation FðhÞ is determined for
entire M; but only in an arbitrarily small vicinity of
h ¼ 0 and only asymptotically uniquely. This is all one
needs to uniquely (see footnote 9) compute the lengths

of all arcs x
ðiÞ
½ai ;bi �

in a chain-of-arcs a! x! b: The

computation of ‘‘jumps’’ F½CðiÞðbi�1; aiÞ�; however,
generally requires that F be extended from arbitrarily
small ½0; eÞ to ½0; 1�: We face the same problem as for the
discrete stimulus spaces.

This time, however, the solution is readily available:
since discrete spaces form a proper subclass of the
discrete-continuous spaces, it is natural to stipulate that
a ‘‘sufficiently rich class’’ of the latter should include the
sufficiently rich class of the former. Then, being guided
by Desiderata D1–D3 of the previous section, the ‘‘only
if’’ part of Theorem 6 constrains the possibilities for
overall psychometric transformation to just one, F 


identity: It remains to verify the discrete-continuous
counterpart of the ‘‘if’’ part of Theorem 6: Desiderata
D1 and D2 being satisfied trivially, we have to focus on
D3 and show that, with F 
 identity;
(a)
 the generalization of Equation E1 in Theorems 2
and 5 does hold for all discrete-continuous
spaces,
(b)
 oriented metrics G1ða; bÞ and G2ða; bÞ can be defined
as in the continuous and discrete theories,
(c)
 and consequently, the generalization of Equation E2

in Theorems 2 and 5 also holds for all discrete-
continuous spaces.
22The latter due to the fact that any allowable chain-of-arcs a!

x! b when continued by any allowable chain-of arcs b! y! c

forms an allowable chain-of-arcs a! x! y! c (all arcs of the first

chain followed by all arcs of the second).
Theorem 8. If overall psychometric transformation F for

discrete-continuous space M is identity, then for any a; b 2
M and any allowable chain-of-arcs a! x! b;

Lð1Þ½a! x! b� � Lð2Þ½b! x! a�

¼ Lð2Þ½a! x! b� � Lð1Þ½b! x! a�

¼ cðb; bÞ � cða; aÞ.

Consequently,

Lð1Þ½a! x! b� þ Lð1Þ½b! y! a�

¼ Lð2Þ½b! x! a� þ Lð2Þ½a! y! b�.

for all allowable chains-of-arcs a! x! b and b! y

! a:
Proof. Let a! x! b be ðxðiÞðtÞ : ½ai; bi� ! moi
Þi¼1;...;k:

For every arc xðiÞðtÞ : ½ai; bi� ! moi
connecting ai to

bi ði ¼ 1; . . . ; kÞ we have, by Corollary 1,

Lð1Þ½ai ! xðiÞ ! bi� � Lð2Þ½bi ! xðiÞ ! ai�

¼ Lð2Þ½ai ! xðiÞ ! bi� � Lð1Þ½bi ! xðiÞ ! ai�

¼ cðbi; biÞ � cðai; aiÞ.

For any jump ðbi�1; aiÞ ði ¼ 2; . . . ; kÞ we have, by
Theorem 4,

Lð1Þ½ðbi�1; aiÞ� � Lð2Þ½ðai; bi�1Þ�

¼ Lð2Þ½ðbi�1; aiÞ� � Lð1Þ½ðai; bi�1Þ�

¼ cðai; aiÞ � cðbi�1; bi�1Þ.

The first statement of the theorem obtains by adding all
these equations together, and the second follows
trivially. &

To complete the construction, we define, as before,

Giða; bÞ ¼ inf
all allowable a!x!b

LðiÞ½a! x! b�; i ¼ 1; 2.

Theorem 9. G1ða; bÞ and G2ða; bÞ are oriented metrics,
and G1ða; bÞ þ G1ðb; aÞ ¼ G2ða; bÞ þ G2ðb; aÞ:

Proof. That Giða; bÞ ði ¼ 1; 2Þ are nonnegative, vanish at
a ¼ b; and satisfy the triangle inequality is obvious.22 To
show that Giða; bÞ40 for aab; observe that if a 2 mo;
b 2 mo0 (oao0), then any chain-of-arcs a! x! b

should contain a ‘‘jump’’ from mo to another compo-
nent. Hence Giða; bÞ cannot fall below

inf
x2mo
y2Mno

fCðiÞðx; yÞg,

which is positive by Definition 3. If a; b 2 mo; then the
length of any a! x! b that ‘‘jumps’’ outside mo

(before eventually returning to it) cannot fall below the
infimum displayed above; while the length of any a!
x! b that remains inside mo cannot fall below the
infimum of the lengths of all such ‘‘internal’’ arcs (which
is positive, as guaranteed by the continuous theory).
Giða; bÞ therefore cannot fall below the smaller of these
two quantities.

The equality of G1ða; bÞ þ G1ðb; aÞ and G2ða; bÞ þ
G2ðb; aÞ immediately follows from Theorem 8. &

The overall Fechnerian distance can now be defined
as before,

Gða; bÞ ¼ G1ða; bÞ þ G1ðb; aÞ ¼ G2ða; bÞ þ G2ðb; aÞ.
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ξ  > 1

ξ  = 1

ξ < 1

Ψ (a, .)

a

Ψ (., a)

or

Fig. 5. ‘‘Rounded’’ (xo1), ‘‘pencil-sharp’’ (x ¼ 1), and ‘‘needle-sharp’’

(x41) forms of psychometric functions x! cða;xÞ (or x! cðx; aÞ)
shown in a very small vicinity of x ¼ a (two-dimensional Euclidean

case). x is the exponent of regular variation for overall psychometric

transformation F:

24In other words, in this caseCðiÞðxðtÞ;xðt þ aÞÞ would be of a greater
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7. Conclusion

There are two principal degrees of freedom in
constructing Fechnerian Scaling: the choice of increas-
ing continuous functions j and F in increments

Fðj½cðx; yÞ� � j½cðx;xÞ�Þ,

Fðj½cðy;xÞ� � j½cðx;xÞ�Þ.

The logic of Fechnerian Scaling is compatible with first
transforming (by j) all discrimination probabilities and
then transforming (by F) the increments of these
transformed probabilities (both transformations being
increasing and continuous). In our previous publications
we (usually tacitly) assumed j 
 identity; but as pointed
out in Dzhafarov and Colonius (2005), as well as in
Section 5 of the present paper (Remark 4 following
Definition 2), all our results would have remained valid
if we chose some other j: The problem of determining j
in a principled way is tied in Dzhafarov and Colonius
(2005) to one’s choice of a response bias model. With
some caveats, j 
 identity corresponds to linear models
of response bias (e.g., Luce, 1963), whereas if one opted,
say, for the usual ‘‘equal-variance normal-normal’’ -
version of signal detectability model (e.g., Green and
Swets, 1966), j would have to be determined from

cðx; yÞ ¼
1ffiffiffiffiffiffi
2p

p

Z j½cðx;yÞ�

�1

e�z2=2 dz.

As we do not know which model of response bias should
be preferred, the question of determining j remains
essentially unsolved, and our use of ‘‘raw proba-
bilities’’ (j 
 identity) is justified essentially by simpli-
city considerations only. There are other ways of
approaching the problem of determining j; related to
the ‘‘uncertainty blobs’’ introduced in Dzhafarov
(2003b), but their discussion is far beyond the scope of
this paper.

The problem of choosing F turns out to be more
tractable. The idea of Fechnerian Scaling (as the name
indicates) was derived from Fechner’s (1860) original
theory, or more precisely, from an interpretation of
Fechner’s theory in terms of discrimination probabilities
which was proposed in Dzhafarov and Colonius (1999)
and Dzhafarov (2001). Stated in our present terms,
Fechner’s idea was to compute the subjective distance
between real-valued stimuli a and b by integrating over
interval ða; bÞ the limit quantity23

lim
a!0þ

cðx;x þ aÞ � cðx;xÞ
a

.

Formally, this corresponds to putting F 
 identity:
23Here, cðx; yÞ ¼ Pr[‘x is different from y’] is assumed to be

computed from gðx; yÞ ¼ Pr[‘y is greater than x’] by means of a

transformation described in Dzhafarov and Colonius (2005) and

Dzhafarov (2002b).
On the initial stages of our development of Fechner-
ian Scaling (for multidimensional Euclidean spaces) it
was not obvious at all that this choice was generalizable.
In reference to Theorem 1, it was not obvious that

lim
a!0þ

CðiÞðxðtÞ;xðt þ aÞÞ
a

had to or even could be a positive quantity. In fact, it
seemed plausible that psychometric functions x!

cða; xÞ and x! cðx; aÞ should be ‘‘rounded’’ at x ¼ a

(see Fig. 5), which would make this limit vanish.24 To
make it positive one would have to transform
CðiÞðxðtj�1Þ; xðtjÞÞ by F with xo1 (compare with
Theorem 3).25 The introduction in our theory of the
two distinct observation areas and the formulation of
Regular Minimality and Nonconstant Self-Dissimilarity
in Dzhafarov (2002d) has proved this intuition to be
wrong: at x ¼ a psychometric functions x! cða;xÞ and
x! cðx; aÞ can never be ‘‘rounded,’’ they are (referring
to Fig. 5) either ‘‘pencil-sharp’’ (possibility P1 in
Theorem 3) or ‘‘needle-sharp’’(possibility P2). A related
finding in Dzhafarov (2002d) was the unexpected
relationship

Lð1Þ½a! x! b� þ Lð1Þ½b! y! a�

¼ Lð2Þ½b! x! a� þ Lð2Þ½a! y! b�,

G1ða; bÞ þ G1ðb; aÞ ¼ G2ða; bÞ þ G2ðb; aÞ,
order of infinitesimality than a: A parabolic roundness at x ¼ a; e.g.,
would mean CðiÞðxðtÞ;xðt þ aÞÞ asymptotically proportional to a2:

25To prevent confusion, this and related issues were discussed in our

previous publications in terms of what we called psychometric order,

m ¼ 1=x; with the corresponding reversal of ‘‘o1’’ and ‘‘41’’.
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which allowed us to introduce overall Fechnerian
distance Gða; bÞ as the final outcome of Fechnerian
Scaling, in place of four oriented distances G1ða; bÞ;
G1ðb; aÞ; G2ða; bÞ and G2ðb; aÞ: We see now that
the only way for these equations to hold true in a
‘‘sufficiently rich’’ set of discrete-continuous stimu-
lus spaces under the assumption that all such spaces
share the same overall psychometric transforma-
tion F; is to have F 
 identity: In particular, F 


identity is the only choice for purely continuous and
purely discrete spaces, for both belong to the
class of discrete-continuous spaces. In the continu-
ous case, F 
 identity implies the exclusion of the
‘‘needle-sharp’’ psychometric functions (possibility P2
in Theorem 3).

As mentioned earlier, empirical data presen-
ted in Dzhafarov and Colonius (2005) exclude possibi-
lity P2. Since these experimental data are con-
fined to specific kinds of stimuli, however, the gene-
rality of this conclusion is arguable. Now we have
an additional, theoretical support for this conclu-
sion: only possibility P1 is extendable to a ‘‘suffi-
ciently rich class’’ of discrete and discrete-
continuous stimulus spaces with the preserva-
tion of the Second Main Theorem of Fechnerian
Scaling.
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