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The title refers to the Free Will Theorem by Conway and Kochen whose flashy formulation is:
if experimenters possess free will, then so do particles. In more modest terms, the theorem says
that individual pairs of spacelike separated particles cannot be described by deterministic systems
provided their mixture is the same for all choices of measurement settings. We reformulate and
generalize the Free Will Theorem in terms of systems of random variables, and show that the
proof is based on two observations: (1) some compound systems are contextual (non-local), and (2)
any deterministic system with spacelike separated components is non-signaling. The contradiction
between the two is obtained by showing that a mixture of non-signaling deterministic systems,
if they exist, is always noncontextual. The “experimenters’ free will” (independence) assumption
is not needed for the proof: it is made redundant by the assumption (1) above, critical for the
proof. We next argue that the reason why an individual pair of particles is not described by a
deterministic system is more elementary than in the Free Will Theorem. A system, contextual or
not and deterministic or not, includes several choices of settings, each of which can be factually used
without changing the system. An individual pair of particles can only afford a single realization
of random variables for a single choice of settings. With this conceptualization, the “free will of
experimenters” cannot be even meaningfully formulated, and the choice between the determinism
and “free will of particles” becomes arbitrary and inconsequential.

I. INFORMAL INTRODUCTION

In this paper the issues related to the Free Will Theo-
rem (FWT) [1, 2] are discussed in terms of random vari-
ables. Conway and Kochen in [2, 3] emphasize that their
theorem does not use probabilistic notions. This seems
to plunge our paper in a controversy from the outset [3–
5]: our analysis of the FWT would be suspect if we used
conceptual means that are not acceptable in the original
formulation of the theorem. This is not the case how-
ever. We use the language of random variables to de-
scribe quantum experiments, involving large numbers of
replications with multitudes of particles. On the level of
individual particles (more specifically, individual pairs of
entangled particles), our focus, the same as in the original
FWT, is exclusively on whether they can be described as
systems of deterministic outcomes (which are, of course,
a special case of random variables). Probabilistic descrip-
tion of quantum experiments is hardly controversial, and
we have a good demonstration of the benefits it offers for
the FWT in [6]. Moreover, it is unavoidable. It is known
[5, 6] that the FWT can be found or extracted from much
earlier work than [1, 2], with the Kochen-Specker system
used by Conway and Kochen being replaced with other
contextual systems (in fact, any contextual system, as
we will see later). The contextuality of many of these
systems is more saliently probabilisitic than that of the
Kochen-Specker system. This prominently includes the
EPR/Bohm system, with a variant of the FWT being
already seen in Bell’s pioneering work [7].
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Our reformulations lead us to critically re-examine and
modify the FWT, although not invalidate it. In particu-
lar, we show that the assumption of the free will of exper-
imenters (or independence assumption, as many authors
prefer to call it [6, 9–13]) is not needed in the FWT. This
assumption is only needed to ensure that experimental
observations correctly identify the system experimented
on as contextual. It is therefore made unnecessary by an-
other assumption, critical for the FWT and underivable
from the independence assumption — that a contextual
system with certain properties exists. Furthermore, we
argue that while the question of whether individual par-
ticles can be described by deterministic systems is indeed
to be answered negatively, and while the FWT is indeed
one way of demonstrating this, there is a more elementary
reason for this negative answer: the notion of a system,
deterministic or not, is not applicable to an individual
pair of particles to begin with. The latter is a realiza-
tion of random variables for a single choice of settings,
whereas the notion of a system involves several mutually
exclusive settings, each of which can be factually and re-
peatedly used.

Our analysis is based on the Contextuality-by-Default
(CbD) theory (e.g., [14–16]), but its utilization in this
paper is confined to only two basic principles. The first
one is that each random variable is identified not only
by the property it measures but also by the context (set-
tings) in which it measures this property. The second
principle is that no two random variables recorded in
different, mutually exclusive contexts possess a joint dis-
tribution. Moreover, these principles are only applied to
a special subset of systems of random variables, the com-
pound, “Alice-Bob”-type systems with spacelike separa-
tion. These systems are non-signaling, and this makes it
unnecessary for us to invoke most of the content of CbD.
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Because of this the reader need not be familiar with CbD
to understand this paper.

However, a brief comment may be needed on the two
principles just mentioned. The double-indexation of ran-
dom variables means that if Alice chooses a setting x and
Bob chooses a setting y, their measurement outcomes
(random variables) are represented as, respectively, Ax,y

and Bx,y. And if Bob changes his setting to y′ while Al-
ice maintains her setting, her measurement is represented
by another random variable, Ax,y′

. A reader might erro-
neously interpret this as indicating that Bob somehow
influences Alice’s measurements despite their spacelike
separation (a “spooky action at a distance”). This is not
the case. The distribution of Ax,y′

is the same as that of
Ax,y, so Bob transfers no information to Alice. There is
no “action.” The difference between Ax,y and Ax,y′

sim-
ply reflects the relational nature of random variables in
classical probability theory. A random variable is a mea-
surable function on a probability space, and any variable
defined on the same space is jointly distributed with it:
their observed realizations are paired. Therefore, if Ax,y

and Ax,y′
were the same random variable, they would be

jointly distributed. But this would mean that realiza-
tions of Ax,y and realizations of Ax,y′

co-occur (and are
equal), while in reality they occur in mutually exclusive
contexts.1

The scheme of the paper is as follows. In the next sec-
tion we introduce formal notions and definitions related
to systems of random variables. In Sections III and IV we
present the FWT in the language of such systems. In Sec-
tion V we show that a systematic use of the language of
random variables makes the FWT unnecessary (though
not wrong): the experimenter’ free will (independence)
becomes unformulable, and the choice between the deter-
minism and free will of particles becomes arbitrary and
inconsequential. The concluding section provides a brief
summary.

II. PRELIMINARIES

A compound system of random variables is an indexed
set of random variables

R = {(Ax,y, Bx,y) : (x, y) ∈ C} , (1)

where x is a property measured by Alice, y is a prop-
erty measured by Bob, (x, y) is the context in which the
measurements are made, and C is a set of all possible

1 Without elaborating (see [16, 17] for detailed argument), another
way of understanding the contextual labeling is to observe that if
one dropped the second superscript in Ax,y and the first super-
script in Bx,y , the system would have to be noncontextual (due
to the fact that joint distributions of X,Y and of Y, Z imply the
joint distribution of X,Y, Z). The existence of contextual sys-
tems therefore is a reductio ad absurdum proof that contextual
labeling is necessary.

contexts. Every random variable therefore is identified
by the property it measures and the context in which it
measures it. To simplify discussion, we will assume that
all random variables have a finite number of values. The
properties x, y are also referred to as settings, although
there is the obvious semantic difference: a setting x des-
ignates the decision and arrangements made to measure
property x.

Alice and Bob are always assumed to be spacelike sep-
arated. Because of this, by special relativity, the system
is non-signaling : the distributions of the variables are
context-independent,

Ax,y dist
= Ax,y′

, (2)

for any x, y, y′ such that (x, y) , (x, y′) ∈ C. The symbol
dist
= indicates equality of distributions. Analogously,

Bx,y dist
= Bx′,y, (3)

for any y, x, x′ such that (x, y) , (x′, y) ∈ C.
One prominent example of a compound system is the

EPR/Bohm system [7, 18],

REPRB

A1,1 B1,1

A1,2 B1,2

A2,1 B2,1

A2,2 B2,2

, (4)

with C = {x = 1, x = 2} × {y = 1, y = 2}. Another
prominent example is the compound version of the
Kochen-Specker-Peres system [19, 20],

RKSP

A1,1 · · · B1,1 · · ·
A1,2 · · · B1,2 · · ·
...

...
...
...

...
...
...
...

A1,33 · · · B1,33

...
...

...
...
...

...
...

...
...
...
...

...
· · · A40,1 B40,1 · · ·
· · · A40,2 B40,2 · · ·
...
...
...

...
...

...
...
...

A40,33 · · · B40,33

, (5)

with C = {x = 1, . . . , x = 40} × {y = 1, . . . , y = 33}. In
REPRB , the x-values and y-values enumerate choices of
axes by Alice and Bob, and the random variables are
0/1 (say, spin values in spin-1/2 particles). In RKSP , the
y-values represent 33 special axes in Peres’s proof of the
Kochen-Specker theorem [20], and the x-values encode 40
Peres’s triples formed using these 33 axes; the A-variables
have values 011, 101, 110, and the B-variables are 0/1.
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Any two random variables recorded in the same con-
text, and referred to as an AB-pair, are jointly dis-
tributed : this means that Pr [Ax,y = a,Bx,y = b] is well
defined, for (x, y) ∈ C. However, two random vari-
ables from different contexts are stochastically unre-
lated, i.e. have no joint distribution: i.e., if (x, y) 6=
(x′, y′), the event conjunctions

[
Ax,y = a,Ax′,y′

= a′
]
,[

Ax,y = a,Bx′,y′
= b
]
, etc. are not well-defined events,

and no probabilities can be assigned to them. This formal
distinction reflects the obvious fact that random variables
from mutually exclusive contexts can never be observed
together, in any empirical meaning of “together.” In par-
ticular, Ax,y and Ax,y′

in (2) are not equal, because they
are not jointly distributed. All this means that the sys-
tem R in (1) is a collection of stochastically unrelated
AB-pairs, combined within a single system only because
every AB-pair shares at least one property it measures
with at least one other AB-pair.

Random variables attaining a given value with proba-
bility 1 are deterministic variables. A deterministic sys-
tem is a system containing only deterministic variables.
Thus, the two systems below are deterministic versions
of the EPR/Bohm system, non-signaling (DEPRB) and
signaling (D′EPRB):

DEPRB

1 0

1 1

0 0

0 1

x=1 x=2 y=1 y=2

,

D′EPRB

1 0

0 1

0 1

0 1

x=1 x=2 y=1 y=2

. (6)

In presenting these deterministic systems we conveniently
identify the random variables with their supports, say,
writing 0 instead of A2,1 ≡ 0 (≡ meaning “equal with
probability 1”). Because one loses the indexation as a re-
sult, one has to indicate for each number what properties
it measures (at the bottom of the tables).

Note that we use capital Roman letters to designate
random variables, and the script letters R,D to refer to
systems — because a system is not a random variable, it
is a set of stochastically unrelated random variables (the
AB-pairs).

A coupling R̄ for a system R is an identically double-
labeled set of jointly distributed random variables

R̄ =
{
Āx,y, B̄x,y : (x, y) ∈ C

}
, (7)

such that every AB-pair of R̄ is distributed as the corre-
sponding AB-pair of R:(

Āx,y, B̄x,y
) dist

= (Ax,y, Bx,y) , (8)

for every (x, y) ∈ C. Note that we can write R̄ rather
than R̄ in (7) because a coupling is a random variable in

its own right. Thus, while a coupling of REPRB can be
presented as

R̄EPRB

Ā1,1 B̄1,1

Ā1,2 B̄1,2

Ā2,1 B̄2,1

Ā2,2 B̄2,2

, (9)

it is no longer a set of four stochastically unrelated pairs,
but a random variable

R̄ =
{
Ā1,1, Ā1,2, Ā2,1, Ā2,2, B̄1,1, B̄2,1, B̄1,2, B̄2,2

}
(10)

with 28 possible values.2 Note also, that any determin-
istic system D has a unique coupling D, and the two are
easy to confuse if one uses our convenient identification
of deterministic random variables with their supports.
Thus, the coupling of DEPRB in (6) is written precisely
as DEPRB itself:

D̄EPRB

1 0

1 1

0 0

0 1

x=1 x=2 y=1 y=2

(11)

A (non-signaling) compound system R is noncontex-
tual if it has a coupling R̄ such that

Pr
[
Āx,y = Āx,y′

]
= 1,

and
Pr
[
B̄x,y = B̄x′,y

]
= 1,

(12)

whenever the indicated contexts are defined (belong to
C). If such a coupling does not exist, the system is con-
textual.

Overlooking logical subtleties [17], this definition is
equivalent to the traditional definitions of contextuality
and locality, in terms of the non-existence of joint dis-
tributions for single-indexed random variables [8] and in
terms of hidden variables with noncontextual/local map-
ping into observables [7, 19]. Perhaps this becomes more
clear on observing that noncontextuality is equivalent to
the existence of a set of jointly distributed single-indexed
random variables

R̃ =
{
Ãx, B̃y : (x, y) ∈ C

}
, (13)

2 To prevent misunderstanding, the term “random variable” is un-
derstood here in the standard meaning of modern probability
theory, with no restrictions on the codomain set of values: ran-
dom vectors and random sets therefore are also random variables.
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such that (
Ãx, B̃y

)
dist
= (Ax,y, Bx,y) , (14)

for every (x, y) ∈ C.

III. FREE WILL THEOREM

If all AB-pairs in a compound system R are set to spe-
cific values, the resulting system is called a realization of
R. The reason this has to be presented as a definition
is that, unlike a realization of a random variable (e.g.,
an AB-pair), a realization of a system is not an observ-
able outcome of any experiment: it is a pure mathemat-
ical abstraction, as the variables do not co-occur across
contexts. Recall that each random variable in R is finite-
valued, because of which the set of possible realizations of
R is finite. Thus, the system REPRB has 44 realizations,
whereas RKSP has 640·33 realizations.

The question posed in the FWT theorem can be formu-
lated thus: given that an idealized experiment involving
an unlimited number of particle pairs is described by a
system R, is it possible that each individual pair of par-
ticles is a deterministic system that coincides with one
of the realizations of R? The crux of the issue here is
in whether the realizations of the systems can describe
individual particle pairs. If not for this constraint, it
would be innocuous (although still objectionable, as we
will see later) to say that the system R is presentable as
a mixture of some of its realizations D1, . . . ,Dk taken as
deterministic systems:

R dist
=


D1 with probability p1
...

...
...

Dk with probability pk

,

k∑
i=1

pi = 1. (15)

However, in the question asked by the FWT, these de-
terministic systems are assumed to describe real physical
entities (particle pairs), because of which they should be
physically realizable. In particular, they are subject to
special relativity, and have to be non-signaling. For in-
stance, in the decomposition of REPRB , the signaling
deterministic system D′EPRB in (6) is not allowed.

Theorem (reformulated and generalized FWT). A con-
textual system R cannot be decomposed as in (15), where
D1, . . . ,Dk are non-signaling deterministic systems each
of which coincides with a realization of R.

Proof. If k = 0 (no non-signaling realizations of R exist),
the theorem is proved. Assume that (15) holds with k >
0. Introduce a random variable Λ such that Pr [Λ = i] =
pi (i = 1, . . . , k). Each Di, being deterministic, has a
unique coupling Di, and the mixture

R̄ =


D1 if Λ = 1
...

...
...

Dk if Λ = k

,

k∑
i=1

pi = 1 (16)

is a coupling of R. In this coupling,

Āx,y =


ax,y1 if Λ = 1
...

...
...

ax,yk if Λ = k

, (17)

where ax,yi is the realization of Ax,y in system Di. But
ax,yi = ax,y

′

i for any (x, y) , (x, y′) ∈ C (non-signaling).
We have then

Āx,y =


ax,y

′

1 if Λ = 1
...

...
...

ax,y
′

k if Λ = k

= Āx,y′
. (18)

Analogously,

B̄x,y =


bx,y1 = bx

′,y
1 if Λ = 1

...
...

...
bx,yk = bx

′,y
k if Λ = k

= B̄x′,y, (19)

for all (x, y) , (x′, y) ∈ C. By definition then, R is non-
contextual, contrary to the theorem’s premise.

Equivalently, and perhaps more familiar to physicists,
the proof could be formulated as a demonstration that R
has a local hidden variable model. Using the same Λ as
in the proof, we have a coupling R̄ of R such that(

Āx,y, B̄x,y
)

= (f (Λ, x, y) , g (Λ, x, y)) , (20)

where for each value Λ = i and each (x, y), the function
(f, g) reads the value of (ax,yi , bx,yi ) in Di. Since each Di

is non-signaling, i.e., f (i, x, y) = f (i, x) and g (i, x, y) =
g (i, y) for each Λ = i, we have(

Āx,y, B̄x,y
)

= (f (Λ, x) , g (Λ, y)) , (21)

which is a local (i.e., noncontextual) model with Λ as a
hidden variable.

Applying this theorem to RKSP used in Conway and
Kochen’s proof, this system has no non-signaling realiza-
tions (by the Kochen-Specker theorem). Rather surpris-
ingly therefore, the proof of the Conway-Kochen version
of the FWT is contained in the first sentence of the proof
above. ForREPRB , we have 16 non-signaling realizations
of this system, and the proof says that their mixtures can
only be noncontextual.

IV. WHERE IS THE FREE WILL ASSUMPTION
IN THE PROOF?

The formulations and proofs given in the previous sec-
tion do not even mention the hypothetical freedom with
which Alice and Bob choose their settings. How is it
possible? The answer is that the experimenters’ free will
assumption is indeed redundant. The proof above is con-
tingent on the assumption that R is a correct description
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of an idealized experiment involving an unlimited num-
ber of particle pairs, those whereof we ask whether they
could be deterministic systems. The experimenters’ free
will is only needed to dismiss a conspiracy of nature lead-
ing to an incorrect identification of the system in such an
experiment. Let us explain this using the systemREPRB .

Consider the possibility that in an EPR/Bohm exper-
iment only four types of entangled particle pairs are pos-
sible, described by the deterministic systems

D1

1 1

1 1

1 1

1 1

x=1 x=2 y=1 y=2

D2

0 0

0 0

0 0

0 0

x=1 x=2 y=1 y=2

D3

0 0

0 1

1 0

1 1

x=1 x=2 y=1 y=2

D4

1 0

1 0

0 0

0 0

x=1 x=2 y=1 y=2

(22)

Then the true systemREPRB obtained from any mixture
of these four systems is noncontextual. Suppose, how-
ever, that whenever Alice and Bob choose (x, y) = (1, 1)
or (2, 1) (the first and third rows in the matrices), the na-
ture chooses to supply a pair of particles described either
by D1 or by D2, equiprobably; whereas for (x, y) = (1, 2)
and (2, 2) (the second and fourth rows in the matrices)
the nature chooses between D3 and D4 equiprobably.
Neither Alice nor Bob nor anyone analyzing their ex-
perimental data has any way of knowing this. Following
many replications, the results will be a statistical esti-
mate of a system in which all random variables are uni-
formly distributed,

〈Ax,y〉 = 〈Bx,y〉 =
1

2
, (23)

and 〈
A1,1B1,1

〉
=
〈
A2,1B2,1

〉
=
〈
A2,2B2,2

〉
= 1

2 ,〈
A1,2B1,2

〉
= 0.

(24)

This is a non-signaling contextual system (a PR box,
[21]), and if used in the proof of the FWT in place of
what we assumed to be the true system, it will lead one
to the wrong conclusion that no decomposition (15) is
possible.

To avoid such conspiratorial scenarios one can postu-
late that the distribution of the non-signaling determinis-
tic systems in (15) is the same for all contexts (all choices
of settings). This can be interpreted in terms of Alice’s

and Bob’s free will, but does not have to. It would be
better therefore to call this assumption unbiasedness, but
not to multiply terminology we follow the authors who
call it (measurement or setting) independence. The as-
sumption, of course, is consistent with the choices of set-
tings being perfectly predetermined, but simply uncorre-
lated with the occurrences of the different types of de-
terministic systems. Moreover, Alice’s and Bob’s choices
may very well be correlated, it makes no difference.

The example just given, of a noncontextual system be-
ing mistaken for a contextual one, suggests the logical
possibility of taking the decomposition (15) for granted,
and accounting for the (apparent) contextuality of the
observed system R either by relaxing the requirement
of non-signaling of the deterministic systems Di or by
exploring deviations from the independence assumption.
There is an obvious reciprocity between the two, and it
has indeed been researched and quantified [9–12]. This
line of study is outside the scope of our paper. In the
FWT we are only interested in whether individual parti-
cle pairs can be described by deterministic non-signaling
systems, and the answer given is negative.

As the above reasoning shows, the independence as-
sumption is not a necessary premise of this theorem, be-
cause it is obviated by the critical assumption that cer-
tain contextual systems exist. The situation is this:

(i): if we do not assume, e.g., that REPRB for certain
quadruples of axes is contextual, then the FWT for
this system cannot be proved whether or not one
adopts the independence assumption; and

(ii): if we do assume the contextuality of REPRB

(presumably because we believe experiments or
quantum-mechanical theory), the proof can be car-
ried out without mentioning the independence as-
sumption.

Analogously, Conway and Kochen have to postulate the
existence of a system RKSP with certain properties (the
SPIN assumption), ensuring that no consistent assign-
ment of values to Alice’s measurements is possible (the
Kochen-Specker theorem); and they also have to postu-
late that if Bob’s axis coincides with one of the three
axes chosen by Alice, then the corresponding measure-
ment outcomes always coincide (the TWIN assumption).
With these postulates, however, the independence (part
of their MIN assumption) is not needed.3

3 As noted by critics of the FWT [4, 5], MIN is not a rigorous
statement. It speaks of Alice and Bob’s choices as being made
“freely” and “independently,” of which the former we translate
into the independence assumption. The “independently” of Con-
way and Kochen apparently means that Alice’s and Bob’s choices
are combined in all possible ways. This assumption is not needed
either. Thus, it is easy to see that in the system RKSP one can
delete all rows in which Bob’s axis is not one of the three axes
chosen by Alice. The assumption in question then will be vio-
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Summarizing, the independence (or “experimenters’
free will”) is only needed if we consider the epistemolog-
ical question: how can one be sure that the compound
system estimated from an experiment is truly contex-
tual? The FWT is a conditional statement: if we have a
contextual compound system with certain properties, it
cannot be decomposed as in (15).

V. SYSTEMS VERSUS ISOLATED AB-PAIRS

There is, however, a simpler reason not to use de-
terministic systems when describing individual particle
pairs. The reason is that a single pair of particles is a re-
alization of an isolated AB-pair of a system rather than
a realization of an entire system. The difference is that
the AB-pair is determined by the factual context chosen
by Alice and Bob, while any given realization of a system
also includes the counterfactual contexts that Alice and
Bob “could have chosen.” Thus, experimental trials for
REPRB produce a series of outcomes, such as

...
...

...
...

0 1

0 1

1 1

0 0

0 1
...

...
...

...

x=1 x=2 y=1 y=2

. (25)

We see no logical reason to think that the observed value(
A1,2, B1,2

)
= (0, 1) is somehow related to any specific

values of the AB-pairs for contexts other than the fac-
tual (x, y) = (1, 2). Such a relation would only be rea-
sonable if there existed a way to observe these alter-
native AB-pairs by factually performing the measure-
ments for (x, y) = (1, 1), (2, 1), and (2, 2) in addition
to (x, y) = (1, 2) on the same pair of particles. This is,
however, impossible, and not because a projective mea-
surement is known to destroy the state of entanglement.
We are not allowed to use quantum mechanical consider-
ations when conceptually testing the standard quantum
mechanical view of elementary particles.4 The reason we
cannot speak of the “the same” pair of entangled particles
being measured repeatedly using variable settings is logi-
cal rather than physical. It is critical for our analysis that

lated, but the proof of the (original) FWT will not change at
all. (MIN also includes a statement that can be interpreted as
non-signaling principle.)

4 In fact, it has recently been established [22, 23] that a sequence
of POVM-represented measurements (each of which depends on
the settings and outcomes of the previous measurements) can
be performed on the same pair of entangled particles without
affecting the entanglement state.

all particle pairs be generated and prepared in precisely
the same way, and their spin values, for any given choice
of settings, be measured in precisely the same way. A pair
of particles after a measurement has been performed on
it simply is not the same pair as it was before, and it
should be relabeled accordingly. Barring such relabeling,
a sequence like (25) should be treated as several (here,
four) unrelated to each other sequences, each defined by
a specific context.

One may now ask seemingly the same question as in
the FWT but applied to pairs of particles treated as re-
alizations of specific AB-pairs: can they be considered
deterministic variables? In other words, the question is
whether each pair of particles can be described as

Ax,y ≡ ax,y Bx,y ≡ bx,y , (26)

with the specific settings (x, y) under which the mea-
surements are recorded. This is, however, a very differ-
ent question, and the answer is: yes, if one so wishes,
but this makes no difference. Flips of a fair coin can al-
ways be considered a mixture of two deterministic vari-
ables with respective values Head and Tail, each occur-
ring with probability 1/2. Following the prevailing tradi-
tion in statistics, a sequence of realizations of an AB-pair
can be treated as a realization of a random sample (a set
of identically distributed independent random variables).
However, it can also be treated as a realization of a set
of different random variables (e.g., deterministic ones),
randomly alternating. Let us again use REPRB for an il-
lustration. Assume that one of its AB-pairs is distributed
as

value (1, 1) (1, 0) (0, 1) (0, 0)

probability p 1− p 0 0
. (27)

Clearly, this variable is indistinguishable from any mix-
ture {

X with probability q

Y with probability 1− q
(28)

of the random variables X,Y with the respective distri-
butions

X :
(1, 1) (1, 0)

p1 1− p1
, Y :

(1, 1) (1, 0)

p2 1− p2
, (29)

provided

qp1 + (1− q) p2 = p. (30)

In particular (and trivially), X,Y can be viewed as de-
terministic variables,

X :
(1, 1) (1, 0)

1 0
, Y :

(1, 1) (1, 0)

0 1
, (31)

mixed as {
X with probability p

Y with probability 1− p
. (32)
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We see that the question of whether the individual pairs
of particles have “free will” of their own, i.e., whether
they are deterministic entities, looses its meaning.

It should also be noted that once this context-wise view
of the individual particle pairs is adopted, one need not
be concerned with the independence assumption (“free
will” of Alice and Bob). In fact this assumption now
is unformulable. Each AB-pair corresponds to a fixed
context, and one cannot informatively say that the AB-
pair in a given context does not depend on context.

VI. CONCLUSION

To summarize, the view that follows from the concep-
tual framework of CbD does not invalidate the FWT-
type theorems, but makes them unnecessary. These the-
orems can be viewed as reductio ad absurdum demonstra-
tions that individual pairs of particles cannot be viewed
as deterministic systems. CbD allows one to streamline
these demonstrations, ridding them of unnecessary as-
sumptions. Moreover, CbD leads one to the view that
the individual pairs of particles should not be viewed
as systems to begin with, only as realizations of ran-

dom variables for a given choice of settings. As Peres
famously put it, “unperformed experiments have no re-
sults” [24] — and these non-existing results should not be
appended to factual results, lest one runs into a contra-
diction. The reason we can speak of R in (1) as a system
is that as we switch from one context to another, all other
macroscopic circumstances of measurements (overall ex-
perimental set-up and preparation procedure) remain the
same. We can repeatedly experiment with such a system
without changing its defining parameters. In particular,
a deterministic system allows one to repeatedly experi-
ment with it and obtain the same results for any given
context. Individual pairs of particles, unless they change
their identity, afford only one pair of measurements, in
one particular context.
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