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From the principle that subjective dissimilarity between 2 stimuli is determined by their
ratio Fechner derives his logarithmic law in 2 ways. In one derivation, ignored and forgotten
in modern accounts of Fechner’s theory, he formulates the principle in question as a functional
equation and reduces it to one with a known solution. In the other derivation, well-known and
often criticized, he solves the same functional equation by differentiation. Both derivations
are mathematically valid (the much-derided “expedient principle” mentioned by Fechner can
be viewed as merely an inept way of pointing at a certain property of the differentiation he
uses). Neither derivation uses the notion of just-noticeable differences. But if Weber’s law
is accepted in addition to the principle in question, then the dissimilarity between 2 stimuli
is approximately proportional to the number of just-noticeable differences that fit between
these stimuli: the smaller Weber’s fraction the better the approximation, and Weber’s fraction
can always be made arbitrarily small by an appropriate convention. We argue, however, that
neither of the 2 derivations of Fechner’s law nor the relation of this law to thresholds constitutes
the essence of Fechner’s approach. We see this essence in the idea of additive cumulation of
sensitivity values. Fechner’s work contains a surprisingly modern definition of sensitivity at
a given stimulus: the rate of growth of the probability-of-greater function with this stimulus
serving as a standard. The idea of additive cumulation of sensitivity values lends itself to
sweeping generalizations of Fechnerian scaling.

Keywords: additivity, discriminability, dissimilarity, Fechner, measurement, scaling, sen-
sation, sensitivity, stimulus space, subjective distance.

Gustav Theodor Fechner’s principal work, Elemente der Psychophysik, turned 150 years old in
2010. From the publication of this book many date the beginnings of scientific psychology. By
the mid-19th century the Enlightenment tradition had long since made the adjective scientific

synonymous with physics-like. That is, the scientific implied systematic measurements informing
a mathematical theory and being guided by it, the theory itself consisting of postulated laws and
their logical consequences. Therefore, the term psychophysics coined by Fechner in the Elemente

was especially appropriate: although its meaning is derived from the relations “of the material and
the mental,” it can also be understood as designating the psychology aspiring to be “like physics.”

Before Fechner’s work Ernst Weber (1846) systematically experimented with pairwise compar-
isons of weights and visually presented line segments, but his observations did not lead him beyond
an empirical generalization bearing his name. Although called a “law,” this generalization played
a very different role from, say, Newton’s laws of motion, as it was not used to derive anything
else from it. Johann F. Herbart (1824), on the other hand, constructed an elaborate mathemat-
ical theory of “strengths” of mental events (Vorstellungen) interacting in one’s mind. He did not
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think it imperative, however, to be able to somehow measure these “strengths,” or indeed to be
able to identify individual mental events as separate entities. Despite Herbart’s titling his princi-
pal treatise “Psychology as Science,” it more appropriately falls under the rubric of mathematical
metaphorizing.

Unlike Herbart’s mental events, Fechner’s sensations are identifiable by the stimuli causing
them. To reproduce a sensation one simply has to present to the observer the same stimulus under
the same conditions (although the conditions may not be entirely controllable if they include the
observer’s physiological states). Unlike Herbart’s nebulous “strengths of mental events,” the notion
of a sensation magnitude is operationally defined: there are certain empirical and computational
procedures that allow one to arrive at numbers representing these magnitudes. The measurements
of difference thresholds described in the Elemente can be viewed as “merely” elaborate versions of
those used before him, but their significance was in something else: they did not interest Fechner
for their own sake but rather as a way to inform a mathematical theory of subjective differences and
sensation magnitudes. This conjunction of the mathematical and the operational makes the dating
of scientific psychology from the Elemente amply deserved. Its only historical rival in this respect
seems to be Daniel Bernoulli’s (1738) admirable analysis of “moral wealth” which can be viewed as
having founded the modern theory of decision making, more than a century before Fechner’s work.1

Not everyone would agree with this characterization of Fechner’s work. Many contemporary
psychophysicists, in the wake of S.S. Stevens’s disparagement of Fechner’s theory (Stevens, 1960,
1961), would reduce the principal significance of Fechner’s work to the first systematic presentation
of the three classical methods of measuring thresholds. It is Fechner’s theory, however, that is the
exclusive focus of this article. Ever since the publication of the Elemente Fechner was criticized for
being conceptually confused when dealing with just-noticeable differences (JNDs) in relation to his
psychophysical function, and for using faulty mathematical reasoning in critical derivations (Elsas,
1886; Müller, 1878; Luce & Edwards, 1958). We think this criticism is based on misinterpretation,
even if to a large extent due to Fechner’s own expository and terminological shortcomings. We
argue in this article that Fechner’s derivations of his logarithmic law are valid, and we discuss in
some detail their logical relation to Fechner’s methods of measuring thresholds and sensitivity. We
then present our extraction from Fechner’s theory of what we think to be its most essential and
enduring aspects, and we proceed to discuss our understanding of what it is that one can call the
“main Fechnerian idea,” the legacy of Fechner’s theory to contemporary psychophysics.

In accomplishing these goals we do not attempt a textual analysis of the Elemente, or indeed
any of Fechner’s other works. Fechner’s writing is often less than clear and open to conflicting
interpretations. This article is more of a reconstruction than a review or historical analysis: we try
to reconstruct the logic of the Fechnerian approach, and we do this using the language acceptable
in modern psychophysics rather than Fechner’s own words. Our reconstruction, however, is not
an alternative reality, a substitution of what ought to have been said for what has been said. We
ascribe to Fechner’s theory only the positions that are unequivocally contained in Fechner’s texts or
can be plausibly inferred from them. Thus, it is a fact that the Elemente contains two derivations
of Fechner’s law, one of which is based on presenting a certain principle (which we call the “W-
principle”) as a Cauchy-type functional equation. It is a fact that neither derivation makes use of
JNDs; therefore, neither derivation is based on Weber’s law or the postulated subjective equality
of JNDs (known today as “Fechner’s postulate”). It is a fact that the counting of just-noticeable
increments leading from one stimulus to another as a procedure for measuring subjective difference
between them is understood by Fechner as an approximation only, justified if Weber’s fraction is
sufficiently small.2
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The situation is different with our understanding of what constitutes the “main Fechnerian idea”:
we see it as the idea of summation of differential sensitivity values along an interval of stimulus
values, and this choice is determined by our own view of psychophysics and its historical development
after Fechner. Even so, our interpretation is consistent with Fechner’s views. It is supported, in
particular, by Fechner’s emphasizing (in the Elemente and in his other writings) that the idea of
summation of very small subjective increments would constitute a valid basis for psychophysical
measurement even if Weber’s law (the term Fechner uses to designate both the law established by
Weber and a law of his own, called here the W-principle) were abandoned or replaced by another
law, leading to functions other than the logarithmic one.

As a brief biographical note, Fechner was nearly 60 when he published the Elemente. Before
this event, one might argue, he published nothing of notable scientific value, except possibly for an
appendix to his Zend-Avesta (1851), in which he described his insight of the logarithmic law. On
and off, Fechner continued to be active in psychophysics for almost 30 years after the Elemente,
having published his last and rather insightful article in 1887, the year of his death at the age of
86. Quite a source of inspiration for aging scientists.

Fechner’s Unidimensional World
The most conspicuous feature of Fechner’s approach to the relations “of the material and the
mental,” the feature that has remained ubiquitous in psychophysics up to the present day and
in the opinion of many almost defining it, is the unidimensionality of both the material and the
mental: the former is represented by unidimensional continua of intensity and extent, the latter
by corresponding unidimensional continua of the “sensation magnitudes.” Mathematically, both
a mental continuum and its “physical correlate” are sets of nonnegative real numbers. The basic
relation of the two is simple: subjective magnitude increases with stimulus magnitude (intensity
or extent) beginning with some positive value o of the latter, called the absolute threshold. The
value of o is subject to stochastic variability, but we will follow Fechner in acknowledging this but
treating it as a constant. We will disregard the issue of “negative,” subliminal sensations, which
interested Fechner but remained extraneous to his theory. Contrary to the notion that Fechner’s
theory is critically based on the notion of a JND, the function relating a mental continuum to its
physical counterpart is explicitly assumed by Fechner to be continuous (Elemente, p. 20 of vol. 1,
and p. 85 of vol. 2).3

However, sensation magnitude need not be taken as a primitive of Fechner’s theory. The logic of
the latter is more consistent with the view that the notion of sensation magnitude is constructed by
means of a more basic concept of difference sensation (Unterschiedsempfindung). In Fechner (1887),
his last work on psychophysics, Fechner states this explicitly (see p. 9): the notion of sensation
magnitude is linked to that of difference sensation through what Fechner calls the “intermediate”
concept of sensation difference (Empfindungsunterschied), or difference between sensations. The
link is established by postulating that the difference sensation for stimuli a and b and the difference
between the two corresponding sensations, though logically different notions, are numerically equal
to each other: the sensation of difference between two stimuli is the same as the increment in

sensation magnitude from the lesser to the greater of the two stimuli (cf. Elemente, p. 85 of vol.
2). Stated in modern terms (and replacing the term “difference sensation” with a more modern-
sounding “subjective dissimilarity”), for stimuli a and b above or at the threshold value o, their
subjective dissimilarity D (a, b) in Fechner’s theory has the properties of a unidimensional distance:
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D (a, b) = 0 if and only if a = b; D (a, b) = D (b, a); and, whenever a ≤ b ≤ c,

D (a, c) = D (a, b) + D (b, c) . (1)

This additivity property is central for Fechner’s theory, as he repeatedly states when discussing
the notion of measurement (e.g., Elemente, pp. 56, 60 of vol. 1, and Chapter 20 in vol. 2). It
is equivalent to assuming that for o ≤ a ≤ b the subjective dissimilarity D (a, b) can always be
presented as the difference D (o, b)−D (o, a). The quantities D (o, b) and D (o, a) are dissimilarities
of the respective stimuli from the absolute threshold o, and it is these quantities that Fechner calls
the magnitudes of the sensations caused by, respectively, b and a.4

JNDs, Weber’s Law, and W-principle
The notion of a JND (which term we use throughout this article as synonymous to Fechner’s
differential threshold), poses a great, if not the greatest conceptual problem for Fechner’s theory. In
Chapter 10 of the Elemente Fechner subscribes to the notion that if the physiological representations
of stimuli a and b are sufficiently close to each other, these stimuli are perceived as precisely the
same (vol. 1, pp. 242-243). At the same time he thinks of sensation magnitudes of a given kind as
forming a continuum, and of the psychophysical function as mapping two distinct stimuli, however
close, into two distinct sensations. To justify his “method of right and wrong cases” (now known
as the method of constant stimuli), Fechner acknowledges that a stimulus b, however close to a,
will be perceived sometimes greater than a and sometimes less than a (Elemente, vol. 1, pp.
77, 247). And it is clear from his use of normal ogives to approximate psychometric functions
(discussed later in this article) that, for a fixed stimulus a, the probability Pr [a ≺ b] with which
a stimulus b is judged to be greater than a is different for different values of b. It is reasonable
therefore to disregard Fechner’s belief in true indistinguishability (stated in terms of the relations
between physiological and mental processes rather than the latter and stimuli; see Elemente, vol.
1, pp. 248-249) and to ascribe to him the modern psychophysical view according to which a
JND is merely an expedient characterization of a distribution of comparative responses to pairs of

stimuli, adopted by a convention, such as the difference between two arbitrarily chosen quantiles
of a psychometric function or an arbitrarily chosen measure of spread for matching values in the
method of adjustments.

Weber’s law can be formulated as the statement

a
�

a
= 1 + C

∗
, (2)

where a
� denotes a stimulus just-noticeably greater than a, and C

∗ a positive constant (traditionally
referred to as Weber’s fraction). The value of a

� clearly depends on the method of measurement
used and the convention adopted. Thus, with the method of constant stimuli, a

� for a given a is
defined by

Pr [a ≺ a
�] = p, (3)

where p is some probability value between 1/2 and 1 (we make here some simplifying assumptions
that will be explicated later). In his definition of JND, Fechner sets p equal to 1 with the proviso that
Pr [a ≺ b] < 1 for any b < a

� (Elemente, vol. 1, p. 128). But his analysis of pairwise comparisons
of weights (Elemente, vol. 1, pp. 182-201) shows that he thought Weber’s law applied to any value
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of p > 1/2. The value of C
∗ then depends on one’s choice of p: the closer the latter to 1/2, the

smaller the C
∗.

If the method used is that of the “average error” (the method of adjustment, or matching), then
a
� can be defined as

a
� = a + kσ (a) , (4)

where σ (a) is some measure of spread (say, standard deviation) of stimuli judged to match a, and
k an arbitrary positive constant. There can be no justification for preferring one value of k to
another, and although one’s choice of k does not affect the validity of Weber’s law, it affects the
value of C

∗: the smaller the k, the smaller the C
∗.

That C
∗ depends on p in the method of constant stimuli and on k in the method of adjustment,

and that in both cases C
∗ can be made arbitrarily small will be seen to be important for operational

aspects of Fechner’s theory. Even with the “method of JNDs” (known today as the method of limits),
where a

� is defined as a measure of central tendency µ (a) of the distribution of stimuli judged to
be just-noticeably greater than a, one can argue that the value of C

∗ can be made arbitrarily small
by using an arbitrarily small positive k in the modified definition

a
� = a + k (µ (a)− a) . (5)

Fechner knew that this method can be trusted less than the other two because µ (a) in it is greatly
affected by “subjectivity” (Elemente, vol. 1, p. 75), that is, observers’ decision-making criteria.

We see that the definition of a
� in Weber’s law does not relate to the notion of subjective

dissimilarity D (a, b) in any direct way. Response probabilities, standard deviations of matches, and
the means of stopping points in sequences of stimuli are all objective characteristics of observable
response distributions. However, it is widely believed, and parts of the Elemente (e.g., pp. 59, 68
of vol. 1, and pp. 58, 428 of vol. 2) may indeed be interpreted as suggesting this, that Fechner
assumed that any two stimuli separated by a JND (at least for some methods and conventions used
to define it) have a fixed degree of subjective dissimilarity:

D (a, a
�) = C, (6)

where C is some positive constant (which may be different for different physical continua, say, in-
tensities of tones of different frequencies). This statement is sometimes called “Fechner’s postulate.”

With this postulate accepted, Weber’s law can be augmented into the statement

Weber’s Law + Fechner’s Postulate. With an appropriate definition of JND, the

ratio a
�
/a of any two stimuli separated by one JND is constant, and so is the dissimilarity

between these stimuli, D (a, a
�).

Later in this article (when we discuss Elsas’s criticism) we will see that this formulation creates
difficulties for Fechner’s theory.

For now, however, observe the following consequence of this formulation: denoting by a
(n)� the

stimulus separated from the smaller stimulus a by n JNDs (n = 1, 2, . . .), we have

a
(n)�

a
=

a
(n)�

a(n−1)� × . . .× a
�

a
= (1 + C

∗)n

and
D

�
a, a

(n)�
�

= D (a, a
�) + . . . + D

�
a
(n−1)�

, a
(n)�

�
= nC.
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In other words, equal ratios of stimulus magnitudes give rise to equal dissimilarities, provided the
stimuli are separated by an integer number of JNDs. Fechner does not use this reasoning explicitly,
but he formulates a statement that he calls “Weber’s law,” which can be viewed as the previous
formulation but without mentioning JNDs:

W-principle. The subjective dissimilarity between stimuli with physical magnitudes a

and b (provided o ≤ a ≤ b, where o is absolute threshold) is determined by the ratio of

these magnitudes, b/a.

We will call this statement W-principle to allude to the fact that in the Elemente Fechner called
it “Weber’s law” (Chapter 9 in vol. 1) and at the same time to distinguish it from Weber’s law
conventionally understood as referring to (2). Stated in symbols, this principle says that D (a, b)
is some function of b/a. Fechner’s own numerous formulations are almost equally precise (e.g., the
concise formulation “sensation differences or sensation increments remain the same as long as ratios
of stimuli remain the same,” on p. 134 of vol. 1 of the Elemente).

Note that Weber’s law (2), “Fechner’s postulate” (6), and the W-principle are logically inde-
pendent, in the sense that each can hold true with the other two being false. If the W-principle is
postulated, however, then “Fechner’s postulate” and Weber’s law logically imply each other: both
must be true or both false, for any given way of measuring JNDs. The conjunction of Weber’s law
with “Fechner’s postulate” does not imply the W-principle, except for pairs of stimuli separated by
an integer number of JNDs (as explained later, one needs “infinitesimal” versions of Weber’s law
and “Fechner’s postulate” to be able to derive the W-principle from them in full generality). We
cannot be certain that Fechner was clear in his mind about all these logical relations.

With this preamble, let us consider how Fechner derives his celebrated law.

Fechner’s Forgotten Derivation of Fechner’s law
The controversial derivation believed to involve Weber’s law, the postulated subjective constancy
of JNDs, and a certain differential equation is well known (to English language readers, primarily
from Boring’s 1950 account). We will deal with it in the next section. It is less known (perhaps
even entirely forgotten in the post-Fechner psychology) that Chapter 17 of the Elemente contains
a derivation of Fechner’s law from the W-principle formulated in Chapter 9, both the formulation
and the derivation making no use of JNDs and involving no differentiability assumptions.

The W-principle says that if o ≤ a ≤ b,

D (a, b) = F (b/a) , (7)

where F is some function.5 This statement is equivalent to Fechner’s logarithmic law. Indeed, the
statements (7) and (1) combine into the following: whenever o ≤ a ≤ b ≤ c,

F (c/b) + F (b/a) = F (c/a) . (8)

It is not difficult to show, by transforming this equation into what is known as the Cauchy functional

equation on positive reals (see Aczél, 1987), that the only regular (in particular, nonnegative)
function F that satisfies it is

F (x) = K log x, x ≥ 1, (9)
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where K is some positive constant.6 It follows that (7) and (1) can be satisfied if and only if, for
any o ≤ a ≤ b,

D (a, b) = K log
b

a
. (10)

This is Fechner’s “difference formula” (Unterschiedsformel). In particular, the sensation magnitude
D (o, a) for a stimulus a ≥ o is computed as

D (o, a) = K log
a

o
, (11)

which is the traditional formulation of Fechner’s law (called by Fechner the “measurement formula,”
Massformel).

The derivation of this law presented in Chapter 17 of the Elemente (pp. 33-39 of vol. 2)
is essentially the same as the modernized account just given. Fechner correctly derived (8) and
recognized it as a functional equation of the type treated by Augustin-Louis Cauchy (1821). From
this work, by then only 40 years old, Fechner knew that (9) is the only solution for F in (8).
With some caveats related to unexplicated assumptions and the domains of the functions involved,
Fechner’s reasoning in this derivation is sound and rigorous.

Fechner’s use of the term “Weber’s law” to designate the W-principle, (7) (i.e., an equivalent to
what we now call Fechner’s law), could have been merely a token of Fechner’s respect for Weber.
But it created a conceptual confusion that began dogging him during his lifetime and has lasted until
the present time. As an example, G. E. Müller (1878) essentially replicated Fechner’s derivation of
the logarithmic law by reducing it to a Cauchy-type functional equation, but claimed superiority
because Fechner’s derivation, in his words, “is making use of the so-called fact of a stimulus threshold,
without which, as Fechner argues erroneously, the logarithmic relation between sensation intensity
and stimulus intensity cannot be derived” (p. 228). Müller was right to think of “stimulus threshold”
as a theoretically unnecessary concept for Fechner’s derivation of the logarithmic law, but he was
wrong in assuming that Fechner made use of this concept.

The Well-Known (but Misunderstood) Derivation
The juxtaposition of “Fechner’s postulate” and Weber’s law leads us to the second, better known and
often criticized derivation of Fechner’s law (see Elsas, 1886; Luce & Edwards, 1958; Makarov, 1959;
Stevens, 1960). It is given in Chapter 16 of the Elemente, and is usually described by Fechner’s
critics as follows. Since C in “Fechner’s postulate” (6) is a constant, and since C

∗ in Weber’s law
(2) is another constant, one can write

D (a, a
�) = D (o, a�)−D (o, a) =

C

C∗ · a
� − a

a
. (12)

Then, the critical account goes on, Fechner invokes an “expedient principle” (Hülfsprinzip) according
to which a

� − a in this formula can be replaced with an infinitesimal change da. Assuming the
differentiability of the sensation magnitude D (o, a) with respect to the stimulus magnitude a, the
difference D (o, a�)−D (o, a) becomes an infinitesimal increment dD (o, a). The statement (12) from
a trivial relation between two constant turns into an informative differential equation,

dD (o, a) =
C

C∗
da

a
, (13)
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whose solution is, for any o ≤ a ≤ b,

D (o, b)−D (o, a) = D (a, b) =
C

C∗ log
b

a
. (14)

In this way one gets Fechner’s “difference formula” (14) with K = C/C
∗.

Of course, this derivation is mathematically flawed. Moreover, as a physicist Elsas (1886) pointed
out, there is an inconsistency between (12) and (14). A simple way of demonstrating it is this: since
a
� = (1 + C

∗) a according to (2), the subjective dissimilarity D (a, a
�), according to (14), should

equal

D (a, a
�) =

C

C∗ log
a
�

a
=

C

C∗ log (1 + C
∗) . (15)

Because this quantity is different from C, this formula contradicts “Fechner’s postulate” (6). In his
1887 article, shortly before his death, Fechner responded to this criticism by saying that Weber’s
law (2) and the differential equation (13) can be related to each other only if C

∗ is sufficiently small
(Fechner, 1887, p. 166). We understand this rejoinder to support the following understanding.

The factual derivation of Fechner’s law in Chapter 16 of the Elemente does not make use of
Weber’s law at all. It makes use of the W-principle (which, we keep in mind, Fechner called
“Weber’s law”). If (7) holds and the function F (x) is assumed to be differentiable at least at x = 1
(an innocuous assumption for a 19th century scientist), then

D (a, a + da) = dD (o, a) = K
da

a
, (16)

where K = F
� (1). This is Fechner’s “basic formula” (Fundamentalformel), whose solution is the

logarithmic function (10). If, in addition to the W-principle, Weber’s law (2) happens to hold too
(or, equivalently, “Fechner’s postulate” (6) happens to hold too), then

D (a, a
�) = K log

a
�

a
= K log (1 + C

∗) = C. (17)

Now, if C
∗ is very small, then log (1 + C

∗) ≈ C
∗, whence the interpretation of K as C/C

∗ in (14)
and (13) becomes approximately correct, and no contradiction ensues. In particular, the expression
in (15) is approximately equal to C.

It was not too risky for Fechner to assume that C
∗ is small. Recall that if one uses the method

of constant stimuli, C
∗ can be made arbitrarily small by choosing p in the defining formula (3)

sufficiently close to 1/2 (assuming, as Fechner apparently did, that Weber’s law holds for any p). If
one uses the adjustment method or the method of limits, C

∗ can also be made arbitrarily small by
choosing arbitrarily small value of k in the defining formulas (4) and (5). It is not clear, however,
whether Fechner himself was aware of this “small-by-construction” consideration.

It seems to us that Fechner’s “expedient principle” (Chapters 15 and 16 of vol. 2), the main target
of his critics’ derision (Luce & Edwards, 1958), is merely an inept way of describing the transition
from (7) to the differential equation (16): the difference sensation D (a, b) is some function of
(b− a) /a, Fechner says,

D (a, b) = F (b/a) = G

�
b− a

a

�
,

and the “expedient principle” ensures that as b tends to a making (b− a) /a infinitesimally small,
the relationship between D (a, b) and (b− a) /a tends to a simple proportionality,7

D (a, a + da) = G

�
da

a

�
= G

� (0)
da

a
.

8



This is trivially correct, and this would explain why Fechner says that this otherwise bizarre principle
is a priori valid. Our interpretation is also corroborated by the fact that in his 1877 treatise (p.
10) Fechner states that his “basic formula” can be presented equivalently as (16) or as (7).

Link to Threshold Measurements
The question arises: if Weber’s law and JNDs do not play any role in Fechner’s derivations of his
law, what is the role of Fechner’s methods of measuring JNDs? We mentioned at the beginning of
this article that the pioneering status of the Elemente is in the conjunction of the mathematical
and the operational. Where does the latter enter his theory?

We know that if both the W-principle (from which alone Fechner’s law is derived) and Weber’s
law are satisfied, then so is “Fechner’s postulate” in the form (17), and Fechner’s difference formula
(10) can be written as

D (a, b) =
C

log (1 + C∗)
log

b

a
, (18)

for o ≤ a ≤ b. Let us count the approximate number of JNDs that fit between a and b. Weber’s law
implies that, starting from a, one can form the geometric progression a, a (1 + C

∗) , a (1 + C
∗)2 , . . .,

until, for some n,
a (1 + C

∗)n ≤ b < a (1 + C
∗)n+1

. (19)

For any given a and b, the smaller the value of C
∗ the smaller the interval containing b. By simple

algebra,

n ≤ 1
log (1 + C∗)

log
b

a
< n + 1. (20)

But we can also estimate the number of JNDs fitting between a and b by taking the subjective
dissimilarity D (a, b) in (18) and dividing it by the fixed value C of the dissimilarities corresponding
to JNDs:

D (a, b)
C

=
1

log (1 + C∗)
log

b

a
. (21)

Because the logarithmic expression in (21) coincides with that in (20), it falls between the same
two n and n + 1. That is, the number of JNDs fitting between two given stimuli approximately

equals the subjective dissimilarity between the two stimuli measured in units of the subjective value

of the JNDs. This links Fechner’s theory with empirically measured JNDs and empirically measured
Weber’s fraction C

∗. This is essentially what the traditional interpretation of Fechner’s theory boils
down to, and we see that this interpretation can be upheld without finding faults with Fechner’s
reasoning and use of mathematics.

Beyond Weber’s Law and W-principle
Fechner repeatedly says in the Elemente (e.g., on pp. 65-66 of vol. 1 and p. 2 of vol. 2) that
the applicability of his approach to (or his “principle of”) measuring sensation magnitudes is not
contingent on the validity of “Weber’s law”— and it is never quite clear whether he means the
W-principle or Weber’s law. As stated earlier, it is possible he was not clear in his mind about the
difference. He must mean Weber’s law when he says that it is empirically known to be violated
outside a middle range of stimulus magnitudes (p. 67 of vol. 1, and pp. 195, 336, and 429 of vol.
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2). But in other places the context suggests that he means the W-principle (pp. 9-10 and 34-36 of
vol. 2). Either understanding raises questions. With Weber’s law abandoned (and the W-principle
intact), Fechner’s theory seems to lose its operational link to threshold measurements. Why then
should one postulate the W-principle? Why not to assume instead that D (a, b) is a continuous
function of stimulus difference, for instance? Or the difference of square roots of stimulus values?
On the other hand, if the W-principle is no longer a postulate, what is then this “principle” of
measurement mentioned by Fechner, one general enough to transcend the W-principle and specific
enough to allow one to base derivations of the psychophysical function on it?

We think that the key to the answer lies in the general notion of additive dissimilarity introduced
earlier. If we could somehow figure out a measure of subjective dissimilarity between any given
stimulus and a “slightly greater” stimulus, and if, for any two stimuli a < b, a sequence

a < a
�
< a

��
< . . . < a

(n)� ≈ b (22)

could be constructed whose each member is “slightly greater” than the previous one, then D (a, b)
could be approximately computed as

D (a, b) ≈ D (a, a
�) + . . . + D

�
a
(n−1)�

, a
(n)�

�
. (23)

Fechner speaks of this summation “principle” at length in the Elemente (p. 60 of vol. 1, and
Chapters 20 and 31 of vol. 2). One possibility now is to accept “Fechner’s postulate” (6) and
think of the “slightly greater” in the construction of the sequence (22) as meaning “just-noticeably
greater.” If the subjective dissimilarity between any two successive stimuli in such a sequence has
a fixed value C, then

D (a, b) ≈ nC. (24)

The Elemente, however, does not seem to suggest this as a general solution. Moreover, this is
hardly an acceptable solution for the conceptual problem of measuring dissimilarities. Approximate
equality can exist only between two quantities that have precise values. What is the definition of
the precise value of D (a, b), even if we are satisfied with estimating it approximately? What is the
dissimilarity between two stimuli separated by less than one JND, however defined and however
small? Fechner is aware of this problem: in his discussions of the summation (23) he emphasizes
that the closer to each other the successive stimuli can be taken, the more precisely D (a, b) can be
measured for arbitrary pairs (a, b). Ideally therefore, Fechner says (Elemente, p. 60 of vol. 1 and
p. 65 vol. 2), the intervals between the successive stimuli in (23) should be infinitesimally small.

Our interpretation of this is that Fechner in effect proposes to present D (a, b) for o ≤ a ≤ b as
an integral rather than a finite sum:

D (a, b) =
bˆ

a

H (x) dx, (25)

where
H (x) =

D (x, x + dx)
dx

. (26)

One can consider (26) the generalized “basic formula,” with (25) being the correspondingly gener-
alized “difference formula.” Fechner’s theory discussed in the previous sections can be viewed as
based on the assumption that

H (x) = K/x, (27)
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an “infinitesimal version” of Weber’s law. In his 1877 monograph (Chapter 4), however, Fechner
discusses a variety of possible alternatives to this function, including (p. 21)

H (x) = K/x
α
, (28)

with 0 < α < 1. This yields
D (a, b) = K

∗ �
b
1−α − a

1−α
�
, (29)

a variant (proposed by Plateau, 1872, and Brentano, 1874) of what later became known as Stevens’s
psychophysical function (Stevens, 1975).

The question now is, what is a principled way of choosing a particular form of the function H (x)?
Can one reconstruct it from empirical observations? An answer can be found in Fechner’s analysis
of his “method of right and wrong cases.” Let us agree to always present stimulus pairs (a, b) so that
a ≤ b, and let observers’ responses be classified as “a ≺ b” (correct response) and “a � b” (incorrect
response). If the response “equal” is allowed, it is supposed to be split between these two categories
according to some rule. To simplify the discussion, let us assume that Pr [a ≺ b] does not depend on
any stimulus characteristics but their magnitudes a and b. For instance, it does not matter which
of two tones, a or b, is presented first; or which of two lights is on the left and which on the right;
or which of two weights is the standard held fixed within a block of trials, and which is the varying
comparison weight.8 So the simplification consists in presenting Pr [a ≺ b] as some function γ (a, b),
defined on the set of all pairs with a ≤ b. It is clear then that Pr [a � b] = 1 − γ (a, b), whence
γ (a, a) = 1/2. Now, Fechner’s assumption about γ (a, b) can be presented as

γ (a, b) = Φ [h (a) (b− a)] , (30)

where Φ is the standard normal integral and h (a) some positive number (Elemente, pp. 102 and
107 of vol. 1). One can interpret the right-hand expression as the probability with which a random
variable A normally distributed with the mean a and standard deviation 1/h (a) falls below the
value b. Fechner thinks of A− a as some kind of a measurement error, whence it becomes natural
to interpret h (a) as the “precision” of a measuring device (the term used by Carl Friedrich Gauss
[1809/2004] in his introduction of normal distribution as “the law of errors”). Using this analogy,
Fechner takes h (a) as a measure of sensitivity at stimulus a. He thinks that empirical evidence
corroborates the inverse proportionality h (a) = K/a and takes this as a way of establishing Weber’s
law (Elemente, pp. 182-201 of vol. 1). Note that the notion of sensitivity and Weber’s law here are

not defined in terms of JNDs.
We propose that the sensitivity function thus derived, modulo a scaling constant, can be taken

as the function H in (26): for all x ≥ o,

H (x) = Kh (x) . (31)

We propose that this reconstruction of the sensitivity function from psychometric functions can be
taken as an illustration of Fechner’s general “principle,” one that transcends Weber’s law and the
W-principle. The “principle” itself can be stated in the form of the following instructions:

1. For each suprathreshold stimulus x, determine empirically (e.g., by means of one of Fechner’s

methods) a quantity H (x) that can be interpreted as a measure of discriminability of x from

its neighboring stimuli.

2. Call H (x) the sensitivity at x and identify it with H(x) in the “basic formula” (26).
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3. Integrate H(x) from a to b in accordance with the “difference formula” (25) to obtain the value

of subjective dissimilarity D (a, b) between stimuli a and b.

Once this approach is implemented using the method of constant stimuli, it is not difficult to
extend it to the other two methods. In the adjustment method each stimulus a corresponds to
a measure of spread σ (a) of the values of stimuli b judged to match a in different trials: the
sensitivity measure here can be chosen as K/σ (a). In the method of limits the sensitivity measure
can be chosen as a quantity inversely proportional to the mean increment in comparison series,
K/ (µ (a)− a). The latter two definitions reflect Fechner’s considering the reciprocal of any measure
of JND as the corresponding measure of sensitivity (we remind the reader that we use the term
“JND” as synonymous to “differential threshold”). This definition of sensitivity is well known and
is considered classic. However, the procedure with fitting a normal ogive to response probabilities
and gauging how fast it grows shows that Fechner could think of alternative ways of measuring
sensitivity, circumventing an explicit use of the notion of a JND. In fact, the introduction of the
probabilities of comparative responses makes the notion of a JND theoretically unnecessary and
provides a bridge from Fechner’s theory to modern psychophysics.

Post-Fechner Developments of the Fechnerian Idea
Presentations of the modern version of the Fechnerian idea can be found in Dzhafarov and Colonius
(1999, 2001) and Dzhafarov (2001). We describe here a simplified version, continuing to treat
Pr [a ≺ b] as a function γ (a, b), defined on the set of all pairs with a ≤ b.

Fechner’s reliance on the normal ogive (30) is certainly an overcommitment to a particular model
(later dubbed in psychophysics the phi-gamma hypothesis). A safer approach would be applicable
to psychometric functions of any shape. A key to such a general approach can be found in the fact
that the sensitivity measure h (a) in (30) is proportional to the slope of the tangent drawn to the
psychometric function b �→ γ (a, b) at its median (under our simplifying assumptions, at the point
b = a, where γ = 1/2):

∂Φ [h (a) (b− a)]
∂b

����
b=a+

∝ h (a) . (32)

One gets the same proportionality relation if one replaces Fechner’s ogive (30) with one of many
modifications which some researchers (e.g., Thurstone, 1928) would find superior to the phi-gamma
hypothesis, such as

γ (a, b) = Φ

�
b− a�
σ2

a + σ
2
b

�
. (33)

Intuitively, the steeper the slope of the tangent at the median, the more discriminable a is from its
immediate neighbors to the right.

These observations suggest the following generalization: use (25) to compute D (a, b) by putting

H (a) = C
∂γ (a,b)

∂b

����
b=a+

, (34)

where C is some positive constant characterizing a given stimulus continuum. Of course, one has
to assume that the right-hand derivative in (34) always exists, and that it is positive and integrable
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in a. Once we have accepted (34), the use of formula (25) is equivalent to assuming that

lim
b→a+

D (a, b)
γ (a, b)− 1/2

= C. (35)

This can be viewed as an infinitesimal version of “Fechner’s postulate,” provided that the notion
of a and a

� separated by a JND is operationalized as in (3). This idea, according to Krantz
(1971), has been proposed by M. Frank Norman (currently a professor emeritus at the University
of Pennsylvania).

By 1960s, the prevailing opinion among psychophysicists was that Fechner’s approach was math-
ematically flawed, and it was proposed in Luce and Edwards (1958) and Luce and Galanter (1963)
that it should be reformulated as the following “Fechner’s problem”: given a psychometric function
γ (a, b), find an additive distance function D (a, b) such that

γ (a, b) = G (D (a, b)) = G (D (o, b)−D (o, a)) , (36)

where G is some increasing function (possibly with additional regularity constraints). This problem
was extensively investigated by Falmagne (1971, 1985). However, Pfanzagl (1962) noticed that if
“Fechner’s problem” has a solution with a function G differentiable at zero, then D (a, b) should
satisfy (25) with H (a) satisfying (34). Krantz (1971) essentially replicated this observation. The
reverse clearly is not true: (25) and (34), or equivalently (34) and (35), can hold without “Fechner’s
problem” being solvable. This shows that what we call the Fechnerian idea gives rise to a more
general and flexible scaling procedure than “Fechner’s problem.”

Long before the formulation of “Fechner’s problem,” Hermann von Helmholtz and Erwin Schrödinger
(better known for his contribution to quantum mechanics) intuitively grasped the Fechnerian idea
and saw in it a potential for breaking away from Fechner’s unidimensional world. Formulated in
terms of the present article, these authors proposed to treat the square of the function H (x) in
(25), which they took to have the Weber-law form K/x, as a metric tensor of unidimensional Rie-
mannian geometry. This suggested to them that for stimuli represented by vectors of real numbers
one could compute Riemannian distances between them by using metric tensors generalizing the
function K/x. Helmholtz (1891) and Schrödinger (1920) applied two different generalizations to the
three-dimensional color space (see Dzhafarov & Colonius, 1999, for details). Riemannian geometry
based on differential thresholds measured along arbitrary directions in color space remains the main
mathematical language of color science (Robertson, 1978; Wyszecki & Stiles, 1982). Color science
therefore has always been very Fechnerian in flavor, essentially untouched by the “power versus
logarithm” debate that for more than half a century preoccupied psychophysicists. The potential
of the Fechnerian idea to transcend unidimensionality is not shared by Stevens’s approach.

A more direct extension of the Fechnerian idea than in Helmholtz and Schrödinger was recently
proposed in Dzhafarov and Colonius (1999, 2001) and Dzhafarov (2002a-c, 2004). If stimuli are
represented by points in a multidimensional Euclidean space, then any point a and any direction of
change u attached to it can be associated with a Finslerian metric function H (a,u), a multidimen-
sional analogue of the function H (a). The computation of H (a,u) generally cannot be based on
the “probability of greater/less” psychometric functions, because the responses “greater” and “less”
require the existence of a semantically linearly ordered property, such as saturation, brightness, or
beauty. It was proposed therefore to use the function

ψ (a,b) = Pr [a and b are judged to be different] ,
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whose estimates can be empirically obtained by presenting to observers pairs of stimuli and asking
them to judge them as “different” or “the same,” overall or in a specified respect (e.g., shape, color,
beauty, or brightness). Any two stimuli a and b can be connected by a continuously differentiable
path, and the metric function H (a,u) can be integrated along this path, a multidimensional analog
of (25). This yields what we call the “psychometric length” of the path, and the distance between
a and b can be defined as the greatest lower boundary for such psychometric lengths obtainable
across all possible smooth paths connecting a to b.

In the course of the development of this “Finslerian” extension of Fechner’s idea it has become
clear it can be further extended to stimulus spaces more general than multidimensional manifolds
(Dzhafarov & Colonius, 2005a-b). It is even possible to construct such an extension for discrete,
including finite, stimulus spaces (Dzhafarov & Colonius, 2006a), allowing one to use the generalized
Fechnerian scaling as a data-analytic technique rivaling or complementing, depending on one’s
preference, the widely used multidimensional scaling (Dzhafarov, 2010a). The idea of cumulating
dissimilarities in a discrete space turned out to be the foundation for extending the Fechnerian
idea to stimulus spaces of completely arbitrary nature (e.g., the space of human faces or space
of dynamic scenes). This “ultimate” extension is described in Dzhafarov and Colonius (2007) and
Dzhafarov (2008a-b, 2010b).

Summary
The two derivations of Fechner’s law we find in the Elemente are merely two ways of solving the
same functional equation, (7). Both derivations are mathematically valid, and the only difference
between them is in that the better known one assumes the differentiability of F at a particular
point. Neither derivation uses the notion of a JND, so neither is based on Weber’s law. However,
if Weber’s law is empirically established (with the aid of Fechner’s classic methods and appropriate
conventions), then the functional equation in question ensures that the dissimilarity between any
two just-noticeably different stimuli is a fixed quantity C. Then the dissimilarity between any two
stimuli, if measured in C-units,9 approximately coincides with the number of JNDs that fit between
these two stimuli: the smaller Weber’s fraction C

∗, the better the approximation (and we know
that the value of C

∗can be made arbitrarily small). The main weakness of Fechner’s derivations of
his law is expository: by using the same term, “Weber’s law,” for both the W-principle and Weber’s
law, Fechner has created a lasting confusion.

The W-principle and Fechner’s derivations of the logarithmic law do not constitute the essence of
his approach. We see this essence in the idea of additive cumulation of local sensitivity values H (x),
as in (25) and (26). The function H (x) is established by using Fechner’s methods of determining
a measure of discriminability of stimuli from their neighboring stimuli. So understood the idea is
immune to many criticisms, mathematical and empirical, leveled against Fechner’s theory during
the 150 years since the publication of his principal work. Moreover, unlike the logarithmic law
(or, indeed, any other form of a function relating “sensation magnitude” to “stimulus magnitude”),
this idea lends itself to generalizations of Fechnerian measurements to stimuli that are not judged
in terms of semantically unidimensional properties (e.g., brightness, loudness, or length), and to
stimuli whose physical description is not unidimensional, consisting, for example, of vectors of real
numbers, of numerical functions, and even of stimulus names alone.
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Notes
1Bernoulli postulates that one’s perception of a small increment dx in one’s wealth x is inversely proportional to

x, sets up the differential equation dy = Kdx/x (where y stands for the subjective value of x, and K is a positive
constant) subject to the condition y = 0 for some small value x0 of x, and arrives at y = K log (x/x0), for all x ≥ x0.
He uses this formula to account for the empirical fact that there is an upper limit for the amount of money one is
willing to pay for one’s participation in the so-called Saint Petersburg game, whereas the expected gain in this game
is infinite (the game consists of tossing a coin repeatedly and winning 2n rubles if a head occurs in the nth toss
for the first time). The operational aspect of Bernoulli’s approach is obvious: one can test his theory of subjective
utility by experimentally determining costs of appropriately designed gambles. Fechner reviews Bernoulli’s work in
Chapter 47 of the Elemente, among other precursors of Fechner’s psychophysical function.

2In Dzhafarov and Colonius (1999) our position was that the traditional view that Fechner’s derivation of his law
is mathematically flawed was only an interpretation rather than a fact. However, we also wrote that “[Fechner’s]
writings are too voluminous and complex to dismiss the traditional interpretation of his theory with certainty” (p.
241). Our position at present is different: we now reluctantly admit that the interpretation in question is simply
untenable in view of what Fechner factually wrote, his verbosity notwithstanding. We say “reluctantly” because we
do not want to be seen as joining those who, in their reverence for “the grand and famous” tend to ascribe to them
all kinds of views and developments currently deemed clever.

3All references to the Elemente made in this article are to the original German publication (Fechner, 1860). Only
the first volume of the book has been translated into English (Fechner, 1860/1966).

4Titchener (1905) criticized Fechner for attributing magnitudes to sensations per se, rather than defining them
through dissimilarities. “The only thing that we can measure is the distance between two sensations or sense points”
(p. 25). But Titchener acknowledged that “Fechner had an inkling of the truth; he knew that sense-distances are
magnitudes, and every now and then he seems to look upon the single sensation as merely the limiting point of
a distance” (pp. 26-27). Whatever the evolution of Fechner’s factual thinking, nothing in the Elemente seems to
contradict this “now and then” position, unequivocally accepted in Fechner (1887).

5Hye Joo Han pointed out to us that Fechner did not need to stipulate any regularity conditions here because F
is obviously nonnegative, and this alone is sufficient to derive the logarithmic law.

6The transformation consists in putting exp (x) = c/b, exp (y) = b/a, and F (exp (·)) ≡ G (·). The equation then
becomes G (x) + G (y) = G (x + y), with x and y arbitrary positive numbers. Cauchy’s 1821 solution was predicated
on the assumption that F (equivalently, G) is continuous. It is known now (Aczél, 1987) that this assumption can
be replaced with many other regularity assumptions, including monotonicity and nonnegativity.

7That this is indeed what Fechner means can be extracted from the more general (and, unfortunately, entirely
verbal) descriptions of the “expedient principle” in Chapter 15 of the Elemente. Thus, on. p. 7 of vol. 2 Fechner says
that the principle in question ensures that “increments of two interdependent continuous quantities ... are essentially
(merklich) proportional as long as they remain very small, whatever the nature of their interdependence and however
much the interdependence in the large may deviate from the law of proportionality.” We take this to be a convoluted
way of saying that for a differentiable function y = f (x), dy = f � (x0) dx at any x = x0 (hence ∆y ≈ f � (x0) ∆x for
sufficiently small ∆x). See also the mentions of the principle on pp. 11 and 103 of vol. 2 of the Elemente.

8This simplification is untenable in the general theory of pairwise comparisons: stimuli must be characterized not
only by their values but also but what is called in Dzhafarov (2002d) observation area: being first or second, left or
right, and so on. Without explicitly encoding stimuli by their observation areas one’s analysis is likely to run into
logical difficulties. For detailed accounts see Dzhafarov (2006), Dzhafarov and Colonius (2006b), and Dzhafarov and
Dzhafarov (2010).

9For any given stimulus continuum, C can be set equal to unity. As mentioned earlier, however, the value of C
should be treated as modality-specific. This consideration is important in evaluating the attempts to empirically
invalidate Fechner’s theory based on the number of JNDs fitting between isosensitivity curves (Riesz, 1933): this
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number need not be the same for different sound frequencies if the latter are treated as distinct stimulus continua
(see Dzhafarov, 2001 for details; for another way to reanalyze Riesz’s results, see Dzhafarov & Colonius, 1999).

References
Aczél, J. (1987). A Short Course on Functional Equations. Dordrecht: Reidel.
Bernoulli, D. (1738/1954). New theory on the measurement of risk. Econometrica, 22, 23-36.
Boring, E. G. (1950). A History of Experimental Psychology. New York: Appleton-Century-Crofts.
Brentano, F. (1874). Psychologie vom empirischen Standpunkt [Psychology from an empirical point

of view], vol. 1. Leipzig: Dunker and Hunblot.
Cauchy, A.-L. (1821/2009). Cours d’analyse de l’Ecole Royale Polytechnique [A course of Analysis

of the Royal Polytechnic School]. Cambridge: Cambridge University Press.
Dzhafarov E.N. (2001). Fechnerian psychophysics. In N.J. Smelser, P.B. Baltes (Eds.) International

Encyclopedia of the Social and Behavioral Sciences, v. 8 (pp. 5437-5440). New York: Pergamon
Press.

Dzhafarov, E.N. (2002a). Multidimensional Fechnerian scaling: Regular variation version. Journal

of Mathematical Psychology, 46, 226-244.
Dzhafarov, E.N. (2002b). Multidimensional Fechnerian scaling: Probability-distance hypothesis.

Journal of Mathematical Psychology, 46, 352-374.
Dzhafarov, E.N. (2002c). Multidimensional Fechnerian scaling: Perceptual separability. Journal of

Mathematical Psychology, 46, 564-582.
Dzhafarov, E.N. (2002d). Multidimensional Fechnerian scaling: Pairwise comparisons, regular

minimality, and nonconstant self-similarity. Journal of Mathematical Psychology, 46, 583-608.
Dzhafarov, E.N. (2004). Perceptual separability of stimulus dimensions: A Fechnerian approach.

In C. Kaernbach, E. Schröger, H. Müller (Eds.), Psychophysics Beyond Sensation: Laws and

Invariants of Human Cognition. Mahwah, NJ: Erlbaum.
Dzhafarov, E.N. (2006) On the Law of Regular Minimality: Reply to Ennis. Journal of Mathemat-

ical Psychology, 50, 74-93.
Dzhafarov, E.N. (2008a). Dissimilarity cumulation theory in arc-connected spaces. Journal of

Mathematical Psychology, 52, 73-92. (see also Dzhafarov, E.N. (2009). Corrigendum to: “Dis-
similarity cumulation theory in arc-connected spaces” [J. Math. Psychol. 52 (2008) 73-92].
Journal of Mathematical Psychology, 53, 300. )

Dzhafarov, E.N. (2008b). Dissimilarity cumulation theory in smoothly-connected spaces. Journal

of Mathematical Psychology, 52, 93-115.
Dzhafarov, E.N. (2010a). Dissimilarity Cumulation as a procedure correcting for violations of

triangle inequality. Journal of Mathematical Psychology, 54, 284-287.
Dzhafarov, E.N. (2010b). Dissimilarity, quasidistance, distance. Journal of Mathematical Psychol-

ogy, 54, 334-337.
Dzhafarov, E.N., & Colonius, H. (1999). Fechnerian metrics in unidimensional and multidimensional

stimulus spaces. Psychonomic Bulletin and Review, 6, 239-268.
Dzhafarov, E.N., & Colonius, H. (2001). Multidimensional Fechnerian scaling: Basics. Journal of

Mathematical Psychology, 45, 670-719.
Dzhafarov, E.N., & Colonius, H. (2005a). Psychophysics without physics: A purely psychological

theory of Fechnerian Scaling in continuous stimulus spaces. Journal of Mathematical Psychology,
49, 1-50.

16



Dzhafarov, E.N., & Colonius, H. (2005b). Psychophysics without physics: Extension of Fechne-
rian Scaling from continuous to discrete and discrete-continuous stimulus spaces. Journal of

Mathematical Psychology, 49, 125-141.
Dzhafarov, E.N., & Colonius, H. (2006a). Reconstructing distances among objects from their

discriminability. Psychometrika, 71, 365 - 386.
Dzhafarov, E.N., & Colonius, H. (2006b). Regular Minimality: A fundamental law of discrimina-

tion. In H. Colonius & E.N. Dzhafarov (Eds.), Measurement and Representation of Sensations

(pp. 1-46). Mahwah, NJ: Erlbaum.
Dzhafarov, E.N., & Colonius, H. (2007). Dissimilarity cumulation theory and subjective metrics.

Journal of Mathematical Psychology, 51, 290-304.
Dzhafarov, E.N., & Dzhafarov, D.D. (2010). Sorites without vagueness II: Comparative sorites.

Theoria, 76, 25-53.
Elsas, A. (1886). Über die Psychophysik. Physikalische und erkenntnistheoretische Betrachtungen

[On psychophysics. Physical and epistemological studies]. Marburg: Elwert.
Falmagne, J.-C. (1971). The generalized Fechner problem and discrimination. Journal of Mathe-

matical Psychology, 8, 22-43.
Falmagne J.-C. (1985). Elements of Psychophysical Theory. Oxford: Oxford University Press.
Fechner, G. T. (1851). Zend-Avesta, oder über die Dinge des Himmels und des Jenseits [Zend-

Avesta, or on matters of heaven and the beyond]. Leipzig: Voss.
Fechner, G.T. (1860). Elemente der Psychophysik [Elements of Psychophysics]. Leipzig: Breitkopf

& Härtel. (English translation: Fechner, G.T. (1966). Elements of Psychophysics, vol. 1. New
York: Holt, Rinehart and Winston.)

Fechner, G.T. (1877). In Sachen der Psychophysik [In the Matter of Psychophysics]. Leipzig:
Breitkopf & Härtel.

Fechner, G. T. (1887). Über die psychischen Massprinzipien und das Webersche Gesetz [On the
principles of mental measurement and Weber’s Law]. Philosophische Studien, 4, 161-230.

Gauss, K. (1809/2004). Theory of Motion of the Heavenly Bodies Moving About the Sun in Conic

Sections. Mineola, New York: Dover.
Helmholtz, H. von (1891). Versuch einer erweiterten Anwendung des Fechnerschen Gesetzes im

Farbensystem [An attempt at a generalized application of Fechner’s Law to the color system].
Zeitschrift für die Psychologie und die Physiologie der Sinnesorgane, 2, 1-30.

Herbart, J. F. (1824). Psychologie als Wissenschaft, neu gegründet auf Erfahrung, Metaphysik und

Mathematik [Psychology as a science newly founded on experience, metaphysics and mathemat-
ics]. In G. Hartenstein (Ed.) (1850) Johann Friedrich Herbart’s sämmtliche Werke [Complete
works of Johann Friedrich Herbart], vol. 6, Leipzig: Leopold Voss.

Luce, R. D., & Edwards, W. (1958). The derivation of subjective scales from just noticeable
differences. Psychological Review, 65, 222-237.

Luce, R. D., & Galanter, E. (1963). Discrimination. In R. D. Luce, R. R. Bush, & E. Galanter
(Eds.), Handbook of Mathematical Psychology (vol. 1, pp. 191-244). New York: Wiley.

Müller, G. E. (1878). Zur Grundlegung der Psychophysik [Foundations of psychophyscis]. Berlin:
Theobald Grieben.

Krantz, D. (1971). Integration of just-noticeable differences. Journal of Mathematical Psychology,
8, 591-599.

Makarov, P.O. (1959). Metody Neirodinamicheskikh Issledovanii i Praktikum po Fiziologii Anal-
izatorov Cheloveka [Methods of neurodynamic studies and practicum in physiology of human
sensory systems] Moscow: Vysshaya Shkola.

17



Pfanzagl, J. (1962). Über die stochastische Fundierung des psychophysischen Gesetzes [On stochas-
tic foundations of the psychophysical law]. Biometrische Zeitschrift, 4, 1-14.

Plateau, J. (1872). Sur la mesure des sensations physiques, et sur la loi qui lie l’intensite´ de la
cause excitante [On the measurement of physical sensations and on the law that links them
to intensity of the source]. Bulletins de L’Academie Royale des Sciences, des Lettres et des

Beaux-Arts de Belgique, 2me Serie, 33, 376–388.
Riesz, R.R. (1933). The relationship between loudness and the minimum perceptible increment of

intensity. Journal of the Acoustical Society of America, 4, 211-216.
Robertson, A. R. (1978). CIE guidelines for coordinated research on colour-difference evaluation.

Color Research & Applications, 3, 149-151
Schrödinger, E. (1920). Farbenmetrik [Color metrics]. Zeitschrift für Physik, 12, 459-466.
Stevens, S.S. (1960). The psychophysics of sensory function. American Scientist, 48, 226–253.
Stevens, S. S. (1961). To honor Fechner and repeal his law. Science, 133, 80-86.
Stevens, S. S. (1975). Psychophysics: Introduction to its Perceptual, Neural, and Social Prospects.

New York: Wiley.
Titchener, E.B. (1905). Experimental Psychology: A Manual of Laboratory Practice, vol. 2, part 1.

New York, London: Macmillan.
Thurstone, L.L. (1928). The phi-gamma hypothesis. Journal of Experimental Psychology, 11,

293-305.
Weber, E. H. (1846). Tastsinn und Gemeingefühl [On the tactile senses]. In R. Wagner (Ed.) Hand-

wörterbuch der Physiologie. vol. 3, pp. 481-588. Braunschweig: Vieweg Verlag. [Reprinted:
Vdm Verlag Dr. Müller, 2006] [Edited and translated in H. E. Ross and D. J. Murray, On the
tactile senses. Erlbaum (UK) Taylor & Francis, 1996].

Wyszecki, G., & Stiles, W.S. (1982). Color Science: Concepts and Methods, Quantitative Data and

Formulae. New York: Wiley.

18


