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Any family of simple response time distributions that correspond to different values of
stimulation variables can be modeled by a deterministic stimulation-dependent process that
terminates when it crosses a randomly preset criterion. The criterion distribution function is
stimulation-independent and can be chosen arbitrarily, provided it is continuous and strictly
increasing. Any family of N-alternative choice response time distributions can be modeled by
N such process-criterion pairs, with response choice and response time being determined by the
process that reaches its criterion first. The joint distribution of the N criteria can be chosen
arbitrarily, provided it satisfies certain unrestrictive conditions. In particular, the criteria can be
chosen to be stochastically independent. This modeling scheme, therefore, is a descriptive
theoretical language rather than an empirically falsifiable model. The only role of the criteria in
this theoretical language is to numerically calibrate the ordinal-scale axes for the deterministic
response processes.
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Introduction

Response time (RT) distributions are commonly modeled in terms of unobservable
processes that develop in time and result in overt responses when the processes meet
certain termination conditions. RT is a random variable due to random fluctuations
postulated to occur in the termination conditions or in the processes themselves. In a
simple version of this modeling scheme the processes are scalar (real-valued) functions
of time, and the termination condition is satisfied when a process crosses some critical
level for the first time. This critical level is traditionally referred to as the "criterion".
I will use the neutral term "response process" to refer to a scalar process that has to
cross a criterion to initiate an observable response.

Grice (1968, 1972; Grice, Cahnam, & Boroughs, 1984; Grice, Nullmeyer, & Spiker,
1982) proposed simplifying further this modeling scheme by assuming that for any given
combination of relevant external factors (target stimulus characteristics, speed-accu-
racy requirements, etc.): (A) the corresponding response process is a deterministic
function of time, monotonically increasing from an initial (zero) level; (B) the criterion
is randomly preset at a nonnegative value that remains constant throughout the entire
duration of the response process. It is further assumed that: (C) the criterion distribu-
tion may only depend on a small subset of the external factors, which normally, after
an asymptotic performance level has been achieved, would not include factors that may
vary from trial to trial (such as target stimulus characteristics, or foreperiod duration).
These assumptions constitute the essence of the Grice modeling scheme for simple RT.
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ments and criticism.
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For choice RT, when one of N possible responses is to be chosen in every trial, Grice
proposes considering N deterministic response processes and N corresponding criteria,
each process-criterion pair satisfying assumptions A, B, and C above. It is assumed
that: (D) the criteria corresponding to different responses are stochastically indepen-
dent; (E) response choice and response time are determined by the response process
that reaches its criterion first.

To fit empirical RT distributions, Grice also makes specific assumptions (as it turns
out, not quite mutually compatible, see section 2.2) concerning the shapes of criterion
distributions (approximate normality) and response processes (e.g., a negative expo-
nential function for simple RT). Such auxiliary assumptions are of no importance for
the present discussion, as it focuses on the principal idea of modeling RT through
stimulation-dependent deterministic response processes and stimulation-independent
random criteria. Intuitively, this idea seems quite restrictive as it is, aside from auxil-
iary assumptions, simply because there are many obvious ways to present it as a
particular or limit case of much more general schemes.

One direction of generalization is to allow for a stimulation-dependent stochasticity
in response processes themselves, in addition to that in preset criteria. This opens
additional possibilities, such as stochastic interdependence between criteria and pro-
cesses, or (in the choice RT paradigm) stochastic interdependence between processes
leading to different responses. Another direction of generalization is to view a criterion
as a stochastic process (perhaps a nonstationary one) within a trial. Termination con-
ditions for response processes can also be made more complex than a simple crossing-
a-criterion rule. One could postulate, for example, a race between a deterministic
process and its rate: a response is produced when the process exceeds its criterion, or
when the time derivative of the process exceeds its own criterion, whichever is first.
More generally, a termination condition may be a set of equations-inequalities involving
high-order derivatives of response processes. A different line of generalization is to
postulate that criteria may change within trials depending on response process charac-
teristics: for example, if the response process rate at a preset criterion level is below a
certain constant, the criterion resets at a higher level. These and many other directions
of generalization can be combined to form still more sophisticated schemes that would
include the Grice modeling scheme as their particular or marginal case. One gets the
impression, therefore, that the Grice modeling scheme should be in principle empiri-
cally falsifiable. That is, one can generate families of hypothetical RT distributions (in
accordance with one of the "sophisticated" models) that the Grice modeling scheme
would not account for.

This intuition seems supported by the following observation. McGill (1963) pro-
posed modeling RT in terms of stochastic response processes reaching a fixed criterion
level, an idea that has been employed in several paradigmatic models (Green & Luce,
1974; Laming, 1968; Link, 1975; Pike, 1973; Ratcliff, 1978; see Luce, 1986, for a re-
view). It is easy to show (see sections 1.3 and 2.3) that the Grice modeling scheme 
formally equivalent to the following special case of the McGill modeling scheme: Any
response process can be decomposed (additively or multiplicatively, depending on an
arbitrary choice of scale) into a stimulation-dependent deterministic function and 
stimulation-independent stationary noise. Stochastic processes of this structure have
indeed been used for modeling RT distributions: one simple example is a Wiener dif-
fusion process (Pacut, 1977; Ratcliff, 1978). However, one can easily construct sto-
chastic processes that would not be decomposable in this fashion. "Noise" in the
processes can always be made nonstationary, stimulation-dependent, or such that no
monotonic transformation can make it additively or multiplicatively combined with
deterministic components of the processes. Again, this observation seems to suggest
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that one can construct families of hypothetical RT distributions that cannot be ac-
counted for by the Grice modeling scheme.

This intuition is wrong, however. It is shown in this paper that the Grice modeling
scheme is a descriptive theoretical language rather than an empirically falsifiable model.
Any family of hypothetical RT distributions can be modeled according to assumptions
A through E above. Assumption C is in fact unnecessarily weak: Variability in RT can
always be attributed to a randomly preset criterion (or several such criteria in the
choice RT paradigm) whose distribution does not depend on any external factors.
Consequently, in the absence of additional constraints derived from considerations
other than RT analysis, one never faces the necessity to generalize the Grice modeling
scheme, or equivalently, to go beyond a stationary stimulus-independent noise super-
imposed on deterministic functions in the McGill modelling scheme.

Moreover, the choice of the criterion distributions turns out to be completely
arbitrary, provided they satisfy certain (rather mild) restrictions. In particular, the
mutual stochastic independence of the criteria in the choice RT paradigm can be re-
placed by any "well-behaved" stimulation-independent joint distribution function.
Whatever the choice of the criteria, one can always find stimulation-dependent deter-
ministic response processes that would generate any given family of RT distribution
function.

The mathematical justification of these statements is very simple, and it is surpris-
ing that they have not been commonly acknowledged in the RT area. By undertaking a
systematic investigation of the Grice modeling scheme, this paper, in spite of its math-
ematical simplicity (or maybe due to it), helps to achieve a useful purpose. It clarifies
the meaning and proper usage of some fundamental notions of RT modeling, such as
termination criterion, deterministic versus stochastic components of response, in/ter/
dependence of processes versus stochastic in/ter/dependence of their termination
times, etcetera. The analysis presented in this paper can be used to determine what in
a certain RT model constitutes a set of empirically testable assumptions, and what is
merely an arbitrary choice of mathematical language.

1. Grice-Representability of Time Variables

Here, the basic concepts associated with the Grice modeling scheme for simple RT
will be presented, and a formal analysis made of Grice-representability of time variables
stochastically depending on a set of external factors. The following notation rules are
adopted throughout this paper. Boldface capital letters, T, C, etcetera, denote random
variables. Their realizations are denoted by the corresponding lowercase italics, t, c,
etcetera, whereas their distribution functions are denoted by the corresponding script
letters, ~-, ~, etcetera. For example, %(c) is the distribution function of a random
variable C at C = c. Script letters are also used to denote multidimensional distribution
functions and some related functions (such as conditional probabilities). The proofs 
all statements formulated in this paper as lemmas or theorems are given in the Appen-
dix, even when very short or obvious.

1.1. Time-Dimensioned Random Variables.

In the simple RT paradigm the object of modelling is a family of time-dimensioned
random variables T(E). Here E denotes all external factors on which the distribution 
T is known to depend, such as target signal intensity, temporal separation between
target and warning signals, speed-accuracy emphasis, etcetera. Some of these factors
may vary from trial to trial, or even within trials, others are fixed within an experiment.
For our purposes the set of all possible values of -Z can be viewed as an abstract
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indexing set for T, generally not countable. If, for example, ,= consists of two factors,
signal intensity A ~ (0, Asup), and foreperiod duration F (Finf, Fs up), then different
pairs of real numbers from these intervals will define different random variables T =
T(F, A). For simplicity, the family T(_=) will be referred to as a (single) random
variable, stochastically depending on ,=. The terms "value of -=" or "a given -=" will
refer, of course, to the set of values of all components of

The time axis origin (t = 0) will be assumed to coincide with the onset of a target
signal (determined by appropriate conventions if the target is not a step-function in
time). RTs represented by the time variables T(-=), however, may attain any real val-
ues, including very small positive values and negative values, which means that the
consideration includes "false alarms", or "anticipatory responses", as well as "true"
responses. Although it is reasonable to assume that RT distributions are sutticiently
smooth (see section 2.1), this assumption will not be needed as far as the simple 
paradigm is concerned.

Throughout this paper a RT model is understood as an algorithm generating
(or other random variables, defined later) with precisely known theoretical distributions
for every possible value of ,=. The modeling of RT, therefore, is expressly a nonstatis-
tical notion here: for any given _=, the distribution of T(-=) is assumed to be known
precisely, and these distributions should be generated (predicted) by a RT model for all
possible values of-=, a set whose cardinality may be arbitrarily large. Obviously, if I’(-=)

is successfully modeled in this sense, then the model is also "true" in a statistical
meaning, with respect to finite-size samples from T(-=) taken for a finite number 
-=-values.

1.2. Grice-Representability.
Let CE (t) be response process, a scalar (r eal-valued) deterministic function of

time depending on ~: for a given value of ,= and a given moment t, the value of CE (t)
either is defined uniquely 0r is not defined at all. Let C, a criterion, be a random variable
whose values are defined on the same scale as those of CE(t), but they do not depend
on t or on -=. (The correspondence in the notation, C, c, CE(t), emphasizes the
common dimensionality of response processes and criteria.)

The time variable T(-=) will be said to be generated by the pair CE (t) and C if the
following statement is true for any value of -=:

T(-=) = inf{t: C~ (t) -> (~)

Here {t:... } should be read as "all values of t such that... ". The time variable T(,
is the first instance when CE (t) reaches or exceeds the random criterion C. Note that
(1) defines T(-=) as a deterministic function of two arguments: -=, and a -=-independent
random variable C. Simple RT will be called Grice-representable if it can be generated
according to (1), by an appropriate choice of a -=-independent random criterion, C, and
a -=-dependent deterministic process, CE(t). The possibility mentioned in the Intro-
duction (see Assumption C), that some experimental manipulations (components 
may affect the distribution of C, will be discussed in the Conclusion.

1.3. McGill-Representability.
Let us say that T(-=) is McGill-representable if one can find a stochastic scalar

process RE(t), depending on -=, and a constant criterion 0, such that:

T(-=) = inf{t: R.~ (t) >- (2)
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The following two lemmas establish the equivalence mentioned in the Introduction,
between the Grice-representability and a particular version of the McGill-represent-
ability.

Lemma 1.3.1. Grice-representability, (1), of T(E) is equivalent to its McGill-
representability, (2), with E ( t) = E (t) + N(t) : a de terministic resp onse proc
CE (t), additively superimposed with a stationary E-independent noise, N(t).

Lemma 1.3.2. Grice-representability, (1), of T(E) is equivalent to its McGill-
representability, (2), with E ( t) = C_= (t )N(t): a nonnegative deterministic re
process, CE(t), multiplicatively superimposed with a nonnegative stationary E-inde-
pendent noise, N(t).

It follows from the proofs of these lemmas that certain inherent characteristics of
stochastic processes RE (t), such as their autocorrelation functions, cannot in principle
be reconstructed from RT distributions modeled by these processes. The only stochas-
tic property of RE(t) that matters is the distribution of the stationary noise N(t), 
definition assumed to be the same for all time moments.

1.4. Generation of Time Variables.
Now consider more closely the mechanism by which time-dimensioned random

variables, T(E), are generated by deterministic response processes, CE(t), coupled
with randomly preset criteria, C. The following concept greatly simplifies analysis. The
highest-reached-level (HRL) form of a process CE (t) is defined 

t~=.(t) = sup(Cz(t’): t’ -< (3)

At any moment t, the HRL-form of C=,_(t) shows the highest value reached by the
process up to that moment. Obviously, CE(t) itself can be considered a deterministic
response process. This process is nondecreasing, and it is its own HRL-form: ~_= (t) 
C~ (t). Any nondecreasing process E ( t) c oincides with i ts o wn HRL-form.

Let ~-.~(t) and %(c) be the distribution functions for T(E) and C, respectively:
~E(t) = Prob{T(E) -< t}, %(c) = Prob{C -< c}. The following lemma, which 
diately follows from a contemplation of definitions (1) and (3), specifies the role 

(~E (t) in generating

Lemma 1.4. If T(E) is generated according to (1) CE(t) andC, t hen

~.=(t) = ~((~(t)). (4)

It follows that if two response processes have identical HRL-forms, they will
generate the same T(E) when coupled with a given criterion C. The reverse is not
generally true: processes with different HRL-forms may generate the same T(E). In-
deed, consider %(c) that has a plateau within an interval (c., c*), that is, Prob{c. 
C -< c*} -- 0. Consider a response process whose HRL-form assumes the values c. and
c* at two different moments, t.(,~) and t*(E), respectively. Obviously, the course 
the HRL-form between the coordinates (t.(E), c.) and (t*(E), c*) is irrelevant 
generated variable T(E): due to (4), Prob{t,(=_) < T(=_) --< t*(E)} = 0 in all 
cases.

This ambiguity can be removed by only considering criteria with strictly increasing
distribution functions: Prob{c. < c <- c*} > 0 whenever infC < c. < c* < supC,
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where infC and supC are defined as inf{c: %(c) > 0} and sup{c: ~(c) < 1}, respec-
tively. It immediately follows from Lemma 1.4 that

Corollary 1.4. Two response processes, C1,_=(t) and C2,_=(t), coupled with 
common criterion C with a strictly increasing distribution function, generate one and
the same T(,=) if and only if their HRL-forms coincide between infC and supC:
t~l,_=(t) = ~2,_=(t) whenever infc ~i ,=_(t) < supc, i = 1 or2.

Note that the course of an HRL-form after it exceeds supC or before it reaches
infC (if this may happen) is irrelevant for the generated 1"(_=).

The strict monotonicity restriction does not lead to a loss of generality with respect
to the generation of time variables. It can easily be shown that, without affecting the
generated T(_=), one can always "collapse" the intervals of qg(c)-constancy, (c,, 
into their lower boundaries, c., thus removing all gaps in the common axis for C and
C,= (t). However, Theorem 1.5 below makes such a demonstration unnecessary.

1.5. Grice-Representability of Simple RT.
Theorem 1.5 shows that any T(_=) can be generated according to (1), whatever 

set of factors _=, and whatever the distributions of T for each particular value of
Moreover, the criterion C can always be chosen so that its distribution function, %(c),
is strictly increasing and continuous between infC and supC. (The rationale for the
continuity restriction will be given later.) In all other respects the choice of C is com-
pletely arbitrary: its only function is to numerically calibrate the scale for the response
processes C_= (t), that is, to induce a metric on an otherwise purely ordinal-scale struc-
ture (scale properties for response processes will be discussed in section 1.9).

Theorem 1.5. Let C be an arbitrary random variable that does not depend on _=
or on t, and whose distribution function q~(c) is strictly increasing and continuous
between infC and supC. Then for any time-dimensioned random variable T(_=), with 
distribution function ~-_= (t), there exists a deterministic response process C~ (t) 
that T(_=) is generated by C_= (t) and C according to (1). This process is defined uniquely
up to its HRL-form at all t for which 0 < 5~,(t) < 

~z(t) = ~-l(~_=(t)). (5)

As far as simple RT is concerned, this theorem justifies the statement made in the
Introduction: however complex the dependence of RT on external parameters may be,
the Grice modeling scheme is a descriptive language, not an empirically testable model.
The theorem is constructive: once T(,=) is given and C is chosen, C_= (t) can be con-
structed uniquely up to its HRL-form between infC and supC. To remove any remain-
ing ambiguity, let us complement (5) with the following agreement: (~_= (t) is set 
to supC (or infC) whenever ~=_(t) = 1 (respectively, 

The reason for assuming that %(c) is strictly increasing has already been discussed
(section 1.4): this restriction is convenient but not critical. The continuity restriction is,
however, essential for the Grice-representability.

Lemma 1.5. For a discontinuous %(c) one can always find a time-dimensioned
variable T that cannot be generated by any deterministic process C(t) coupled with C.

This result is especially apparent for discrete criteria: obviously, such criteria
cannot be used to generate continuous time-dimensioned variables. It can even be
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shown that for any discrete criterion one can find a discrete time-dimensioned variable
that cannot be generated. Due to Theorem 1.5, however, any (discrete, continuous, or
mixed) time-dimensioned variable can be generated by means of an arbitrarily chosen
continuous criterion.

1.6. Choice of Criteria.

In the rest of this paper the term "criterion" will always include the two restric-
tions imposed in the formulation of Theorem 1.5: %(c) will always be considered
strictly increasing and continuous between infC and supC. Since in all other respects
q~(c) can be chosen arbitrarily, one can subject it to further restrictions without re-
stricting the class of Grice-representable time variables. Thus one can follow Grice
(1968, 1972) in assuming that %(c) is a normal distribution, or (to exclude negative
values) a truncated normal distribution. An invocation of the central limit theorem to
substantiate this choice would be meaningless, because the common axis for C and
C, (t) is not calibrated unless %(c) has been specified. Any strictly increasing contin-
uous %(c) can be made normal by a monotonic transformation, and vice versa. The
same argument applies, of course, to other limit distributions, such as Weibull. Math-
ematical convenience is the only basis for a particular choice of %(c). It may 
convenient, for example, to consider only nonnegative criteria, and thereby only non-
negative HRL-forms of response processes. Furthermore, one can always replace
C-=(t) with its HRL-form, (7-=(t), thus leaving only nonnegative and nondecreasing
functions, as in Grice’s actual modeling. Due to this possibility, the HRL-forms (7_= (t)
in the following text will sometimes be referred to as response processes. (Note that
dealing with (7-=(t) directly is not necessarily convenient: for example, to preserve
smoothness of the response process derivatives, a nonmonotonic (say, N-shaped)
C-= (t) might be preferable to (7-= (t) in some applications.)

Considering "natural" or "canonical" choices for %(c), given C -> 0, two distri-
butions seem to stand out. A standard uniform distribution is convenient because
qg-l(p) = in thi s case, andaccording to ( 5), the r esponse processes (7-=( t) then
coincide with the generated distribution functions ~-=(t) (except, perhaps, for arbi-
trarily assigned units of measurement, because 0 is, by definition, dimensionless).
Another convenient choice for %(c) is a unit exponential distribution, because the
processes (7-=(0 then numerically coincide with the log-survival functions,
-log(1 -0--= (t)). The conditional probability ~--= (t I 0)isdetermined in thiscase
simply by the difference (7-= (t) - (7-= (to):

(7~ (t) - (7_=(t0) = -log(1 - ~~ (tiT 

This is a desirable property, for instance when considering distributions of "true"
responses under the condition that no false alarms have occurred (discussed in section
2.7).

Strictly speaking, % (c) calibrates the response process scale only between infC and
supC. Beyond these limits (if finite) the scale can be continued arbitrarily. It was agreed
in section 1.5, however, that infC -< (7-=(t) -< supC, which means that the response

¯ process scale can always be considered truncated at these limits.

1.7. An Example.

Let ,= = (F, A), where A is intensity of a target signal and F is the foreperiod, the
interval between warning and target signals. As usual, the onset of the target signal is
taken to be the time axis origin. Let the theoretical distribution function for RT in this
situation be as follows.
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ffF, A(t) = 0 if t --< -F (no response before the warning signal);
~F,A(t) = 1 -- exp{-k(t + F)} if -F < t -< r (A-independent exponential

distribution between the warning signal and some nonnegative constant r, an "irreduc-
ible minimum");

~F,a(t) = 1 - exp{-k(r + F) - k(t - r) I+4’(A)} if t > r, where ~b(A) 
some positive monotonic transformation of intensity into a dimensionless number,
6(0) = 
Let us choose a unit-exponentially distributed C: %(c) = 1 - exp(-¢); %-1(p) 
-log(1 - p). Then (5) yields the following expressions for CF,A 

t
0 for t --< -F;

~’F,a(t) = k(t+F) for -F < t --< r;

[~k(r + F) + k(t - r) 1 + $(A) for t > r.

After t = -F this function is strictly increasing for any (F, A), so CF,A (t) = (’F,A 
is the only deterministic process that generates ~rF,a(t).

1.8. Causal Consistency.
The set of external factors ,= is generally a parametrization of a (multidimensional)

input process: at least some components of ,= may themselves be functions of time, or
represent global descriptors of such functions. In the example above, intensity A is a
global descriptor of a certain intensity function, for example, a step-function A(t)
defined as follows:

a(t)={OA

fort<0;

for t_>0.

The foreperiod F in this example is a global descriptor for another function: for in-
stance, an indicator function assuming a value of 1 if a warning signal has been pre-
sented, and 0 before that:

W(t) = {~ for t < -F;
for t- > -F.

Therefore, ~, = (F, A) represents in this example the input function [W(t), A(t)].
Since this cannot cause confusion, the same symbol, ~, will be used for both the input
function and its parametrization. In the example:

--~(t) = [W(t), A(t)].

The causal consistency of a time variable T(~) = T(~(t)) means simply that 
distribution of T up to a moment t cannot depend on values of the input function after
this moment:

~’_=(t) = ~’({~(u):u < t}). (6)

Note that {~=(u):u -< t} should be understood as an ordered set (indexed by u), where
~=(t) indicates not only the value of the input function but also the time moment, 
when this value occurs.

In the generation of T(,~), the criterion C can be chosen arbitrarily, but the re-
sponse process C_= (t) has an HRL-form ¢~ (t) uniquely related to the generated T(~=).
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To be physically realizable, the response process should itself be causally consistent
with respect to the input functions

C=,(t) = C({-=(u):u t}) (7)

The following lemma, whose proof is trivially derived from (5), shows that (6) and 
are "almost" equivalent, in the sense that ~E (t) cannot be anticipatory, and thereby
(1) always describes a physically realizable generation process.

Lemma 1.8. For any choice of the criterion C, the HRL-form of the response
process C=, (t) is causally consistent, (7), if and only if the generated time variable T(-=)
is causally consistent, (6).

The causality, (7), can only be violated within intervals where the HRL-form 
constant. If ~ (t) = Co between t 1 and tz, then C~ (t) can have arbitrary values within
this interval, provided they do not exceed co. Therefore, as a formal game, one can
make the process C=_(t) anticipatory between tl and t2. This will have no effect on
T(-=), because Prob{tl < T(-=) -< t2} = 0. Moreover, Lemma 1.8 guarantees that it 
never be necessary to consider anticipatory processes, even within the gaps in RT
distributions: there is at least one response process, namely (~ (t), which is causally
consistent throughout the entire domain of T(-=).

In the example of section 1.7, CF,A(t) = ~F,a(t) starts at the moment -F and
develops as a linear function of time, k(t + F), until the onset of the target stimulus (at
t = 0), after which it changes its course depending on the value of signal intensity A.
In agreement with Lemma 1.8, the course of ~F,A(t) within the foreperiod, -F < t ---
0, only depends on the difference t - (-F), not on the value of t = t - 0 itself (nor
does it depend on A). If this were not the case, CF,A (t) would anticipate the onset (or
intensity) of the target stimulus.

1.9. Averaging Of Response Processes.
In section 1.1 -= has been introduced as a set of "all" external factors upon which

theoretical RT distributions are known to depend. This does not imply that there exists
an "exhaustive" set of factors, such that RT distributions cannot be properly identified
unless all of these factors are known. Any set of factors -= defines a certain family of RT
distributions, T(-=), and vice versa: a family of random variables T(-=) is not defined
unless it has been related to (indexed by) some set of factors (indices), -=. By reducing
this set to one of its proper subsets, -=* C -=, one simply defines a new family of random
variables, T(-=*). This might be viewed as a serious complication for the Grice modeling
scheme, for the following reasons.

Consider a time variable 17(_=) generated by a response process C=_ (t) coupled 
a criterion C. Consider a factor B ~ -=, and denote -= without B by -=*. (B can also be
viewed as a proper subset of -=; in the present context, any such subset can be redefined
as an element of -=, and -= itself can be redefined as a two-element set consisting of B
and -=*.) Let a certain distribution function 9~(b) be imposed on B, so that it can 
considered a random variable B, independent of-=*. Then for any given value of -=*, the
conditional distributions of T(-=*IB = b) will generally depend on b, and so will
C=,.,b(t). Different values b of B will correspond to different deterministic response
processes C=_.,b(t), from which it follows that for any fixed -=*, C=_..B(t) is a stochastic
process whose realizations vary according to the distribution function ~(b).

On the other hand, one can always choose to ignore B altogether, and consider the
marginal random variable T(-=*) whose distribution function 
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etc.(t) = Jb etc.(riB = b) d~(b). (8)

The integration here should be understood in the Lebesgue-Stieltjes sense. Obviously,
this distribution function is uniquely determined by ~,*. Then, according to Theorem
1.5, one can always find a deterministic response process, C~.(t), such that being
coupled with the same criterion C, it would generate T(~,*):

~_=. (t) = q~ -1(~-.=. (t)).

In the example of section 1.7, let the foreperiod be a random variable F exponen-
tially distributed: ~(f) = 1 - exp(-mf). Isolating F from ,= = (F, A), and consid-
ering RT a function of E* = A conditioned on values of F, one obviously gets different
distribution functions ~-a (tlF = f) for a given value of A. Correspondingly, the re-
sponse process CF, A(t) is a stochastic process whose realizations vary in accordance
with the exponential distribution function ~;(f). Suppose, however, that one chooses
to ignore foreperiod altogether, and considers RT a function of amplitude A alone. The
marginal distribution of T(,=*) = T(A) can easily be derived from section 1.7:

i exp (mt)

--~---+-~- for t --< 0;

m exp (-kt)
~’a(t) = ~ -- --’-~’-~’--- for 0 < t --< r;

m exp {-kr - k(t - r) t 
I - for r < t.

m+k

Using the same criterion C, with a unit exponential distribution, the random variable
T(A) can be generated by the following deterministic response process:

kexp(mt)
-log

m + k
for t -< 0;

Ca (t) kt - log for 0 < t -< r;

kr + k(t - r) + ~(a) _ log for r < t.

This situation might be viewed as an internal inconsistency in the Grice modeling
scheme. On the one hand, a given value of a set of factors -=* (returning to the general
case) "evokes" a single deterministic response process C_~. (t). On the other hand, 
"evokes" different response processes C=_(t) = C=_,,B(t) depending on the (random)
value of an additional factor, B, that has not been previously taken into account. The
two seemingly contradictory situations take place within the same response process
scale, defined by the common criterion C.

A formal answer is, of course, that there is no contradiction because the two sets
of factors, E* and E = {-=*, B}, defined two different time-dimensioned (families of)
random variables, T(-=*) and T(E), respectively. This is not, however, an intellectually
satisfactory answer. T(,~*) is not simply different from T(=,,): intuitively, T(~*) 



EHTIBAR N. DZHAFAROV 291

"cruder version" of T(~,), a result of an averaging of the latter. Formally, the distri-
bution function 0-~.(t) in (8) is indeed the mean value of the distribution functions
~-~,(tlB = b) with respect to the probabilistic measure induced by ~(b). One might
expect, therefore, that the response process C=_. (t) should also be a "cruder version",
an average, of the response processes C=_(t) = C=_.,a(t), computed across different
values of b.

To see that this is indeed the case, one needs the concept of the Q-mean for a
strictly increasing continuous function Q. For any function X(B) of a random variable
B with a distribution function ~(b), the Q-mean is defined as a value ~" such that:

Q(X) = Q(X(b)) d~(b).

For a linear Q the Q-mean is the conventional expected value, for Q(x) = log(x) 
x - 1, it is the geometric (respectively, harmonic) mean, etcetera. If Q(x) is a probability
distribution function, the Q-mean can also be called the quantile-rank mean, because
then the quantile rank of ~ within the distribution defined by Q(x) is the mean of the
quantile ranks of X(b)-values within the same distribution. Combining this definition
with (8) and (5), one comes to the following simple statement.

Lemma 1.9.1. Let B be a random variable whose distribution function ~(b) does
not depend on a set of factors =,*. Let a time variable T(=,) = T(,=*, B) be generated
by a response process CE (t) coupled with a criterion C, whose distribution function 
q~(c). Then a response process C=_. (t) generates the marginal time variable *) when
coupled with the same criterion C, if and only if C~.(t) is the %-mean of C_=(t)
computed across B:

%((~=_.,(t)) = Jb q~((~(t)) 

(in the Lebesgue-Stieltjes sense).

(9)

In other words, at any moment t, the quantile rank of ~=_,(t) within the criterion
distribution is the mean (computed across all values b of B) of the quantile ranks 
processes ~=_,,b(t) within the same distribution. The next statement shows that %-av-
eraging can also be applied to the processes C_= (t) directly, rather than to their HRL-
forms.

Lemma 1.9.2. Under the assumptions of Lemma 1.9.1, if a response process
C=_.(t) is the %-mean of C_= (t) computed across 

~(C=..(t)) = fb ~(C=.(t)) d~(b), (10)

then C=_.(t) generates the marginal time variable T(E*) when coupled with the same
criterion C.

In a summary, one can legitimately focus on only a small subset of "all" factors
that influence RT distributions. RT dependence on this subset can still be modeled by
deterministic response processes. One only has to realize that any such process is an
average, the quantile-rank mean, of a set of different deterministic processes modeling
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RT distributions related to a larger subset of factors. This will obviously be true for any
given set of factors, however comprehensive (unless they predict RTs deterministical-
ly). For example, one can always add stimulation factors used in preceding trials to the
list of actually used ones, in which case response processes will exhibit sequential
interdependence; but one can legitimately average RT distributions across all trials with
a given value of stimulation factors, thereby averaging the corresponding response
processes, and getting rid of sequential effects.

The concept of q-averaging is consistent with the ordinal structure of the response
process scale. In fact, it is the only form of averaging that can be legitimately applied
to ordinal scales, because q-averaging is done in terms of quantile ranks of the scale
values being averaged, rather than the numerical values themselves. This concept will
now be considered more closely. As discussed in section 1.6, for any time variable T(~)
the generating criterion C can be chosen arbitrarily, provided % (c) is strictly increasing
and continuous. This means that the class of admissible transformations of the response
process scale coincides with that of all strictly increasing and continuous transforma-
tions. Having applied such a transformation, say R, to the response process scale, one
redefines ("recalibrates") the response processes,

new C=,(t) = R[old C_=(t)], (11)

and changes the criterion distribution,

new q~(new c) = old qg(old c) = old %[R-1 (new (12)

It follows that the new q-mean equals [old % R -1]-mean, with respect to any random
variable B. Combining (I 1) and (12) one 

new q-mean of new CZ (t) = old %-mean of old C=. (t), (13)

which means that both (9) and (10) are invariant under all admissible transformations 
the response process scale.

2. Grice-Representability of Label-And-Time Variables

Here, the Grice-representability of N-alternative choice RT will be defined and
analyzed, including generalized disjunctive RT (Donders’s reaction type c, when 
subject is allowed to give no response in some trials). It will also be considered how the
Grice modeling scheme applies to hypothetical decompositions of RT (mixture models),
and how it deals with the dichotomy of target-initiated versus target-unrelated re-
sponses.

2.1. Label-And-Time Variables.
In the N-alternative choice RT paradigm, the formal object of modeling is a family

of two-component random variables, [I(,=), T(-=)], where: I is the response identity
label ("which of the N responses is chosen"), a random variable with values i = 1,...,
N; T is a time-dimensioned random variable representing RT; and E are external
factors indexing the theoretical distributions of [I, T]. By analogy with T(E) in the
preceding sections, the family of random vectors [I(E), T(F,)] will be referred to 
(single) label-and-time random variable, stochastically depending on E. In sections 2.7,
2.8, and the Conclusion, the meaning of the label-and-time variable will be generalized
to incorporate hypothetical (unobservable) components of RTo

The causal consistency restriction for label-and-time variables is defined in an
obvious way. Let ~-~ (i, t) denote the (joint) distribution function for [I(~), 
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$-=. (i, t) = Prob{I(~,) = i and ~) -< t}.

~-~(i, t) is defined here as a (cumulative) distribution function with respect to t, but 
mass function with respect to i. Let the input function E(t) be defined as in section 1.8.
Then ff,:(i, t) must be uniquely determined by the input function taken up to the
moment t:

ff =.(i, t) = ~i({~(u)’.u t}) (14)

The causal consistency, in the form of (6), was the only restriction imposed on the time
variables representing simple RT. In the case of the label-and-time variables, however,
to avoid cumbersome technicalities, one has to impose additional constraints on
ff~(i, t). Namely, it will be assumed in the rest of this paper that: (a) for any E 
i = 1,..., N, ~~(i, t) is continuous; (b) for any ,=, there exists a strictly increasing
continuous function of time, $=_(t), such that for any i = 1,..., N, d~,=(i, t)/d~,=(t)
is continuous at all SE (t), with the possible exception of a finite number of isolated
points, ~b_=(tl) <... < ~b=_(tm). At these points the discontinuities in dff=_ (i, t)/d~=_ (t)
may be either of the first kind (finite jumps) or the second kind (infinite limits at either
or both sides of a discontinuity point). As far as observable RT distributions are con-
cerned, these assumptions might appear unnecessarily general. It seems that experi-
mental RTs can always be approximated by piecewise differentiable distribution func-
tions, in which case one could put ~ (t) = t in the definition above, and allow dffE (i,
t)/dt to have discontinuities of the first kind only. It is desirable, however, to keep the
definition in the less restrictive form, due to the potential applicability of the analysis to
hypothetical RT components, whose distributions are not observable.

2.2. Incomplete time variables.
In the classical disjunctive RT paradigm (Donders’s reaction type c) the subject 

instructed to give a designated response if a certain statement about stimulation is true,
and to withhold a response if the statement is false. Giving no response in certain trials
can formally be considered a special response, for which RT is not defined, or is
unknown. Disjunctive RT can, therefore, be represented by label-and-time variables
[I(E), T(E)] with i = 1, 2: T(E) is defined when I(E) = 1 (a designated response), 
is undefined or unknown when I(E) = 2 (response is withheld). The two interpretations
of T(~) in the case when I(~) is no-response, "T(~) is undefined" and =) is
unknown", correspond to two different approaches to modeling (and possibly, to two
different decision strategies adopted by observers, as discussed in section 2.5). Here,
only the case of undefined T(E) will be analyzed. Intuitively, this means that no-
response is a result of waiting indefinitely long (for a perceptual signal to initiate 
response), rather than a deliberate decision to give no response.

Consider, for example, detection of weak signals. Let signal intensity A be the only
factor related to RT, T(E) = T(A). According to the Grice modeling scheme, one 
choose an arbitrary criterion C, and relate every possible value of A to a deterministic
nondecreasing function CA (t). It is an empirical fact that, for a broad class of signals,
T(A) stochastically decreases as A increases, in the sense that the quantiles of T(A) 
decreasing functions of A (Dzhafarov, 1992). (In fact, this rule only holds for 
quantiles that are sufficiently far from the distribution margins, but this will be ignored
here for simplicity.) This means that for any moment t, CA (t) is a decreasing function
of A: weaker signals evoke slower processes.

To be specific, let C be unit-exponentially distributed: in this case Prob{C > c} >
0 for any c. Then if (7a (t) for a given A increases without bound, we have Prob{t7a (t)
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< C for all t} = 0, and the generated T(A) will be complete random variable, meaning
that ~’A (t) --’> 1 as t --~ oo. This property is conventionally assumed to hold for any
random variable by definition. Nothing in the Grice modeling scheme, however, pre-
cludes the possibility that for a sufficiently small value of A, the process (7a (t) in-
creases up to only a finite value, sup(7a (t) < ~. For example, a response process CA (t)
evoked by a weak signal may increase up to a certain value and then decrease back to
zero. If sup(7a (t) < ~, then

Prob{(Ta (t) < C for all t} = Prob{C > sup(TA (t)} 

and for some p < 1, ~’a (t) --’> p as t --~ oo. In such cases the generated time variable
T(A) will be said to be incomplete. Feller (1968, p. 309) calls such random variables
"defective". The term "incomplete" seems more suitable in the present context, as it
is more suggestive of an underlying process, and less of an exceptional status.

Indeed, incomplete time variables arise in the Grice modeling scheme quite natu-
rally. A time variable T(~) generated according to (1) will be incomplete, if and only 
sup(7_=(t) < supC:

~_=(t)--~p< I as t--~oo iff Prob{C > sup(7_=(t)}= l-p>0.

In the case of simple RT, an additional mechanism (discussed in section 2.8) is needed
to generate a response in every trial when the criterion is set at a value exceeding
sup(7~. (t). Conversely, if no such mechanism is postulated, and simple RT is modeled
as a complete time variable T(,=), then supC must not exceed sup(7_= (t) for any 
of ,=. This simple rule is important for practical construction of models. For instance,
Grice’s own model violates this rule, because it assumes a normally distributed crite-
rion (i.e., supC = ~) coupled with negative-exponentially developing response pro-
cesses,

C.=(t) = A_= -B_= exp{-A~(t- t_=)},

with supC,=(t) = A= < ~. In the case of choice RT, Grice considers Gompertz
(double-exponential) functions coupled with normally distributed criteria, with the
same unfortunate consequence. (Interestingly, Grice’s first version of his model, 1968,
is free from this problem, as it couples normal distributions with linear response pro-
cesses.) Ashby (1982) pointed out the same "global incompleteness" defect in 
cascade model (McClelland, 1979). This is not a coincidence, because McClelland’s
model is equivalent to a Grice-scheme model with

c - No,~
t~,=(t) = I - ~ exp{--Ak,=-(t - t_)}, C 

k Na,~r2 ’

where N0,I and Na,o~ are independent normally distributed variables with the parame-
ters indicated by the subscripts, whereas c is a constant (the fixed criterion in McClel-
land’s presentation). One then has supS_= (t) = 1 < supC ~.

At the same time, the notion of an incomplete time variable can be directly utilized
in modeling disjunctive RT.

Theorem 2.2. Let [I(E), T(~)], i = 1, 2, be a disjunctive label-and-time variable:

Prob{I(_=) = 1 and T(,=) -< t} = ~-z(1, t)--~p(=_) as t--~ ~;

Prob{I(~,) = 2 and T(~) --< t} is undefined.
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Then for any criterion C with a distribution function %(c), there exists a response
process C:.(t) generating [I(E), T(~)] in the following sense:

$[1, inf{t: C=.(t) >- C}] if C -< sup C_:(t);
[I(.~), T(~)] 

[.[2, undefined] if C > sup C~(t).

This process is defined uniquely up to its HRL-form:

C~(t) = ~-1(0".=(1, (15)

This theorem may be considered a generalization of Theorem 1.5. A way to further
generalize it to incorporate situations with "N-1 real responses plus 1 no-response"
(N > 2) will be discussed in section 2.5.

2.3. Grice-Representability of Label-And-Time Variables.

Consider now the N-alternative choice RT paradigm: here T(~) in a label-and-time
variable [I(=,), T(E)] is defined for any i = 1,..., N. The label-and-time variable 
be said to be Grice-representable if there are N deterministic response processes
Ci,=,(t), and N mutually independent criteria Ci, such that

[I(~) = i, T(~) 

iff (16)

mink{inf{t: Ck,=.(t) > Ck}} = inf{t: Ci,=.(t) > C/} = t.

In other words, the i-th response is given at moment t if and only if the i-th response
process crosses its criterion for the first time at moment t, whereas all other response
processes have been below their criterion levels up to this moment. This should be
considered a termination rule for all N response processes competing for their respec-
tive criteria, rather than only for the i-th response process, the winner of the compe-
tition.

Another way to define the Grice-representability of [I(~), T(-=)] is to consider 
time-dimensioned random variables Ti(~,), generated by N pairs {Ci,_= (t), Ci} accord-
ing to (1), such that

[I(E) = i, T(~,) = t] iff min{Tl(~) TN(~)} = Ti(~) = t. 

Again, one should keep in mind that only one of these time variables, the minimum one,
attains a numerical value within any given "working cycle" of the system (whose
duration equals this value). Numerical values for the rest of the time variables should
be viewed as potential, or "virtual", termination times.

That the criteria are mutually independent was originally proposed by Grice for
reasons of mathematical simplicity. This does not elucidate the theoretical significance
of this restriction. Nor can one know what consequences it would have for Grice
modeling to allow for a stochastic interdependence between the criteria. It seems
important to answer these questions to more clearly understand the role of the criteria
in the Grice modeling scheme. Therefore, it is useful to introduce the notion of the
generalized Grice-representability of the label-and-time variables: [I(~), T(~,)] will 
said to be Grice-representable in the generalized sense if (16) holds for N criteria i
with some joint distribution function
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%(cl, ̄  ¯ ¯ , c/v) = Prob{Ci <- ci, i = 1 ..... N}.

Theorem 2.3.1 below shows that such a representation is possible for any label-and-
time variable. Moreover, as one might expect from the analysis of simple RT, where the
only role of the criteria is to numerically calibrate ordinal-scale axes for response
processes, the joint distribution function %(Cl, ... , CN) can be chosen arbitrarily,
provided it is sufficiently well-behaved. In particular, the criteria can always be chosen
to be mutually independent, which means that any label-and-time variable is also Grice-
representable in the original, restricted sense.

The "well-behavedness" of the joint distribution of the criteria is specified by the
following condition which will be referred to as the admissibility of a set of N criteria,
{Cj, ... , CN}. This term is chosen to emphasize that the criteria serve to define a
numerical N-dimensional frame of reference for the response processes, and the re-
strictions imposed on the choice of the criteria specify the admissible transformations
of this frame of reference (which is essentially an "N-dimensional ordinal-scale" struc-
ture). A set of N criteria, {C~, 

1. the marginal distribution
ci} are strictly increasing and
1, ..., N;

2. for all i = I,..., N, the
short),

¯ . , CN}, is admissible if

functions (marginals, for short) ~i(ci) = Prob{Ci -<
continuous on their domains, (infCi, supCi), i 

first-order conditional probabilities (conditionals, for

%i-(C1, ¯ ¯ ¯ , CN) = Prob{Cy > c~ for allj ~ ilCi = ci},

are nonzero (i.e., positive) on their domain (infC1, supC1)×...× (infC~v, supC~v) 
satisfy the local Lipschitz condition with respect to all marginals %k(ck), k = l, ¯..,
N. (The superscript in %~ is a reminder that the conditionals are defined in terms of
"greater than", rather than "less than or equal".)

The meaning of the local Lipschitz condition with respect to the marginals is as
follows. For any closed subregion of (infCj, supC~) ×...x (infCN, sUpCN) one 
find a positive constant L, such that

N

[qgi- (c~, ... , CN) -- (~i- (C], ... , C~V) ] ~ zEl~k(Ck) -- %k(C:~)[,

1

for any i and any two points (c~,..., CN) and (c~,..., C~v) within the subregion. The
Lipschitz condition implies (is stronger than) the continuity of q~i-(cl, ¯ ¯ ̄ , c~v), 
it is implied by (is weaker than) the piecewise differentiability of q~ i- (c l, ¯ ̄  ̄ , c~v) 
respect to the marginals. As a result, the admissibility constraint imposed on {C1, ̄  ̄  ¯,
CN} is a rather weak smoothness requirement, combined with the requirement that the
distribution does not contain gaps of a certain shape (all %i- are nonzero). In particular,
any set {Ct .... , C~v} whose density function is defined and positive on its domain is
admissible. (Additional clarifications of the admissibility and Lipschitz condition can be
found in the proof of Theorem 2.3.1.)

Theorem 2.3.1. Any label-and-time random variable [I(E), T(,=)] is Grice-repre-
sentable in the generalized sense with respect to any admissible set of criteria {C~,. ̄ .,
CN}. The corresponding response processes {C~,_=(t) .... , C~v.~(t)} are determined
uniquely up to their HRL-forms.
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Strictly speaking, the theorem is not constructive, but the standard theory of
nonlinear differential equations provides a variety of techniques that can be used to find
approximations (piecewise or integral) for the sought processes {C1,_~(t) .... 
CN,=.(t)}.

The following result is contained in the proof of Theorem 2.3.1, and deserves to be
stated separately as it clarifies further the natural occurrence of the incomplete time
variables in the Grice modeling scheme. Recall that in (17) the time variables 1 (N),
.... TN(E)} are assumed to be generated according to (1) by admissible (generally
interdependent) criteria {C1, ... , CN} coupled componentwise with response pro-
cesses {C1,_=(t), ... , CN,_~(t)}.

Corollary 2.3.1. For any ~, at least one of the time variables {TI(N), ... 
TN(--~)} in (17) is complete, but as many as N-1 remaining time variables may 
incomplete.

A special importance has been attached in the literature (in the context of parallel
versus serial processing) to the fact that the competing termination times are not nec-
essarily all complete (Luce, 1986; Townsend, 1976; Townsend & Ashby, 1983). The
issue is indeed important when, for example, a set of parallel processes is being con-
sidered, each related to a separate element or aspect of stimulation, and each having its
own termination time, irrespective of its ordinal position with respect to other termi-
nation times. In the framework of the Grice modeling scheme, however, the complete-
ness issue does not have a special significance: incomplete time variables are physically
realizable and meaningful in exactly the same sense as complete ones. Indeed, the
criteria {C1, ̄  ̄  ¯, CN} are all complete: in every trial each Ci assumes a certain finite
value. The deterministic response processes {Cl,,=(t), ... CN,=_(t)} are physically
realizable since they are causally consistent with their input functions (sections 1.8 and
2.4). Therefore, the generation of the (potential) termination times {T~(E), 
TN(,=)} can always be simulated by a physical system in real time. It is simply the case
that some processes never exceed certain levels, and consequently they cannot win the
who-is-first race if their termination criteria are set above these levels. At the same
time, since at least one of the variables Ti(~,) is complete, the actual processing time,
min{T1 (,=) ..... TN(,=)}, is necessarily a complete variable. Observe that this mini-
mum equals the marginal time variable T(~), the RT aggregated across all N responses:
it must be complete if (and only if) the response may not be withheld. As a result, 
"global" incompleteness problem of the kind discussed in Section 2.2 does not exist
here: predicted Prob{T(=~) < oo} cannot be less than 

Returning now to the restricted formulation of the Grice-representability, the fol-
lowing theorem is a straightforward specification of Theorem 2.3.1. It is based on the
simple observation that any set {C~,..., CN} of stochastically independent criteria is
admissible, provided the marginals %i(Ci) = Prob{Ci --< ci} are strictly increasing and
continuous on their domains.

Theorem 2.3.2. Any label-and-time random variable [I(~=), T(E)] is Grice-repre-
sentable in the restricted sense, with respect to any N mutually independent criteria
{C~, ..., CN} whose distribution functions are strictly increasing and continuous on
their domains. The corresponding response processes {C1,_=(t) .... , C~v,~(t)} are
determined uniquely up to their HRL-forms. Namely, for i = 1 .... , N,

( { f~ d~-=-(i’ u)l)
~i,~(t ) = ~/’-1 1 -- exp - ~ ~-= ~_-~=(~--). (18)
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where ~-_= (t) is the marginal distribution function of T(E) in [I(E), 

Theorems 2.3.1 and 2.3.2 establish the fact mentioned in the Introduction and
demonstrated earlier for simple RT and disjunctive RT: the criteria in the Grice mod-
eling scheme serve to induce a metrical structure (calibration) on the otherwise ordinal
scales for response process values. This is their sole function, and as any other cali-
bration problem, it is not subject to empirical testing. A simple parallel can be drawn
between the choice of the criteria and the choice of a scaling factor in the calibration of
a ratio scale. The exclusion of nonadmissible sets of criteria, for example, can be
related to the exclusion of negative or zero scaling factors in the case of ratio scale
transformations.

Applying Lemma 1.3.1 (or 1.3.2) to the termination times {TI(E), ..., TN(E)},
one can see that the equivalence between the McGill and Grice modeling schemes
trivially extends to label-and-time variables, yielding the following picture: N stochas-
tic processes of the type Ri,_(t) Ci,=_(t) + Ni(t) co mpeting for fi xed (e.g., un ity-
level) criteria. This is a variant of the simple accumulator models (LaBerge, 1962; Pike,
1973; Vickers, 1970), and Theorems 2.3.1. and 2.3.2 tell us that such a model can
always be used to describe choice RT distributions. Moreover, the distributions of Ni (t)
(the E-independent stationary noise) can be chosen arbitrarily, provided they are ad-
missible in the above sense. In particular, it is a matter of arbitrary choice whether Ni (t)
are or are not mutually independent for different values of i.

Theorem 2.3.2 could also be proved without reference to the general result pro-
vided by Theorem 2.3.1. Instead, one could first show that for any [I(E), T(E)], there
exist N unique time variables Ti(E) satisfying (17), and then one could apply Theorem
1.5 to each of these time variables. The applicability of (17) to any label-and-time
variable has been proved by Marley and Colonius (1992; see also Madey, 1992), except
that the restrictions they impose on ~.~ (i, t) are unnecessarily stringent. Essentially the
same result, in a somewhat different context, was earlier proved by Townsend (1976).
There seems to be no conceptually transparent way, however, to generalize the
Townsend-Marley-Colonius theorem to a set of interdependent time variables Ti(E)
satisfying (17), unless their joint distribution is defined through that of the E-indepen-
dent criteria, as it was done in Theorem 2.3.1. Therefore, this alternative approach to
Theorem 2.3.2 would be less elucidating with respect to the role played by the criteria
in the Grice modelling scheme.

2.4. Physical Realizability And Grouping of Responses.

It has been established in sections 1.8 and 1.9 that response processes modeling
time variables T(E) exhibit desirable consistency properties with respect to causality
and averaging across external factors. Both these results trivially generalize to label-
and-time variables. It is unnecessary to formulate these generalizations as separate
formal statements, because Lemmas 1.8, 1.9. I, and 1.9.2 can be applied to label-and-
time variables almost verbatim. One only has to treat C, C=(t), and ~_(t) as N-di-
mensional vectors, whereas the references to Theorem 1.5 in the proofs should be
replaced by references to differential equations (A6, Appendix) in the general case, 
(18) in the case of mutually independent criteria. To demonstrate causal consistency,
for example, one observes that solutions of differential equations (A6) at some moment
t cannot be affected by the course of ~E(i, t) after that moment. In relation to aver-
aging across external factors, one observes that analogues of (8) and (9) apply 
respectively, right-hand sides and left-hand sides of (A6).

Here, we will consider yet another consistency property of the Grice modeling
scheme for label-and-time variables, this time a property that has no analogues in the
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situations involving no choice. As an example, consider a 3-alternative label-and-time
variable [I(E), T(_=)], i = 1, 2, 3. Suppose that one decides to group the responses 
labels 2 and 3 into a single response category, labeled 2*. The remaining response,
originally labeled 1, then can be renamed into 1", so that the choice is now between 1"
and 2", rather than among 1, 2, and 3. Formally, the grouping of the two responses
defines a new label-and-time variable, [I*(,~), T*(,=)], i = 1", 2*. Suppose further 
the original variable, [I(,=), T(E)], is Grice-represented by three response processes

{(~l,_=(t), (~2,~ (t), ~3,_= (t)} coupled componentwise with three mutually independent
criteria {C1, C2, C3}; analogously, let [I*(=,), T*(~)] be Grice-represented by {~.,,= 
~2.,_= (t)} coupled with two mutually independent criteria {C], C~}. One should expect
in this situation that, since the criteria are mutually independent, the following should
be true.

1. If C] = C~ then ~.,_=(t) = ~l,_=(t). Intuitively, if the metric induced on 
axis for ~l,_=(t) by C1 does not depend on the calibration of the two remaining axes
(which is the essence of the mutual independence of the criteria), then the numerical
values of the process should remain the same irrespective of what one does with the
other two axes.

2. ~2.,_=(t) is related to {~2,_=(t), ~3,_=(/)} by a composition rule that only 
pends on C~, C2, and Ca. Indeed, the distribution function of [I*(, =) = 2", T*(~.)] 
simply a sum of those for [I(~,) = 2, T(~,)] and [I(,~,) = 3, T(=,)]. Intuitively, ~2.,_=(t)
should also be a "sum" of some kind of the processes ~2,_=(t) and ~3,_=(t), with 
"summation rule" that depends on the calibration of the three scales, but not on the
summands themselves.

The following lemma shows that these statements are indeed true. This is a simple
but important characteristic of the Grice modeling scheme for choice RT. If it did not
hold, a physical simulation of the response processes ~i,~, (t) would depend on what
and how many different versions or variants of a given response are being distinguished
by an observer. The functions ~i,_= (t) then, though physically realizable in the sense 
causal consistency, could hardly be considered "real" physical processes, rather than
mere mathematical constructs.

Lemma 2.4. Let a label-and-time variable [I*(~,), T*(~)] be a "grouped version"
of another label-and-time variable, [I(E), T(E)]. This means that for every i* = 1,...,
G, there is a nonempty subset Li. of the set of labels i = 1, ..., N, such that

[I*(=,) = i*, T*(E) = t] iff [I(E) Li ., T(~) = t]

Let {Ci} and {Ci.} be two sets of mutually independent criteria, generating [I(,=), T(,=)]
and [I*(~), T*(,=)], respectively, when coupled with the corresponding sets of response
processes, {~i,_=(t)} and {~i.,=_(t)}, where i -- 1, ... , N, i* = 1, ... , G. 

~i*,E (t) is a function of {t~i, E (t)}i~Li. such that:

1 - ~i*(~i*,=.(t)) = 1~ [1 - ~i(~i,=_(t))]. (19)
i~Li*

It can be seen that the composition rule indeed depends on the distribution func-
tions {%i}iULi. and %i. only. This directly relates to Statement 2 above, but Statement
1 follows as well, as a particular case. It is easy to see that if Li. consists of one element
only, say i, and if the functions %i and %i* coincide, then (19) yields Ci.,=_(t ) =
Ci,=_(t).

In the general case of stochastically interdependent criteria, ~i*,_= (t) is a compos-
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ite of {ffi,-=(t)}i~L,, which, again, depends only on the distribution functions for the
criteria. This time, however, all N criteria {Ci} and all G criteria {Ci.} have to be
involved in each particular composition, and the formulations lose the conceptual trans-
parency of Lemma 2.4. This is not a principal issue, however, because the composite
response processes can always be constructed by the following algorithm: first, the N
interdependent criteria {Ci} are replaced with a set of N independent criteria {-~i}, and
the response processes are recalibrated accordingly; second, the responses are grouped
into G groups and composite response processes are computed according to (19) with
respect to some set of G independent criteria {-~i.}; finally, {-~i.} are replaced with the
G interdependent criteria {Ci.}, and the composites sought are obtained by the corre-
sponding recalibration.

2.5. Generalized c-Reaction.
Analysis of the "N-1 real responses plus 1 no-response" paradigm, N -> 2,

involves no new concepts. The object of modeling here is a label-and-time variable
[I(,=), T(E)] with a distribution function 3_=(i, t) defined for all t if i = 1 .... , 
and undefined or unknown for i = N. If 3-_=(N, t) is considered undefined, one can
view [I(E), T(E)] as an incomplete label-and-time variable:

N-I

3-.~ (k, t) --~ p(-=) as t --> (20)

Theorems 2.3.1 and 2.3.2 are still applicable, except that the generated termination
times {Tl(,=), ... , T~V_l(,=)} in (17) will now all necessarily be incomplete. 
having chosen {C1, ̄  ¯ ̄ , C2v- ~ } and having computed {~1,_= (t),..., ~v- 1,-= (t)}, 
gets a straightforward generalization of Theorem 2.2: [I(~,), T(_=)] equals [N, undefined]
if Ck > sup Ck,=(t) for all k = 1,..., N-1; and [I(~,), T(~,)] is defined by (16), 
i = I ..... N-l, ifCk -< sup C~,,-=(t) for at least one k. The response processes are
defined uniquely up to their HRL-forms.

This approach seems plausible in situations when "no-response" is assumed to be
a result of indefinite waiting, as discussed in section 2.2. To generalize the example
given in that section, assume that A is the magnitude of a change in intensity that may
occur in two directions, positive or negative: the observer is instructed to respond "1"
ifA > 0, "2" ifA < 0, and give no response (formally, "3") ifA = 0. If the foreperiod
F in this experiment may assume arbitrarily large values (e.g., it is exponentially
distributed), then a natural strategy for the observer would be to wait for a signal to
occur: at no point in time would a decision be made that A = 0, and that therefore no
response is required. Suppose, however, that the foreperiod is bounded from above
(e.g., it is uniformly distributed between f0 and f~), and A may assume only three
values: zero, a large positive and a large negative ones ("large" meaning "perfectly
detectable"). Then a reasonable strategy would be to wait for a signal only within the
interval (-F + f0; -F + f~), and at t = -F + f~ to decide that A = 0 and 
response is to be given. This example shows that the distribution function 3_= (i, t) may
in fact be defined at i = 3 (a distribution of no-response decision times). If this distri-
bution were known, the analysis would be formally reduced to that of a 3-alternative
choice paradigm.

In general, however, T(E) for no-response is unknown even if assumed to 
defined. A Grice-representation for [I(~,), T(~)] in this case can always be constructed,
but it cannot be constructed uniquely. Assuming mutually independent criteria, and
rewriting (18) 
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~i,=.(t) = %tyl 1 - exp = N-I ,

1- ~ ~.=(k, u)-~-_=(N, 
k=l

(21)

one can see that by choosing different no-response distributions 3-v.(N, t) one can
construct different Grice-representations for one and the same observable part of the

distribution 3-~(i, t), i = 1, ..., N-1. The only constraint imposed on a choice 
3.~(N, t) is that it cannot exceed 1 - p(E) as defined in (20).

By definition, ~~(N, t) --~ 1 - p(~,) if the label-and-time variable [I(~), T(~,)] 
complete. However, a valid Grice-representation can be constructed even if ~,= (N, t)
tends to a nonnegative value q(=_) < 1 - p(E). A substantive interpretation of 
possibility is that the subject’s strategy can be mixed: no-response can be a deliberate
choice in some trials, and a result of indefinite waiting in other trials, with probability
1 - p(,=) - q(E). To see that this interpretation is internally consistent, let the limit
value for 3-_=(N, t), q(E), decrease gradually from 1 - p(~) to 0. The corresponding
interpretation of no-response then changes from a deliberate choice in all cases, q(-=) 
1 - p(-=), through mixed strategies, q(,=) < 1 - p(.~), to indefinite waiting in all 
q(,=) = 0. The latter has been considered in the beginning of this section: 3-_=(N, t) 
undefined, and for a given choice of N- 1 criteria, {C 1, ¯ ¯ ¯, C~v- 1 }, there is one and
only one set of N- 1 response processes, {(1,_= (t),..., N_ 1,~_ (t )}, Gr ice-represent-
ing [I(=,), T(E)]. On the other hand, this situation corresponds to 3-.~ (N, t) = 0 in 
Substituting zero for ~-E(N, t) in (21), it is easy to verify that for any choice of 
added to the same set {C1 .... , CN-1}, the variable [I(-=), T(-=)] will be Grice-repre-
sented by the same N-1 response processes plus a process ~N,=_(t) = infCN;
Prob{~N,=(t) --> CN} = 

2.6. Independent termination times--interdependent processes.

A simple but important consequence of the Grice-representability theory for
choice RTs is that whether the termination times for response processes are stochas-
tically independent or interdependent has nothing to do with the lack or presence of
interactions between the processes themselves. The stochastic in/ter/dependence of
termination times {T1 (~),... , TN(~,)}, as defined in (17), is entirely determined 
arbitrary choice of the criteria: the termination times are mutually independent if and
only if the criteria are mutually independent. Since there are no empirical grounds for
preferring one set of criteria over another (see section 2.3, the paragraph following
Theorem 2.3.2), no empirically relevant meaning can be assigned to stochastic in/ter/
dependence of {T1 (~),. ¯ ¯, TN(E)}. The response processes themselves, on the other
hand, do interact in the following simple sense. Consider two label-and-time variables,
[I(,=1), T(~I)] and [I(~2), T(~2)], corresponding to two different values of-= within 
same choice family (i.e., the choice is between the same N alternatives in both cases).
Suppose that the joint distributions ~-~, (i -- 1, t) and ~’E2 (i = 1, t) are different, 
for all i ~ 1, the joint distributions ~’_=,(i, t) and ~’_%(i, t) are identical. Let {C1,...,
CN} be a set of mutually independent criteria, and consider the two corresponding sets
of response processes, {C~,.~,(t) .... , C~v,_=,(t)} and {Cl,=2(t), ..., CN,=_2(t)}, com-
puted according to (18). An inspection of (18) shows that under the assumptions made,
(1,_=l(t) is different from ~l,_=~(t), as one might readily expect, but for all i 
Ci,=_,(t) are also different from Ci,=_2(t). Indeed, for all i ¢ 1, the subintegral function
in (18),
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d~...(i, t) d~’z (i, t)
I - 9-.- (t) N

t)- t)
2

is different for E1 and ~2, because ~J-EI(1, t) # ~-_=~(1, t), whereas all other compo-
nents of the expression are the same. ("Paradoxically", the proof that C l,z(t) must
change in this situation as well is somewhat more technical.) Different response pro-
cesses, therefore, change in an interdependent fashion. Put in more "physicalistic"
terms, the (deterministic) response processes (deterministically) interact with 
other. At the samd time, the (stochastic) durations of the processes, {TI(E), ... 
TN(E)}, are mutually independent for both E1 and E2, reflecting the fact that {C1 .... ,
C~v} are chosen to be stochastically independent. It is useful to emphasize here that the
stochastic independence exists between potential, or virtual, termination times, rather
than actual durations. The latter are, in a sense, perfectly synchronized in the Grice
modelling scheme: all processes terminate as soon as one of them reaches its criterion.

It was shown in sections 1.8 and 2.4 that response processes are physically real-
izable because they are causally consistent with their input functions. As a simple
corollary, it follows that the dynamic interaction between competing processes is also
causally consistent. The interaction can be, therefore, viewed as an objective charac-
teristic of a physical system. If the example just considered is modified by assuming
that ~-~.,(i = 1, t) and ~-=,(i = 1, t) differ after some moment t*, but not before, 
it is clear from (18) that none of the processes Ci,=_l(t ) differs from Ci,E2(t ) before
moment t*, whether i = 1 or i # 1. In the general context of Theorem 2.3.1, the same
conclusion is derived from observing that solutions of differential equations (A6) at 
cannot be affected by the values of ffz(i, t) after that moment.

The notion of a deterministic dynamic interaction might help to further reconcile
one’s intuition with the natural occurrence of incomplete time variables in the Grice
modeling scheme (see Corollary 2.3.1). Faster developing processes may be thought 
as inhibiting slowly developing ones, thereby preventing them from exceeding a certain
level. As a result, an inhibited process can never win the who-is-first race if the cor-
responding criterion is set sufficiently high.

2.7. False Alarms And Mixtures.
In this and the next section, the Grice-representability of label-and-time variables

will be illustrated on RT mixture models, with an emphasis on the notion of target-
unrelated responses. Let T(F, ~) represent simple RT to a target stimulus presented
after a foreperiod F, and characterized by a set of factors ~. It is often assumed (see
Everitt & Hand, 1981, and Luce, 1986, for overviews) that T(F, ~:) is a mixture of 
time variables:

IT(F) -> -F with probability 1 -p(F, 
T(F, £) = [,T(£) -> 0 with probability p(F, ~). (22)

Here, T(0 represents "true", target-initiated, responses, and T(F) represents "false
alarms", or target-unrelated responses, usually assumed to be stochastically "fast":
Prob{T(F) -< t} > Prob{T(0 - t}. These assumptions are based on the common
observation that RT values in some trials may be very small or even negative (counted
from the target signal onset).

A mixture model is not, of course, the only conceptual framework for false alarms.
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In fact, a straightforward application of Theorem 1.5 to T(F, ~) suggests the following,
simpler picture. A response process ~F,¢(t) is always initiated at t = -F (warning
signal onset), and up to t = 0 (target stimulus onset) it develops as a function 
time-since-warning only, ~F,¢(t) = ~0(t + F). If the criterion C is set at a level below
~f,¢(0) = (~0(F), the process terminates before t = 0, resulting in an obvious 
alarm (negative RT). After t = 0 the course of the process is generally influenced 
target signal characteristics, ¢, but it will depend not only on ¢ but also on F, through
the course of the process preceding target onset. The target stimulus does not initiate
a new process, but acts as a modifier of an already developing process. As a result,
there is no sharp demarcation between "true" responses and "false alarms" for pos-
itive RTs (see section 1.7 for an example). It is remarkable that this theoretically very
interesting approach is suggested by merely describing the generation of pretarget and
post-target responses in the Grice modeling language. A somewhat similar picture was
proposed by Laming (1968, Axiom 6, p. 82) in the context of a random-walk model, but
it did not receive a deserving development in the subsequent RT literature (see Luce,
1986, p. 145).

The closest analogue of a target-modified process to a target-initiated one is a
response process that has the following structure when measured on a positive scale
calibrated by a unit-exponentially distributed criterion C:

(G0(F + t) if t < r;
~F,£(t) = ~o(F + r) + ~(t if t-- > r ;

where r -> 0. This process is not affected by £ up to t = r, but afterwards it develops
depending on £ exclusively, if measured with respect to the level it has reached at t =
r. Applying Lemma 1.4, one has for t -> r:

~F,~(t) = 1 -- exp{-Co(F + r) - C~(t - r)}.

The conditional probability that T(F, ~) < t, given that no response ("false alarm")
occurs before r, is

~’F,~(tIT(F, ~) > r) = 1 -- exp{--(~(t -- 

This simple relation demonstrates the convenience of using exponentially distributed
criteria (see section 1.6).

Let us return now to (22). The time variable T(F, ~) in (22) can be redefined 
label-and-time variable [I(F, O, T(F, 0], i = 0, 1, with the following distribution
function:

~F(/)(1 p(F , ~))

~-F,¢(i, t) [~¢(t)p(F, ~)

for i= 0;

for/= 1;
(23)

where ~’F(t) and fie(t) are the distribution functions of T(F) and T(~), respectively.
Below -F and 0, respectively, the two functions equal zero. The situation becomes
formally identical to a 2-alternative choice paradigm, and Theorems 2.3.1 and 2.3.2 are
applicable. Choosing, for simplicity, unit-exponentially distributed independent criteria
{Co, C1}, and combining (23) with (18), one gets, after transformations, the following
two response processes:
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f~F d~-v(U)(1-p(F, ~))
~F,(¢)(t) = 1 -- ~-v(U)(1 -p(F, ~)) - ff ~(u)p(F, 

fot d~¢ (u)p(F, 
~,(v)(t) = 1 -- ~-F(U)(1 -p(F, ~)) - ~(u)p(F, 

(24)

where the subscript listed first in ~F,(~:) and ~sC,(F) shows the "principal" factor that
determines each of the processes, and establishes correspondence between these pro-
cesses and the time variables in (22). Since ~-¢(t) = d~~(t)/dt = 0 for t < 0, the 
process is target-initiated: ~,(F) = 0 for t < 0. The course of this process after t = 
however, generally depends not only on target characteristics ~:, but also on the forepe-
riod F. The first process (~F,(0, develops alone between -F and 0, and it is easy 

verify that within this interval it does not depend on ~: ~V,(O(t) = ~v(t + (causal
consistency). Its course after t = 0, however, does generally depend on ~:. One can see
that as the two processes develop together, after t = 0, they both depend on both F and
~:. A natural interpretation of this fact is that the two processes interact, as discussed in
section 2.6. By reversing the order of derivations, one can verify that if

~F,(e)(t) ~F(t + F)for all t > -F;

~sC,(F) (t) ---~ ~s¢ for all t _> 0,

that is, if the two processes depend on their respective principal factors only (and
thereby they do not interact), then the resulting T(F, ~) generally cannot be decom-
posed according to (22).

2. 8. Other Mixtures.

The analysis of (22) in the previous section did not utilize the assumption that false
alarms are stochastically faster than true responses, ~F(t) > ~’~(t). It is not surprising,
therefore, that virtually the same mixture model and the same Grice-representability
analysis can also be applied to other situations in which some proportion of responses
are assumed to be target-unrelated.

As discussed in section 2.2, analysis of simple RT to weak signals leads naturally
to the concept of an incomplete time variable. A response process evoked (or modified)
by a weak signal may never reach a preset value of its termination criterion. In such
cases, since response is compulsory, it should be generated by an additional mecha-
nism. One might think of this mechanism as a stochastically slow "clocking" variable
that terminates a trial if no response has been given within a certain period counted
from the warning signal onset. Formally, this corresponds to the following mixture
model:

~T(F, ~:) _> 
T*(F, ~:)= [T*(F)_> 

with probability q(F,

with probability 1 - q(F, ~).
(25)

Here T*(F) is the "clocking" variable with a distribution function ~~(t). The 
variable T(F, ~:), a "normal" RT with a distribution function ~-F,~(t), is assumed to be
stochastically faster than T*(F), that is ~-~(t) 2rF,~(t ). The Grice-representability
analysis of this model leads to two (interacting) processes, competing for their preset
criteria, {C1, C2}. Choosing the criteria again unit-exponentially distributed and mutu-
ally independent, one gets:
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~F d~-F,~ (u)q(F, ~)
CF,¢(t) = 1 - 3-}(u)(1 q(F, ~) ) - 3-F,~(u)q(F, ~)

ffv d~-~(u)(1 q(F, I~ ))
~,(¢)(t) = 1 - ~’~(u)(1 q(F,. ~) ) - ~Fd(U)q(F, ~)

(26)

It would be repetitious to discuss these processes in greater detail. Instead, consider
how these processes change as a result of a further decomposition of the time variables
being modeled. For example, the time variable T(F, g) in the analyzed mixture may 
turn be thought of as a mixture of target-initiated RTs with false alarms. If so, then
T(F, ~) in (25) is decomposed according to (22), which means that (25) transforms 
the following mixture model:

fT(F) _> 

T*(F, ¢) -- , ~T(se) >0

[~T*(F) -> 

with probability q(F, ~)(1 -p(F, ~));

with probability q(F, ~)p(F, ~:);

with probability 1 - q(F, ~).

(27)

The corresponding distribution functions are ~F(t) > ~-g(t) > ~-~-(t). Choosing, 
before, unit-exponentially distributed mutually independent criteria {Co, C1, C2}, one
finds three response processes that correspond to the three components of the mixture:

OF’(g)(t) = q(F, ~)(1- -p(F,~F,~ (U)~) )d~’F(U) ’

ft q(F, ~)p(F, ~)d~-e(u).~,(F)(t)
~o[ ~e,~(u) ’

ff (1 - q(F, ~:))d~-~-(u)
~%,(~:) (t) 

~F,I~(U) ;
F

where ~bF,g(u) stands for

1- ~F(u)q(F, ~)(1-p(F, ~))- ~e(u)q(F, ~)p(F, ~’~- (u)(1- q(F, ~)).

One can easily verify that, in agreement with Lemma 2.4, C F,(0 (t) here remains 
same as in (26), whereas

~F,g(t) = OF,(~)(t) + ~g,(F)(t).

This is a particular case of (19), and its remarkable simplicity is yet another reason for
using exponentially distributed criteria.

The Grice-representability analysis of the mixture models for simple RT can be
trivially generalized to incorporate mixture models for choice RT. For example, if the
conditional RTs [T(F, ~:) [ I(F, ~:) -- i] in the N-alternative choice RT, i = 1,..., 
are assumed to be decomposable according to (27), then the problem will be formally
reduced to that of Grice-representing a 3N-alternative label-and-time variable.
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Conclusion

Obviously, to fit empirical RT distributions, one has to make specific assumptions
about the shapes of response processes and criterion distributions. In the Introduction
such assumptions were referred to as "auxiliary", as opposed to the principal idea of
modeling RT in terms of stimulation-dependent deterministic processes developing
until they reach randomly preset stimulation-independent criteria. Analogously, the
principal idea in a model constructed according to the McGill scheme is that of a
stochastic process (e.g., a deterministic function plus stationary stimulation-indepen-
dent noise) reaching a fixed criterion; this idea is complemented by assumptions con-
cerning the shapes of the function and noise distribution. It is a natural tendency to view
empirical tests and comparisons of such models, say, a Grice-scheme model versus a
McGill-scheme one, as tests and comparisons of logical conjunctions of the principal
assumptions (call them P) with "auxiliary" ones, A: PGrice & AGrice versus PMcGill 
AMcGill. I have shown in this paper that this is a misleading picture. The "principal
assumptions", PGrice and PMcGill, are not assumptions at all. They are mathematical
languages universally applicable to all conceivable families of RT distributions: they
cannot be "tested", and they are equivalent. What is being tested and compared are the
"auxiliary" assumptions only. One can always translate AGrice into *A McGill, for exam-
ple, and to present the situation as A ~cGill versus A McGm, two sets of specific assump-
tions formulated in a common (McGill-scheme) language.

A mathematical language, when fully formulated and identified as a language, can
be assessed, of course, in terms of its simplicity, convenience, and heuristic value. It
has been shown that certain conceptual difficulties, such as stochastic independence of
processing times that coexists with deterministic interdependence of processes them-
selves, are resolved by merely stating them in the language of the Grice modeling
scheme. Also, it has been shown that certain concepts that otherwise might have been
considered artificial, or even inadmissible, such as that of an incomplete time variable,
arise naturally within the framework of the Grice modeling scheme, and play a useful
role. Finally, it has been shown that Grice-representation of RT suggests some inter-
esting possibilities that otherwise may have been overlooked, such as target-modified
response processes instead of the dichotomy of target-initiated versus target-unrelated
responses. All this allows one to conclude that the Grice modeling scheme is a good
choice for a mathematical language, especially given its remarkable conceptual sim-
plicity.

This paper by no means covers the entire scope of applicability of the Grice
modeling scheme. For instance, it has been assumed throughout the paper that the
moment when a response process crosses its criterion coincides with the initiation of an
observable response. In the case of the choice RT paradigm, this means that the
response processes compete for their criteria "till the very end", as it is assumed in the
continuous flow models (Eriksen & Schultz, 1979; see also Coles, Gratton, Bashore,
Eriksen, & Donchin, 1985). As a result, any experimental factor selectively affecting
RTs for a given response, say Prob[I(- =) = 1, T(E) > to], will generally change the
course of all response processes after moment to, rather than that of% l,E (t) alone (see
sections 2.4 and 2.6). It is reasonable to assume; however, that RT can be additively
decomposed into a "choice time" component and a "post-choice time" component, so
that certain experimental factors can affect one of these components, but not the other
(e.g., factors affecting the "motor difficulty" of a given response may be assumed to
affect the post-choice component only). Stated formally,

[I(~), T(~)] = [I(~1), T"pre"(E1)+T"post"(~2)],
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where the two sets, ~-~1 and ~2, may intersect but generally do not coincide. The Grice
modeling scheme should be applied to such a decomposition as follows. First, the
label-and-time variable [I(,~l), T,,pre,,(~l) ] is modeled by competing response pro-
cesses, as described in section 2.3. The first response process that crosses its criterion
determines the value of I(, = l) (response choice) and initiates the postchoice stage. 
(conditional) time variables [T,,post,.(~2) I I(~l) = i] are modeled separately for differ-
ent values of i, as described in section 1.5. This approach can be generalized further to
incorporate multiple stages involving different forms of choice.

Our discussion of the Grice modeling scheme would not be complete without
considering the possibility that certain experimental manipulations may affect criteria
rather than response processes (see Assumption C in the Introduction). For example,
in his 1972 paper Grice analyzes several RT distributions under the assumption that
they all correspond to a single response process but to different criterion distributions.
It was shown in this paper that this possibility is conceptually redundant: once response
processes are assumed to vary depending on some external factors, all other factors,
including experimental instructions, can also be thought to affect response processes
only, coupled with a fixed (but arbitrarily chosen) criterion distribution. Moreover,
there is a logical difficulty associated with the idea. Recall that numerical values of a
response process are only defined with respect to a given criterion distribution. If the
latter changes, the numerical values should change accordingly to represent the same,
unchanged, process. The analogy with ratio scales mentioned in section 2.3 helps to
clarify the issue. Let processes C_~ (t) be defined on a ratio scale. What would it mean
to say that a certain experimental manipulation affects the scaling factor rather than the
processes themselves? Obviously, the meaning is that all the processes unde/’go one
and the same similarity transformation, new C=_(t) = ti mes old C=_(t), which is
convenient to present as remeasuring the "old" processes on a scale whose unit of
measurement is k times smaller than before. Notice that if different processes under-
went similarity transformations with different coefficients, this description would not be
possible.

Returning to the case presented here, some external manipulations (say, experi-
mental instructions) may be assumed to change all response processes (indexed by the
values of other experimental factors) by one and the same monotonic transformation,
fit, so that for any E, new C=_(t) = fit(old C=_(t)). If this transformation is continuous
and strictly increasing, it is convenient to present this situation as a transformation of
the criterion distribution % into fit-1(%), while the processes retain their "old" numer-
ical values. Due to Lemma 1.4, this is possible if and only if

new ~-.~(t) = fit-l(old ~_=(t)),

for all time variables T(_=). This is, of course, an empirically falsifiable assumption. 
holds if and only if the "old" and "new" distribution functions ff~. (t) satisfy Schwe-
ickert’s rectangle condition (Schweickert, 1985, Theorem lb):

old ~’_=(tl) < old ~-.=,(t2) iff new ~’.=(tl) < new ~-_=,(t2),

for any _=, ,~’, t~, t2. This discussion of the criterion distribution changes can be
trivially generalized to choice RT and disjunctive RT distribution families.

Appendix: Proofs

Lemma 1.3.1. The generating condition CE(t) -> C in (1) is equivalent to C=_(t) 
C + co -> co, where co is an arbitrary constant. Consider a stationary random process
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N(t) whose distribution at any moment t coincides with that of Co - C. Then C=_(t)
C iff Cz(t) N(t) -> 0, and inf{ t: C=_(t) >- C} =inf {t : C=_(t) + N(t) - Co}

Lemma 1.3.2. If C=, (t) and C in (1) are not strictly positive, they can be redefined
by putting new C=_(t) = exp (old C=_(t)), and new C = exp (old C). If inf(new C) 
then the same transformation can be applied once more. Then the generating condition
C=_(t) -> C is equivalent to C=_(t)N(t) >- where Co is an arbi trary positive constant,
and N(t) is a stationary random process whose distribution at any moment t coincides
with that of co/C.

Lemma 1.4. Indeed, the following events are equivalent by definition, (3):

C_=(t)->C iff C=. (u) >- C for some u <- if f in f{u: C=_ (u) >- C} <- 

But q~(C_=(t)) = Prob{~(t) -> C}, and from 

if~(t) = Prob{T(E) -< t} = Prob{inf{u: C=_(u) >- C} -< t}.

Theorem 1.5. Since q~(c) is both strictly increasing and continuous, the quantile
function q~ -1 (p) is a strictly increasing mapping from 0 < p < 1 to the c-axis, uniquely
defined for all p within this interval. Then the function % -1 (if_= (t)) is defined for all 
such that 0 < if_=(t) < 1, and it is nondecreasing because if_=(t) is a nondecreasing
mapping from the t-axis to (0, 1). Therefore %-l(if_=(t)) is an HRL-form of 
response process (e.g., of itself), and can be denoted by t~E(t). Due to Lemma 1.4, 
distribution function generated by ~__,(t) coupled with C is %(~__, (t)). 

q~(C=.(/)) = %(~-l(ifz(t))),

and since ~ is strictly increasing and continuous,

%(~-l(if,=(t))) = if.=(t),

which is the distribution function for T(,=).

Lemma 1.5. Let %(c) have a discontinuity of the first kind at some value 0, t hat
is lim%(c) = p < 1 as c--> Co - 0, but %(c) = p + -< 1, P0 > 0. Let a
time-dimensioned variable T have a continuous distribution function if(t) such that
if(t) -> p beginning with some value of t. (Such a random variable, obviously, exists.)
If there is a response process C(t) that generates T when coupled with C, then to =
inf{t: C(t) >- Co} should exist as a finite value: otherwise C(t) would always be less than
co (or undefined), and if(t) = ~(t~(t)) would be less than p (or undefined) 
contrary to the agreement above. Then if(t) >- ~(c0) = p + P0 for any t > t 0, whereas
for any t < t0, if(t) < p. Since P0 > 0, this contradicts the assumption that if(t) 
continuous.

Lemma 1.8. Due to (5), there is a point-to-point correspondence between (~= 
and if=(t): (~ depends on t and on -= only through its dependence on f_=(t).

Lemma 1.9.1. From Lemma 1.4 and Theorem 1.5, T(~*, b) is generated by 
response process C=_.,b(t) coupled with C, iff

%-~(if_=,(tlB = b)) = ¢ff~,,o(t), (A1)

and
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er.-,(tlB = b) = ~((7=.,,b(t)). (A2)

At the same time, T(.~*) is generated by a response process C-=,(t) coupled with the
same C, iff

% -1(3-~, (t)) = (7.-. (A3)

and

~-_=, (t) = %((7~., (t)). (A4)

Substituting (A1) and (A3) in (9) on gets (8), substituting (A2) and (A4) in 
(9)¯

Lemma 1.9.2. Due to Lemma 1.9.1, it is sufficient to show that (10) implies (9).
If (I0) holds, then for u -< 

sup%(C_,(u)) = b %(C=,(u)) d~(b).

But supq~ (C_=, (u)) = % (sup C_=, (u)) = % ((TZ, (t)), 

supfb %(C=.(u)) d~(b)= fb sup%(C.~(u)) 

= fo q~(sup C=_(u)) d~(b)= fb ~(e.~.(t)) 

Theorem 2.2. The proof is essentially the same as for Theorem 1.5. The function
%-l(~-_=(1, t)) is a nondecreasing mapping from (0, p(,=)) into the c-axis. Therefore
%-l (~-_= (1, t)) is an HRL-form of some response process C_= (t), and can be denoted

by (7-= (t). Applying Lemma 1.4 (which did not require that the time variable generated
be complete), one can see that (7_= (t) coupled with C generates a time variable with 
distribution function ~((7-= (t)). Substituting 1 (~-- = (1, t)) for (7_=(t), one proves that
the generated distribution function is ~--=(1, t). This means that

[I(E)= 1 andT(~)=t] iff inf{u: C=_ (u) >- C} = 

But C-=(u) -> C is possible at some value of u iff C -< sup C-=(t). Otherwise the
infimum, and thereby T(=,), are undefined, and I(E) in [I(,=), T(~)] can be set 
to 2. Observe that

Prob{C -< sup C_= (t)} = Prob{C -< sup(7_= (t)}

= Prob{C -< % -l(p(~))} = p(~).

Theorem 2.3.1. The proof is greatly simplified by the following transformations of
the variables. First, we transform every value of t into ~ = ~-=(t), where ~.- is 

¯ ~strictly increasing continuous mapping of (lnfr(,,), supT(,)) onto (0, 1). Recall 
section 2.1, that ~-=(i, t) is assumed to be continuously differentiable with respect 
a strictly increasing continuous function 0_= (t) everywhere, except (possibly) at 
points 0-=(tl) < ¯ ¯ ¯ < SE(tm). We choose the transformation ~ = ~-=(t) so that 
all ~_=(i, t) = ~’-=(i, t-), i = 1, ... , N, the derivatives d~Y=(i, t-)/d~ exist and 
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continuous on the adjacent closed intervals [0, 71] , [71, 72] , oo, , [Tm, 1], where
71 < " ¯ " < 7m correspond to the moments of discontinuity q,_=(t~) < ̄  ¯ ¯ O=_(tm) for
d~=_ (i, t)/dO=_ (t). One such transformation is

t = ~z(t) 

N

U(O(t)) ~’.~(i, t)
I

N+I

where U(q/(t)) is an arbitrary distribution function strictly increasing and continuously
differentiable with respect to 0_=(t) on (infr(E), supT(_=)). One can verify 
distribution functions ~’_=(i, 7) are continuous on their domain, (0, 1), and based 
limit considerations, one can put ~_=(i, 0) = 0, ~=_=(i, 1) = 1. One can also verify 

d~_=(i, 7) (U + 1)d$-.=(i, 
- <(N+ 1).0 <

d~ N

dU(O(t) + ~]dO-~(j, 
l

It is clear from this expression that d~_= (i, 7)/d7 can only have discontinuities of the
first kind (finite jumps), and that these may only occur at the (possible) discontinuity
points 71, ¯ ¯ ¯, 7m. The limits of d~_=(i, 7)/d7, as 7 approaches 0 or 1, are finite and can
be viewed as the values of the derivative at 0 and 1, respectively. Both ~=~ (i, 7) and
d~-_=(i, 7)/d7, therefore, are defined on [0, 1].

The second transformation is that of the criteria. We transform every criterion Ci
into ~i = % i(Ci). The marginal distributions ~i of {El, ¯ ¯ ¯, ~N} are uniform between
0 and 1: ~i(Ci) Ci . Obviously,

Prob{Cj > cj for all j ~ ilC i = ci} = Prob{C--j > cj for all j ~ il-~ i = ci}.

or, in the notation adopted,

It follows from the admissibility conditions that all %/-(b-~,..., ~N) are positive and
locally Lipschitzean with respect to all arguments on their domain (0, 1)N. Based on
limit considerations, the values of these conditionals can be extended to the domain
boundaries (retaining all admissibility properties). In particular, % ~ (~-~,..., ~N) 
when all its arguments are zero, and %i--(~-1, ¯ .., ~N) = 0 iff some of the arguments
equal 1.

To simplify the notation, the upper bars will be dropped from the notation for the
transformed variables and functions, and it will be assumed instead that all response
processes are described in transformed time (denoted by t rather than i) and on the
transformed scales (ci rather than ~i). One simply has to remember that each response

process Ci,=_(t ) thus described will eventually have to be transformed back into real
time and "real" (i.e., calibrated by the initially assumed criterion distribution) scale 
values:

"real"Ci,=_ (real t) %~-l(Ci,z ((P~l(t)). (A5)

Our goal now is to find continuous nondecreasing functions {C~,_(t), ... 
CN,=_ (t)} for which
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d~-~. (i, t)

dCi,~ dt

dt %i-(CI,~, .. ¯ , C~v,~) ’ i = 1 ....
, N, (A6)

subject to the initial condition

Ci,=.(t)=Oat t=0, i= 1,..., N. (A7)

(In the original, untransformed coordinates, the initial condition is Ci,=_ (t) --> infCi as
t(E) --~ infT(~).)

Consider the following series of (N ÷ 1)-dimensional rectangles:

[tk<--t<--tk+l]x[O<--C1 <1)... × [0--< CN < 1),

k = 0, 1, ... , m, rn + 1, (A8)

where t o = 0, tl, ¯ ¯ ¯, tm are the (possible) discontinuity points for dff-~(i, t)/dt, and
tm+l = 1. Within each of these rectangles the right-hand sides of (A6) are continuous
in t (by construction) and locally Lipschitzean and all C-arguments. The latter follows

or, in a normal form,

from observing that

d~-=. (i, t)

dt

%i-(CI ÷ AC1 .... , CN ÷ ACN)

d~-_= (i, t)

dt

~i-(cl, ... 

N

<- MEIAcil,
1

for any two points (t, cl .... , C~v) and (t, + A Cl , . o ° , CN÷ ACN) withi n a closed
subregion of (A8). Indeed, denoting by L the Lipschitz constant for %~ (C1,_=, ... 
CN,=_) in this sub-region (which exists due to the admissibility assumptions), one can
put

L d~~ (i, t)
M = max

min%i- (Cl, ¯ ¯ ¯ , CN)2 dt

EHTIBAR N. DZHAFAROV

[I(-- =) = i, T(~) = 

iff

[Cj > Cj,=_(t) forj ~ i, Ci = Ci,=_(t), Ci > Ci,~(u) for u < t].

This is equivalent to requiring that

Prob{I(~,) = i, t -dt < T(E) -< 

equals

Prob{Cj > Cj,=.(t) forj ~ i, and ~i(Ci,=_(t -dt)) < q~i(Ci) ~< <~i(Ci,’~(t))}.

Expressing the joint probability as a product of the corresponding conditional and
marginal, and recalling that the marginals are uniform between 0 and 1, we come to the
following differential equation:

d~~.(i, t)= q~i-(Cl,_=, .o. , CN,=.)dCi,=_, i = I, ... , N,
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where the denominator is finite and positive because %/-(C1 ..... CN) is positive and
continuoias (due to the admissibility assumptions) and the subregion is closed; analo-
gously, the maximum of the derivative exists and is nonnegative.

Consider now the first in the series of rectangles (A8), the one with the time base
[0, t I ]" Since the right-hand sides of (A6) are continuous in t and locally Lipschitzean
in all C-arguments, we can apply the Picard theorem for ordinary differential equations,
combined with an appropriate extension theorem (see, e.g., Matveev, 1974, Cronin,
1980), to get the following result: system (A6, A7) has a unique maximal solution
{Cl,~(t), .o. , CN,=_(t) } within the rectangle. More specifically, there are N unique
functions Ci,=_(t ) that start at the origin,

(t = 0, CI,Z(0 ) "~- 0, , o, , CN,z(O ) = 0),

develop according to (A6), and end at some of the "opposite" boundaries of the
rectangle,

t= tl or Cl,=(u)--~ I or ... or CN,=_(u)--~ 1 as u---~t<--tl,

"or" being nonexclusive. By construction, for any moment t within this interval, the
event [I(, =) = i, T(~,) = t] occurs iff[Cj Cj,=_(t) forj ~ i and Ci= Ci, =,(t) andCi >
Ci,=_(u) for u < t]. It follows then that the values of Ci,=_(t) are such that

Prob{T(_) -< t} = I - Prob{Ci Ci,=_ (t) for al l i} ,

so that Prob{T(E) -< t} = 1 iffat least one of Ci,=_(t) = 1. From this we conclude that
the "opposite" boundaries of the rectangle, at which the solutions Ci,=_(t ) end, may
only be of one of the following two kinds:

1 and (CI,Z(t) --* I or... CN,=,(t) --~ I) as t --~I;1. tl----

or

2. t~< I and C1,E(/1) 1 and... CN,=_(tl) < 

The first case occurs iff there are no discontinuity points between 0 and 1 (i.e., rn = 0),
and then system (A6, A7) is solved. In the second case, we fix the point (b) as the initial
condition for the next step, replacing (A7). Then we seek the solution of (A6), subject
to this new initial condition, in the next rectangle of series (A8), this time with the time
base [tl, t2]. Obviously, everything said about the previous rectangle applies here as
well, and we continue in this process until we come to the last rectangle, with the time
base [t m, 1], and reach the final endpoint there. This endpoint should necessarily be of
Type 1 above: at least one of the functions Ci,=_ (t) approaches 1 (the upper limit of Ci)
as t --~ 1. (Note, however, that as many as N- 1 remaining functions may end up below
1.)

Observe now that since the right-hand expressions in system (A6) are never neg-
ative, the functions {C1,_= (t),..., C~v,_=(t)} are all nondecreasing. Therefore they 
be considered HRL-forms of some response processes. A function Ci,=_ (t) is nonin-
creasing within some interval iff d~ =_ (i, t)/dt = 0 within this interval. These properties
do not change after we apply transformation (A5) to express the solutions in original
coordinates. This completes the proof.

(The local Lipschitz condition serves to insure the uniqueness of the solution of
(A6, A7), and this is the main reason for including it in the admissibility conditions for
criteria. One might, therefore, consider replacing the local Lipschitz condition with
stronger assumptions, such as piecewise continuous differentiability, or weaker as-
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sumptions, such as the local Osgood condition for differential equations (see, e.g.,
Petrovski, 1964).)

Theorem 2.3.2. Assume that the variables have been transformed as in the pre-
vious theorem. The conditionals for mutually independent criteria (uniformly distrib-
uted between 0 and 1) are, simply,

N

1-~ (1 - cj)

¢~i- (el, " ° ° , CN) -- (A9)
1 - ci

They are Lipschitzean (in fact, globally, with the Lipschitz constant equal to I), be-
cause they are continuously differentiable in all arguments, with the values of the
derivatives being -1 or 0 only. Theorem 2.3.1 is, therefore, applicable, and a unique
solution {C1,_= (t),..., C~v,~ (t)} exists. Combining (A9) with (A6), and observing 

N

l~I (1 - cj,=.(t)) = 1 - ~=_(t),
j=l

we derive, after elementary transformations,

dCi,~

dt dlog(1 - Ci,~.) d~-~(i, t)/dt

1 - Ci,~_ dt 1 - ff~.(t) 

from which (18) is obtained by integration followed by transformations (A5).

Lemma 2.4. Observe that

$.~(i*, t)= ~ ~’.=(i, 
i~Li*

whereas the marginal distributions ft.-(t) for the two label-and-time variables, [I*(,=),
T*(=,)] and [I(,=), T(~)], are identical. Equation (19) now immediately follows 
(18), after elementary transformations.
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