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Abstract

A discrimination function  (x; y) assigns a measure of discriminability to stimulus pairs x; y (e.g.,

the probability with which they are judged to be di¤erent in a same-di¤erent judgment scheme). If for

every x there is a single y least discriminable from x, then this y is called the point of subjective equality

(PSE) for x; and the dependence h (x) of the PSE for x on x is called a PSE function. The PSE function

g (y) is de�ned in a symmetrically opposite way. If the graphs of the two PSE functions coincide (i.e.,

g � h�1), the function is said to satisfy the Regular Minimality law. The minimum level functions are

restrictions of  to the graphs of the PSE functions. The conjunction of two characteristics of  ; (1)

whether it complies with Regular Minimality, and (2) whether the minimum level functions are constant,

has consequences for possible models of perceptual discrimination. By a series of simple theorems and

counterexamples, we establish set-theoretic, topological, and analytic properties of  which allow one to

relate to each other these two characteristics of  .

Keywords: minimum level function, perceptual discrimination, subjective equality, Regular Minimal-

ity, stimulus space, well-behaved discrimination function

1. Introduction

The principal object of consideration in this paper is discrimination probability function,

 (x; y) = Pr [x and y are judged to be di¤erent]

= 1� Pr [x and y are judged to be the same] :

An experimental paradigm must involve a stimulus characteristic in which all x-stimuli di¤er from all y-

stimuli, allowing the experimenter to treat (x; y) as an ordered pair (i.e., distinguish (a; b) from (b; a) and

treat (a; a) as a pair rather than a single stimulus). Using the term coined in Dzhafarov (2002), x and y

belong to two observation areas, whose di¤erence, if perceived, is to be ignored by the observer in choosing

between �same� and �di¤erent.� In a traditional psychophysical experiment, say, comparison of aperture
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colors varying in color coordinates, the observation area is usually determined by the chronological order of

the two stimuli (�rst or second), or by their spatial locations (say, left or right with respect to a �xation

point). Thus, an x-stimulus and a y-stimulus may be described as, respectively, (left, color coordinates

r; g; b) and (right, color coordinates r0; g0; b0). Formally, x 2 X and y 2 Y;

 : X � Y ! [0; 1] ; (1)

where X and Y are di¤erent stimulus spaces, even if the variable parameters of stimuli (such as color

coordinates) have one and the same set of possible values. Figure 1 illustrates the logic of the situation on

an example where the observation area, X or Y; is determined by the mouth line curvature (�happy�versus

�sad�). For the variety of experimental paradigms and types of stimuli, as well as the variety of meanings

for the categories �same�and �di¤erent,�see Dzhafarov and Colonius (2006).

observation area 1
(stimulus set X)

observation area 2
(stimulus set Y)

x1

x2

x3

x4

x5

y1

y2

y3

y4

y5

Figure 1. A sample of faces presented pairwise with the question: Is this one and the same �person�? In all pairs, one of the

two faces is �happy� (and is considered a stimulus from X), the other is �sad� (a stimulus from Y ). The variable parameters

of the stimuli are the shapes of the ovals for face and eyes (having one and the same set of values for x and y stimuli). To

illustrate the notion of a point of subjective equality (PSE): if the pair (x4; y4) evokes the response �same� more frequently

than any pair (x4; y) ; y 6= y4; then y4 is the PSE for x4; if the pair (x4; y4) evokes the response �same�more frequently than

any pair (x; y4) ; x 6= x4; then x4 is the PSE for y4:

In spite of our primary interest in discrimination probabilities, throughout this paper we make no use

of the fact that  is probability. This means that our discussion equally pertains to any function  (x; y)

which assigns a �degree of discriminability� to stimulus pairs (x; y) ; with the values ranging from zero (x

and y are indistinguishable) to a positive number, which can always be taken to be 1; indicating a �perfect

discriminability.�A prototypical example is provided by numerical ratings of dissimilarity on some �from-to�

scale. With this generalization in mind, we refer to any function  of the form (1) as discrimination function,
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with probability being merely one of its interpretations, albeit the main one.

Stimulus spaces (observation areas) X and Y are treated in this paper on a very general level. The

strongest constraint we impose on them is that they are arc-connected, �rst countable, Hausdor¤ spaces.

We defer to the concluding section a brief discussion of where such topological properties are derived from.

Consider a discrimination function  which has the following properties:

(P1) for some function h : X ! Y and all x 2 X, y 2 Y ,

y 6= h (x) =)  (x; h (x)) <  (x; y) ; (2)

(P2) for some function g : Y ! X and all x 2 X, y 2 Y ,

x 6= g (y) =)  (g (y) ; y) <  (x; y) : (3)

Then, for any x 2 X; the stimulus h (x) 2 Y is called the point of subjective equality (PSE) for x; and

for any y 2 Y , the stimulus g (y) 2 X is called the PSE for y. The functions h and g are referred to as the

PSE functions (X ! Y and Y ! X, respectively).

The function !h : X ! [0; 1] de�ned by

!h (x) =  (x; h (x)) (4)

and the function !g : Y ! [0; 1] de�ned by

!g (y) =  (g (y) ; y) (5)

are called the minimum level functions (along the PSE functions h and g; respectively).

Given P1 and P2; suppose that  also satis�es the following condition:

(P3) for all x 2 X, y 2 Y , y is the PSE for x if and only if x is the PSE for y. That is,

g � h�1: (6)

Then we say that  satis�es the law of Regular Minimality. In this case the PSE functions h and g

de�ne one and the same set of ordered pairs (x; y), and it is convenient to speak, by abuse of language,

of a single PSE function (equivalently written as either h or g) and, correspondingly, of a single minimum

level function (written as !h or !g). Clearly, if  satis�es the law of Regular Minimality, both h and g are

bijective functions, and X and Y are in a one-to-one correspondence.1

Assuming that  satis�es P1 and P2, in this paper we focus on the following two characteristics:
1The terminology just introduced follows Dzhafarov (2002, 2003, 2006) and Dzhafarov and Colonius (2005, 2006, 2007),

with one important di¤erence: we predicate the notions of the PSE function and the minimum level function on the properties

P1 and P2 alone, rather than on the law of Regular Minimality in its entirety. In other words, we allow for two distinct PSE

functions and two minimum level functions.
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1. whether the minimum level functions, !h or !g, are constant (both or one of them);

and

2. whether  satis�es the law of Regular Minimality (i.e., satis�es P3 in addition to P1-P2).

These characteristics are important because the conjunction of Regular Minimality with the noncon-

stancy of the minimum level function (Nonconstant Self-Dissimilarity) has been shown to impose nontrivial

constraints on the basic modeling schemes for the process of perceptual discrimination (Dzhafarov, 2003,

2006; Dzhafarov & Colonius, 2006; Ennis, 2006).

We know that P1 and P2 do not imply Regular Minimality, and that Regular Minimality can be satis�ed

with or without the minimum level function !h (x) (or !g (y), as in this case the two are interchangeable)

being constant. Figure 2 (Regular Minimality with constant !h), Fig. 3 (Regular Minimality with non-

constant !h), and Fig. 4 (P1-P2; but not P3; with nonconstant !h and !g) are variants of the examples

presented, with various degree of detail, in Dzhafarov (2002, 2003, 2006) and Dzhafarov and Colonius (2005,

2006).2

It would be premature, however, to conjecture that the constancy of !h and/or !g on the one hand and

Regular Minimality on the other have nothing to do with each other. The two are related in a variety of

ways, most of which are best characterized as simple but not immediately obvious. The explication of these

simple but nonobvious relations between the two properties is the main goal of this paper.

Consider, for instance, a function  : ]0; 1[� ]0; 1[! [0; 1] with the PSE functions as shown in Fig. 5. It

is easy to show that !h in such a case cannot be constant. Indeed,  1 <  2 by the de�nition of h (x) ; and

 2 <  3 by the de�nition of g (y) ; whence  1 <  3: That !g cannot be constant is shown analogously.

In Section 2 we generalize and qualify this observation by establishing propositions of the form

(Const!RegMin): constancy of minimum level function(s) !h and/or !g =) Regular Minimality

for broad subclasses of discrimination functions  subject to P1-P2: The subclasses of  are de�ned

in set-theoretic or topological terms: the strongest constraint we consider is that X and Y are Hausdor¤,

�rst-countable, connected topological sets, and that the functions  ; h, and g are continuous mappings (in

which case we also consider the relationship between the continuity of h, g, and  ).

No topological properties of  would su¢ ce to ensure the reverse implication

2Note that the linearity of the PSE functions in these examples is only chosen for graphical convenience: the PSE functions

can be made nonlinear by homeomorphic mappings of stimulus sets X and Y onto themselves. Thus, the PSE lines in Fig. 4 can

be transformed into a picture like in Fig. 5 by mapping X = R and Y = R onto ]0; 1[ : This consideration alone shows that the

conformity with Regular Minimality we see in Figs. 2 and 3 must not be interpreted as the lack of �constant error� (the term

traditionally used to indicate h (x) 6= x and/or g (y) 6= y). In general, if X and Y are such that the notion of a constant error

is well-de�ned (it need not be, as elements of X and Y are allowed to be physically non-comparable, e.g., measured in di¤erent

units), the lack of Regular Minimality, as in Fig. 4, necessarily means that either h (x) 6= x for some x 2 X or g (y) 6= y for

some y 2 Y ; while the adherence to Regular Minimality, as in Figs. 2 and 3, is compatible with both h (x) � x and h (x) 6� x

(Dzhafarov, 2006; Dzhafarov & Colonius, 2006).
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Figure 2. A discrimination probability function  (x; y) for real-valued stimuli (X = Y = R). (This particular example is

generated by means of Luce & Galaneter�s, 1963, model, with normal constant-variance distributions whose means change as

smooth functions of stimuli; see Dzhafarov, 2003, for details.). The function satis�es Regular Minimality. The curve in the

xy-plane is the PSE function for  , which can be equivalently written as y = h (x) or x = g (y) (in this case, linear functions):

for any point taken on the PSE line, the value of  increases as one moves away from this point in any of the four directions

shown. The minimum level function !h (x) (equivalently, !g (y)) in this example is constant: the bottom line of  is parallel

to its PSE shadow in the xy-plane.
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Figure 3. A discrimination probability function  (x; y) (with X and Y intervals of R) which satis�es Regular Minimality but

has a nonconstant minimum level function. (This example is generated by means of the �quadrilateral dissimilarity� model;

see Dzhafarov & Colonius, 2005, for details.)
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Figure 4. A discrimination probability function  (x; y) (X = Y = R) which does not satisfy Regular Minimality although

it does conform with P1 and P2: the function y = h (x) and x = g (y) are de�ned for all x and y; respectively, but the two

graphs (in this case, straight lines) do not coincide. As one moves away from a point on the line y = h (x) in either of the two

y-directions (or from a point on x = g (y) in either of the two x-directions), the value of  increases. Although the corresponding

minimum level functions are not visually discernible, it is apparent that both minimum level functions are nonconstant. (This

example, like the one in Fig. 2, is generated by means of Luce & Galanter�s, 1963, model, but this time the variances change

together with the means as smooth functions of stimuli; see Dzhafarov, 2003, 2006, for details.)

h(x)

g(y)

ψ2 ψ3

ψ1

Figure 5. A pair of distinct PSE functions h and g for a discrimination function  . Values  1;  2;  3 of  are shown for three

points indicated by circles. The minimum level function !h cannot be constant because  1 <  2 <  3:
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(RegMin!Const): Regular Minimality =) constancy of minimum level function.

Thus, in Section 3 we show that the class of continuous functions  subject to Regular Minimality with

continuous PSE functions, if it is nonempty, includes functions with all possible combinations of a continuous

PSE function and a continuous minimum level function. It is known, however, that Regular Minimality does

imply the constancy of the minimum level function if X;Y � R and  and h are continuously di¤erentiable

functions:
d (x; h (x))

dx
=
@ (z; h (x))

@z

����
z=x

+
@ (x; z)

@z

����
z=h(x)

dh (x)

dx
= 0; (7)

because the two partial derivatives vanish at the minima of, respectively, z 7!  (z; h (x)) and z 7!  (x; z) : In

Dzhafarov (2003) this observation is generalized to �near-smooth patches�of functions  de�ned on X;Y �

Rn: In Section 3 we generalize this observation further. We show how a function de�ned on arc-connected

X;Y can be represented by a set of functions mapping [0; 1]� [0; 1] into [0; 1] ; called arc-parametrized facets

of  . The implication RegMin!Const is then related to analytic properties of these functions.

2. From Constancy to Regular Minimality

In this section we discuss properties of discrimination functions  which enable implications of the form

Const!RegMin.

2.1. Set-theoretic properties

Our �rst proposition is that the constancy of both minimum level functions, !h and !g; always implies

Regular Minimality.

Theorem 1 Let  satisfy P1-P2; and let !h (x) = c1 and !g (y) = c2 for all x 2 X and y 2 Y: Then c1 = c2

and g � h�1 (i.e.,  satis�es P3).

Proof. Since

 (x; y) � max f (x; h (x)) ;  (g (y) ; y)g = max fc1; c2g

for all x and y; max fc1; c2g is the global minimum of  : Hence

c1 = c2 = min
x;y

 (x; y) :

Then  (x; h (x)) �  (x0; h (x)) for any x; x0; and it follows from P2 that, for any x;

x = g (h (x)) :

Analogously,  (g (y) ; y) �  (g (y) ; y0) for any y; y0; and P1 implies that, for any y;

y = h (g (x)) :
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Hence g � h�1:

If only one of the minimum level functions, !h or !g; is assumed to be constant, the main result is based

on the following lemma, which essentially codi�es the observation made in relation to Fig. 5.

Lemma 1 Let  satisfy P1-P2; and let, for some x 2 X; y = h (x) : Then

 (x; y) =  (g (y) ; h (g (y))) if and only if x = g (y) :

Proof. By the de�nition of h,

 (g (y) ; h (g (y))) �  (g (y) ; y) ;

and by the de�nition of g;

 (g (y) ; y) �  (x; y) :

Hence

 (x; y) =  (g (y) ; h (g (y))) =)  (g (y) ; y) =  (x; y) :

Invoking the de�nition of g again,

 (g (y) ; y) =  (x; y) =) x = g (y) :

This proves the necessity (only if) statement. The su¢ ciency is obvious.

That the constancy of only one of the minimum level functions does not generally imply Regular Mini-

mality can be seen from the example in Fig. 6. Note: although in this subsection we only deal with X;Y

as unstructured sets, in this particular example we need the continuity of  to interpolate the values of  

between those marked. We use intervals of reals as X and Y in all our subsequent examples too, and the

continuity (of  ; h; g; !h; !h) is understood in relation to the usual, Euclidean topology.

It is easy to surmise that the reason Regular Minimality is violated in this example is that g (y) maps Y

on a proper subset of X rather than on the entire X. This can be �corrected�by splitting  into two parts

with �properly chosen�domains, as shown in Fig. 7. The next lemma and a theorem that follows from it

clarify the issue. We use the notation f jB for the restriction of function f de�ned on A to B � A.

Lemma 2 Let  satisfy P1-P2 with the PSE functions h and g; and let !h (x) = c on some X 0 � X (or

!g (y) = c on some Y 0 � Y ). Then the restriction  jX 0 � h (X 0) of  (respectively,  jg (Y 0)� Y 0 ) satis�es

P3; with the PSE functions h jX 0 and g jh (X 0) (respectively, h jg (Y 0) and g jY 0 ).

Proof. That the restriction of  to X 0 � h (X 0) satis�es P1-P2; with the PSE functions h jX 0 and

g jh (X 0) ; is obvious. Since, for all x 2 X 0;

!h (x) =  (x; h (x)) =  (g (h (x)) ; h (g (h (x)))) = c;
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y

x1 x2

Figure 6. A contour map for a continuous discrimination function de�ned on a Cartesian product of two open real intervals.

Closed circles indicate points that belong to the domain of  ; open circles fall outside the domain. The numbers indicate the

elevations (values) of  on di¤erent areas and along lines. The intermediate values of  between the bottoms (heavy solid

lines) and boundaries (light solid lines) of the two �canyons� can be obtained by arbitrary continuous interpolation between

the solid lines, with intermediate elevation contours shown by the dashed lines in the right panel. The right-hand heavy solid

line graphs the PSE function g (y) ; with the !g being constant (zero). The two heavy solid lines together form a graph of the

(discontinuous) PSE function h (x) ; with a nonconstant !h (its value changes from 1=2 to 0). Regular Minimality is violated

because, as shown in the bottom panel, y = h (x1) but g (y) = x2 6= x1:

Figure 7. Two restrictions of  satisfying Regular Minimality. The restricted domains are shown by two shaded rectangular

areas containing the zero-level line and the 1/2-level line as their diagonals.
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where h (x) ; h (g (h (x))) 2 h (X 0) ; we invoke Lemma 1 to conclude that, for every x 2 X 0;

x = g (h (x)) :

But this is the statement of P3 for the restriction of  to X 0 � h (X 0) :

Theorem 2 Let  satisfy P1-P2, and let !h (x) � c (or !g (y) � c). Then  satis�es P3 if and only if h

maps X onto Y (respectively, g maps Y onto X).

Proof. The su¢ ciency (if) is a corollary to Lemma 2. The necessity (only if) is obvious: Regular

Minimality implies that h is bijective.

A non-surjective h in the formulations of the properties P1 and P2 means that while every y 2 Y has

its PSE in X; there are some y 2 Y which are PSEs for no x 2 X: At least in some contexts this possibility

may be deemed implausible: in view of the domain rede�nition o¤ered by Lemma 2 and illustrated in Fig.

7, one might think of a non-surjective h as a consequence of �improperly�de�ned stimulus sets (observation

areas). It seems reasonable therefore (although we do not adopt this point of view in this paper) to consider

a reformulation of P1 and P2 in which h and g will be required to be surjective mappings.

2.2. Topological properties

We look now into topological properties of the discrimination function  which enable the implication

Const!RegMin. Speci�cally, we assume that

(C) X and Y are Hausdor¤, �rst countable, connected topological spaces,3 and  is continuous with respect

to the product topology on X � Y:

We will refer to a function  with property C as a C-function.

A prototypical example of a C-function will be a continuous function de�ned on the Cartesian product

of connected subsets of Rn endowed with the usual topology. This was the level of consideration adopted in

Dzhafarov (2002, 2003), and all our examples, being con�ned to intervals of R, fall within this category too.

We begin by discussing the continuity of the PSE functions for a C-function  subject to P1 and P2.

That the continuity of h and g does not follow from the property C and has to be stipulated separately4

is apparent from Fig. 6, where h (x) is discontinuous. The question of whether this discontinuity may be

responsible for the violation of Regular Minimality in this example is answered in the negative: the example

3As an informal reminder: the �rst countability is needed to speak of convergence and continuity in terms of sequences of

points, the Hausdor¤ property ensures that a sequence cannot converge to more than one limit, and the connectedness of a set

means that its proper subsets cannot be both closed and open.
4 In Dzhafarov (2003) the continuity of h and g (in Rn) was part of the formulation of the properties P1 and P2. Although

we obviously do not adopt this approach here, in view of our results the generality loss it entails (especially, in Rn) is primarily

of a �monster-barring�variety.
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x1 x2

y1

y2

Figure 8. A contour map for a continuous discrimination function which satis�es Regular Minimality with a nonconstant

minimum level function. The details are analogous to those in Fig. 6. The PSE functions h and g are discontinuous.

x1 x2

y1

y2

Figure 9. A contour map for a continuous discrimination function which satis�es Regular Minimality with a constant minimum

level function. The details are analogous to those in Fig. 6. The PSE functions h and g are discontinuous.
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given in Fig. 8 shows that both h (x) and g (y) can be discontinuous for a continuous  which does satisfy

Regular Minimality. Figure 9 shows that this is possible even if the minimum level function (written as !h

or !g) is constant.

Inspection of the examples in Figs. 6, 8, and 9 also shows, however, that the discontinuity of the PSE

functions in them is of a special nature. Focusing on the function h (x) ; let us say that a sequence xn ! x

reveals a discontinuity of h at x if h (xn) does not converge to h (x) : In Figs. 6, 8, and 9 (left upper panels),

the sequences revealing a discontinuity of h (x) are all those converging from the right to the lower endpoint

of the zero-level line (let us call this point a). The special nature of the revealed discontinuities is in that

for any sequence xn ! a+ the corresponding sequence h (xn) has no limit points in Y: It would be futile to

try, as we will see, to modify the examples to force h (xn) to converge to some limit in Y other than h (a).

In particular, Fig. 10 demonstrates that the examples will not work if we replace the interval Y with its

closure Y preventing thereby limit points in Y from �escaping�(in the �gure, the interval X is also closed,

for symmetry, but this is immaterial).

Figure 10. An attempt to modify the examples in Figs. 6, 8, and 9 (respectively, upper, left, and right panels) by closing the

intervals X and Y . The arrows inside the domain (upper and left panels) indicate the points at which  acquires a discontinuity.

The arrows outside the domain (right) indicate the values of x and y which acquire more than one PSE, violating thereby the

properties P1-P2: A crossed circle indicates that the point does not belong to the PSE functions.

The theorem below generalizes this observation. Note that the term limit point in relation to a sequence

is used in the general topological meaning, as the limit point for the set of elements in the sequence (i.e., a

point whose every open neighborhood contains an element of the sequence).
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Theorem 3 Let  be a C-function and satisfy P1: Then, for any sequence xn ! x, with x and all xn in

X; the set of limit points of h (xn) in Y is either empty or consists of the point h (x) alone (in which case,

h (xn) ! h (x)). The analogous statement holds for a C-function  satisfying P2 and sequences yn ! y in

Y:

Proof. Assume the contrary: for some sequence xn ! x; h (xn) has in Y a limit point y 6= h (x) : Then,

for some subsequence of xn (without loss of generality, the sequence itself), h (xn)! y; and we have

 (xn; h (xn)) �  (xn; h (x)) :

By the continuity of  ;

 (xn; h (xn)) !  (x; y) ;

 (xn; h (x)) !  (x; h (x)) ;

whence

 (x; y) �  (x; h (x)) :

But this contradicts the de�nition of h:

For the next two corollaries, recall that a set A is called sequentially compact (or Bolzano-Weierstrass)

if every in�nite sequence in A has a limit point in A: If B � A; we de�ne the outer boundary of B in A as

fa 2 AnB : a is a limit point for Bg :

Corollary 1 (to Theorem 3) If Y � Y 0 and Y 0 is sequentially compact, then for every sequence xn ! x

such that h (xn) 6! h (x), all limit points of h (xn) belong to the outer boundary of Y in Y 0: (Analogously

for X and g (yn) :)

This corollary describes the situation we see in Figs. 6, 8, 9, with Y an open interval of reals, and Y 0 its

closure.

The next corollary explains the failure of constructing a C-function with discontinuous PSE functions in

Fig. 10.

Corollary 2 (to Theorem 3) If Y (or X) is sequentially compact, then h (respectively, g) is continuous.

In particular, if X and Y are compact subspaces of Rn; both h and g are continuous.

All of this shows that adding the requirement that a C-function have continuous PSE functions does not

overly restrict the class of C-functions (subject to P1-P2). With this requirement in place we can formulate

a simple topological criterion for the implication Const!RegMin.

Theorem 4 Let  be a C-function which satis�es P1-P2 with continuous PSE functions h; g; and let

!h (x) � c (or !g (y) � c). Then  satis�es P3 if and only if h (X) is open in Y (respectively, g (Y ) is

open in X).
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Proof. The necessity (only if) is obvious: if P3 holds, h (X) = Y is open in Y: To prove the su¢ ciency,

denote by g� the restriction g jh (X) of g (obviously, nonempty). By Lemma 2, g� � h�1: We prove that if

h (X) is open, Y nh (X) is empty. Assume the contrary. Since Y nh (X) is closed in Y; and since it cannot

also be open in Y (for Y is connected), there is a point y� 2 Y nh (X) such that its every open neighborhood

contains points of h (X) : This implies the existence of a sequence yn ! y� with all yn 2 h (X) : Since g is

continuous, the sequence g (yn) = g� (yn) should converge to x� = g (y�) : But h is continuous too, whence

yn = h (g� (yn))! h (g (y�)) 2 h (X) : We have then

yn ! y� 2 Y nh (X)

and

h (g� (yn)) = yn ! h (g (y�)) 2 h (X) ;

a contradiction.

x

y1

y2

Figure 11. A scheme for constructing a continuous function  de�ned on the Cartesian product of a half-open (X) and open

(Y ) real intervals. A small-size number at a point indicates the value of  at this point (closed circle), or the limit value of  

if the point is outside the domain (open circle). The right panel shows how to �ll in the rest of the values. The limit values

of  on an edge of the domain are computed by linear interpolations between the nearest points on the same edge with values

marked (e.g., the open square is halfway between 1
2
and 1; hence its value is 3

4
). By linearly interpolating between these limit

points and the zero-valued point on the right (as shown by the dashed line) we �nd values for all interior points (e.g., the

closed square is halfway between 0 and 3
4
; hence its value is 3

8
). Bottom panel: The segment of the heavy line between the two

zero-valued points graphs the PSE function h (x); the entire, two-segment, heavy line is the graph of the PSE function g (y) :

Regular Minimality is violated because x = g (y1) but h (x) = y2 6= y1:
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The example in Fig. 11 shows that the openness of h (X) is critical for this result: if h (X) is not open in

Y , then a C-function with continuous PSE functions and a constant minimum level function !h, may violate

Regular Minimality.

The following corollary is of interest due to the prominence of stimulus spaces representable by open

connected regions of Rn in initial formulations of the Regular Minimality law (Dzhafarov, 2002, 2003).

Corollary 3 (to Theorem 4) If X and Y are open connected regions of Rn; and  a continuous function

with continuous PSE functions, then

!h (x) � c (or !g (y) � c) =) P3:

Proof. By Brouwer�s invariance of domain theorem (see, e.g., Hocking & Young, 1961, pp. 277-278) every

injective continuous function from a subset of Rn into Rn is open (maps open sets onto open sets). Hence

h (X) is open in Y , and Theorem 4 applies.

3. From Regular Minimality to Constancy

Here, we discuss properties of discrimination functions  which enable the implication RegMin!Const. It

is easy to see that the topological properties invoked in the preceding section are not su¢ cient. In fact,

as illustrated by Fig. 12, if X and Y are intervals of reals (no matter if closed, open, or half-open), then

any homeomorphism (which in this case means any continuous bijection) h : X ! Y and any continuous

function !h : X ! [0; 1[ can serve as, respectively, the PSE function and the minimum level function for a

continuous function  : X � Y ! [0; 1] :

This observation can be easily generalized to all topological X and Y which allow for at least one

continuous discrimination function subject to Regular Minimality with a continuous PSE function. Note

that a continuous PSE function under Regular Minimality is a homeomorphism X ! Y (a continuous

bijection with a continuous inverse).

Lemma 3 Let X;Y be topological spaces, and let U be the class of continuous functions X�Y ! [0; 1] sub-

ject to Regular Minimality with continuous PSE functions. If U is nonempty, then for any homeomorphism

h : X ! Y and any continuous !h : X ! [0; 1] there is a function  2 U with h and !h as its PSE function

and minimum level function, respectively.

Proof. Let  � 2 U ; with a homeomorphic h� : X ! Y as its PSE function. Denote g� � (h�)
�1 and

de�ne

�X (x; x
0) =  � (x; h� (x0))�  � (x; h� (x)) ;

�Y (y; y
0) =  � (g� (y0) ; y)�  � (g� (y0) ; y) :
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ω h

(x
)

ψ1(x,y)

ω g

(y

)

l g
(y

)

r g
(y

)

ψ2(x,y)
uh(x)

dh(x)

Figure 12. Construction of a continuous function  with a given continuous PSE curve (graphed by the solid curve) and a

given continuous minimum level function, equivalently written as !h (x) or !g (y) : X and Y are intervals of reals (shown to

be open, but this is immaterial), and  (x; y) = max f 1 (x; y) ;  2 (x; y)g ; with the construction of  1 and  2 shown in the

left and right panels, respectively. Left panel: Choosing arbitrary continuous uh (x) > !h (x) ; dh (x) > !h (x) ; and assigning

them to the upper and lower boundaries,  1 (x; y) is computed by linear interpolation between the values uh (x) and !h (x),

or between !h (x) and dh (x) ; according as y is above or below the PSE curve. Right panel: With arbitrary continuous

lg (y) > !g (y) ; rg (y) > !g (y) assigned to the left and right boundaries,  2 (x; y) is computed by linear interpolation between

the values lg (y) and !g (y), or between !g (y) and rg (y) ; according as y is to the left or to the right of the PSE curve.

Clearly, �X : X �X ! [0; 1] and �Y : Y � Y ! [0; 1] are continuous functions, and

�X (x; x
0) = 0() x = x0;

�Y (y; y
0) = 0() y = y0:

Let a homeomorphism h (x) and a continuous !h (x) be given. Denote g � h�1 (a homeomorphism), put

!g (y) = !h (g (y)) (a continuous function), and de�ne

 1 (x; y) = min f!h (x) + �Y (h (x) ; y) ; 1g

 2 (x; y) = min f!g (y) + �X (g (y) ; x) ; 1g

 (x; y) = max f 1 (x; y) ;  2 (x; y)g :

It is easy to verify that  satis�es the statement of the lemma.

In fact, the assumption of the lemma can be weakened: it would su¢ ce to posit the existence of at least

one continuous function  � (x; y) satisfying P1 with a continuous surjective PSE function h� (x) ; and at

least one  �� (x; y) satisfying P2 with a continuous surjective PSE function g�� (x) :

The lemma shows that the possible generalizations of (7) mentioned in Introduction in relation to

RegMin!Const should be analytic rather than topological. It turns out that analytic considerations can

be extracted from a topological context in a natural way if one replaces the connectedness property in the

de�nition of a C-function with the stronger property of arc-connectedness.
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3.1. Arcwise parametrization of stimuli

A Hausdor¤ space A is arc-connected if (and only if), for any distinct p; q 2 A one can �nd an injective

continuous map (an arc) a : [0; 1] ! A with a (0) = p and a (1) = q: An arc is a homeomorphism from its

domain [0; 1] onto its image a ([0; 1]) : It is convenient to present a as aqp; to indicate its endpoints and to

distinguish it from points in A. So we will speak of arcs aqp with points a (t) ; t 2 [0; 1] : To distinguish an

arc as a mapping, aqp : [0; 1]! A, from its image aqp ([0; 1]) in A; we denote the image
�
aqp
�
: Clearly, di¤erent

arcs aqp and b
q
p may have the same image,

�
aqp
�
=
�
bqp
�
:

We assume now that

(A) X and Y are Hausdor¤, �rst countable, arc-connected topological spaces, and  is continuous with

respect to the product topology on X � Y:

Such a function  will be referred to as an A-function.5

Given any two arcs xu
0

u : [0; 1]! X and yv
0

v : [0; 1]! Y (with endpoints u; u0 and v; v0; respectively), the

function

' (s; t) =  (x (s) ; y (t)) (8)

is called an arc-parametrized facet (AP-facet, for short) of  . Figure 13 provides a schematic illustration.

Since  is continuous, ' (s; t) is continuous (hence uniformly continuous) on [0; 1]�[0; 1] : Clearly, an AP-facet

of an A-function is an A-function.

Y X
'v

v

u

'u[ ]'u
ux

( )tx( )'ty

[ ]'v
vy

( )

( ) ( )( )',
||

',

tytx

tt

ψ

ϕ

't t

0

1 0

1

Figure 13. An illustration for the notion of an arc-parametrized facet ' of  : Explanations for the symbols are given in the

text.

We should strictly distinguish between an AP-facet ' of  and a restriction of  to arc images
h
xu

0

u

i
�h

yv
0

v

i
� X � Y . Every pair of arc images can be associated with an in�nity of possible parametrizations

xu
0

u : [0; 1]!
h
xu

0

u

i
and yv

0

v : [0; 1]!
h
yv

0

v

i
: (9)

5The �rst countability is not in fact utilized in the subsequent discussion. It is convenient, however, to keep it in place to

ensure that all A-functions are C-functions.
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Let an A-function  satisfy Regular Minimality with continuous PSE functions h and g = h�1 (more

compactly, with a homeomorphic PSE function h): Then, for any arc image
h
xu

0

u

i
in X,

h
�h
xu

0

u

i�
=
h
yv

0

v

i
is an arc image in Y: Such

h
xu

0

u

i
and

h
yv

0

v

i
will be referred to as PSE-corresponding arc images. For any

parametrizations (9) of these two arc images, we have a bijective correspondence � : [0; 1] ! [0; 1] between

the domains of the two arcs, where

� �
�
yv

0

v

��1
� h � xu

0

u : (10)

The meaning of � is given by the following lemma.

Lemma 4 Let  be an A-function subject to Regular Minimality, with a homeomorphic PSE function h.

Then any AP-facet ' of  de�ned by arcs xu
0

u and yv
0

v with PSE-corresponding images is subject to Regular

Minimality, with a homeomorphic PSE function � given by (10).

Proof. As the functions yv
0

v ; h; and x
u0

u in (10) are homeomorphisms, � is a homeomorphism. It also

follows from (10) and the bijectivity of yv
0

v that, for any t 6= � (s) in [0; 1] ;

y (t) 6= y (� (s)) = h (x (s)) :

It follows then from (8) that

' (s; � (s)) =  (x (s) ; h (x (s))) <  (x (s) ; y (t)) = ' (s; t) :

Analogously, if s 6= ��1 (t) ;

'
�
��1 (t) ; t

�
=  

�
h�1 (y (t)) ; y (t)

�
<  (x (s) ; y (t)) = ' (s; t) :

This establishes that ' satis�es Regular Minimality with � as its PSE function.

Due to its importance we state the PSE property of � separately: for any t; s 2 [0; 1] ;

t 6= � (s) =) ' (s; t) > max
�
' (s; � (s)) ; '

�
��1 (t) ; t

�	
(11)

The simplest parametrizations of two PSE-corresponding arcs are, of course, those with

yv
0

v � h � xu
0

u () xu
0

u � h�1 � yv
0

v : (12)

With such a choice � is the identity function [0; 1]! [0; 1], and (11) assumes the canonical form

t 6= s =) ' (s; t) > max f' (s; s) ; ' (t; t)g : (13)
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3.2. Well-behaved discrimination functions

We use the following notation for �nite di¤erences of the �rst and second order. For any s; s0; t; t0 2 [0; 1] ;

�1s0' (s; t) = ' (s0; t)� ' (s; t) ;

�2t0' (s; t) = ' (s; t0)� ' (s; t) ;
(14)

where the superscript refers to the position of the argument changed. Analogously,

�12(s0;t0)' (s; t) = �
1
s0�

2
t0' (s; t) = �

2
t0�

1
s0' (s; t)

= ' (s0; t0)� ' (s0; t)� ' (s; t0) + ' (s; t) :
(15)

It is easy to verify that

' (s0; t0)� ' (s; t) =

8<: �1s0' (s; t) + �
2
t0' (s; t) + �

12
(s0;t0)' (s; t)

��1s' (s0; t0)��2t' (s0; t0)��12(s0;t0)' (s; t)
: (16)

Another notation convention: we use double arrows (s0; t0) � (s; t) to indicate that s0 and t0 approach,

respectively, s and t from the same side. Speci�cally:

(s0; t0)� (s; t)+ means s0 ! s+ and t0 ! t+;

(s0; t0)� (s; t)� means s0 ! s� and t0 ! t�;

(s0; t0)� (s; t)� means one of the two:
(s0; t0)� (s; t)+

(s0; t0)� (s; t)�

(s0; t0)� (s; t) means s0 ! s and t0 ! t and (s0 � s) (t0 � t) � 0

(17)

Given anA-function  and a pair of arc images,
h
xu

0

u

i
and

h
yv

0

v

i
, we say that the restriction  

���hxu0u i� hyv0v i
of  is well-behaved on

h
xu

0

u

i
if, for some parametrizations xu

0

u : [0; 1] !
h
xu

0

u

i
and yv

0

v : [0; 1] !
h
yv

0

v

i
; the

resulting AP-facet ' of  has the following properties:

(R1) for all (s; t) 2 [0; 1]� [0; 1] except for an at most denumerable set,

lim sup
(s0;t0)�(s;t)

������
12
(s0;t0)' (s; t)

s0 � s

����� <1; (18)

(R2) for almost all s 2 [0; 1] and almost all t 2 [0; 1] ;

lim
(s0;t0)�(s;t)�

�12(s0;t0)' (s; t)

s0 � s = 0; (19)

where the choice of + or � may depend on (s; t) :

The de�nition of a restriction  
���hxu0u i� hyv0v i well-behaved on hyv0v i is obtained by replacing the quotient

in (18) and (19) with
�12(s0;t0)' (s; t)

t0 � t :
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The motivation for this de�nition can be seen by presenting the quotient in (18) and (19) as

�12(s0;t0)' (s; t)

s0 � s =
' (s0; t0)� ' (s; t0)

s0 � s � ' (s0; t)� ' (s; t)
s0 � s : (20)

According to Dzhafarov (2003), ' (s; t) is �near-smooth�if it has unilateral derivatives in s (and t) which are

continuous in t (respectively, s). If so, one can easily see in (20) that (19) holds for both (s0; t0)� (s; t)+ and

(s0; t0) � (s; t)� at every (s; t) ; and (18) is satis�ed ipso facto. The continuous di¤erentiability mentioned

in relation to (7) is a special case of near-smoothness. At the same time, the generalization provided by

R1-R2 is considerable: the limits for the right-hand ratios in (20) need not exist or be �nite even when (19)

holds, the quotient in the latter may be nonzero on a product of two sets of measure zero, and it can grow

in�nitely large in absolute value on a denumerable set. Also, the de�nition says nothing about the behavior

of the quotient when s0 and t0 approach, respectively, s and t from di¤erent sides.

Given a parametrization aqp : [0; 1]! A of an arc image
�
aqp
�
; a reparametrization of

�
aqp
�
is

bqp � aqp � f (21)

where f is a strictly increasing continuous mapping of [0; 1] onto [0; 1] (hence a homeomorphism). Clearly,�
aqp
�
=
�
bqp
�
:

The following observation is obvious but important.

Lemma 5 Let a restriction  
���hxu0u i� hyv0v i of  be well-behaved on hxu0u i (or on hyv0v i), and let the para-

metrizations xu
0

u : [0; 1] !
h
xu

0

u

i
and yv

0

v : [0; 1] !
h
yv

0

v

i
satisfy R1-R2: Then R1-R2 are satis�ed under all

reparametrizations of
h
yv

0

v

i
(respectively,

h
xu

0

u

i
).

Proof. A reparametrization of
h
yv

0

v

i
amounts to choosing an increasing homeomorphism f : [0; 1]! [0; 1]

and replacing t with f (�) in R1-R2: Obviously, ' (s; t) = ' (s; f (�)) and f (� 0) ! f (�)� is equivalent to

� 0 ! � � :

We are now in a position to formulate the analytic characterization of  to be related to the implication

RegMin!Const.

Let A ( ) denote the set of all ordered products of arc images
h
xu

0

u

i
�
h
yv

0

v

i
such that  

���hxu0u i� hyv0v i is
well-behaved on at least one of the two arc images,

h
xu

0

u

i
or
h
yv

0

v

i
: Let h be a homeomorphism X ! Y: We

say that  is well-behaved with respect to h if, for every u; u0 2 X; there is an arc image
h
xu

0

u

i
� X such thath

xu
0

u

i
� h

�h
xu

0

u

i�
2 A ( ) :

As h maps X onto Y; it follows that for every v; v0 2 Y there is an arc image
h
yv

0

v

i
� Y such that

h�1
�h
yv

0

v

i�
�
h
yv

0

v

i
2 A ( ) :

We are, of course, interested in  well-behaved with respect to the homeomorphic PSE function h;

provided  satis�es Regular Minimality.
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Theorem 5 Let  be an A-function subject to Regular Minimality, with a homeomorphic PSE function

h, and let  be well-behaved with respect to h: Then the minimum level function !h (x) =  (x; h (x)) is

constant.

Proof. (The proof makes use of Lemma 6, stated immediately after the theorem.) In accordance with

the de�nition of  well-behaved with respect to h, for any u; u0 2 X we can �nd
h
xu

0

u

i
� h

�h
xu

0

u

i�
2 A ( ).

Without loss of generality, let  
���hxu0u i� h�hxu0u i� be well-behaved on hxu0u i, and let the AP-facet ' de�ned

by parametrizations

xu
0

u : [0; 1]!
h
xu

0

u

i
and yv

0

v : [0; 1]! h
�h
xu

0

u

i�
satisfy R1-R2: By Lemma 5, the parametrization yv0v can be chosen arbitrarily. We choose

yv
0

v � h � xu
0

u ;

so that the AP-facet ' satis�es (13). Then, for t0 6= t;

�1t0' (t; t) > 0; �2t0' (t; t) > 0;

�1t' (t
0; t0) > 0; �2t' (t

0; t0) > 0:

Applying (16) to s = t and s0 = t0 6= t; we get

' (t0; t0)� ' (t; t) =

8<: �1t0' (t; t) + �
2
t0' (t; t) + �

12
(t0;t0)' (t; t) > �

12
(t0;t0)' (t; t)

��1t' (t0; t0)��2t' (t0; t0)��12(t0;t0)' (t; t) < ��12(t0;t0)' (t; t)
;

whence

j' (t0; t0)� ' (t; t)j < ��12(t0;t0)' (t; t) :

The properties R1-R2 apply to s = t and s0 = t0 6= t; with (t0; t0) � (t; t) being equivalent to t0 ! t, and

(t0; t0)� (t; t)� to t0 ! t� (with the same choice of + or �). It follows then from R1 that

lim sup
t0!t

����' (t0; t0)� ' (t; t)t0 � t

���� <1
except on an at most denumerable set, and it follows from R2 that for almost every t 2 [0; 1],

d' (t; t)

dt� = lim
t0!t�

' (t0; t0)� ' (t; t)
t0 � t = 0:

By Lemma 6, we conclude that

' (t; t) � const:

In particular, on recalling that ' is de�ned by arcs xu
0

u and h � xu0u ;

 (u; h (u)) = ' (0; 0) = ' (1; 1) =  (u0; h (u0)) :

As this is true for all u; u0 2 X; the theorem is proved.
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Lemma 6 (for Theorem 3) Let f : [0; 1]! R be continuous and suppose that for almost every t 2 [0; 1],

either f 0+(t) = 0 or f
0
�(t) = 0. If, in addition,

lim sup
t0!t

����f (t0)� f (t)t0 � t

���� <1
for all t except for an at most denumerable set, then f is constant.

Proof. This is a corollary to Theorem 2 in Miller and Vyborny (1986).

4. Conclusion

We have established several relations between the properties of Regular Minimality and the constancy of the

minimum level functions for a discrimination function  . To highlight some of them,

1. (Const!RegMin type, Theorems 1 and 2)  with well-de�ned PSE functions (i.e., satisfying P1-P2)

complies with Regular Minimality if both its minimum level functions are constant, or if one of them

is constant and the corresponding PSE function is onto;

2. (Const!RegMin type, Theorem 4) for a continuous function  with continuous PSE functions (on

Hausdor¤, �rst countable, connected stimulus spaces), if the range of a PSE function is open then its

constancy implies Regular Minimality;

3. (RegMin!Const type, Theorem 5) for stimulus spaces which are also arc-connected, the Regular

Minimality property of  implies the constancy of its minimum level function if  is well-behaved

with respect to its homeomorphic PSE function h (Section 3.2), the well-behavedness being a property

generalizing continuous di¤erentiability of  (x; y) with real-valued x and y.

These and accompanying results are simple, but they are not immediately obvious and have not been

previously stated.

Some of the intermediate observations and constructions presented in this paper may be of interest in

their own right, outside the context of the relationship between Regular Minimality and the constancy of

minimum level functions. Thus,

(a) Theorem 3 and its corollaries clarify the relationship between the continuity of  and the continuity

of its PSE functions;

(b) Lemma 3 demonstrates the existence, for a broad class of topological spaces, of a continuous  subject

to Regular Minimality with any continuous PSE function and any continuous minimum level function;

(c) most importantly, Section 3 introduces the representation of  by its �arc-parametrized facets,� a

construction which allows one to discuss analytic properties of a function whose domain is characterized

in entirely topological terms (Hausdor¤, �rst countable, arc-connected stimulus spaces).
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Among other uses the latter construction opens the way for a sweeping generalization of Dzhafarov�s

(2003) analysis of Thurstonian-type modeling of discrimination probabilities (which was con�ned to stimuli

representable in Rn). This issue will be dealt with in another paper.

With the topological properties such as Hausdor¤ topology and �rst countability playing a critical role

in our development, the question arises as to where this topology is derived from. The obvious answer seems

to be: from physical descriptions of the stimuli. If a stimulus, such as a point-size spot of light uniformly

moving from a �xed position to the right or to the left, is described by an interval of reals (say, velocity

values), the Euclidean topology of real numbers seems to determine the topology of the stimulus space. The

problem with this approach is that a mathematical set does not uniquely determine its topology, and that

one and the same set of stimuli allows for multiple mathematical sets to describe it. To use a simplistic

demonstration, the space of visual motions just mentioned may be represented by V = [�1; 1], with zero

corresponding to rest and positive/negative values representing the rightward/leftward velocities. It would

be also legitimate, however, to measure the same motions by the time it would take them to cover a unit

distance, taken with negative sign if the motion is leftward. The representing set T = ]�1;�1] [ [1;1]

for this description (with 1 indicating the state of rest), di¤ers topologically from V if in both cases the

topologies are induced by one of the conventional topologies of extended reals. On the other hand, nothing

prevents one from imposing on T the Euclidean topology of V; by considering a set open in T if and only

if the set of the reciprocals of its elements is open in V in the usual sense. We see that the choice of a

topological structure based on physical description is far from being unambiguous.

A di¤erent approach to the problem of where stimulus sets acquire their structure (including topology)

is introduced in Dzhafarov and Colonius (2005, 2007). The approach is called �purely psychological� (as

opposed to �psycho-physical�): all structural properties of stimulus sets X;Y are derived from the discrimi-

nation function  de�ned on X�Y; with physical descriptions serving as mere labels. With minor expository

variations and omitting details, the topological construction in Dzhafarov & Colonius (2007) is as follows.

Our �rst assumption is that  satis�es Regular Minimality (P1-P3), with a PSE function h : X ! Y:

Then the psychometric increments of the �rst and second kind, de�ned as

	(1) (x; x0) =  (x; h (x0))�  (x; h (x)) ;

	(2) (x; x0) =  (x0; h (x))�  (x; h (x)) ;
(22)

are positive for x 6= x0 and vanish at x = x0: We choose one of them, say 	(1), and make our second

assumption: as 	(1) (x1; x01)! 0 and 	(1) (x2; x02)! 0;

	(1) (x01; x
0
2)�	(1) (x1; x2)! 0;

	(2) (x01; x
0
2)�	(2) (x1; x2)! 0:

(23)

(Note that none of the four points x1; x01; x2; x
0
2 is assumed to be �xed here.) The topology on X is introduced

by taking the sets

B (x; ") =
n
x0 2 X : 	(1) (x; x0) < "

o
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for all x 2 X and " > 0 as a topological base. This means that open sets in X are created by taking all

possible unions of sets B (x; ") : (Replacing 	(1) (x; x0) with 	(1) (x0; x) ; 	(2) (x; x0) ; or 	(2) (x0; x) creates

the same topology.) The topology on Y can be imposed by simply positing that a subset Y 0 � Y is open in

Y if and only if h�1 (Y 0) is open in X: This automatically makes h a homeomorphism. It can be proved now

that the function  on which this construction is based is continuous in the product topology of X and Y:

(In fact, the assumption (23) allows us to impose on X and Y a uniformity, a richer structure than topology,

and to prove that  is uniformly continuous.)

It is easy to see thatX and Y with the topology thus constructed are always Hausdor¤and �rst countable.

The notion of an arc being well-de�ned, one can focus on the subclass of X;Y which are arc-connected and

e¤ect the entire construction of Section 3, with Theorem 5 applicable and valid. A limitation of the �purely

psychological�approach lies in the fact that it is based on the law of Regular Minimality as its cornerstone.

As a result, one cannot pose within its framework any of the questions discussed in Section 2. Whether this

approach can be generalized to discrimination functions subject to P1-P2 but not necessarily P3 remains to

be seen.
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