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Abstract

Random variables A and B, whose joint distribution depends on factors (x; y) ; are selectively in�u-

enced by x and y; respectively, if A and B can be represented as functions of, respectively, (x; SA; C)

and (y; SB ; C) ; where SA; SB ; C are stochastically independent and do not depend on (x; y) : Selective

in�uence implies selective dependence of marginal distributions on the respective factors: thus no pa-

rameter of A may depend on y. But parameters characterizing stochastic interdependence of A and B,

such as their mixed moments, are generally functions of both x and y: We derive two simple necessary

conditions for selective dependence of (A;B) on (x; y) ; which can be used to conduct a potential in�nity

of selectiveness tests. One condition is that, for any factor values x; x0 and y; y0;

sxy � sxy0 + sx0y0 + sx0y;

where sxy = E [jf (Axy; x)� g (Bxy; y)jp]1=p with arbitrary f; g; and p � 1; and (Axy; Bxy) denoting

(A;B) at speci�c values of x; y: For p = 2 this condition is superseded by a more restrictive one:

���xy�xy0 � �x0y�x0y0 �� �q1� �2xyq1� �2xy0 +q1� �2x0yq1� �2x0y0 ;
where �xy is the correlation between f (Axy; x) and g (Bxy; y) : For bivariate normally distributed (f (Axy; x) ; g (Bxy; y))

this condition, if satis�ed on a 2� 2 subset fx; x0g � fy; y0g, is also su¢ cient for a selective dependence

of (A;B) on (x; y) con�ned to this subset.

Keywords: multivariate normal distribution, processing architectures, random variables, selective

in�uence, stochastic dependence, stochastic unrelatedness, test scores, Thurstone�s general law.

1. Introduction

Selective in�uence (dependence, attribution) is a relation implied in statements of the following kind:
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1. in two medical tests with scores (A;B) ; random variables that jointly depend on patient�s age (x) and

geographic area (y), A is only a¤ected by x while B is only a¤ected by y (but generally A and B are

stochastically interdependent for any given value of x; y);

2. in the hypothetical mental architecture involved in response production, the duration A of one sub-

process is a random variable only a¤ected by target�s legibility (x) while the duration B of another

subprocess is a random variable only a¤ected by the number of alternatives (y) to choose among (but

A and B may be stochastically interdependent for given values of x; y);

3. in Thurstone�s (1927) general law of comparative judgments, the image A of stimulus x and the image

B of stimulus y are random variables which are normally distributed and correlated (but A is the image

of x; not of the pair (x; y) ; and analogously for B).

For a historical account of the problem of selective in�uence under stochastic interdependence see Dzha-

farov (2003a). Here we only mention that the notion was �rst considered by Townsend (1984), but its implicit

uses can be found in Lazarsfeld (1965), Bloxom (1972), and Schweickert (1982). Since then the assumption

of selective in�uence (without the accompanying assumption of stochastic independence) was prominently

used in various contexts (e.g., Dzhafarov, 1992, 1997, 2003b; Dzhafarov & Schweickert, 1995; Dzhafarov,

Schweickert, & Sung, 2004; Townsend & Schweickert, 1989; Townsend & Thomas, 1994). The notion of

selective in�uence has undergone signi�cant transformations since Townsend (1984). In this paper we follow

the version proposed in Dzhafarov (2003a) and elaborated in Dzhafarov and Gluhovsky (2006).

What both the theory and uses of selective in�uence have been conspicuously lacking is any possibility

of testing for selective in�uence, except through marginal selectivity (Townsend, & Schweicker, 1989). To

explain, consider the following four joint distributions of (A;B)-values in a 2� 2 factorial design, where the

external factor x assumes two values combined with two values of the external factor y:

B

(x1; y1) 0 1 5

0 :24 :07 0

A 1 :07 :24 :07

5 0 :07 :24

B

(x1; y2) 0 1 5

0 :24 :07 0

A 1 :07 :24 :07

5 0 :07 :24

B

(x2; y1) 0 1 5

0 :24 :07 0

A 1 :07 :24 :07

5 0 :07 :24

B

(x2; y2) 0 1 5

0 0 :07 :24

A 1 :07 :24 :07

5 :24 :07 0

(1)

The random variables A and B assume three values each (0, 1, or 5), and the matrices in (1) show the

probabilities with which each value of A co-occurs with each value of B. These probabilities, as we see, do not
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change as the factor values change from (x1; y1) to (x1; y2) to (x2; y1), but they change at (x; y) = (x2; y2).

So we know that the joint distribution of (A;B) depends on the factors (x; y) varying on the set of values

fx1; x2g�fy1; y2g. We re�ect this fact by presenting (A;B) as (A11; B11) when (x; y) = (x1; y1), as (A12; B12)

when (x; y) = (x1; y2), and so on.

The �rst thing one should do if one suspects that A and B are selectively in�uenced by x and y;1

is to compare the marginal distributions of A11 and A12: under the selective in�uence assumption these

distributions, since they correspond to the same value x1 of x; should be identical. The same statement

holds for the marginal distributions of A21 and A22; those of B11 and B21; and those of B12 and B22. If the

distributions are di¤erent within at least one of these pairs the selective dependence of (A;B) on (x; y) is

ruled out. In our example, the marginal selectivity is satis�ed trivially: the marginal distributions of A and

B are the same in all four matrices:

A

0 1 5

:31 :38 :31

B

0 1 5

:31 :38 :31

But this does not, of course, make the joint distributions of (A;B) independent of x and y; and leaves

the question open as to what properties of these distributions indicate or counterindicate selectiveness in

their dependence on x and y. Thus, all mixed moments of (A;B) satisfying marginal selectivity, such as

correlation coe¢ cients between A and B, still generally depend on both x and y. In our example the

correlation coe¢ cients � (Aij ; Bij) for factor values (xi; yj) ; i; j 2 f1; 2g, are

y1 y2

x1 :7299 :7299

x2 :7299 �:6322

Is this matrix consistent or inconsistent with the hypothesis that A and B are selectively in�uenced by x

and y? This is precisely the type of question to which we have been lacking answers, and the present paper

is aimed at remedying this state of a¤airs.

In this paper we propose two schemes for generating a potential in�nity of simple tests for mixed moments

of (A;B) ; such that a failure of at least one of them rules out the possibility of selective in�uence. Thus,

having veri�ed that marginal selectivity is satis�ed, one can look at the four correlation coe¢ cients like

the ones shown above and �nd out whether they are compatible or incompatible with the selective in�uence

hypothesis. If the correlations pass the test, one can repeat it with nonlinearly transformed random variables.

If many such correlation-based tests conducted turn out to be compatible with selective in�uence, one can

proceed to the second block of tests and look at moments of the di¤erences jA�Bj (or di¤erences of the

transformed A and B) to see if any of these would not rule out selective in�uence. We will use our opening

example throughout to illustrate the computations involved in these tests.

1We will omit the obvious quali�cation �respectively�when referring to the correspondence between (A;B) and (x; y) :
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Our example also serves to emphasize that we use the word �testing�in a non-statistical meaning: aside

from occasional remarks dealing with empirical data we are interested in the population-level properties of

joint distributions, those based on which one can decide whether the random variables in question are or

are not selectively in�uenced. This may disappoint a practically minded reader, but one should realize that

no statistical theory can be constructed unless we have a population-level theory �rst. If the probability

values in our example are estimated from relatively small data samples rather than known precisely, then,

in essence, a statistical test of selective in�uence should be constructed from population-level tests applied

to all possible joint probability distributions appropriately weighted based on the likelihoods of generating

the observed data.

Most of our tests are formulated for 2 � 2 factorial designs, prominently used in such research areas as

reconstruction of information processing architectures (Schweickert, Giorgini, & Dzhafarov, 2000; Roberts

& Sternberg, 1992; Sternberg, 1969; Townsend, 1984), but usually with the accompanying assumption of

stochastic independence. If the sets of values for x and y are larger than 2 � 2; one can apply our tests

to some (or all, if possible) 2 � 2 subsets. With one exception, none of our tests allows one to de�nitively

establish selective in�uence: the tests are based on necessary but not su¢ cient conditions for selectiveness.

The exception mentioned is the case when (A;B) ; or some transformations thereof, are bivariate normally

distributed. In this case the passage of the correlation-based test on a 2�2 factorial subset is also a su¢ cient

condition for selectiveness on this factorial subset.

1.1. Plan of the paper

In the remainder of this introduction we state (following Dzhafarov, 2003a, and Dzhafarov & Gluhovsky,

2006) a formal de�nition of selective in�uence. We then discuss the issue, critical for the present development,

of random variables having joint distributions versus being stochastically unrelated (de�ned on di¤erent

sample spaces), and how in the latter case they can be presented as if they had joint distributions.

In Section 2 we discuss bivariate normally distributed (A;B) with parameters varying as functions of

(x; y) taking their values on arbitrary sets. We establish a necessary and su¢ cient condition for (A;B) to

be selectively in�uenced by (x; y) in a certain special way. We then restrict (x; y) to a 2 � 2 factorial set

and formulate our �rst test of selective in�uence, involving the correlation coe¢ cients corresponding to the

four combinations of factor values. For 2� 2 factorial sets (but not for larger sets), the restriction of being

selectively in�uenced �in a special way�is subsequently (in Section 3) removed, making the passage of the

test both necessary and su¢ cient for a selective dependence of bivariate normal (A;B) on (x; y) within a

2� 2 factorial set.

In Section 3 we generalize this test, but as a necessary condition only, to arbitrarily distributed (A;B).

Outside the context of normal distributions what we get is in fact an in�nite set of generally independent

correlation-based tests, each applied to a di¤erent transformation of (A;B). We then formulate our second

test of selectiveness on a 2� 2 factorial set, involving expected values of jA�Bjp, with p an arbitrary real
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� 1. Again, we get an in�nity of generally independent tests, each corresponding to a certain value of p and

certain transformations of (A;B).

The results are summarized in the concluding section in the form of �owcharts presented in Figs. 6, 7, 8,

and 9. The reader who wishes to get a glimpse of our tests before proceeding is referred to these �owcharts.

1.2. Preliminaries

We deal with pairs of (real-valued) random variables (A;B) whose joint distribution depends on two distinct

variables (x; y) 2 X�Y. We indicate the dependence of (A;B) on (x; y) by writing

(A;B) = (Axy; Bxy) ; x 2 X; y 2 Y:

The meaning of such dependence is that, for some random entity C with a probability measure which does

not depend on (x; y) ; the random variables (Axy; Bxy) can be represented as

Axy = A (x; y; C) ;

Bxy = B (x; y; C) ;
(2)

where c 7! A (x; y; c) and c 7! B (x; y; c) are measurable functions.2 The use of the same symbol for a

random variable and for the function used in one speci�c representation of this random variable should cause

no confusion, provided one keeps in minds that a representation of the form (2) is not unique.

We say that (Axy; Bxy) are selectively in�uenced by (x; y) ; and symbolically present this as

(A;B)" (x; y) (on X�Y), (3)

if the functions A;B and the random entity C in (2) can be chosen so that

Axy = Ax = A (x;C) ;

Bxy = By = B (y; C) :
(4)

The domain X�Y in references to selective in�uence may sometimes be omitted. One has to keep in mind,

however, that (A;B) " (x; y) may very well be true on some X0 � Y0 � X � Y but false on X � Y. In the

present context it is especially appropriate to note that a representation (4) may hold for all 2 � 2 subsets

of X � Y without holding on the entire X � Y. Indeed, even if two such subsets di¤er in one value of one

factor only,

fx1; x2g � fy1; y2g and fx1; x2g � fy1; y02g ;
2Following Dzhafarov and Gluhovsky (2006), we use the term random entity for C to indicate that C is a measurable function

from one arbitrary probability space to another. We reserve the term random variable for a measurable function into the set of

reals endowed with the Borel sigma algebra. Although in (2) C can always be chosen to be a random variable (Theorem 1 in

Dzhafarov & Gluhovsky, 2006), this may not be true when functions A;B are constrained to exhibit selective dependence on

(x; y) ; as in the representation (4) below.
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it is possible that the representations in the form of (4) for these subsets employ di¤erently distributed C;

and even if the distribution is the same, the functions c 7! A (x1; c) ; c 7! A (x2; c), and c 7! B (y1; c) in

the representation (4) for fx1; x2g � fy1; y2g need not be the same as the corresponding functions in the

representation (4) for fx1; x2g � fy1; y02g.

It is sometimes more convenient to de�ne (3) as stating the existence of stochastically independent

(C;SA; SB) whose distributions do not depend on (x; y) ; such that the variables (Axy; Bxy) can be repre-

sented as

Axy = Ax = A (x;C; SA) ;

Bxy = By = B (y; C; SB) ;
(5)

where (c; sA) 7! A (x; c; sA) and (c; sA) 7! B (y; c; sB) are measurable functions. The representations (4) and

(5) are equivalent (see Dzhafarov & Gluhovsky, 2006), and we make use of both of them in this paper. The

representation (5) is preferable in the context of speaking of conditional distributions of (A;B) for a given

value c of C; that is, the distributions of the stochastically independent random variables

Ax;c = A (x; c; SA) ;

By;c = B (y; c; SB) :

1.3. On stochastic unrelatedness and joint distributions

We need to mention a subtlety here which is important for the subsequent development. We understand the

representation (2) as equivalent to saying that

(Axy; Bxy) � (A (x; y; C) ; B (x; y; C)) ; (6)

with � standing for �is distributed as.�This expression is more cautious than (2) ; in the sense that it does

not allow one to speak of a joint distribution of (Axy; Bxy) and (Ax0y0 ; Bx0y0) for (x; y) 6= (x0; y0) �which is

clearly correct, for (Axy; Bxy) and (Ax0y0 ; Bx0y0) are stochastically unrelated, with no �co-occurrence�scheme

de�ned for the two pairs of their values.

At the same time, the representation (2) leads to no complications (and, as we will see, o¤ers considerable

bene�ts) if one remembers not to confuse �is representable as�with �is.� In (2) ; the pairs (Axy; Bxy) and

(A (x; y; C) ; B (x; y; C)) are treated as identical, which is allowable precisely because the two pairs have no

joint distribution which would allow one to say that they are di¤erent while identically distributed. This rep-

resentation introduces, of course, a ��ctitious�stochastic relationship between (Axy; Bxy) and (Ax0y0 ; Bx0y0) ;

allowing one to consider, say,

(Axy; Ax0y0) = (A (x; y; C) ; A (x
0; y0; C))

as a jointly distributed pair, with the co-occurrence scheme de�ned by common values of C. This possibility,

however, does not lead to any contradictions: one simply has to realize that if the values of A and B are

observable, then the co-occurrence of (Axy; Bxy) is also observable, while the co-occurrence of (Axy; Ax0y0)
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is not. Put another way, two di¤erent representations

Axy = A
� (x; y; C�)

Bxy = B
� (x; y; C�)

and
Axy = A

�� (x; y; C��)

Bxy = B
�� (x; y; C��)

are equivalent if and only if

(A� (x; y; C�) ; B� (x; y; C�)) � (A�� (x; y; C��) ; B�� (x; y; C��)) ;

irrespective of whether

(A� (x; y; C�) ; A� (x0; y0; C�)) � (A�� (x; y; C��) ; A�� (x0; y0; C��))

or

(B� (x; y; C�) ; B� (x0; y0; C�)) � (B�� (x; y; C��) ; B�� (x0; y0; C��))

or

(A� (x; y; C�) ; B� (x0; y0; C�)) � (A�� (x; y; C��) ; B�� (x0; y0; C��)) :

One is free, therefore, to choose a representation of the form (2) for (Axy; Bxy) which is most suitable for a

speci�c purpose.

All of this, of course, also applies to the selective in�uence representations (4) and (5).

For a general discussion of the notions of stochastic unrelatedness and multiple, freely introducible prob-

ability spaces (as opposed to a �xed sample space viewpoint, in which any two random variables have joint

distribution), see Dzhafarov and Gluhovsky (2006).

2. Normal Distributions

Here, we demonstrate the notion of selective in�uence on bivariate normally distributed (Axy; Bxy). We

formulate a test for a special form of selective in�uence for such (Axy; Bxy) (with x and y combined in a

2� 2 factorial design), and we motivate more general tests of selective in�uence to be introduced in Section

3.

2.1. A special case of selective in�uence

Let

(Axy; Bxy) � N2

0@m =

24 �A

�B

35 ; V =

24 �2A �A�B�

�A�B� �2B

351A ; (7)

with Nk indicating a k-variate normal distribution with parameters �A; �A; �B ; �B ; and �, each of which

generally depends on both x and y. If (A;B)" (x; y) ; the marginal selectivity is the �rst and most obvious

test,

�A = �A (x) ; �A = �A (x) ;

�B = �B (y) ; �B = �B (y) :
(8)
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We will assume henceforth that it is satis�ed. We still have of course

� = � (x; y) : (9)

Let us standardize the distribution in the mean and in the variance, that is, switch from (Axy; Bxy) to�
A��A
�A

; B��B�B

�
xy
. Clearly, they are selectively in�uenced by (x; y) if and only if so are the original variables.

For simplicity, we rename the standardized variates back into A;B; to get

(Axy; Bxy) � N2

0@m =

24 0

0

35 ; V =

24 1 � (x; y)

� (x; y) 1

351A : (10)

We begin by introducing a class of correlation functions � (x; y) for which a representation of the form

(5) can be shown to exist. The functions in this class are computed as

� (x; y) =

nX
k=1

ak (x) bk (y) ; (11)

where n � 1 and the functions fak (x)gk=1;:::;n ; fbk (y)gk=1;:::;n are subject to the constraintsPn
k=1 a

2
k (x) � 1;Pn

k=1 b
2
k (y) � 1:

(12)

We achieve a representation of the form (5) by introducing standard normally distributed, stochastically

independent

C1 � : : : � Cn � SA � SB � N1 (0; 1) ;

and putting

Ax =
p
1�

Pn
k=1 a

2
k (x)SA +

Pn
k=1 akCk;

By =
p
1�

Pn
k=1 b

2
k (y)SB +

Pn
k=1 bkCk:

(13)

It is easy to verify that (Axy; Bxy) thus de�ned are distributed as (10) ; and according to Section 1.3 this is all

we need to justify this representation and the conclusion (A;B)" (x; y). Denoting the vector (C1; : : : ; Cn)

by C; we state our

Proposition 1 If (A;B) is distributed as (10) and � is representable as (11), subject to (12), then (A;B)"
(x; y) in a special way: (Axy; Bxy) can be presented in the form (5) with multivariate normally distributed

(Ax; By; C).

It turns out that the following converse of this statement is also true:

Proposition 2 If (Axy; Bxy) distributed as (10) can be presented in the form (5) with multivariate normally

distributed (Ax; By; C), then � is representable as (11), subject to (12).
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To prove this for C = (C1; : : : ; Cn) ; we can assume with no loss of generality that

C1 � : : : � Cn � N1 (0; 1) :

Then

(Axy; Bxy; C) � Nn+2

0BBB@m� =

26664
0

0

0

37775 ; V� =

26664
1 � rTA

� 1 rTB

rA rB I

37775
1CCCA (14)

where rA; rB indicate vectors of correlations in column form, T stands for transposition, I is the n�n identity

matrix, 0 is the n� 1 column of zeros. It is clear from (5) that

rA = rA (x) ;

rB = rB (y) :

Denoting an arbitrary value of C by c (an n � 1 column), we know how to �nd the mean and variance

matrices mc;Vc for (Axy; Bxy) given c (e.g., Tong, 1990):

mc =

24 0

0

35+
24 rTA

rTB

35� c =
24 rTAc

rTBc

35 ;
Vc =

24 1 �

� 1

35�
24 rTA

rTB

35� h rA rB

i
=

24 1� rTArA �� rTArB
�� rTArB 1� rTBrB

35 :
We verify that the conditional means rTAc and r

T
Bc depend on x and y; respectively, and that the same is

true for the conditional variances 1 � rTArA and 1 � rTBrB . The variances must be nonnegative, whence we

get the constraint (12) ; on putting

rA =

26664
a1 (x)
...

an (x)

37775 ; rB =

26664
b1 (y)
...

bn (y)

37775 :
It remains to observe that for Ax;c and By;c to be independent, as required by (5) ; we should have

� = rTArB ; (15)

which is the same as (11).

We have established that (11)-(12) is a necessary and su¢ cient condition for the representation (5) to

hold with (Ax; By; C) multivariate normal.3

2.2. A 2� 2 cosphericity test

Let us forget for a while about bivariate normality and look at the geometric meaning of (11)-(12) taken

as a statement about correlations between arbitrary random variables. For this purpose it is convenient to

3This result was stated in Dzhafarov (2003a), but with the constraint (12) mistakenly omitted.
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introduce (n+ 2)-component vectors

a (x) =

26666666664

a1 (x)
...

an (x)p
1�

Pn
k=1 a

2
k (x)

0

37777777775
; b (y) =

26666666664

b1 (y)
...

bn (y)

0p
1�

Pn
k=1 b

2
k (y)

37777777775
; (16)

so that

� (x; y) = aTb;

aTa = 1;

bTb = 1:

(17)

We see that the correlations � (x; y) satisfy (11)-(12) if and only if one can �nd points a (x) and b (y) on

a unit (hyper)sphere in Rn+2 centered at the origin and satisfying (17). We will denote this (hyper)sphere

by Sn+1. This geometric interpretation will help us in constructing a test for whether correlations � (x; y)

satisfy (11)-(12) in a 2� 2 factorial setting.

So let us con�ne our attention to X = fx1; x2g ; Y = fy1; y2g. Denoting

�ij = � (xi; yj) ; i; j 2 f1; 2g;

the problem is to characterize the matrices of correlations

R =

24 �11 �12

�21 �22

35
for which one can �nd four points

a1 = a (x1) ; a2 = a (x2) ; b1 = b (y1) ; b2 = b (y2)

in Rn+2; such that

�ij = a
T
i bj ;

aTi ai = 1;

bTj bj = 1;

i; j 2 f1; 2g: (18)

In other words, we ask the question: for what matrices R can one �nd four points on the sphere Sn+1

satisfying �ij = a
T
i bj (i; j 2 f1; 2g)?

If such points exist, the coordinate system can always be chosen so that

a1 =

26664
1

0

0

37775 ; a2 =
26664

a
p
1� a2

0

37775 ; a2 � 1:



Selective In�uence 11

where 0 is the n-component column of zeros. Let the coordinates of the remaining two points be

b1 =

26664
u1

v1
...

37775 ; b2 =
26664
u2

v2
...

37775 :
The only constraints imposed by (18) on these coordinates are

�11 = a
T
1 b1 = u1;

�21 = a
T
2 b1 = au1 +

p
1� a2v1;

u21 + v
2
1 � 1;

(19)

and
�12 = a

T
1 b2 = u2;

�22 = a
T
2 b2 = au2 +

p
1� a2v2;

u22 + v
2
2 � 1:

(20)

Clearly, the values of the remaining coordinates of b1;b2 are irrelevant, and we can always equate the

coordinates above the third one to zero. From this we conclude that

Proposition 3 If any four points satisfying (18) exist, then there are also four points with the same prop-

erties lying on the sphere S2:

a1 =

26664
1

0

0

37775 ; a2 =

26664
a

p
1� a2

0

37775 ; b1 =

26664
u1

v1p
1� u21 + v21

37775 ; b2 =

26664
u2

v2p
1� u22 + v22

37775 ; (21)

subject to

a2 � 1;

u21 + v
2
1 � 1;

u22 + v
2
2 � 1:

(22)

With the aid of this simpli�cation we can now derive an explicit form of the constraints imposed by (18)

on the correlations �ij . Assuming �rst that a
2 6= 1 and using (19)-(20) ; the inequalities in Proposition 3 are

equivalent to

a2 < 1;

�211 +
a2�211+�

2
21�2a�11�21
1�a2 � 1;

�212 +
a2�212+�

2
22�2a�12�22
1�a2 � 1;

which, following some algebra, can be shown to be equivalent to

a2 < 1;

�11�21 �
p
(1� �211) (1� �221) � a � �11�21 +

p
(1� �211) (1� �221);

�12�22 �
p
(1� �212) (1� �222) � a � �12�22 +

p
(1� �212) (1� �222):

(23)
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The excluded case a = �1 can now be brought back, for in this case (19)-(20) imply

�11 = ��21
�12 = ��22

(24)

(with the same choice of + or � in both equations), and then the last two inequalities in (23) are satis�ed.

But changing the �rst inequality in (23) from a2 < 1 to a2 � 1 makes it redundant, as it is easy to show

that the two intervals h
�11�21 �

p
(1� �211) (1� �221); �11�21 +

p
(1� �211) (1� �221)

i
;h

�12�22 �
p
(1� �212) (1� �222); �12�22 +

p
(1� �212) (1� �222)

i (25)

are contained in [�1; 1]. We conclude that if the four points (a1;a2;b1;b2) in (21) exist, then these two

intervals have a nonempty intersection, that is,

�11�21 �
p
(1� �211) (1� �221) � �12�22 +

p
(1� �212) (1� �222);

�12�22 �
p
(1� �212) (1� �222) � �11�21 +

p
(1� �211) (1� �221):

(26)

Equivalently but more compactly,

j�11�21 � �12�22j �
q
(1� �211) (1� �221) +

q
(1� �212) (1� �222): (27)

Conversely, if the intersection of the two intervals in (25) is nonempty, then one can choose an a in accordance

with (23) or (24) ; and then �nd the coordinates of b1;b2 in accordance with (19)-(20): clearly, the points

with thus determined coordinates lie on the sphere S2 and satisfy �ij = aTi bj (i; j 2 f1; 2g).

We have proved the following

Proposition 4 (Cosphericity condition) A matrix of correlations

R =

24 �11 �12

�21 �22

35
for f(Aij ; Bij)gi;j2f1;2g can be represented as (18) if and only if R satis�es (27).

We will refer to (27) as the cosphericity test, because it amounts (due to Propositions 3 and 4) to �nding

out whether there are four points a1;b1;a2;b2 lying on the sphere S2 such that the cosines aT1 b1;aT1 b2;aT2 b1;aT2 b2
equal �11; �12; �21; �22, respectively (see Fig. 1).

Note that nowhere in the formulation and derivation of Proposition 4 have we used the assumption

that the random variables f(Aij ; Bij)gi;j2f1;2g are bivariate normally distributed. In fact, Proposition 4 is

based on no distributional assumptions (except for the existence of correlations). This fact will be made

use of in Section 3.1, where we broaden the test�s applicability and show that when the random variables

f(Aij ; Bij)gi;j2f1;2g are selectively in�uenced by (x; y) on fx1; x2g � fy1; y2g ; the four points a1;b1;a2;b2
can be viewed as representing, in some well-de�ned sense, the random variables themselves. For now, we use

the cosphericity test in relation to Propositions 1 and 2 to obtain the following
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a1

b1

b2

a2

Figure 1. Correlations �11; �12; �21; �22 pass the cosphericity test if there are points a1;b1;a2;b2 on the sphere S2 such that

(denoting the center of the sphere by o) aT1 b1 = cos\a1ob1 = �11 (the angle shown), and a
T
1 b2 = cos\a1ob2 = �12,

aT2 b1 = cos\a2ob1 = �21, aT2 b2 = cos\a2ob2 = �22.

Proposition 5 Random variables (Aij ; Bij) distributed as

N2

0@m =

24 0

0

35 ; V =

24 1 �ij

�ij 1

351A ; i; j 2 f1; 2g ; (28)

with a matrix of correlations

R =

24 �11 �12

�21 �22

35
are representable in the form (5) with multivariate normally distributed (Ai; Bj ; C) if and only if R passes the

cosphericity test, (27). The distribution (28) in this formulation can be replaced with any bivariate normal

distribution which satis�es marginal selectivity (8).

The last sentence in this proposition is due to the fact that bivariate distributions which satisfy mar-

ginal selectivity can always be standardized in the mean and variance without changing their correlation

coe¢ cients.

Thus, the correlation matrices

R1 =

24 0 0

0 0

35 ; R2 =

24 �:8 �:6

�:6 :7

35
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pass the cosphericity test, while

R3 =

24 �:8 �:6

�:6 :9

35
does not:

(R1) j0 � 0� 0 � 0j <
p
1� 02

p
1� 02 +

p
1� 02

p
1� 02

(R2) j(�:8) � (�:6)� (�:6) � (�:7)j <
q
1� (�:8)2

q
1� (�:6)2 +

q
1� (�:6)2

q
1� (�:7)2

(R3) j(�:8) � (�:6)� (�:6) � (:9)j >
q
1� (�:8)2

q
1� (�:6)2 +

q
1� (�:6)2

p
1� :92

We know therefore that if bivariate normally distributed f(Aij ; Bij)gi;j2f1;2g have correlations R1 or R2;

then (A;B)" (x; y) on fx1; x2g� fy1; y2g. We also know that bivariate normal (Aij ; Bij) with correlations

R3 are not representable by (5) with multivariate normally distributed (Aij ; Bij ; C).

The question arises whether the latter statement can be strengthened. Can it be that a matrix of

correlations which fails the cosphericity test rule out the representability of the (Aij ; Bij) in the form of (5) ;

without specifying the distributions of (Aij ; Bij ; C)? Put di¤erently, is a matrix of correlations which fails

the cosphericity test incompatible with any form of selective in�uence relation? As we show in the next

section, the answer (for a 2� 2 factorial design ) is a¢ rmative, and not only for bivariate normal (Aij ; Bij).

3. Selective In�uence Tests for Arbitrary Distributions

Here, we �rst generalize the cosphericity test to (almost) arbitrary bivariate distributions of f(Aij ; Bij)gi;j2f1;2g
(as a necessary condition only), and then we construct still more general tests of selective in�uence involving

higher order mixed moments.

3.1. Cosphericity test as a general necessary condition

Let f(Aij ; Bij)gi;j2f1;2g be distributed arbitrarily except for possessing �nite means and variances. As here

we are only interested in the correlation coe¢ cients

R =

24 �11 �12

�21 �22

35 ;
we can assume with no loss of generality that (Aij ; Bij) have been standardized in the mean and variance,

E [Aij ] = E [Bij ] = 0;

E
�
A2ij
�
= E

�
B2ij
�
= 1;

i; j 2 f1; 2g : (29)

Let f(Aij ; Bij)gi;j2f1;2g be representable in the form (4) ; which will be more convenient to use now than the

equivalent (5):

Ai (C) = A (xi; C) ; Bj (C) = A (yj ; C) ; i; j 2 f1; 2g :
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On the set of values c of C; consider the linear span

span [A1 (c) ; B1 (c) ; A2 (c) ; B2 (c)] =
�
�1A1 (c) + �1B1 (c) + �2A2 (c) + �2B2 (c) : (�1; �1; �2; �2) 2 R4

	
:

The variances of A1; B1; A2; B2 are �nite (in fact, unit),R
Ai (c)

2
d� (c) = 1;R

Bj (c)
2
d� (c) = 1;

i; j 2 f1; 2g ;

whence span [A1; B1; A2; B2] is an L2 space (i.e., all functions in it have integrable squares), and then we

know that for any P;Q 2 span [A1; A2; B1; B2] ; the integral

P �Q =
Z
P (c)Q (c) d� (c)

is well-de�ned and �nite. Clearly, span [A1; A2; B1; B2] is a vector space with the operation P �Q as its inner

product. The dimensionality of span [A1; A2; B1; B2] being at most 4; the well-known orthogonalization

theorem of functional analysis tells us that one can choose in span [A1; A2; B1; B2] a set of at most four

functions, O1; : : : ; Om (m � 4), which form its orthonormal basis. This means that any function (random

variable) P which belongs to span [A1; A2; B1; B2] can be represented by a vector p 2 Rm whose components

(p1; : : : ; pm) are determined by

P =
mX
i=1

piOi:

It is easy to verify that if P is represented by p 2 Rm and Q by q 2 Rm (treated as column-vectors), then

P �Q =
mX
i=1

piqi = p
Tq:

We conclude that span [A1; A2; B1; B2] endowed with the inner product P �Q is homomorphic to a Euclidean

space Rm (m � 4) endowed with the scalar product pTq.

Now, A1; B1; A2; B2 are represented in this Euclidean space by some points a1;b1;a2;b2. Since, due to

(29) ;

aT1 a1 = a
T
2 a2 = b

T
1 b1 = b

T
2 b2 = 1

and

�ij = a
T
i bj i; j 2 f1; 2g ;

the points a1;b1;a2;b2 satisfy (18) : Proposition 4 then tells us that the correlations �ij have to pass the

cosphericity test. This completes the proof of

Proposition 6 Random variables f(Aij ; Bij)gi;j2f1;2g with a matrix of correlations

R =

24 �11 �12

�21 �22

35
are selectively in�uenced (by (x; y) on fx1; x2g � fy1; y2g) only if R passes the cosphericity test, (27).
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We do not need to mention in this formulation that (Aij ; Bij) are standardized in the mean and variance

because R is invariant with respect to such transformations.

Returning for a moment to bivariate normally distributed (Aij ; Bij) ; Proposition 6 immediately leads to

the following

Proposition 7 (Addendum to Proposition 5) Bivariate normally distributed variables f(Aij ; Bij)gi;j2f1;2g
satisfy

(A;B)" (x; y) (on fx1; x2g � fy1; y2g )

if and only if they are representable in the form (5) with multivariate normally distributed (Ai; Bj ; C) :4

Indeed, if (A;B) " (x; y) then, by Proposition 6, the correlations �ij pass the cosphericity test; and

then, by Proposition 5, (Aij ; Bij) are representable in the mentioned special form of (5).

3.2. Multitude and properties of cosphericity tests

If a matrix of correlations R passes the cosphericity test one cannot claim, unless f(Aij ; Bij)gi;j2f1;2g are

bivariate normally distributed, that (A;B) " (x; y) on fx1; x2g � fy1; y2g. It is important in this respect

to realize that the power of the cosphericity test to detect the lack of selective in�uence can be increased by

repeatedly applying this test to various transformations of A and B which preserve marginal selectivity.

Indeed, if (A;B)" (x; y) ; then also

(f (A; x) ; g (B; y))" (x; y) ; (30)

for any functions f; g with measurable a 7! f (a; x) and b 7! g (b; y). When specialized to a 2 � 2 factorial

setting this becomes

(fi (Aij) ; gj (Bij))" (x; y) (on fx1; x2g � fy1; y2g ), (31)

for any measurable ffigi=1;2 ; fgjgj=1;2. The transformed random variables�
A�ij ; B

�
ij

�
= (fi (Aij) ; gj (Bij))

are characterized by a correlation matrixR� which is not generally computable fromR; and its (non)compliance

with the cosphericity test is generally independent of that of R.5 This means that by applying a multitude of

transformations (f1; f2; g1; g2) to given f(Aij ; Bij)gi;j2f1;2g, the selective in�uence hypothesis can be tested

by the corresponding multitude of cosphericity tests, the failure of at least one of which would rule out the

selectivity (A;B)" (x; y) on fx1; x2g � fy1; y2g :
4The statement of this proposition holds true for any n�m (n � 2;m � 2) factorial design, because the argument used in

the proof of Proposition 6 trivially generalizes to span [A1; : : : ; An; B1; : : : ; Bm] :
5The meaning of �independence�here is simply that R may pass (fail) the test with R� failing (passing) it. One should not

confuse this with stochastic independence of two or more statistical tests performed on one and the same sample. We have no

knowledge of the sampling distributions of our tests, but their independence in the former, logical meaning of the word will be

readily demonstrated on an example below.
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Due to Propositions 5 and 7, the situation greatly simpli�es and the cosphericity test becomes de�nitive

if the transformations (f1; f2; g1; g2) can be chosen so that
�
A�ij ; B

�
ij

�
are bivariate normally distributed. This

can only be achieved if the transformations rendering all marginals A�ij and B
�
ij standard normally distributed

also make
�
A�ij ; B

�
ij

�
bivariate normally distributed. If the latter is the case, the correlation matrix R�

for the transformed variables which passes (fails) the cosphericity test proves (respectively, disproves) the

selectiveness hypothesis.6 If the bivariate normality cannot be achieved, the selectiveness, if not disproved,

can only be corroborated �by demonstrating that the cosphericity test (and the distance test, to be discussed

later) is passed under multiple transformations.

Thus, the correlation matrix

Rex:(1) =

24 :7299 :7299

:7299 �:6322

35
computed from our opening example (1) does pass the cosphericity test:

j:7299 � :7299� :7299 � (�:6322)j <
p
1� :72992

p
1� :72992 +

p
1� :72992

p
1� (�:6322)2:

From this, of course, we cannot conclude that (A;B) " (x; y), only that Rex:(1) is not incompatible with

this hypothesis. Recall that in this example the random variables A, B vary on the same three-element set

f0; 1; 5g : If we now choose our transformations f1; f2; g1; g2 to be one and the same nonlinear mapping

f1 � f2 � g1 � g2 :

8>>><>>>:
0 7! 0

1 7! 1

5 7! 2

; (32)

the distributions in our example become

B�

(x1; y1) 0 1 2

0 :24 :07 0

A� 1 :07 :24 :07

2 0 :07 :24

B�

(x1; y2) 0 1 2

0 :24 :07 0

A� 1 :07 :24 :07

2 0 :07 :24

B�

(x2; y1) 0 1 2

0 :24 :07 0

A� 1 :07 :24 :07

2 0 :07 :24

B�

(x2; y2) 0 1 2

0 0 :07 :24

A� 1 :07 :24 :07

2 :24 :07 0

(33)

6 If the distributions of (Aij ; Bij) are known on a sample level only, then one can (a) use the empirical distribution function for

the combined sample of Ai1 and Ai2 (for, due to the marginal selectiveness, the two samples should be identically distributed)

and transform it into a normal cumulative curve (separately for i = 1 and i = 2); (b) do the same with the combined sample

of B1j and B2j (separately for j = 1 and j = 2); and (c) subject the bivariate distributions with the newly obtained marginals

to conventional tests of bivariate normality. Statistical uncertainty involved will of course prevent any result of this procedure

(and subsequent application of a selectiveness test) from being de�nitive.
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with the correlation matrix

R�
ex:(1) =

24 :7742 :7742

:7742 �:7742

35 :
This correlation matrix does not pass the cosphericity test:

j:7742 � :7742� :7742 � (�:7742)j >
p
1� :77422

p
1� :77422 +

p
1� :77422

p
1� (�:7742)2:

We conclude that the random variables (A�; B�) in (33) and hence also the original random variables (A;B)

in (1) are not selectively in�uenced by (x; y) on fx1; x2g � fy1; y2g. Later we will show how the same fact

can be established by other means.

The only transformations for which R� is a function of R are linear transformations,

A�ij = �iAij + i;

B�ij = �jBij + �j
; i; j 2 f1; 2g :

To be consistent, the cosphericity test should be passed by R� if and only if it is passed by R. This is

indeed the case. As far as the correlations are concerned, the shifts and the absolute values of the scaling

coe¢ cients are irrelevant, and we only need to consider the set of 16 re�ections

�1 = �1; �2 = �1; �1 = �1; �2 = �1;

where the four signs can be chosen independently. It is easy to verify that as a result of such re�ections, R�

can di¤er from R in the signs of 4; 2; or 0 correlations:24 ��11 �12

��21 �22

35 ;
24 �11 ��12
��21 �22

35 ;
24 ��11 ��12
��21 ��22

35 ; etc.
(eight di¤erent matrices altogether, counting R itself). Squaring the two sides of the inequality (27) and

rearranging terms, we can rewrite the cosphericity test in the form

�211 + �
2
12 + �

2
21 + �

2
22 � 2 + 2�11�12�21�22 + 2

q
(1� �211)(1� �212)(1� �221)(1� �222); (34)

from which it is clear that the test is invariant with respect to any even number of sign changes.

It is also apparent from (34) that the cosphericity test is invariant with respect to all permutations of

(�11; �12; �21; �22) �a nice and rather unexpected form of symmetry. This means that in all computations

one may treat the correlation coe¢ cients as an unordered quadruple of numbers.

Figure 2 provides a rough idea of which matrices of correlations R fail and which pass the cosphericity

test. The test is clearly not very restrictive: selective in�uence is ruled out for only those R that contain

correlations large in absolute value. This observation tells us that repeated applications of the cospheric-

ity test to various transformations of (Aij ; Bij) may be critically important. We cannot say anything at

this stage about optimal strategies in sequential choices of these transformations, except for the following

considerations.
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1

0.5

0

-0.5

-1

-1 -0.5 0 0.5 1

Figure 2. A graphical depiction of the cosphericity test. Let fr; s; t; ug be values of the correlation coe¢ cients f�11; �12; �21; �22g ;

in any order. Each panel corresponds to �xed values of r; s (indicated on the horizontal and vertical margins) and shows for

which values of t; u the cosphericity test rules out selective in�uence (black areas) and for which t; u selective in�uence remains

a possibility (white areas). If the random variables whose correlations one is dealing with are bivariate normally distributed,

then the white areas indicate correlations for which selective in�uence is positively established (on a 2� 2 factorial set).
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First, we know that the cosphericity test is invariant with respect to linear transformations. So, in

conducting the cosphericity test with multiple transformations (f1; f2; g1; g2)1 ; (f1; f2; g1; g2)2 ; : : : (a list

which would normally include identity transformations), none of them, to avoid redundancy, should be

componentwise linearly dependent on another.

Second, we know that the cosphericity test is most restrictive if more than one of the correlations coe¢ -

cients are large in absolute value (Fig. 2). This suggests that a search for transformations should be directed

at maximizing the absolute values of at least two of the correlations.7

3.3. Distance test for correlations

Consider now random variables f(Aij ; Bij)gi;j2f1;2g standardized in the mean and variance,8

E [Aij ] = E [Bij ] = 0;

E
�
A2ij
�
= E

�
B2ij
�
= 1;

i; j 2 f1; 2g : (35)

If (A;B) " (x; y) on fx1; x2g � fy1; y2g ; the cosphericity test (due to Propositions 3 and 4) tells us that

there are four points (a1;b1;a2;b2) on the sphere S2 whose scalar products match the correlations �ij as

shown in Fig. 1. Denoting the Euclidean distance between ai and bj by �ij (see Fig. 3) we should have

then, by triangle inequality,

�11 � �12 + �22 + �21;

�22 � �21 + �11 + �12;

�12 � �11 + �21 + �22;

�21 � �22 + �12 + �11:

(36)

We will refer to these inequalities as the distance test for correlations, because the distances in (36) are

easily expressed through correlation coe¢ cients as

�ij =
q
2� 2�ij ; i; j 2 f1; 2g :

The four Euclidean distances here have a clear probabilistic meaning,

�ij = � [Ai �Bj ] =
q
2� 2�ij ; i; j 2 f1; 2g : (37)

where � [: : :] stands for standard deviation. Indeed,

�2 [Ai �Bj ] = �2 [Ai] + �2 [Bj ]� 2� [Ai]� [Bj ] �ij ;

and since all the standard deviations on the right are unit, we get (37) :

7 If the distributions are known on a sample level only, then one can plot Aij versus Bij for all four combinations of i; j and

seek transformations (f1; f2; g1; g2) which linearize at least two of the plots to a considerable degree (fi being applied to both

Ai1 and Ai2, and gj to both B1j and B2j).
8Unlike in the foregoing we cannot add here �without loss of generality.�The distance tests, as explained in Section 3.4, are

not invariant with respect to linear transformations of the random variables involved.
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a1

b1

b2

a2

σ
11

σ 12

σ 21

σ
22

Figure 3. The four Euclidean distances between the a-points and b-points of Fig. 1: �ij = kai � bjk : From the triangle

a1ob1 (where o denotes the center of the sphere), ka1 � b1k2 = ka1 � ok2 + kb1 � ok2 � 2 ka1 � ok � kb1 � ok � cos\a1ob1 =
1 + 1� 2�11: The computation of the remaining three distances through correlations is analogous.

An immediate consequence of (36) is that if one of these inequalities is violated (i.e., the distance test

for correlations is failed), the cosphericity test should be failed too. Thus, the correlation matrix

R4 =

24 :98 :155

:92 �:815

35
fails (36), for it translates into distances

D4 =

24 0:2 1:3

0:4 1:91

35
with

1:91 > 0:2 + 1:3 + 0:4:

As a result, we know that R4 should also fail the cosphericity test, which is easy to check directly:

j:98 � :155� :92 � (�:815)j >
p
1� :982

p
1� :1552 +

p
1� :922

p
1� (�:815)2:

We know from Section 3.2 that the correlation matrix

Rex:(1) =

24 :7299 :7299

:7299 �:6322

35
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of our opening example, (1), passes the cosphericity test. As a result, it should also pass the distance test

for correlations: indeed, the matrix of pairwise distances in this case is

Dex:(1) =

24 0:7350 0:7350

0:7350 1:8068

35 ;
and the inequalities (36) are clearly satis�ed.

The converse, however, is not true: a correlation matrix may pass the distance test for correlations but

fail the cosphericity test. Thus, the already introduced correlation matrix

R3 =

24 �:8 �:6

�:6 :9

35
fails the cosphericity test, but it translates into distances

D3 =

24 1:90 1:79

1:79 0:447

35
which satisfy (36).

The latter example shows that the distance test for correlations is strictly weaker (less sensitive to

violations of selectivity) than the cosphericity test. One can see this by comparing Fig. 2 to Fig. 4, where

the quadruples of correlation coe¢ cients failing the distance test are shown by black areas: clearly, these

areas are proper subsets of the black areas in Fig. 2 (the quadruples of correlations failing the cosphericity

test). Figure 5 provides a detailed illustration of this fact for four subsets of correlation quadruples.

This relationship between the two tests should come as no surprise, as the triangle inequalities used in

(36) hold true in arbitrary metric spaces while the cosphericity test pertains only to the Euclidean geometry

on a sphere. It turns out, however, that the relative weakness of the distance test is compensated for by its

generalizability beyond the scope of second order mixed moments.

3.4. Distance tests in general

The classical Minkowski inequality, when applied to measurable functions F and G on some probability

space with a probability measure �; states that for any p � 1;

p

sZ
jF (c) +G (c)jp d� (c) � p

sZ
jF (c)jp d� (c) + p

sZ
jG (c)jp d� (c);

with the integration over the entire set of c-values. The inequality holds irrespective of whether the two

right-hand integrals are �nite (in which case the left-hand integral is �nite too) or one of them is in�nite (in

which case the inequality holds trivially). This inequality can be expressed as

p

q
E [jF +Gjp] � p

q
E [jF jp] + p

q
E [jGjp]; p � 1; (38)

where the moments must exist as �nite or in�nite numbers.
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Figure 4. A graphical depiction of the distance test for correlation coe¢ cients, (36). The format is the same as in Fig. 2: the

white and black areas indicate correlations satisfying (respectively, violating) the inequalities (36).
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Figure 5. Direct comparison of the cosphericity test and the distance test for correlations. In each panel, two of the correlations

(no matter which) are �xed and shown by the numbers in the center, the other two correlations vary on the axes. The dark

areas contain correlations violating both tests, in the lighter shaded areas the correlations violate the cosphericity test alone,

the correlations in the white areas satisfy both.

It is easy to see now that p
p
E [jP �Qjp] is a distance between random variables P and Q: it is zero if

and only if P = Q; 9 it is symmetrical, and it satis�es the triangle inequality

p

q
E [jP �Qjp] � p

q
E [jP �Rjp] + p

q
E [jR�Qjp]; (39)

which can be seen by applying (38) to F = P �R and G = R� P .

If (A;B)" (x; y) ; using a representation in the form (4) ; we have all moments

p
p
E [jAx �Byjp] = p

qR
jA (x; c)�B (y; c)jp d� (c);

p
p
E [jAx �Ax0 jp] = p

qR
jA (x; c)�A (x0; c)jp d� (c);

p
p
E [jBy �By0 jp] = p

qR
jB (y; c)�B (y0; c)jp d� (c)

(40)

well-de�ned. Note, however, that only the �rst of three represents a moment for a potentially observable

random variable. The variables Ax � Ax0 and By � By0 are ��ctitious� random variables because neither

(Ax; Ax0) nor (By; By0) has an observable joint distribution (�co-occurrence scheme�). Nevertheless the

expressions in (40) are legitimate because, as discussed in Section 1.3, representations (4)-(5) allow us to

treat (Ax; By; Ax0 ; By0) as if they had a joint distribution, even though it can be chosen at will insofar as it

has speci�ed pairwise marginals (Ax; By) ; (Ax; By0) ; (Ax0 ; By) ; and (Ax0 ; By0).

9The equality here should be taken to designate the equivalence relation P (c) = Q (c) �-almost everywhere.



Selective In�uence 25

Applying (39) to (40) we get

p
p
E [jAx �Byjp] � p

p
E [jAx �Ax0 jp] + p

p
E [jAx0 �Byjp];

p
p
E [jAx �Ax0 jp] � p

p
E [jAx �By0 jp] + p

p
E [jAx0 �By0 jp];

whence
p

q
E [jAx �Byjp] � p

q
E [jAx �By0 jp] + p

q
E [jAx0 �By0 jp] + p

q
E [jAx0 �Byjp]: (41)

If we generically denote

sxy =
p

q
E [jAxy �Bxyjp]; (42)

then, under (A;B)" (x; y) ; we have

sxy =
p

q
E [jAx �Byjp]; (43)

and (41) can be presented as

sxy � sx0y + sxy0 + sx0y0 ; for all x; x0 2 X and y; y0 2 Y: (44)

It is instructive to see why this need not be true if (A;B) 6" (x; y). If (4) does not hold, we have to de�ne

sxy by the general formula (42) rather than (43). It is easy to see then that we cannot apply the Minkowski

inequality to derive (44) for, generally,

Axy �Bxy 6= [Ax0;y �Bx0;y] + [Bxy �Axy] + [Ax0y0 �Bx0y0 ] :

The inequality (44) is a necessary condition for (A;B)" (x; y) which holds for any p � 1. Moreover, as

we have observed earlier, if (A;B)" (x; y) ; then also

(f (A; x) ; g (B; y))" (x; y) ; (45)

for any functions f; g with measurable a 7! f (a; x) and b 7! g (b; y). This means that under selective

in�uence the condition (44) should hold true for all

sxy =
p

q
E [jf (Axy; x)� g (Bxy; y)jp] = p

q
E [jf (Ax; x)� g (By; y)jp]: (46)

Con�ning our attention again to an fx1; x2g�fy1; y2g factorial design, the choice of transformations f; g

amounts to that of four measurable functions f1; f2; g1; g2. Denoting10

sij = sxiyj =
p

q
E [jfi (Aij)� gj (Bij)jp]; i; j 2 f1; 2g ; (47)

we rewrite (44) as

s11 � s12 + s22 + s21;

s22 � s21 + s11 + s12;

s12 � s11 + s21 + s22;

s21 � s22 + s12 + s11:

(48)

10 If sij in (47) are computed with di¤erent choices of (p; f1; f2; g1; g2) in the same context, it may become necessary to

distinguish them notationally, say, s(p)ij or s(p;f1;f2;g1;g2)ij : We avoid doing this in this paper and use sxy as a generic symbol for

any choice of (p; f1; f2; g1; g2).
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Proposition 8 (Distance test) If random variables f(Aij ; Bij)gi;j2f1;2g are selectively in�uenced by (x; y)

on fx1; x2g� fy1; y2g, then, given any p � 1 and any measurable transformations f1; f2; g1; g2; the moments

sij de�ned by (47) satisfy the inequalities (48) :

We refer to (48) as the distance test for given p; f1; f2; g1; g2, omitting mentioning p and/or the trans-

formations as convenient. To show that (A;B) 6" (x; y) on fx1; x2g � fy1; y2g (assuming that marginal

selectivity is satis�ed), it will su¢ ce to �nd some functions f1; f2; g1; g2 and some p � 1 for which the dis-

tance test is failed. The previously considered distance test for correlations corresponds to p = 2 provided

the random variables involved are all standardized in the mean and variance.

Let us illustrate the logical independence of the distance test for di¤erent choices of f1; f2; g1; g2 and p

on our opening example, (1). Applying the value p = 1 to (1) we get

D
(p=1)
ex:(1) =

24 E [jA11 �B11j] = 0:7 E [jA12 �B12j] = 0:7

E [jA21 �B21j] = 0:7 E [jA22 �B22j] = 0:31

35 ;
and we see that the distance test is failed:

0:31 > 0:7 + 0:7 + 0:7:

If we instead apply to (1) the value p = 1:6, however, we get

D
(p=1:6)
ex:(1) =

2664
1:6

r
E
h
jA11 �B11j1:6

i
= 1:249 1:6

r
E
h
jA12 �B12j1:6

i
= 1:249

1:6

r
E
h
jA21 �B21j1:6

i
= 1:249 1:6

r
E
h
jA22 �B22j1:6

i
= 3:590

3775 ;
which passes the distance test:

1:249 < 1:249 + 1:249 + 3:590;

3:590 < 1:249 + 1:249 + 1:249:

The situation reverses once again if we �rst transform the random variables by using the f1; f2; g1; g2 in

(32) to obtain the random variables (33), and if we then apply to (33) the same p = 1:6 as in the previous

computation:

D
�(p=1:6)
ex:(1) =

2664
1:6

r
E
h
jA�11 �B�11j

1:6
i
= 0:4513 1:6

r
E
h
jA�12 �B�12j

1:6
i
= 0:4513

1:6

r
E
h
jA�21 �B�21j

1:6
i
= 0:4513 1:6

r
E
h
jA�22 �B�22j

1:6
i
= 1:411

3775 ;
and the distance test is failed:

1:411 > 0:4513 + 0:4513 + 0:4513:

The outcome of the distance test therefore can change depending on both one�s choice of p and one�s choice

of f1; f2; g1; g2.
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3.5. Multitude and properties of distance tests

One evident property of (48) is that, analogous to the cosphericity test, the distance test is invariant with

respect to all permutations of (s11; s12; s21; s22): in all computations, these distances can be treated as an

unordered quadruple of numbers. This property can be made even more apparent if we rewrite (48) as

max fs11; s12; s21; s22g �
s11 + s12 + s21 + s22

2
: (49)

This inequality follows from the obvious fact that (48) is equivalent to

max fs11; s12; s21; s22g � (s11 + s12 + s21 + s22)�max fs11; s12; s21; s22g :

The distance test can be presented in other compact forms:��s211 + s222 � s212 � s221�� � 2s11s22 + 2s12s21: (50)

or ��s211 + s212 � s221 � s222�� � 2s11s12 + 2s21s22: (51)

The equivalence of these inequalities to (48) is shown by simple algebra.

It is not possible to provide a graphical illustration for the general distance test analogous to Figs. 2 and

4 because the range of possible values for s11; s12; s21; s22 is unbounded.

Like in the case of the cosphericity test, the distance tests using di¤erent values of p and/or di¤erent

transformations f1; f2; g1; g2 are logically independent of each other. Unlike for the cosphericity test, however,

this applies even to linear transformations, including pure shifts

A�ij = Aij + �i;

B�ij = Bij + �j ;

and simple scaling

A�ij = �iAij ;

B�ij = �jBij :

We illustrate this fact on the random variables in (33), treating them now as our original variables

(Aij ; Bij). These variables fail the distance test with p = 1:

D
(p=1)
ex:(33) =

24 E [jA11 �B11j] = 0:28; E [jA12 �B12j] = 0:28

E [jA21 �B21j] = 0:28 E [jA22 �B22j] = 1:24

35
and (using the form (49) of the test)

maxf0:28; 0:28; 0:28; 1:24g > 0:28 + 0:28 + 0:28 + 1:24

2
:

If, however, we �rst apply to (33) the scaling transformations

f1 � f2 :

8>>><>>>:
0 7! 0

1 7! 2

2 7! 4

; g1 � g2 :

8>>><>>>:
0 7! 0

1 7! 1

2 7! 2

; (52)
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to obtain

B�

(x1; y1) 0 1 2

0 :24 :07 0

A� 2 :07 :24 :07

4 0 :07 :24

B�

(x1; y2) 0 1 2

0 :24 :07 0

A� 2 :07 :24 :07

4 0 :07 :24

B�

(x2; y1) 0 1 2

0 :24 :07 0

A� 2 :07 :24 :07

4 0 :07 :24

B�

(x2; y2) 0 1 2

0 0 :07 :24

A� 2 :07 :24 :07

4 :24 :07 0

the transformed variables will pass the distance test with p = 1:

D
�(p=1)
ex:(33) =

24 E [jA�11 �B�11j] = 1:14 E [jA�12 �B�12j] = 1:14

E [jA�21 �B�21j] = 1:14 E [jA�22 �B�22j] = 2:1

35
and

maxf1:14; 1:14; 1:14; 2:1g < 1:14 + 1:14 + 1:14 + 2:1

2
:

The same di¤erence in the test outcomes can be shown by applying to (33) p = 1 without and with pure

shifts

f1 � f2 :

8>>><>>>:
0 7! 10

1 7! 11

2 7! 12

; g1 � g2 :

8>>><>>>:
0 7! 0

1 7! 1

2 7! 2

:

One known to us exception is the case when f(Aij ; Bij)gi;j2f1;2g are standardized in the mean and the

distance test is passed with p = 2. Then it can be shown that the distance test with p = 2 has to be passed

by the shifted random variables A�ij = Aij + �i and B
�
ij = Bij + �j .

11 But p = 2 is precisely the case when

the distance test need not be performed at all, as this test is superseded by the more restrictive cosphericity

test. We have already seen this for the case when f(Aij ; Bij)gi;j2f1;2g are standardized in the mean and

variance (Fig. 5), so the proposition stated next generalizes this observation.

Proposition 9 If f(Aij ; Bij)gi;j2f1;2g (satisfying marginal selectivity) pass the cosphericity test, then they

must also pass the distance test with p = 2.

11To outline the demonstration: if �ij =

r
E
h
(Aij �Bij)2

i
, then

s
E

��
A�ij �B�ij

�2�
=
q
�2ij + d

2
ij , where dij = �i � �j ;

if �11 � �12 + �22 + �21 (distance test with p = 2 is passed), then
q
�211 + d

2
11 �

q
(�12 + �22 + �21)

2 + d211 =q
(�12 + �22 + �21)

2 + (d12 + d22 + d21)
2; the latter expression, following some tedious algebra and using the Cauchy�Schwarz

inequality, is seen to be less than
q
�212 + d

2
12 +

q
�222 + d

2
22 +

q
�221 + d

2
21.
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Indeed, let (Aij ; Bij) have means
�
�A;i; �B;j

�
; variances

�
�2A;i; �

2
B;j

�
; and correlations �ij (i; j 2 f1; 2g).

Then one can de�ne random variables (Pij ; Qij) such that

(Pij ; Qij) � N2

0@mij =

24 �A;i

�B;j

35 ; Vij =

24 �2A;i �A;i�B;j�ij

�A;i�B;j�ij �2B;j

351A :
If the matrix of correlations

R =

24 �11 �12

�21 �22

35
passes the cosphericity test, then we know from Proposition 5 that (P;Q)" (x; y) on fx1; x2g�fy1; y2g. This

means that no selectivity test involving only the means
�
�A;i; �B;j

�
; variances

�
�2A;i; �

2
B;j

�
; and correlations

�ij can reject (A;B)" (x; y) ; because then it will also have to reject (P;Q)" (x; y). But the distance test

with p = 2 is based precisely on these means, variances, and correlations:

sij = E
h
(Aij �Bij)2

i
=
�
�2A;i + �

2
A;i

�
+
�
�2B;j + �

2
B;j

�
� 2

�
�A;i�B;j�ij + �A;i�B;j

�
:

This completes the proof of the proposition.

4. Conclusion

Our main results are summarized in the �owcharts presented in Figs. 6, 7, 8, and 9.

The potential in�nity of the selective in�uence tests raises the question of how to apply them (with

di¤erent choices of p and the transformations) in an �optimal order,�to maximize the chances of detecting

a violation of selective in�uence with a minimum number of tests. We do not have an answer to this

question. An obvious prescription is that one has to look �rst of all for transformations rendering the

random variables bivariate normally distributed. If they exist, the cosphericity test unambiguously decides

between the presence and absence of a selective in�uence relation. If they cannot be found, it is reasonable

to seek transformations rendering at least two of the correlation coe¢ cients as large as possible in absolute

values. More work is needed to develop more re�ned recommendations.

One limitation of both the cosphericity and distance tests is that they are formulated for 2� 2 factorial

designs, even though the latter play a prominent role in experimentation. For larger factor sets X � Y one

can, of course, apply the tests to various 2�2 subsets of X�Y; and a failure of any of our tests on any of such

subsets will rule out the possibility of selective in�uence on X � Y. As mentioned in Section 1.2, however,

even if selective in�uence is positively established on all 2�2 subsets (which our tests can only achieve in the

case of bivariate normality), this will not guarantee the selective in�uence relation for the entire X�Y. More

work is needed to formulate appropriate generalizations of our tests for arbitrary n �m factorial designs,

and even more generally, for k random variables (R1; : : : ; Rk) in�uenced by k factors (v1; : : : ; vk) varying on

an n1 � : : :� nk set of combined values.
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Given:

Marginal Selectivity Test

Cosphericity Tests

Distance Tests

No selective
influence

No selective
influence

No selective
influence

failed

failed

failed

passed

passed

passed

Figure 6. The overall �owchart for testing selectiveness in a 2 � 2 factorial setting. The symbol � indicates a choice between

two paths. The dashed lines show that the cosphericity test and the distance test can be repeated ad in�nitum with di¤erent

transformations f1; f2; g1; g2 and (in the case of the distance test) exponent p: A more detailed view of the testing blocks is

given on Figs. 7, 8, and 9.

No selective
influence

No selective
influence

nono

yesyes

Marginal
Selectivity

Test:

Proceed to
Cosphericity Test

Figure 7. The marginal selectivity test. The symbol � stands for �is distributed as.�
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ChooseChoose

Transform:Transform:

Compute four correlations

Cosphericity Test:

Are all four

bivariate normal?

yesyes

no

No selective
influence

No selective
influence

yes
Selective
influence

established

Selective
influence

established

no Proceed to
Distance Test

Proceed to
Distance Test

Figure 8. The cosphericity test. If transformations f1; f2; g1; g2 can be found which render the random variables bivariate

normally distributed, the test becomes de�nitive: if it is passed (failed), the selective in�uence hypothesis is established

(respectively, ruled out). Otherwise the test can be repeated with various transformations f1; f2; g1; g2 which are componentwise

linearly independent (see Sections 3.1 and 3.2 for details).

ChooseChoose

Transform:Transform:

Compute four moments

yesyes

no

No selective
influence

No selective
influence

Distance Test:

ChooseChoose

Figure 9. The distance test. It can be repeated with various (even componentwise linearly dependent) transformations

f1; f2; g1; g2 and di¤erent values of p � 1: The value p = 2 need not be used as the distance test then is superseded by

the cosphericity test (see Sections 3.3 and 3.4 for details).
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