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a b s t r a c t

A Thurstonian-type model for pairwise comparisons is any model in which the response (e.g., ‘‘they
are the same’’ or ‘‘they are different’’) to two stimuli being compared depends, deterministically or
probabilistically, on the realizations of two randomly varying representations (perceptual images) of
these stimuli. The two perceptual images in such a model may be stochastically interdependent but
each has to be selectively dependent on its stimulus. It has been previously shown that all possible
discrimination probability functions for same–different comparisons can be generated by Thurstonian-
type models of the simplest variety, with independent percepts and deterministic decision rules. It
has also been shown, however, that a broad class of Thurstonian-type models, called ‘‘well-behaved’’
(and including, e.g., models with multivariate normal perceptual representations whose parameters are
smooth functions of stimuli) cannot simultaneously account for two empirically plausible properties of
same–different comparisons, Regular Minimality (which essentially says that ‘‘being least discriminable
from’’ is a symmetric relation) and nonconstancy of the minima of discrimination probabilities (the
fact that different pairs of least discriminable stimuli are discriminated with different probabilities).
These results have been obtained for stimulus spaces represented by regions of Euclidean spaces. In this
paper, the impossibility forwell-behaved Thurstonian-typemodels to simultaneously account for Regular
Minimality and nonconstancy of minima is established for a much broader notion of well-behavedness
applied to amuch broader class of stimulus spaces (anyHausdorff arc-connected ones). The universality of
Thurstonian-type models with independent perceptual images and deterministic decision rules is shown
(by a simpler proof than before) to hold for arbitrary stimulus spaces.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

If pairs of stimuli (x, y) are presented to an observer with the
request to determine whether x and y are the same or different
(‘‘overall’’ or in a specified respect, such as brightness or shape),
the observer’s response to a given stimulus pair (x, y)will generally
be different in different trials. If one assumes, as an approximable
but unattainable idealization, that all external factors other than
(x, y) are kept constant, precise physical identities of x and y are
still insufficient to predict the response. At best one can posit that
(x, y) determines the probabilities of the responses,

(x, y) 7→
{
Pr[‘different’] = ψ(x, y),
Pr[‘same’] = 1− ψ(x, y).

The most common way of explaining the probabilistic nature
of discrimination judgments is to employ the modeling scheme
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first proposed by Thurstone (1927a,b): stimuli x and y are
mapped into random variables taking their values in some
space of internal representations (perceptual images), and the
response is determined by the values (realizations) of these two
random variables in a given trial. Thurstone’s original theory was
designed for ‘‘greater–less’’ comparisons, but its adaptation to the
‘‘same–different’’ judgments is straightforward, in principle if not
in technical details (Ennis, 1992; Ennis, Palen, &Mullen, 1988; Luce
& Galanter, 1963; Suppes & Zinnes, 1963; Thomas, 1996, 1999;
Zinnes & MacKey, 1983). Fig. 1 illustrates the model proposed by
Luce and Galanter (1963), the simplest and probably the earliest of
Thurstonian-type models for same–different comparisons.
Dzhafarov (2003a,b) argued that since we do not know what

mathematical structures are appropriate for describing perceptual
representations of stimuli (e.g., it is far from obvious that stimuli
presented for same–different comparisons are represented by
vectors of ‘‘features’’ with real-valued components), it is profitable
to consider Thurstonian-type models on a very high level of
abstraction, with perceptual images of stimuli being random
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Fig. 1. A prototypical example of a Thurstonian-type model, proposed by Luce
and Galanter (1963). When a stimulus pair (x, y) is presented for a same–different
judgment, x ismapped intoA(x) and y into B(y), two independent random variables
normally distributed on the set of reals. The notation A(x) indicates that the
parameters of the variable A (in this case, its mean and variance) depend on x; and
analogously for B(y). The response in a given trial is ‘‘different’’ if and only if the
realization (a, b) of (A(x), B(y)) in this trial falls within the area labeled ‘‘different’’
in the figure, i.e., if |a − b| exceed a certain constant ε (one half of the vertical, or
horizontal, separation between the two dashed lines). Thus, the probabilityψ(x, y)
of judging x and y different (i.e., the discrimination probability function ‘‘generated’’
by the Luce–Galanter model) equals the probability of |A(x)− B(y)| > ε.

entities in probability spaces of arbitrary nature.1 Thurstonian-
type models then can be classified into four groups (‘‘varieties’’),
depending on
(a) whether the response is evoked by realizations of random
variables deterministically or probabilistically (Det vs Prob
varieties), and

(b) whether the two random variables are stochastically indepen-
dent or interdependent (Ind vs Int varieties).2

The four combinations of these characteristics can then be
abbreviated as DetInd, DetInt, ProbInd, and ProbInt varieties of
Thurstonian-type models. It was shown in Dzhafarov (2003a) that
if one imposes no a priori restrictions on the hypothetical random
variables, their dependence on stimuli, and possible decision rules,
then
every discrimination probability functionψ(x, y) can be generated
by an appropriately constructed Thurstonian-type model of the
simplest, DetInd variety.

We will refer to this result as the ‘‘DetInd universality statement ’’.
In this paper it will be proved in a much simpler way than in
Dzhafarov (2003a), as a corollary to a new, also surprisingly simple
result, referred to as the ‘‘Prob-Det equivalence statement ’’:
every ProbInt (as a special case, ProbInd)model is equivalent, in the
sense of generating the same discrimination probability function,
to a DetInt (respectively, DetInd) model.

This result is of interest for its own sake, as the assumption that
the mapping of random perceptual images of stimuli into possible
responses is probabilistic rather than determined by a rule seems
to be defeating the very purpose of Thurstonian-type models, to

1 In this paper we use the terms ‘‘random entity’’ and ‘‘random variable’’ as
synonyms, indicating a measurable function from one probability space to another.
In other contexts (see, e.g., Kujala & Dzhafarov, 2008b, it may be useful to reserve
the term ‘‘random variable’’ for random entities whose codomain is an interval of
real numbers endowed with Borel sigma algebra.
2 If the two variables are interdependent, one should still be able to selectively
attribute one of them to x and the other to y: thus, the perceptual image of x
is presented as A(x) rather than A(x, y). In accordance with the general theory
of selective influence (Dzhafarov, 2003c; Dzhafarov & Gluhovsky, 2006; Kujala &
Dzhafarov, 2008b), the perceptual representations A(x) and B(y) can be treated
as conditionally independent, given some common source of randomness C (see
Section 3.2 for details).

explain the probabilistic nature of responses by stochasticity in the
mapping of stimuli into perceptual representations.
Themain result established in Dzhafarov (2003a,b) is, however,

of a very different nature. It was shown there that

if stimuli can change ‘‘continuously’’ and their hypothetical rep-
resentations in a Thurstonian-type model are sufficiently ‘‘well-
behaved’’ in response to these changes, then the generated dis-
crimination probability functions cannot simultaneously have two
properties one of which (RegularMinimality) is an intuitively plau-
sible and seemingly innocuous constraint contradicted by no avail-
able empirical evidence, and the second (nonconstancy of minima)
can be viewed as a well-established empirical fact.

Regular Minimality is about the relation of being ‘‘least discrim-
inable from’’. It says that in same–different judgments of ordered
stimulus pairs (x, y), every point x has a unique least discriminable
from it stimulus y (and vice versa),3 and that, moreover, x is least
discriminable from y if and only if y is least discriminable from x.
Nonconstancy of minima is the observation that if y1 and y2 are
least discriminable from, respectively, x1 and x2 (or vice versa), the
values of ψ(x1, y1) and ψ(x2, y2) are generally not the same.4 The
theoretical result in question says that if ψ(x, y) is generated by
a well-behaved Thurstonian-type model then these two proper-
ties cannot be satisfied simultaneously (i.e.,ψ(x1, y1)must always
equal ψ(x2, y2) or else Regular Minimality is not satisfied).
This is of interest because Thurstonian-type modeling in

psychophysics is routine,5 and models constructed to fit empirical
data are likely to be well-behaved in the technical sense of
the present paper. On the other hand, Regular Minimality is
an empirical generalization which conforms with time-honored
practices of psychophysics (where the relations ‘‘ymatches x’’ and
‘‘x matches y’’ are always tacitly considered equivalent),6 and it
may be viewed as a candidate for one of the most basic properties
of discrimination (Dzhafarov, 2002; Dzhafarov & Colonius, 2006).
At the same time, to the extent one can reliably determine the
least discriminable counterparts y1, y2, . . . for several different
stimuli x1, x2, . . ., the nonconstancy of the discrimination levels
across different pairs (x1, y1), (x2, y2), . . . seems well established
(see, e.g., Dzhafarov & Colonius, 2005). While we do not address
in this paper the empirical truth of well-behaved Thurstonian-
type models versus Regular Minimality, the discussion of their
relationship is amply motivated.
The notion of well-behavedness for a Thurstonian-type model

presupposes that stimuli x and y vary continuously (e.g., both take
their values on an interval of reals) and its intuitive meaning is as

3 The uniqueness here is understood ‘‘up to psychological equivalence’’, as
explained in Section 2.1.
4 In this formulation the property in question is independent of Regular
Minimality: it is sufficient for some x-values to have least discriminable from them
stimuli y or vice versa. In the formal development to follow, however, we always
assume RegularMinimalitywhenwe speak of (non)constancy ofminima. This leads
to no loss of generality as our primary aim is to look at the (in)compatibility of the
two properties in discrimination probability functions generated by Thurstonian-
type models.
5 In Luce (1977) we read that Thurstone’s model is the ‘‘essence of simplicity
. . . this conception of internal representation of signals is so simple and so intuitively
compelling that no one ever really manages to escape from it. No matter how one
thinks about psychophysical phenomena, one seems to come back to it’’.
6 It should be noted that in the psychophysical literature the matching relation
is more often defined in terms of greater–less rather than same–different
comparisons. It seems natural, however, to posit that if x has any y which
subjectivelymatches it, then this y should be judged different from x less frequently
than other values of y. Available empirical evidence involving same–different
comparisons is not vast (for an overview see Dzhafarov, 2002, 2003a,b; Dzhafarov &
Colonius, 2005, 2006), and there is always the possibility that violations of Regular
Minimality are too small to be detected empirically (see the exchange between
Ennis, 2006, and Dzhafarov, 2006).
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follows: as x and y change, the joint distribution of the perceptual
representations A(x) and B(y) in the model changes continuously
and the rate of its change is bounded. InDzhafarov (2003a,b), itwas
assumed that the stimuli belong to an open connected area of n-
dimensional Euclidean space (e.g., x and y are colors represented by
CIE coordinates, or they are tones represented by amplitudes and
frequencies). The well-behavedness of a Thurstonian-type model
was formulated in terms of continuity and directional derivatives
of probabilities withwhich randomperceptual representations fall
within various subsets of the perceptual space. Thus, in reference
to Fig. 1, themodel it depictswill bewell-behaved if, e.g., themeans
and variances of the twonormal distributions are smooth functions
of respective stimuli.
In this paper, the analysis of well-behaved Thurstonian-type

models is extended from n-dimensional Euclidean spaces to
a much broader class of all Hausdorff arc-connected stimulus
spaces,7 and the dependence of random perceptual representa-
tions on stimuli in well-behavedmodels is greatly generalized and
refined. In fact, unlike in Dzhafarov (2003a,b), we do not attempt to
develop a single general definition of a well-behaved Thurstonian-
type model. Instead, we define this notion as a property of dis-
crimination probability functionsψ(x, y), and then present certain
classes of Thurstonian-typemodels which generate discrimination
probabilities with this property.

2. Basics of discrimination probability functions

In this section, we closely follow Kujala and Dzhafarov (2008a,
2009) to introduce notation, notions, and basic facts pertaining to
discrimination probability functions on a broad class of stimulus
spaces.

2.1. Discrimination probabilities and their properties

A discrimination probability function (or discrimination function,
for short) is defined as

ψ(x, y) = Pr[x ∈ X and y ∈ Y are judged to be different]. (1)

The sets of stimuli X and Y are distinguished because they
represent distinct observation areas (Dzhafarov, 2002, 2006): thus,
if stimuli x and y are, say, auditory tones taking their values in the
same sets of amplitudes and frequencies, one of these stimuli has
to be presented chronologically first (X) and the other second (Y ).
More generally, stimuli x ∈ X and y ∈ Y are characterized by their
variable properties (e.g., amplitude and frequency in the case of
tones, or CIE coordinates in the case of colors), fixed properties
common to all stimuli (e.g., duration of tones, or shape of color
patches), and fixed properties which are different for x-stimuli
and y-stimuli (in our examples, chronological position of a tone,
first–second, or spatial location of a color, say, left–right). The latter
define two distinct observation areas.8 The variable characteristics
of x and y stimuli typically form identical sets and are referred
to as stimulus values. By abuse of language the term ‘‘stimulus’’ is

7 The necessity or at least desirability of considering stimuli on a more abstract
level than representations by real-valued features is discussed in Dzhafarov
and Colonius (2005). Put briefly, conventional descriptions of stimuli are both
incomplete and non-unique, and it is desirable therefore to ensure that one’s
theoretical considerations do not critically depend on one’s choice of such
a description. The level of Hausdorff arc-connected spaces ensures that our
considerations apply to any description of stimuli (by features, functions, functional
decompositions, etc.) in which the stimuli can change ‘‘continuously’’.
8 We confine our consideration to pairs of stimuli that belong to two fixed
observation areas. Presentation paradigms involving multiple observation areas
(e.g., pairs of colors which, in a given trial, may occupy any two of k different
locations) are outside the scope of this paper.

often used interchangeably with ‘‘stimulus value’’. Thus, two tones
x and y can be said to be physically equal, x = y, even though it is
only their amplitudes and frequencies (and not temporal intervals
containing them) that are equal. For amore detailed discussion, see
Dzhafarov and Colonius (2005, 2006).
We assume in this paper that X and Y have the following

properties:

1. Neither set contains two distinct stimuli which are ‘‘psycholog-
ically equivalent’’, i.e., indistinguishable by means of values of
ψ . This means that if ψ(x1, y) = ψ(x2, y) for all y ∈ Y , then
x1 = x2, and if ψ(x, y1) = ψ(x, y2) for all x ∈ X , then y1 = y2.
This property can always be achieved by relabeling stimuli so
that any two psychologically equivalent stimuli in the same ob-
servation area are assigned one and the same label (see Dzha-
farov & Colonius, 2006, 2007, for details). Thus, each color rep-
resented by given values of CIE coordinates represents in fact
an infinity of metameric radiometric spectra.

2. Both sets are endowedwith topologieswhichmake themHaus-
dorff arc-connected spaces.9 The Hausdorff property means
that any two distinct points have disjoint open neighbour-
hoods: it follows, in particular, that no sequence of points in
a Hausdorff space can converge to more than one limit point.
The arc-connectedness formalizes the intuitive notion of a ‘‘con-
tinuous’’ stimulus space: for any x, x′ ∈ X (the definition for
y, y′ ∈ Y being analogous) one can find a path connecting
them, a continuous mapping f : [0, 1] → X with f (0) = x
and f (1) = x′. This path is called an arc if its image f ([0, 1])
consists of a single point (the point x = x′), or if the map-
ping f : [0, 1] → f ([0, 1]) is homeomorphic, i.e., if it has
the continuous inverse f −1 : f ([0, 1]) → [0, 1].10 The image
f ([0, 1]) of a path (hence also of an arc), as a subspace of X with
relative topology, is itself a Hausdorff arc-connected space. In
particular, for any path f : [0, 1] → X one can find an arc
g : [0, 1] → X such that g([0, 1]) ⊂ f ([0, 1])with f (0) = g(0)
and f (1) = g(1) (which is the reason a path-connected Haus-
dorff space can be called arc-connected).

A discrimination function ψ is said to satisfy the law of Regular
Minimality if there is a bijection h : X → Y such that

ψ(x, y) > max{ψ(x, h(x)), ψ(h−1(y), y)},

for all x ∈ X and h(x) 6= y ∈ Y .
The function h is called the PSE function (PSE standing for Point

of Subjective Equality). If h is a homeomorphism (i.e., both h and h−1
are continuous), then we say that ψ satisfies the law of Regular
Minimality with a homeomorphic PSE function.
Assuming Regular Minimality, the function ωh : X → [0, 1]

defined by

ωh(x) = ψ(x, h(x))

is called theminimum level function. Clearly, the function

ωh−1(y) = ψ(h
−1(y), y)

9 For the topological notions and facts mentioned in this paragraph see,
e.g., Hocking and Young (1961).
10 The inclusion of paths with singleton images into the class of arcs is necessary
to consider every point arc-connected to itself. This inclusion can be achieved in
a more natural way if one defines a path as a continuous mapping f : [a, b] →
X , where [a, b] is an interval of reals: then f : [a, a] → {f (a)} is formally a
homeomorphic path, hence an arc. Another (equivalent) way is to define an arc as a
path f : [0, 1] → X such that for any s ∈ [0, 1], f −1(f (s)) is an interval (necessarily
closed) in [0, 1]: then f : [0, 1] → {x} is an arc.
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has the same graph as ωh(x) and can also be called the minimum
level function.We need not differentiate between these two forms.
The function ψ is said to have (non)constant minima if its

minimum level function ωh is (non)constant on X .

2.2. Arcwise parametrization and well-behavedness of ψ

In this paper, we are exclusively interested in discrimination
functions ψ : X × Y → [0, 1] which are continuous with
respect to the product topology of X and Y (which are Hausdorff
arc-connected topological spaces) and have homeomorphic PSE
functions h. As shown in Kujala and Dzhafarov (2008a), the
continuity of ψ , if the latter satisfies Regular Minimality, does
not imply the continuity of h or h−1 (although it is also shown
there that cases with non-homeomorphic h are of an ‘‘aberrant’’
nature).11
Let Z denote either X or Y , and p, q ∈ Z be two distinct points.

It is convenient to present an arc z : [0, 1] → Z with z(0) = p
and z(1) = q as zqp , to indicate its endpoints and to distinguish
it from points in Z (even if the image of the arc consists of the
single point p = q). So we will speak of arcs zqp with points z(t),
t ∈ [0, 1] (of course, the notation zqp itself does not determine
the arc, only its endpoints). To distinguish an arc as a mapping,
zqp : [0, 1] → Z , from its image zqp([0, 1]) in Z , we will denote
the image

[
zqp
]
. Clearly, different arcs zqp and z̃

q
p may have the same

image,
[
zqp
]
=
[̃
zqp
]
.

Given any two arcs xu
′

u : [0, 1] → X and yv
′

v : [0, 1] → Y (with
endpoints u, u′ and v, v′, respectively), the function

ϕ(s, t) = ψ(x(s), y(t)) (2)

is called an arc-parametrized facet (AP-facet, for short) ofψ . Sinceψ
is continuous, ϕ(s, t) is continuous (hence uniformly continuous)
on [0, 1] × [0, 1].
Given an AP-facet ϕ, we use the following notation for finite

differences of the first and second order. For any s, s′, t, t ′ ∈ [0, 1],

11s′ϕ(s, t) = ϕ(s
′, t)− ϕ(s, t),

12t ′ϕ(s, t) = ϕ(s, t
′)− ϕ(s, t),

(3)

with the superscripts referring to the position of the arguments
changed. Analogously,

112(s′,t ′)ϕ(s, t) = 11s′1
2
t ′ϕ(s, t) = 1

2
t ′1

1
s′ϕ(s, t)

= ϕ(s′, t ′)− ϕ(s′, t)− ϕ(s, t ′)+ ϕ(s, t). (4)

Another notation convention: we use double arrows (s′, t ′) ⇒
(s, t) to indicate that s′ and t ′ approach, respectively, s and t from
the same side. Specifically:

(s′, t ′) ⇒ (s, t)+ means s′ → s+ and t ′ → t+,

(s′, t ′) ⇒ (s, t)− means s′ → s− and t ′ → t−,

(s′, t ′) ⇒ (s, t)± means one of the two: (s
′, t ′) ⇒ (s, t)+,

(s′, t ′) ⇒ (s, t)−,

(s′, t ′) ⇒ (s, t)means s′ → s and t ′ → t

and (s′ − s)(t ′ − t) ≥ 0.

(5)

11 The continuity of h and h−1 had been part of the original formulation of
Regular Minimality (in Dzhafarov, 2002, 2003a), but the formulation was made
more general (referring to any bijective h) in subsequent publications. In most of
these, later publications h is transformed into an identity function bymeans of a so-
called canonical transformation ofψ . We adopt a ‘‘compromise’’ approach in which
Regular Minimality is formulated in complete generality and the homeomorphic
nature of the PSE functions is stipulated additionally.

Definition 2.1. Given a continuous discrimination function ψ : X
× Y → [0, 1] and a pair of arc images,

[
xu
′

u

]
and

[
yv
′

v

]
, we say that

the restriction ψ |
[
xu
′

u

]
×

[
yv
′

v

]
of ψ is well-behaved on

[
xu
′

u

]
if, for

some parametrizations xu
′

u : [0, 1] →
[
xu
′

u

]
and yv

′

v : [0, 1] →[
yv
′

v

]
, the resulting AP-facet ϕ ofψ has the following properties12:

(R1) for all (s, t) ∈ [0, 1] × [0, 1] except for an at most
denumerable set,

lim sup
(s′,t ′)⇒(s,t)

∣∣∣∣∣1
12
(s′,t ′)ϕ(s, t)

s′ − s

∣∣∣∣∣ <∞; (6)

(R2) for almost all s ∈ [0, 1] and almost all t ∈ [0, 1],13

lim
(s′,t ′)⇒(s,t)±

112
(s′,t ′)ϕ(s, t)

s′ − s
= 0, (7)

where the choice of+ or−may depend on (s, t).

The definition of a restrictionψ |
[
xu
′

u

]
×

[
yv
′

v

]
well-behaved on[

yv
′

v

]
is obtained by replacing the quotient in (6) and (7) with

112
(s′,t ′)ϕ(s, t)

t ′ − t
.

Definition 2.2. A continuous discrimination functionψ : X×Y →
[0, 1] iswell-behaved on a pair of points (u, u′) ∈ X×X with respect
to a homeomorphism h : X → Y if, for some arc xu

′

u , the restriction

ψ |
[
xu
′

u

]
× h

([
xu
′

u

])
is well-behaved on at least one of the two arc

images,
[
xu
′

u

]
or h

([
xu
′

u

])
. The well-behavedness of ψ on a pair

(v, v′) ∈ Y × Y with respect to a homeomorphism g : Y → X is
defined analogously.

Clearly, ψ is well-behaved on
(
u, u′

)
∈ X × X with respect

to a homeomorphism h if and only if ψ is well-behaved on(
h(u), h(u′)

)
∈ Y × Y with respect to the homeomorphism h−1.

It is also easy to see that any ψ is well-behaved on any pair (u, u)
of identical points with respect to any homeomorphism (choose
x : [0, 1] → {u}, y : [0, 1] → {h(u)} and observe the compliance
withR1 andR2 of Definition 2.1).
This ‘‘two-point’’ version of the notion of well-behavedness is

sufficient for the needs of this paper. For completeness, however,
we should mention the global notion of well-behaved functions,
as proposed in Kujala and Dzhafarov (2008a) and generalized in
Kujala and Dzhafarov (2009).

Definition 2.3. Given a continuous discrimination function ψ :
X × Y → [0, 1] and a homeomorphism h : X → Y , let E(ψ, h) be
the set of all pairs (u, u′) ∈ X×X onwhichψ is well-behavedwith
respect to h. The function ψ is said to be (globally) well-behaved
with respect to h if the only topologically and transitively closed14
subset of X × X containing E(ψ, h) is X × X itself.

12 According to Lemma 5 of Kujala and Dzhafarov (2008a, p. 125), these conditions
are insensitive to the parametrization of yv

′

v : [0, 1] →
[
yv
′

v

]
; it can always be

chosen arbitrarily.
13 ‘‘Almost all’’ here refers to the Lebesgue measure on [0, 1].
14 A set S ⊂ X × X is transitively closed if (a, b), (b, c) ∈ S implies (a, c) ∈ S. As
both topological and transitive closedness is preserved in intersections, the smallest
subset with these properties containing E(ψ, h) is well-defined.
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Obviously, the definition can be equivalently given in terms of
pairs (v, v′) in Y × Y and the homeomorphism h−1.

Theorem 2.1. Let ψ : X × Y → [0, 1] be a continuous discrimina-
tion function subject to RegularMinimality, with a homeomorphic PSE
function h. If ψ is well-behaved on a pair (u, u′) ∈ X×X with respect
to h, then ψ (u, h(u)) = ψ

(
u′, h(u′)

)
.

A proof of this statement is given in Kujala and Dzhafarov
(2008a, Theorem 5).15

Theorem 2.1 makes it unnecessary for us to develop an
independent definition of well-behavedness for Thurstonian-type
models. Instead we can employ the following strategy. Suppose
there is a property P (xu

′

u , y
v′

v ) of Thurstonian-type models (with
u, u′ ∈ X , v, v′ ∈ Y ) such that if a model T has this property,
then, for the arcs xu

′

u and y
v′

v , the model generates an AP-facet ϕ
which satisfies Properties R1 and R2 of Definition 2.1. Then, by
some abuse of terminology, we can call this property P a well-
behavedness condition (or constraint), and we can say that a model
T with this property is well-behaved in the sense of this condition.
In particular, let a model T satisfy a well-behavedness condition
P (xu

′

u , y
v′

v ) for arcs x
u′
u and y

v′

v such that
[
yv
′

v

]
= h

([
xu
′

u

])
, where

h is a homeomorphism X → Y ; and let ψ be a continuous
discrimination function subject to Regular Minimality with the
PSE function h, such that ψ(u, h(u)) 6= ψ(u′, h(u′)). Then, due to
Theorem 2.1, we know thatψ cannot be generated (accounted for)
by the model T .
It must be clear that this approach is of interest insofar as the

propertyP fromwhichwe derive the compliancewithR1 andR2
is shared by a broad class ofmodels that are likely to be constructed
to account for empirical data.

3. Basics of Thurstonian-type models

Here, we introduce notation and terminology pertaining
to Thurstonian-type models of Det variety, with deterministic
mapping of pairs of perceptual images into responses ‘‘same’’ and
‘‘different’’. We will postpone the introduction of the models of
Prob variety (in which a given pair of perceptual images maps into
responses ‘‘same’’ and ‘‘different’’ probabilistically) until Section 6.

3.1. Thurstonian-type models of DetInd variety

A Thurstonian-type model with independent perceptual images
and deterministic decision rule (DetInd variety) is defined as

{Ax, By,S},

or more explicitly,{{
X,A,ΣA, {Ax}x∈X

}
,
{
Y ,B,ΣB,

{
By
}
y∈Y

}
,S
}
, (8)

where

• X and Y are the stimulus spaces, as characterized above;

15 There is a minor difference in the formulation of the theorem referred to: it
says that if ψ is well-behaved with respect to h on all pairs (u, u′) ∈ X × X , then
its minimum level function is constant. But the demonstration consists in proving
the present Theorem 2.1 for some pair (u, u′), and then observing that this pair can
be chosen in X × X arbitrarily. (And in Kujala & Dzhafarov, 2009, it is pointed out
that for the global constancy of minima it is sufficient to assume that ψ is well-
behavedwith respect to its homeomorphic PSE function in the generalizedmeaning
of Definition 2.3.)

• A andB are the corresponding spaces of internal representations,
or perceptual images, endowed with respective sigma algebras
ΣA andΣB16;
• {Ax}x∈X and {By}y∈Y are probability measures on these sigma
algebras, indexed by stimuli from respective spaces (so that the
measure A on ΣA depends on stimulus x ∈ X and the measure
B onΣB depends on stimulus y ∈ Y );
• finally, S is the ‘‘decision area’’, a measurable subset of A × B

such that any (a, b) ∈ S ismapped into the response ‘‘different’’
(and any (a, b) ∈ A×B \S is mapped into ‘‘same’’).17

Note that the sigma algebras ΣA and ΣB are the same for,
respectively, all differentmeasuresAx and By (varyingwith x and y).
This allows one to speak unambiguously and without referring to
x or y of sets and functions as being A-measurable (i.e., measurable
with respect to ΣA), B-measurable (with respect to ΣB), and AB-
measurable (with respect to the smallest sigma algebra ΣA ⊗ ΣB
containingΣA ×ΣB).
We will use bracket-free notation for measures of sets: e.g., if

a ∈ ΣA, then, given a stimulus x, the measure of a is denoted by
Axa. To enable one to use the conventional probabilistic language,
we associate with measure Ax a random variable A(x) (formally,
the identity function on the probability space (A,ΣA, Ax)) and
interpret Axa as the probability with which A(x) falls in a. The
meaning of Byb and B(y) is analogous.

A(x) and B(y) in the models of DetInd variety being stochasti-
cally independent, we have

ψ(x, y) = Pr [(A(x), B(y)) ∈ S] =
∫
(a,b)∈S

dAx(a)dBy(b). (9)

This formula is referred to as the generation rule for the model
in question. The model itself can be called a Thurstonian-type
representation for the function ψ it generates.
Other ways of writing the generation rule above, using general

properties of Lebesgue integrals, are

ψ(x, y) =
∫
a∈A
(BySa)dAx(a) =

∫
b∈B
(AxSb)dBy(b), (10)

whereSa andSb are cross-sections of the decision areaS, defined
as

Sa = {b ∈ B : (a, b) ∈ S},

Sb = {a ∈ A : (a, b) ∈ S}.

The cross-sections Sa and Sb are, respectively, B-measurable and
A-measurable sets.

3.2. Thurstonian-type models of DetInt variety

A Thurstonian-type model with interdependent perceptual
images and deterministic decision rule (DetInt variety) is defined by

{Ax,c, By,c, C,S},

16 It may seem excessively general to have different probability spaces for the
perceptual images from the two observation areas. One might maintain that while
the observation area of a stimulus may influence the mapping of this stimulus
into its percept, the space of the perceptual images should be common to both
observation areas. However, putting (A,ΣA) = (B,ΣB) does not lead to any
simplifications in the theory, and in fact occasionally creates notational difficulties.
Besides, one should consider the possibility that the stimuli in X and Y are of
different nature (e.g., X may represent graphical and Y vocal renderings of letters
presented as visual-auditory pairs and judged in terms of ‘‘the same letter’’ vs
‘‘different letters’’.)
17 S andA×B\S are interchangeable, in the sense that all our formulations canbe
given symmetrically in terms of either of the two. This is important to keep in mind
when we speak of the ‘‘relative’’ conditions for well-behavedness (in Section 4.3).
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or more explicitly,{{
X,A,ΣA,

{
Ax,c

}
x∈X,c∈C

}
,{

Y ,B,ΣB,
{
By,c

}
y∈Y ,c∈C

}
, {C,ΣC , C} ,S

}
. (11)

The meaning of the symbols X,A,ΣA, Y ,B,ΣB,S here is the
same as for the DetInd variety. The main difference is that the
random variables A(x) and B(y) evoked by stimuli x and y are
not necessarily stochastically independent. Formally, A(x) and
B(y) are the (first and second coordinate) projection maps of
the measurable space (A × B,ΣA ⊗ ΣB) endowed with a joint
probability measure which depends on x and y. In the case of
two perceptual images selectively attributed to two stimuli, this
joint probability measure has a specific structure. In accordance
with the general theory of selective influence (Dzhafarov, 2003c;
Dzhafarov & Gluhovsky, 2006; Kujala & Dzhafarov, 2008b), the
selective attribution of A(x) and B(y) to x and y, respectively,
requires a common source of randomness C taking its values
on a set C endowed with a sigma algebra ΣC and associated
with a probability measure C (independent of both x and
y). Given any value c of C, the conditional random variables
A(x)|c and B(y)|c are stochastically independent, with respective
(conditional) probability measures Ax,c and By,c . The generation
rule in such a model is given by
ψ(x, y) = Pr [(A(x), B(y)) ∈ S]

=

∫
c∈C

∫
(a,b)∈S

dAx,c(a)dBy,c(b)dC(c), (12)

which can also be written as

ψ(x, y) =
∫
c∈C

∫
a∈A
(By,cSa)dAx,c(a)dC(c)

=

∫
c∈C

∫
b∈B
(Ax,cSb)dBy,c(b)dC(c). (13)

The models of DetInd variety can be viewed as a special
case of those of DetInt variety, obtained by assuming that C is
concentrated at a single point. In the subsequent sectionswe never
formulate our propositions for DetInd models, merely mentioning
instead how the formulations for DetInt models specialize (and
simplify) when C is concentrated at a point.

Remark 3.1. In dealing with Thurstonian-type models of Det
variety, the analysis of a model can sometimes be simplified by
considering generalized (‘‘defective’’ using Feller, 1968, p. 309,
term) probability measures. AmeasureM defined on ameasurable
space {M,Σ} is called a defective probability measure ifMM < 1.
With regard to our models (8) and (11), we can profitably use this
notion if we consider the projections ofS into the sets A andB,

SA = {a ∈ A : (a, b) ∈ S for some b ∈ B},

SB = {b ∈ B : (a, b) ∈ S for some a ∈ A},

and agree to view them as substitutes for the sets A and B
themselves, i.e., put

A = SA, B = SB.

The sigma algebras ΣA and ΣB can then be redefined as the
smallest sigma algebras which contain, respectively, the cross-
sections {Sb}b∈B and {Sa}a∈A, which can sometimes be much
smaller collections of sets than the original sigma algebras.18 This
simplification leads to no confusions if one remembers that Ax,cA
and By,cB can now have values less than 1 and varying with c , x,
and y.

18 And if not, we may achieve more ‘‘economic’’ sigma algebras by switching the
definition of the response area in accordance with footnote 17 and replacing A, B

with A \SA, B \SB , respectively, andSwithSA ×SB \S.

4. Well-behaved Thurstonian-type models

Given a Thurstonian-type model {Ax,c, By,c, C,S}, the arc-
parametrized restriction (AP-restriction) of this model to arcs xu

′

u

and yv
′

v is the Thurstonian-typemodel {A
∗
s,c, B

∗
t,c, C,S} obtained by

puttingA∗s,c = Ax(s),c and B
∗
t,c = By(t),c for s, t ∈ [0, 1]. Clearly, if the

original model represents (generates) a discrimination function
ψ , the AP-restriction of this model to arcs xu

′

u and y
v′

v represents
(generates) the AP-facet ϕ(s, t) = ψ(x(s), y(t)) of ψ by means of
the generation rule

ϕ(s, t) =
∫
c∈C

∫
(a,b)∈S

dA∗s,c(a)dB
∗

t,c(b)dC(c).

In the following, we will omit the asterisks for simplicity and
denote the arc-parametrized conditional measures by As,c and Bt,c .
In Sections 4.2 and 4.3, we will present sufficient conditions

for an AP-restriction of a Thurstonian-type model to generate
an AP-facet ϕ(s, t) which satisfies Properties R1 and R2 of
Definition 2.1.We shallmake use of the fact that, for a Thurstonian-
type representation, the quotient inR1 andR2 can be written in
the special form

112
(s′,t ′)ϕ(s, t)

s′ − s

=
1
s′ − s

∫
c∈C

∫
(a,b)∈S

d[As′,c − As,c](a)d[Bt ′,c − Bt,c](b)dC(c),

which is easy to verify using the linearity property of integrals.
Here, As′,c − As,c (as well as Bt ′,c − Bt,c) is a signed measure, in this
case a countably additive set functionΣA → [−1, 1] (respectively,
ΣB → [−1, 1]). The codomain is [−1, 1] because both As,c and Bt,c
are bounded between 0 and 1.

4.1. Continuity of measures

Let Σ be a sigma algebra on some space M, and let Z be any
Hausdorff space. It can be thought of, e.g., as representing the unit
interval [0, 1].
Let {Mz}z∈Z andM be some probability measures onΣ . As z →

z0, we say that Mz → M setwise if Mzs → Ms for every s ∈ Σ . If
Mz′ → Mz setwise as z ′ → z we say that Mz is setwise continuous
(at z, or globally if at any z ∈ Z).
As z → z0, we say that Mz → M in total variation if

sups∈Σ |Mzs−Ms| → 0. IfMz′ → Mz in total variation as z ′ → z
we say that Mz is V-continuous (at z, or globally if at any z ∈
Z). Clearly, a V-continuous measure is setwise continuous. Fig. 2
illustrates the fact that the reverse of this statement is not true.
If the indexing set Z is the unit interval, as it will be whenever

we consider the arc-parametrized measures As,c and Bt,c (s, t ∈
[0, 1]), the continuity of functions on Z can be defined in terms
of sequences: a function f defined on Z is continuous at z if and
only if zn → z implies f (zn) → f (z) for all sequences {zn}. Thus,
we can apply the lemmas of Appendix A, which are formulated for
sequences.
Although in this paper we do not make use of this fact,

it is worthwhile to observe that the setwise continuity of the
probability measures in an AP-restriction of a Thurstonian-type
model is related to the continuity of the AP-facet ϕ it generates
as shown in the lemma below. Recall that, given some arcs xu

′

u and
yv
′

v , the arc-parametrized measures As,c and Bt,c stand, with some
abuse of notation, for Ax(s),c and Ay(t),c , respectively.

Lemma 4.1. Let {As,c, Bt,c, C,S} be an AP-restriction of a Thurst-
onian-type model (of DetInt variety) to some arcs xu

′

u and y
v′

v . If As,c
and Bt,c are setwise continuous at, respectively, s = s0 and t = t0 for
C-almost all c, then the AP-facet ϕ generated by {As,c, Bt,c, C,S} is
continuous in (s, t) at (s, t) = (s0, t0).
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Fig. 2. An example of a measureMz that is setwise continuous on z ∈ [−1, 1] but
not V-continuous at z = 0. For each value of z, the density of themeasure is uniform
over the shaded intervals shown in the figure. This pattern continues to arbitrarily
small scale. At z = 0, the measure is defined asM0 s = 1

2λ[0,1]s, where λ[0,1] is the
uniform measure on [0, 1]; this makes the measure setwise continuous at z = 0.
However, sups∈Σ[0,1]

|M0s−Mzs| = 1
2 for any z 6= 0 and soMz is not V-continuous

at z = 0.

Proof. We have to prove that, as (s, t)→ (s0, t0),

ϕ(s, t) =
∫
c∈C

∫
b∈B
As,cSb dBt,c(b) dC(c)

→

∫
c∈C

∫
b∈B
As0,cSbdBt0,c(b) = ϕ(s0, t0). (14)

For any c outside the exceptional null subset of C, as (s, t) →
(s0, t0), we have both As,cSb → As0,cSb pointwise onB (with the
functions being uniformly bounded, As,cSb ∈ [0, 1]) and Bt,c →
Bt0,c setwise. Then, by Lemma A.1 (Statement 3),∫
b∈B
As,cSbdBt,c(b)→

∫
b∈B
As0,cSbdBt0,c(b).

As the value of the left-hand side integral is within [0,1] for all
c ∈ C, (14) follows by the dominated convergence theorem. �

4.2. A symmetric ‘‘absolute’’ sufficient condition

The condition stipulated in the theorem below is called
symmetric because the constraints it imposes on the two arc-
parametrized probability measures As,c and Bt,c are of the same
kind. Following the terminology adopted in Dzhafarov (2003a), the
condition in question is called absolute because it is formulated
entirely in terms of the probabilitymeasures, so its truth value does
not depend on one’s choice of the decision areaS.

Theorem 4.2. Let {As,c, Bt,c, C,S} be an AP-restriction of a
Thurstonian-type model (of DetInt variety) to some arcs xu

′

u and y
v′

v .
Suppose that for all (s, t) ∈ [0, 1] × [0, 1], except on an at most de-
numerable set, and for all a ∈ ΣA, b ∈ ΣB,

sup
c∈C\es,t

sup
s′ 6=s

∣∣∣∣As′,ca− As,cas′ − s

∣∣∣∣ = L1(s, a) <∞,
sup
c∈C\es,t

sup
t ′ 6=t

∣∣∣∣Bt ′,cb− Bt,cbt ′ − t

∣∣∣∣ = L2(t, b) <∞,
where es,t are subsets of C of C-measure zero (generally dif-
ferent for different s, t). Then, the AP-facet ϕ(s, t) generated by
{As,c, Bt,c, C,S} satisfiesR1 andR2.

Remark 4.1. If C is concentrated at a point (i.e., we deal with a
Thurstonian-type model of DetInd variety), then the conditions
become: for all (s, t) ∈ [0, 1] × [0, 1], except on an at most
denumerable set, and for all a ∈ ΣA, b ∈ ΣB,

sup
s′ 6=s

∣∣∣∣As′a− Asas′ − s

∣∣∣∣ = L1(s, a) <∞,
sup
t ′ 6=t

∣∣∣∣Bt ′b− Btbt ′ − t

∣∣∣∣ = L2(t, b) <∞.
Proof. Let (s, t) ∈ [0, 1] × [0, 1] be chosen outside the countable
exceptional set. We begin by observing that for any c ∈ C \ es,t
and any s′ 6= s and t ′ 6= t in [0, 1], the functions a 7→ (As′,ca −
As,ca)/(s′− s) and b 7→ (At ′,cb−At,cb)/(t ′− t) are bounded signed
measures onΣA andΣB, respectively:

sup
a∈ΣA

∣∣∣∣As′,ca− As,cas′ − s

∣∣∣∣ ≤ 1
|s′ − s|

,

sup
b∈ΣB

∣∣∣∣At ′,cb− At,cbt ′ − t

∣∣∣∣ ≤ 1
|t ′ − t|

.

As these families of bounded signedmeasures are setwise bounded
by L1(s, a) and L2(t, b), respectively, the Nikodým boundedness
theorem (Lemma A.4) implies the existence of uniform bounds

sup
a∈ΣA

sup
c∈C\es,t

sup
s′ 6=s

∣∣∣∣As′,ca− As,cas′ − s

∣∣∣∣ = LA(s) <∞ (15)

and

sup
b∈ΣB

sup
c∈C\es,t

sup
t ′ 6=t

∣∣∣∣Bt ′,cb− Bt,cbt ′ − t

∣∣∣∣ = LB(t) <∞. (16)

It follows from (15) that for all c ∈ C \ es,t and s′ 6= s in [0, 1],∣∣∣∣∫
b∈B

As′,cSb − As,cSb
s′ − s

d[Bt ′,c − Bt,c](b)
∣∣∣∣

≤

∣∣∣∣∫
b∈B

As′,cSb − As,cSb
s′ − s

dBt ′,c(b)
∣∣∣∣

+

∣∣∣∣∫
b∈B

As′,cSb − As,cSb
s′ − s

dBt,c(b)
∣∣∣∣ ≤ 2LA(s), (17)

whence,

lim sup
(s′,t ′)→(s,t)

∣∣∣∣∣1
12
(s′,t ′)ϕ(s, t)

s′ − s

∣∣∣∣∣
= lim sup

(s′,t ′)→(s,t)

∣∣∣∣∫
c∈C

∫
b∈B

As′,cSb − As,cSb
s′ − s

d[Bt ′,c − Bt ′,c](b)dC(c)
∣∣∣∣

≤ lim sup
(s′,t ′)→(s,t)

∫
c∈C

∣∣∣∣∫
b∈B

As′,cSb − As,cSb
s′ − s

d[Bt ′,c − Bt ′,c](b)
∣∣∣∣ dC(c)

≤ 2LA(s) <∞.

Thus, ϕ(s, t) generated by {As,c, Bt,c, C,S} satisfiesR1.
Now, it follows from (16) that Bt ′,c is V-continuous in t ′ at t ′ = t

for all c ∈ C \ es,t : as t ′ → t in [0, 1],

sup
b∈ΣB

|Bt ′,cb− Bt,cb| ≤ LB(t)
∣∣t ′ − t∣∣→ 0.

For the same c then, by (15) and Lemma A.3,

lim
(s′,t ′)→(s,t)

∫
b∈B

As′,cSb − As,cSb
s′ − s

d[Bt ′,c − Bt,c](b) = 0.
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Since we also have (17), by the dominated convergence theorem,

lim
(s′,t ′)→(s,t)

112
(s′,t ′)ϕ(s, t)

s′ − s

= lim
(s′,t ′)→(s,t)

∫
c∈C

∫
b∈B

As′,cSb − As,cSb
s′ − s

d[Bt ′,c − Bt,c](b)dC(c)

= 0.

Thus, ϕ(s, t) generated by {As,c, Bt,c, C,S} satisfiesR2. �

When applied to arcs xu
′

u and y
v′

v with
[
yv
′

v

]
= h

([
xu
′

u

])
(where

h is a homeomorphism X → Y ) and combined with Theorem 2.1,
this result has obvious consequences for the conjunction of the
PSE function h and (non)constancy of minima in discrimination
functions generated by the Thurstonian-type models the result
entails. We will postpone formulating these consequences until
after we have presented similar results for two other well-
behavedness conditions.

4.3. Two asymmetric ‘‘relative’’ sufficient conditions

In the theorems below, the arc-parametrized probability
measures As,c and Bt,c are treated asymmetrically (made different
assumptions about), and the formulations are relativebecause their
truth value may depend on the decision areaS.

Theorem 4.3. Let {As,c, Bt,c, C,S} be an AP-restriction of a
Thurstonian-type model (of DetInt variety) to some arcs xu

′

u and y
v′

v .
Assume that

1. for almost all t ∈ [0, 1], Bt,c is V-continuous in t for C-almost all
c;

2. for all s ∈ [0, 1], except on an at most denumerable set,

L(s, c) = sup
b∈B
sup
s′ 6=s

∣∣∣∣As′,cSb − As,cSbs′ − s

∣∣∣∣
(possibly∞ at some s, c) is C-integrable over C.

Then, the AP-facet ϕ(s, t) generated by {As,c, Bt,c, C,S} satisfiesR1
andR2.

Remark 4.2. If C is concentrated at a point, then the conditions
become: (i) Bt is V-continuous at almost all t ∈ [0, 1]; (ii) for all
s ∈ [0, 1], except on an at most denumerable set,

L(s) = sup
b∈B
sup
s′ 6=s

∣∣∣∣As′Sb − AsSbs′ − s

∣∣∣∣ <∞.
Proof. Let s ∈ [0, 1] \ D and t ∈ [0, 1] (where D denotes the
countable exceptional set in Condition 2). For any c ∈ C and any
s′ 6= s and t ′ in [0, 1], Condition 2 implies∣∣∣∣∫
b∈B

As′,cSb − As,cSb
s′ − s

d[Bt ′,c − Bt,c](b)
∣∣∣∣ ≤ 2L(s, c), (18)

whence

lim sup
(s′,t ′)→(s,t)

∣∣∣∣∣1
12
(s′,t ′)ϕ(s, t)

s′ − s

∣∣∣∣∣
= lim sup

(s′,t ′)→(s,t)

∣∣∣∣∫
c∈C

∫
b∈B

As′,cSb − As,cSb
s′ − s

d[Bt ′,c − Bt ′,c](b)dC(c)
∣∣∣∣

≤ lim sup
(s′,t ′)→(s,t)

∫
c∈C

∣∣∣∣∫
b∈B

As′,cSb − As,cSb
s′ − s

d[Bt ′,c − Bt ′,c](b)
∣∣∣∣ dC(c)

≤

∫
c∈C
2L(s, c)dC(c) <∞.

Thus, ϕ(s, t) generated by {As,c, Bt,c, C,S} satisfiesR1.
For the same s ∈ [0, 1] \ D, let now t be chosen in [0, 1] \ E

(where E is the exceptional null subset of [0, 1] in Condition 1).
By Condition 2, the functions b 7→ (As′,cSb − As,cSb)/(s′ − s)
on B are uniformly bounded across all s′ 6= s in [0, 1] for any
c ∈ C \ es (where es is the necessarily C-null subset of C on which
L(s, c) = ∞).19 By Lemma A.3 then, denoting the exceptional C-
null subset ofC in Condition 1 by et , we have, for any c ∈ C\(et∪es),

lim
(s′,t ′)→(s,t)

∫
b∈B

As′,cSb − As,cSb
s′ − s

d[Bt ′,c − Bt,c](b) = 0.

Since we also have (18), by the dominated convergence theorem,

lim
(s′,t ′)→(s,t)

112
(s′,t ′)ϕ(s, t)

s′ − s

= lim
(s′,t ′)→(s,t)

∫
c∈C

∫
b∈B

As′,cSb − As,cSb
s′ − s

d[Bt ′,c − Bt ′,c](b)dC(c)

= 0.

Thus, ϕ(s, t) generated by {As,c, Bt,c, C,S} satisfiesR2. �

Theorem 4.4. Let {As,c, Bt,c, C,S} be an AP-restriction of a
Thurstonian-type model (of DetInt variety) to some arcs xu

′

u and y
v′

v .
Assume that
1. for almost all t ∈ [0, 1], Bt,c is setwise continuous in t for C-almost
all c;

2. for all s ∈ [0, 1], except on an at most denumerable set,

L(s, c) = sup
b∈B
sup
s′ 6=s

∣∣∣∣As′,cSb − As,cSbs′ − s

∣∣∣∣
(possibly∞ at some s, c) is C-integrable over C;

3. for almost all s ∈ [0, 1],

d(s, c, b) = lim
s′→s±

As′,cSb − As,cSb
s′ − s

(possibly infinite at some s, c, b) exists for C-almost all c and all
b ∈ B (where± should be read as ‘‘either + or − ’’, and the choice
may depend on s).

Then, the AP-facet ϕ(s, t) generated by {As,c, Bt,c, C,S} satisfiesR1
andR2.

Remark 4.3. If C is concentrated at a point, then the conditions
become: (i) Bt is setwise continuous at almost all t ∈ [0, 1]; (ii)
for all s ∈ [0, 1], except on an at most denumerable set,

L(s) = sup
b∈B
sup
s′ 6=s

∣∣∣∣As′Sb − AsSbs′ − s

∣∣∣∣ <∞;
(iii) for almost all s ∈ [0, 1],

d(s, b) = lim
s′→s±

As′Sb − AsSb
s′ − s

(possibly infinite at some s, b) exists for all b ∈ B (where± should
be read as ‘‘either+ or−’’, and the choice may depend on s).

Proof. Let s ∈ [0, 1] \ D and t ∈ [0, 1] (where D denotes the
countable exceptional set in Condition 2). By the same argument
as in the previous theorem, for any c ∈ C and any s′ 6= s and t ′ in
[0, 1],∣∣∣∣∫
b∈B

As′,cSb − As,cSb
s′ − s

d[Bt ′,c − Bt,c](b)
∣∣∣∣ ≤ 2L(s, c), (19)

19 Here and in the next theorem, an index at a set, es, et , etc., indicates that the
choice of the set may depend on the index value.
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whence

lim sup
(s′,t ′)→(s,t)

∣∣∣∣∣1
12
(s′,t ′)ϕ(s, t)

s′ − s

∣∣∣∣∣ <∞.
So ϕ(s, t) generated by {As,c, Bt,c, C,S} satisfiesR1.
Let now s ∈ [0, 1] \ (D ∪ F) and t ∈ [0, 1] \ E (where F and E

are the exceptional null subsets of [0, 1] in, respectively, Condition
1 and Condition 3). As in the previous theorem, the functions b 7→
(As′,cSb − As,cSb)/(s′ − s) onB are uniformly bounded across all
s′ 6= s in [0, 1] for any c ∈ C\es (where es is the C-null subset ofC on
which L(s, c) = ∞). Conditions 2 and 3 imply that as s′ → s±, the
pointwise limits d(s, c, b) of these functions exist as finite numbers
for all c ∈ C \ (es ∪ fs) (where fs is the exceptional C-null subset of
C in Condition 3). Then, it follows from Statement 4 of Lemma A.1
that for any c ∈ C \ (et ∪ es ∪ fs) (where et is the exceptional C-
null subset of C in Condition 1), with the same choice of+ or− as
above,

lim
(s′,t ′)⇒(s,t)±

∫
b∈B

As′,cSb − As,cSb
s′ − s

d[Bt ′,c − Bt,c](b) = 0.

Since we also have (19), by the dominated convergence theorem,

lim
(s′,t ′)⇒(s,t)±

112
(s′,t ′)ϕ(s, t)

s′ − s

= lim
(s′,t ′)⇒(s,t)±

∫
c∈C

∫
b∈B

As′,cSb − As,cSb
s′ − s

d[Bt ′,c − Bt,c](b)dC(c)

= 0.

Thus, ϕ(s, t) generated by {As,c, Bt,c, C,S} satisfiesR2. �

Remark 4.4. The following simple observation may be useful in
some applications, especially when X and Y are intervals of
real numbers. If the AP-restriction of a Thurstonian-type model
T to some arcs xu

′

u and y
v′

v satisfies the conditions of one of
Theorems 4.2–4.4, then the same conditions are satisfied for the
AP-restrictions of T to subarcs x|[s1, s2] and y|[t1, t2], for any
[s1, s2] ⊂ [0, 1] and [t1, t2] ⊂ [0, 1]. If convenient, these subarcs
can be linearly rescaled and presented as arcs

λ 7→ x(s1 + λ(s2 − s1)), λ ∈ [0, 1],
µ 7→ y(t1 + µ(t2 − t1)), µ ∈ [0, 1].

4.4. Consequences for Regular Minimality with nonconstancy of
minima

Let ψ : X × Y → [0, 1] be a continuous discrimination
function which satisfies Regular Minimality with a homeomorphic
PSE function h : X → Y and a nonconstant minimum level
function x 7→ ψ(x, h(x)), x ∈ X . Let T = {Ax,c, By,c, C,S} (x ∈
X, y ∈ Y ) be a Thurstonian-typemodel, and let E(T , h) be the set of
all (u, u′) in X × X with the following property: the AP-restriction
of T to some arcs xu

′

u and y
v′

v with
[
yv
′

v

]
= h

([
xu
′

u

])
satisfies the

conditions of (at least) one of Theorems 4.2–4.4. Combined with
Theorem 2.1, each of these theorems tells us that ifψ is generated
by T , then ψ(u, h(u)) = ψ(u′, h(u′)) for all (u, u′) ∈ E(T , h). This
has the following immediate implication.

Corollary 4.5. If (u, u′) ∈ E(T , h) for some (u, u′) such that
ψ(u, h(u)) 6= ψ(u′, h(u′)), then ψ is not generated by T .

The same argument yields another implication of interest.

Corollary 4.6. If the only topologically and transitively closed subset
of X×X containing E(T , h) is X×X itself, thenψ (with nonconstant
minima) is not generated by T .

Proof. Deny this and assume that ψ is generated by T . Then,

E(T , h) ⊂ K = {(u, u′) ∈ X × X : ψ(u, h(u)) = ψ(u′, h(u′))}.

Obviously K is transitive. It is also topologically closed since given
any (u, u′) ∈ X × X such that ψ(u, h(u)) 6= ψ(u′, h(u′)), the
continuity of x 7→ ψ(x, h(x)) implies that the inequality should
hold in some open neighborhood of (u, u′). It follows that K =
X × X (as we have assumed that there are no other topologically
closed, transitive subsets of X × X containing E(T , h)). But then
ψ should have constant minima, contradicting the premise of the
corollary. �

One can formulate a multitude of other consequences by
considering various special cases of ψ and T . We will mention
one. In psychophysical theorizing and, especially, experimental
practice, one often deals with the case when both X and Y are
represented by intervals of real numbers. In this case, the image[
xu
′

u

]
(u ≤ u′) of any arc is the interval [u, u′]. Let us call a function

f : X → R strictly nonconstant if it is nonconstant in any interval
within its domain. It is safe to assume that in all cases involving ψ
with nonconstant minima constructed from empirical data,ψ will
be strictly nonconstant at least on some interval X ′ ⊂ X , making
the corollary below applicable to ψ |X ′ × h(X ′).

Corollary 4.7. With X and Y being intervals of real numbers (finite
or infinite), if the minimum level function x 7→ ψ(x, h(x)) is strictly
nonconstant, and if E(T , h) contains a pair (u, u′) with u < u′, then
ψ is not generated by T .

The proof obtains by observing (based on Remark 4.4) that the
function generated by T will have a plateau on the interval [u, u′].
Clearly, instead of defining E(T , h) in terms of Theorems 4.2–

4.4, one could define it more generally, by referring to any
condition that guarantees the compliance of the corresponding
AP-facet with Properties R1 and R2. But the significance of
our corollaries is not determined by the generality of their
premises (e.g., the general statement ‘‘if T predicts ψ(u, h(u)) =
ψ(u′, h(u′)) while de facto ψ(u, h(u)) 6= ψ(u′, h(u′)), then ψ
is not generated by T ’’ has no value). Rather the significance
of the three corollaries just presented is determined by ‘‘extra-
mathematical’’ considerations: by how ‘‘natural’’ the conditions
stated in Theorems 4.2–4.4 are, and by how ‘‘unusual’’ it would be
to construct amodelwhich does not complywith these conditions.
These considerations cannot be proved, appealing instead to one’s
experience and intuition.
One way of supporting these considerations is to observe that

in all published Thurstonian-type models the stimulus spaces X
and Y are regions ofRn, the spaces of perceptual representationsA
and B are regions of Rm, and the random variables A(x) and B(y)
in a DetInd model have conventional finite multivariate density
functions (with respect to Lebesgue measure). If parameters of
these densities are assumed to piecewise smoothly depend on
the stimuli, then it can usually be shown that, depending on
details, the conditions of some or all of Theorems 4.2–4.4 apply
to all pairs (u, u′), (v, v′) in X × X and Y × Y . It is safe to
assume thatmost psychophysicistswould not hesitate to postulate
such dependences (although they usually do not have to, as the
models are used to fit finite sets of ψ(x, y)-values, without much
consideration given to the behavior of ψ ‘‘in between’’).
Another way of supporting these considerations is to contem-

plate toy examples of Thurstonian-type models constructed to ac-
count for both Regular Minimality and nonconstant minima. We
take on this demonstration in the next section.

Please cite this article in press as: Kujala, J. V., & Dzhafarov, E. N. Regular Minimality and Thurstonian-type modeling. Journal of Mathematical Psychology (2009),
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Fig. 3. An example of a non-well-behaved Thurstonian-type model of DetInt
variety satisfying Regular Minimality with a nonconstant minimum level function.
The joint distribution of the perceptual images A(x), B(y) is uniform over the
diamond-shaped area centered at (a, b) = (x, y). The figure illustrates how this
joint distribution arises from the conditional random variables A(x) | c and B(y) | c
that are independent of each other for each value c of the common source of
randomness (see the text for details).

5. Examples of non-well-behaved models

We now present two examples of non-well-behaved
Thurstonian-typemodelswhich generate discrimination functions
that both satisfy Regular Minimality and have nonconstant min-
ima. The main purpose of these examples is to demonstrate that

such representations can indeed be constructed but that they may
be considerably more artificial and technically involved than the
well-behaved models of the type considered at the opening of this
paper. By the virtue of their artificiality, these examples are unre-
lated to any empirical problem or existing theoretical model. The
examples also serve the purpose of demonstrating that violations
of the sufficient conditions for well-behavedness which are stipu-
lated in Theorems 4.2–4.4 may indeed lead to non-well-behaved
Thurstonian-type models.

5.1. Example 1

We begin with an example of ψ generated by a non-well-
behaved Thurstonian-type model of DetInt variety (Figs. 3 and 4).
In this example, x and y are real numbers, and the representations
of the respective perceptual images a and b are real numbers too. In
Fig. 3, each square inside the diamond-shaped area is characterized
by its widthw and location (x+aiw, y+b

i
w), where i is an arbitrary

index counting the squares of a given width. Assuming thatw = 1
for the four largest central squares i = 1, . . . , 4, there are eight
squares i = 1, . . . , 8 of width w = 1

2 adjacent to the four central
squares, and in general, for w any nonpositive whole power of 2,
the squares of width w are indexed by i = 1, 2, . . . , 4/w. We
assume that the common source of randomness C varies on the
discrete set of values c = (w, i) and is distributed as

C{c} = C{(w, i)} =
w2

8
, i = 1, 2, . . . ,

4
w
,w = 1,

1
2
,
1
4
, . . . (20)

A B

C D

Fig. 4. An illustration of how the distribution of the perceptual images in Fig. 3 moves as the stimuli x and y change. The shaded areas indicate where the support of the
perceptual distribution overlaps the decision area; these areas comprise the discrimination probabilityψ(x, y). (A) For small values of x = y, the discrimination probability is
zero, and (B) any horizontal or vertical deviation (here x→ x−ε) from the diagonal shifts part of the distribution into the decision area, thereby increasing the discrimination
probability; (C) for larger values of x = y, the discrimination probability increases due to themiddle piece of the decision area, but still (D) any horizontal or vertical deviation
(here x→ x− ε) from the diagonal will increase the discrimination probability as any decrease of the contribution of the middle piece will be more than offset by the larger
contribution of the side pieces. Thus, Regular Minimality is satisfied even though the minimum level is nonconstant.
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For any given c = (w, i), the conditional distributions of the
perceptual images A(x), B(y) are independent and uniform,

[A(x) | c] ∼ Uniform
[
x+ aiw −

w

2
, x+ aiw +

w

2

]
,

[B(y) | c] ∼ Uniform
[
y+ biw −

w

2
, y+ biw +

w

2

]
,

whence their joint distribution is uniform over the respective
square,

[A(x), B(y) | c] ∼ Uniform
([
x+ aiw −

w

2
, x+ aiw +

w

2

]
×

[
y+ biw −

w

2
, y+ biw +

w

2

])
.

The whole diamond-shaped union of the squares has an area of
8 units, and it is easy to compute that the unconditional joint
distribution of A(x), B(y) is uniform over this area. Fig. 4 shows
how this distribution moves as x and y change; it is obvious
that Regular Minimality is satisfied (with PSE function y = x)
and that the minimum level function is not constant. Thus, the
discrimination function generated by this model cannot be well-
behaved—that would contradict Theorem 2.1.
It is instructive to see how the sufficient conditions of

Theorems 4.2–4.4 fail in this case. Choosing an arc xu
′

u (with u
′ > u,

the case u′ < u being considered analogously), the ratio appearing
in the conditions of these theorems can be expanded as∣∣∣∣As′,ca− As,cas′ − s

∣∣∣∣ = ∣∣∣∣Ax(s′),(w,i)a− Ax(s),(w,i)as′ − s

∣∣∣∣
=

1
|s′ − s|

∣∣∣∣∣λ
(
a ∩

[
x(s′)+ aiw −

w
2 , x(s

′)+ aiw +
w
2

])
w

−
λ
(
a ∩

[
x(s)+ aiw −

w
2 , x(s)+ a

i
w +

w
2

])
w

∣∣∣∣∣ ,
where λ denotes the Lebesgue measure and a is a Borel subset of
reals. Choose an arbitrary s in ]0, 1[ such that

lim sup
s′→s+

x(s′)− x(s)
s′ − s

> 0

(there exists an uncountable number of such s as x(s) is increasing),
and consider all values of c = (w, i) for which aiw = −

w
2 (we have

an infinity of such c , with w → 0 as we count them up or down
from the center). Then, for a = [x(s),∞[ and any sufficiently small
s′ > s, the expression above becomes

1
s′ − s

λ
([
x(s), x(s′)

])
w

= w−1
x(s′)− x(s)
s′ − s

.

As this expression is not bounded across all values of c = (w, i)
and s′ under consideration, the model violates the conditions of
Theorem4.2. Theorems4.3 and4.4 donot apply either, as the upper
bound L(s, c) can be shown to satisfy

L(s, c) = L(s, (w, i)) ≥ lim sup
s′→s+

w−1
x(s′)− x(s)
s′ − s

,

and so L(s, c) is not integrable over the set C of the (w, i)-values:
in accordance with (20),∫
(w,i)∈C

L(s, (w, i))dC(w, i)

≥ lim sup
s′→s+

x(s′)− x(s)
s′ − s

∑
w=1, 12 ,

1
4 ,
1
8 ,...

4/w∑
i=1

w−1
w2

8
= ∞.

Fig. 5. An example of a non-well-behaved Thurstonian-type model of DetInd
variety satisfying Regular Minimality with a nonconstant minimum level function.
The joint density of A(x), B(y) is shown in magenta. The density in each rectangle
doubles and the area reduces to one fourth on each step to the right or up; the
pattern continues ad infinitum. The decision area is shaded in gray. See the text for
details.

5.2. Example 2

In our second example, ψ is generated by a non-well-behaved
Thurstonian-type model of DetInd variety with V-continuous
measures (Figs. 5 and 6). In this example, x and y vary on the
open interval (0, 12 ), and the perceptual images are represented
by positive reals. The distribution of the perceptual image A(x) is
given by the measure

Axa =
∞∑
k=1

2kλ(a ∩ sk(x))

where a is a Borel set, λ is the Lebesgue measure, and

sk(x) = [k+ x− 1, k+ x− 1+ 4−k].

The mapping x 7→ Ax is V-continuous because each of its terms
converges in total variation,

sup
a

|2kλ(a ∩ sk(x′))− 2kλ(a ∩ sk(x))| ≤ 2k|x′ − x| → 0,

and these terms are dominated by

sup
a

|2kλ(a ∩ sk(x))| = 2k · 4−k = 2−k,

which forms a converging series (the total variation of the sum is
at most the sum of the total variations of its terms, which tends
to zero by the dominated convergence theorem applied to the
summation over k). The distribution of the perceptual image B(y)
is defined identically: By = Ay for all y ∈ (0, 12 ).
If we define the decision area byS = (R2 \ U) ∪V, where

U =
⋃

a,b∈[0, 12 ]

∞⋃
i,j=1

si(a)× sj(b),

V =
⋃

a∈
[
0, 18

]
([
a, a+

1
8

]
× {a}

)
∪

(
{a} ×

[
a, a+

1
8

])

(see Fig. 5), then the generated discrimination function will satisfy
Regular Minimality with h(x) = x and with the minimum level
changing as ψ(x, h(x)) = 1/8− x for x ∈ (0, 1/8).
To show that indeed h(x) = x, observe the following. Any

horizontal deviation x→ x+ ε from the main diagonal x = ymay
decrease the contribution of the part S ∩ (0, 1)2 of the decision
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A

C D

B

Fig. 6. An illustration of how the perceptual distribution A(x), B(y)moves in Fig. 5 as the stimuli x and y change. (A) For large values of x = y, the discrimination probability
is zero, and (B) any horizontal or vertical deviation (here x → x + ε) from the diagonal will result in an increase of the discrimination probability; (C) for smaller values
of x = y, the discrimination probability increases due to the additional piece V of decision area in the lower left square, but still (D) it can be shown that any horizontal or
vertical deviation (here x → x + ε) from the diagonal will result in a net increase of the discrimination probability (see the text for details) and so Regular Minimality is
satisfied (with PSE function y = x) even though the minimum level is nonconstant.

area to the discrimination probability by at most ε/2. However,
that deviationwill also shift some of the smaller rectangular pieces
si(x) × sj(y), i, j ≥ 2, of the support of the perceptual images
into the decision area (see, Fig. 6). Given a deviation of size ε ∈
[2 · 4−k, 8 · 4−k) for k ≥ 2, all the pieces si(x + ε) × sj(x) for
i, j ≥ k will shift into the decision area. The total probability mass
of these pieces is

∑
i,j≥k 2

−i2−j = 4 · 4−k > ε/2. The net effect of
any deviation x → x + ε from x = y will therefore always be an
increase of the discrimination probability. Thus, we have h(x) = x,
and Regular Minimality follows by symmetry.
In this example, Ax and By do have well-defined finite densities

with respect to the Lebesguemeasure. Still, thesemeasures are not
particularlywell-behaved: choosing any arc xu

′

u (u
′
6= u) and the set

a = ∪k sk(x),∣∣∣∣Ax(s′)a− Ax(s)as′ − s

∣∣∣∣ = ∣∣∣∣Ax(s′)a− Ax(s)ax(s′)− x(s)

∣∣∣∣ · ∣∣∣∣x(s′)− x(s)s′ − s

∣∣∣∣ ,
and as s′ → s, the first of the two right-hand factors can be
shown to tend to infinity while the second factor does not tend
to zero for an uncountable number of s ∈ [0, 1]. This unbounded
speed of change is essentially the reason why the conditions of
Theorems 4.2–4.4 cannot be satisfied in this example.

Remark 5.1. This example establishes that evenwith independent
perceptual images, the continuity (setwise or V-continuity) of As
and Bt alone is not sufficient for the statement of Theorems 4.2–
4.4 to follow. So we cannot hope to completely dispense with
the conditions that make use of the parametrization of the AP-
facet (such as Condition 2 of Theorem 4.3 or Conditions 2 and 3 of
Theorem 4.4). Weaker forms of these conditions might, of course,
still be possible.

6. Prob-Det equivalence and DetInd universality

In this section, we define the probabilistic varieties of Thursto-
nian-type models and prove that any such model is equivalent to
a deterministic model. We use this equivalence to define well-
behaved ProbInt and ProbInd models, as those whose equivalent
deterministic representations are well-behaved in the sense of
Theorem 4.2, Theorem 4.3, or Theorem 4.4. We also use the Prob-
Det equivalence to obtain a simple proof of the universality of
Thurstonian-type models of the simplest, DetInd variety, as well
as a demonstration that well-behaved DetInd models can approx-
imate certain types of non-well-behaved discrimination functions
arbitrarily closely.

6.1. Thurstonian-type models of ProbInt and ProbInd varieties

A Thurstonian-type model with interdependent perceptual
images and probabilistic decision rule (ProbInt variety) is defined as

{Ax,c, By,c, C, σ },

or more explicitly{{
X,A,ΣA,

{
Ax,c

}
x∈X,c∈C

}
,
{
Y ,B,ΣB,

{
By,c

}
y∈Y ,c∈C

}
,

{C,ΣC , C} , σ : A×B→ [0, 1]

}
,

where all components are the same as in the models of DetInt
variety except we now have no decision area S containing pairs
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(a, b) ∈ A × B mapped into the response ‘‘different’’. Instead,
every (a, b) ∈ A × B maps into this response with probability
σ(a, b), and with probability 1 − σ(a, b) the same pair maps into
the response ‘‘same’’.
The generation rule for this model is

ψ(x, y) =
∫
c∈C

∫
(a,b)∈A×B

σ(a, b)dAx,c(a)dBy,c(b)dC(c),

which can also be written as

ψ(x, y) =
∫
c∈C

∫
a∈A

[∫
b∈B

σ(a, b)dBy,c(b)
]
dAx,c(a)dC(c)

=

∫
c∈C

∫
a∈A
B∗y,c(a)dAx,c(a)dC(c)

or

ψ(x, y) =
∫
c∈C

∫
b∈B

[∫
a∈A

σ(a, b)dAx,c(a)
]
dBy,c(b)dC(c)

=

∫
c∈C

∫
b∈B
A∗x,c(b)dBy,c(b)dC(c).

The ProbInd variety (probabilistic decisions, independent images)
is obtained as a special case, by assuming that C is a measure
concentrated at a point.

6.2. Equivalence of models with probabilistic and deterministic
decisions

Two Thurstonian-type models are considered equivalent if they
generate the sameψ . As it turns out, it is not necessary to deal with
models of ProbInt (or ProbInd) variety separately because any such
a model is equivalent to an appropriately chosen model of DetInt
(respectively, DetInd) variety.

Theorem 6.1. A ProbInt Thurstonian-type model{{
X,A,ΣA,

{
Ax,c

}
x∈X,c∈C

}
,
{
Y ,B,ΣB,

{
By,c

}
y∈Y ,c∈C

}
,

{C,ΣC , C} , σ

}
is equivalent to the DetInt Thurstonian-type model
{
X,A× [0, 1],ΣA ⊗Σ[0,1],

{
Ax,c × λ[0,1]

}
x∈X,c∈C

}
,{

Y ,B× [0, 1],ΣB ⊗Σ[0,1],
{
By,c × λ[0,1]

}
y∈Y ,c∈C

}
,

{C,ΣC , C} ,S

 ,
whereΣ[0,1] is the Borel sigma algebra on [0, 1], λ[0,1] is the Lebesgue
(i.e., uniform) measure on [0, 1], and20

S = {(a, α, b, β) ∈ A× [0, 1] ×B× [0, 1] : α ∈ [0, σ (a, b)]}.

(If C is concentrated at a point, the ProbInt model becomes ProbInd
and the equivalent DetInt model becomes DetInd.)
Proof. In the deterministic model,

ψ(x, y) =
∫
c∈C

[∫
(a,α,b,β)∈S

dAx,c(a)dαdBy,c(b)dβ
]
dC(c)

=

∫
c∈C

∫
(a,b)∈A×B

[∫
β∈[0,1]

∫
α∈[0,σ (a,b)]

dαdβ
]
dAx,c(a)dBy,c(b)dC(c)

=

∫
c∈C

∫
(a,b)∈A×B

σ(a, b)dAx,c(a)dBy,c(b)dC(c),

20 In the formula to follow {. . . : α ∈ [0, σ (a, b)] } can be replaced with { . . . :
β ∈ [0, σ (a, b)] } or {. . . : α ∈ [0, σ1(a, b)], β ∈ [0, σ2(a, b)]} where σ1σ2 ≡ σ

(both functions mapping into [0, 1]).

which is the generation rule for the probabilistic model. �

Note that this result makes no assumptions about the stimulus
spaces X and Y .

6.3. Well-behaved ProbInt (and ProbInd) models

Returning to arc-connected Hausdorff spaces X, Y , let {Ax,c,
By,c, C, σ } be a Thurstonian-type model of ProbInt variety.
Following the logic of Sections 4.2 and 4.3 our goal now is to
impose certain (‘‘well-behavedness’’) properties on AP-restrictions
{As,c, Bt,c, C, σ } of this model to arcs xu

′

u and y
v′

v , such that the
corresponding AP-facet

112
(s′,t ′)ϕ(s, t)

s′ − s
=

1
s′ − s

×

∫
c∈C

∫
(a,b)∈A×B

σ(a, b)d[As′,c(a)− As,c(a)]d[Bt ′,c − Bt,c](b)dC(c)

of the discrimination function generated by the model satisfies
R1 and R2. Then, following the logic of Section 4.4, one would
conclude that if the properties in question are present in an AP-
restriction to some arcs xu

′

u and y
v′

v with
[
yv
′

v

]
= h

([
xu
′

u

])
, where

h is a homeomorphism X → Y , then the model {Ax,c, By,c, C, σ }
cannot account for any continuous discrimination function ψ
with the PSE function h and unequal minima ψ(u, h(u)) and
ψ(u′, h(u′)).
Theorem 6.1 suggests a simple way for specifying these well-

behavedness properties: by using the conditions already stipulated
for deterministic models in Theorems 4.2–4.4, and applying
them to the equivalent deterministic representation {As,c ×
λ[0,1], Bt,c × λ[0,1], C,S} of the AP-restriction {As,c, Bt,c, C, σ }. In
other words, we investigate the properties of the AP-restrictions
{As,c, Bt,c, C, σ }whose equivalent DetInt representations obtained
from {As,c, Bt,c, C, σ } by the construction of Theorem 6.121 satisfy
the conditions of one of Theorems 4.2–4.4. In particular, for the
absolute conditions of Theorem 4.2, we can show the following.

Theorem 6.2. The measures As,c × λ[0,1] and Bt,c × λ[0,1] of the
deterministic representation constructed in Theorem 6.1 satisfy the
conditions of Theorem 4.2 if and only if the measures As,c and Bs,c
of the original probabilistic representation satisfy them.

Proof. The ‘‘only if’’ direction is obvious (replace a, b in Theo-
rem 4.2 with a×[0, 1], b×[0, 1], respectively). We shall prove the
‘‘if’’ direction. Using (15) from the proof of Theorem 4.2 applied to
the original measure As,c , we obtain

sup
c∈C\e

sup
s′ 6=s

∣∣∣∣ (As′,c × λ[0,1])s− (As,c × λ[0,1])ss′ − s

∣∣∣∣
= sup
c∈C\e

sup
s′ 6=s

∣∣∣∣∫ 1

0

As′,csu − As,csu
s′ − s

du
∣∣∣∣

≤

∫ 1

0

(
sup
c∈C\e

sup
s′ 6=s

∣∣∣∣As′,csu − As,csus′ − s

∣∣∣∣
)
du

≤

∫ 1

0
LA(s)du = LA(s)

for any s ∈ ΣA⊗Σ[0,1], where su ∈ ΣA are the cross-sections of s at
various u ∈ [0, 1]. The analogous result holds for Bt,c × λ[0,1]. �

21 Clearly, the DetInt representation {As,c × λ[0,1], Bt,c × λ[0,1], C,S} which is
equivalent to an AP-restriction {As,c , Bt,c , C, σ } of a ProbInt model {Ax,c , By,c , C, σ }
to arcs xu

′

u and y
v′

v is the AP-restriction to the same arcs of the DetInt model
{Ax,c × λ[0,1], By,c × λ[0,1], C,S} equivalent to the ProbInt model {Ax,c , By,c , C, σ }.
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Thus, the conditions of Theorem4.2 are absolute in the broadest
sense: the decision area does not matter and can very well
be replaced by a probabilistic decision function (whose choice
does not matter either). By contrast, the relative conditions of
Theorems 4.3 and 4.4 cannot be formulated for the measures As,c
and Bs,c of the probabilistic model as these conditions refer to a
decision area. We have therefore to use the probability function
σ to construct an analogue of a decision area and relate to it the
measures As,c and Bs,c . One possible formulation is given by the
following theorem.

Theorem 6.3. Given the measures As,c × λ[0,1] and Bt,c × λ[0,1] and
the decision area

S = {(a, α, b, β) ∈ A× [0, 1] ×B× [0, 1] : β ∈ [0, σ (a, b)]}

of the deterministic equivalent constructed in Theorem 6.1 for a
ProbInt model,

(i) Condition 1 of Theorem 4.3 or Theorem 4.4 is satisfied if and only
if it is satisfied by themeasures As,c and Bt,c of the original ProbInt
model;

(ii) Condition 2 of Theorem 4.3 or Conditions 2 and 3 of Theorem 4.4
are satisfied if and only if the original measure As,c satisfies them
with the set of cross-sections {Sb}b∈B replaced by the sets

{a ∈ A : σ(a, b) ≥ β }(b,β)∈B×[0,1].

Proof. (i) We shall show that setwise or V-continuity of Bt,c at a
point implies that of Bt,c×λ[0,1] so that Condition 1 of Theorem 4.3
or Theorem 4.4 is satisfied (the reverse implication is obvious). For
any s ∈ ΣB ⊗Σ[0,1], we have

(Bt ′,c × λ[0,1])s− (Bt,c × λ[0,1])s =
∫

B

λ[0,1]sbd[Bt ′,c − Bt,c](b),

where sb ∈ Σ[0,1] are the cross-sections of s at various
b ∈ B. Thus, the setwise continuity statement follows from
Lemma A.1 (Statement 2) and the V-continuity statement follows
from Lemma A.3.
(ii) Denoting the cross-sections of the decision area S of the

equivalent deterministic model by

Sb,β = { (a, α) ∈ A× [0, 1] : σ(a, b) ≥ β}

for all (b, β) ∈ B × [0, 1], the ratio used in Conditions 2 and 3
of these theorems for the augmented measure As′,c × λ[0,1] can be
written as

(As′,c × λ[0,1])Sb,β − (As,c × λ[0,1])Sb,β
s′ − s

=
((As′,c − As,c)× λ[0,1]){(a, α) ∈ A× [0, 1] : σ(a, b) ≥ β}

s′ − s

=
(As′,c − As,c){a ∈ A : σ(a, b) ≥ β}

s′ − s

for all (b, β) ∈ B× [0, 1]. �

6.4. The universality of DetInd models

The equivalence result of the previous section (Theorem 6.1)
allows for a surprisingly simple proof of the universality statement
of Dzhafarov (2003a).

Theorem 6.4. Every discrimination function ψ can be generated by
an appropriately chosen Thurstonian-type model of DetInd variety.

Proof. Take a ProbInd model with

A = X, B = Y , Ax = δx, By = δy,
σ (a, b) = ψ(a, b),

where δx and δy represent measures concentrated at points x
and y, respectively, and sigma algebras are arbitrary insofar as
they include singletons. Clearly, this model generates ψ . Due to
Theorem 6.1, this model is equivalent to the DetInd model with

A = X × [0, 1], B = Y × [0, 1],
Ax = δx × λ[0,1], By = δy × λ[0,1]

(where λ[0,1] is the uniform measure on [0, 1]) and

S = {(a, α, b, β) ∈ A× [0, 1] × B× [0, 1] : α ∈ [0, ψ(a, b)]} .
�

Note that, like Theorem 6.1 on which it is based, this result
makes no assumptions about the stimulus spaces X and Y . Of
course, the singular measures of these universal constructions are
not well-behaved by any reasonable definition, including those
adopted in the present paper.

6.5. Approximations by well-behaved models

We know from Theorem 2.1 that no well-behaved discrim-
ination function can satisfy Regular Minimality and have a
nonconstant minimum level function. However, well-behaved
Thurstonian-type representation can still generate discrimination
functions which arbitrarily closely approximate a function with
these properties.
To provide an illustrating example we show that any uniformly

continuous discrimination function ψ : R × R → [0, 1] can be
approximated arbitrarilywell by aDetInd representation satisfying
the well-behavedness conditions of Theorem 4.2. For any ε > 0,
the uniform continuity of ψ yields a δ > 0 such that |ψ(x′, y′) −
ψ(x, y)| < ε whenever max{|x′ − x|, |y′ − y|} < δ. The ProbInd
representation given by

A = R, B = R, A(x) ∼ Uniform [x− δ, x+ δ],
B(y) ∼ Uniform[y− δ, y+ δ], σ (a, b) = ψ(a, b)

generates the function

ψδ(x, y) =
(
1
2δ

)2 ∫ x+δ

x−δ

∫ y+δ

y−δ
ψ(a, b)dadb,

which, by the mean value theorem, equals ψδ(x′, y′) for some
(x′, y′) ∈ [x − δ, x + δ] × [y − δ, y + δ]. It follows
that supx,y |ψδ(x, y) − ψ(x, y)| < ε. We show now that our
Thurstonian-type representation for ψδ satisfies the conditions of
Theorem 4.2 for any two arc images

[
xu
′

u

]
and

[
yv
′

v

]
chosen in

R. Let the arcs be parametrized as xu
′

u (s) = (1 − s)u + su′ and
yv
′

v (t) = (1− t)v+ tv
′. It is easy to see that for any intervals (hence

for any Borel sets) a and b,

lim sup
s′→s

∣∣∣∣As′a− Asas′ − s

∣∣∣∣ ≤ |u′ − u|2δ
<∞,

lim sup
t ′→t

∣∣∣∣Bt ′b− Btbt ′ − t

∣∣∣∣ ≤ |v′ − v|2δ
<∞,

whence the quantities L1(s, a) and L2(t, b) as defined in Theo-
rem 4.2 (Remark 4.1) are finite too. An equivalent DetInd repre-
sentation is obtained by Theorem 6.1, and the well-behavedness
of its AP-restriction to the arcs xu

′

u and y
v′

v is preserved due to The-
orem 6.2.
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7. Conclusion

We have established the following results.

• Every discrimination probability function ψ : X × Y → [0, 1]
can be generated by an appropriately chosen Thurstonian-
type model of DetInd variety (deterministic decision rule,
independent perceptual images).
• Every Thurstonian-type model with probabilistic decisions
(i.e., of ProbInt or ProbInd variety) is equivalent, in the sense of
generating the same function ψ , to a model with deterministic
decisions (of DetInt or DetInd variety, respectively).

These statements (with very simple proofs) hold for stimulus
spaces X, Y of completely arbitrary nature.
Assuming that X and Y are Hausdorff arc-connected topological

spaces, we imposed certain restrictions (‘‘well-behavedness con-
straints’’) on the components of Thurstonian-type models and es-
tablished that

• a Thurstonian-type model subject to these constraints cannot
generate a continuous discrimination probability functions ψ
which simultaneously (a) satisfies Regular Minimality with a
homeomorphic PSE function and (b) has nonconstant minima;
• a model with probabilistic decisions has an equivalent to it
model with deterministic decisions such that either of them
satisfies well-behavedness constraints only if the other one
does too.

We have also demonstrated that

• in certain cases, even if a continuous discrimination function
satisfies the properties (a) and (b) above, it can be approximated
to an arbitrary degree of accuracy by an appropriately chosen
Thurstonian model subject to well-behavedness constraints.

These results greatly expand and refine the analogous results
obtained in Dzhafarov (2003a,b). In particular, in our present
formulations the well-behavedness restrictions imposed on the
Thurstonian-type model are purely topological in the sense that
they are invariant under homeomorphic reparametrizations of the
stimulus spaces X and Y .
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Appendix. Auxiliary results

The following construction is useful for many purposes. Let
0 ≤ f (m) ≤ 1 be a measurable function on a probability space
(M,Σ,M). Define

e1 =

{
m : f1(m) ≥

1
2

}
, where f1(m) = f (m),

e2 =

{
m : f2(m) ≥

1
4

}
,

where f2(m) =


f1(m)−

1
2
, if f1(m) ≥

1
2
,

f1(m), if f1(m) <
1
2
,

. . .

ek =
{
m : fk(m) ≥ 2−k

}
,

where fk(m) =
{
fk−1(m)− 2−k+1, if fk−1(m) ≥ 2−k+1,
fk−1(m), if fk−1(m) < 2−k+1,

. . .

All these sets are clearlyM-measurable if so is f (m). We have

f (m) =
∞∑
k=1

2−kχek(m),

where χe(m) denotes the truth value (0 or 1) of the statement
m ∈ e. Indeed, any combination of the truth values of m ∈ e1,
m ∈ e2, . . . defines a binary representation of f (m) and vice versa.
It follows now that in general a bounded measurable function

f :M 7→ R can be written as

f (m) = l+ (L− l)
∞∑
k=1

2−kχek(m), (21)

where l and L are any numbers such that

l ≤ inf
m∈M

f (m) ≤ sup
m∈M

f (m) ≤ L.

Lemma A.1. Let finite measures {Mn}n∈N, M be defined on a
measurable space (M,Σ). Then, the following statements are
equivalent: as n→∞,

1. Mn → M setwise (i.e., Mns→ Ms for all s ∈ Σ);
2.
∫
f (m)dMn(m)−

∫
f (m)dM(m)→ 0 for all boundedmeasurable

f :M→ [l, L];
3.
∫
fn(m)dMn(m)−

∫
f (m)dM(m)→ 0 for all uniformly bounded

measurable f , {fn}n∈N :M→ [l, L] such that fn → f pointwise;
4.
∫
fn(m)dMn(m)−

∫
fn(m)dM(m)→ 0 for all uniformly bounded

measurable {fn}n∈N :M→ [l, L] that converge pointwise to some
function f .

Proof. To prove 1 H⇒ 2 use the representation (21) to obtain∫
M

f (m)dMn(m)−
∫

M

f (m)dM(m)

= (L− l)
∞∑
k=1

2−k[Mnek −Mek].

Since Mnek − Mek → 0 for all k and |Mnek − Mek| ≤ 1, the series
vanishes as n→∞.
To prove 1&2 H⇒ 3 we write∫

M

fn(m)dMn(m)−
∫

M

f (m)dM(m)

=

∫
M

[fn(m)− f (m)]dMn(m)

+

[∫
M

f (m)dMn(m)−
∫

M

f (m)dM(m)
]
.

Due to the previous result,we only have to show that the first right-
hand integral tends to zero. For thisweuse Egorov’s theoremstated
below (LemmaA.2): for an arbitrary ε > 0, there is a set s such that
Ms < ε and supm∈M\s |fn(m)− f (m)| → 0. Then,∣∣∣∣∫

M\s

[fn(m)− f (m)]dMn

∣∣∣∣
≤ sup
m∈M\s

|fn(m)− f (m)|Mn(M \ s)→ 0 ·M(M \ s) = 0,∣∣∣∣∫
s

[fn(m)− f (m)]dMn

∣∣∣∣
≤ sup
m∈s
|fn(m)− f (m)|Mns ≤ (L− l)Mns→ (L− l)Ms ≤ (L− l)ε,
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and it follows that

lim sup
n→∞

∣∣∣∣∫
M

[fn(m)− f (m)]dMn

∣∣∣∣ ≤ (L− l)ε.
As ε > 0 can be chosen arbitrarily small, the proof is completed.
To prove 3 H⇒ 4 we write∫

M

fn(m)dMn(m)−
∫

M

fn(m)dM(m)

=

∫
M

[f (m)− fn(m)] dM(m)

+

[∫
M

fn(m)dMn(m)−
∫

M

f (m)dM(m)
]
.

As the range of f is clearly within [l, L], the first right-hand term
tends to zero by the dominated convergence theorem and the
second one by Statement 3.
Finally, to prove 4 H⇒ 1 put fn ≡ f to be the characteristic

function of a measurable set s. �

Lemma A.2 (Egorov’s Theorem). Let (M,Σ,M) be a finite measure
space. If a sequence {fn} of almost everywhere finite measurable
functions converges almost everywhere to an almost everywhere finite
measurable function f , then the convergence is almost uniform, i.e., for
each ε > 0, there exists a measurable set s ∈ Σ such that Ms < ε
and supm∈M\s |fn(m)− f (m)| → 0 as n→∞.

Proof. See, e.g., Hewitt and Stromberg (1965, p. 158). �

Lemma A.3. Let {Mn}n∈N, M be as in Lemma A.1. The following
statements are equivalent: as n→∞,

1. Mn → M in total variation (i.e., sups∈Σ |Mns−Ms| → 0);
2.
∫
fn(m)dMn(m)−

∫
fn(m)dM(m)→ 0 for every sequence {fn} of

uniformly bounded measurable functionsM→ [l, L].

Proof. To prove 1 H⇒ 2 we use (21) to obtain∣∣∣∣∫ fn(m)dMn(m)− ∫ fn(m)dM(m)∣∣∣∣
= (L− l)

∣∣∣∣∣ ∞∑
k=1

2−k[Mnek,n −Mek,n]

∣∣∣∣∣
≤ (L− l)

∞∑
k=1

2−k|Mnek,n −Mek,n|

≤ (L− l) sup
e∈Σ

|Mne−Me| → 0.

To prove 2 H⇒ 1, deny this and assume that sups∈Σ |Mns−Ms| 9
0. Then, for some sequence {sn} in Σ , |Mnsn −Msn| 9 0. But this
contradicts 2 if we choose fn to be the characteristic functions of sn.

�

Lemma A.4 (Nikodým’s Boundedness Theorem). Let {Mγ : Σ →
R}γ∈Γ be a family of bounded signed measures, i.e.,

sup
s∈Σ

|Mγ s| <∞ for all γ ∈ Γ .

If the family is setwise bounded, i.e.,

sup
γ∈Γ

|Mγ s| <∞ for all s ∈ Σ,

then the family is uniformly bounded,

sup
γ∈Γ ,s∈Σ

|Mγ s| <∞.

Proof. See, e.g., Faires (1965), Theorem 2. �
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