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Abstract
When dealing with pairwise comparisons of stimuli in two fixed observation areas (e.g., one stimulus on the left, one on the right),

we say that the stimulus space is regular well-matched if (1) every stimulus is matched by some stimulus in another observation
area, and this matching stimulus is determined uniquely up to matching equivalence (two stimuli being equivalent if they always
match or do not match any stimulus together); and (2) if a stimulus is matched by another stimulus then it matches it. The regular
well-matchedness property has nontrivial consequences for several issues, ranging from the ancient “sorites” paradox to “probability-
distance hypothesis” to modeling of discrimination probabilities by means of Thurstonian-type models. We have tested the regular
well-matchedness hypothesis for locations of two dots within two side-by-side circles, and for two side-by-side “flower-like” shapes
obtained by superposition of two cosine waves with fixed frequencies in polar coordinates. In the location experiment the two
coordinates of the dot in one circle were adjusted to match the location of the dot in another circle. In the shape experiment the two
cosine amplitudes of one shape were adjusted to match the other shape. The adjustments on the left and on the right alternated in
long series according to the “ping-pong” matching scheme developed in Dzhafarov (2006, Journal of Mathematical Psychology, 50,
74-93). The results have been found to be in a good agreement with the regular well-matchedness hypothesis.

Keywords: adjustment method, equivalent stimuli, matching, observation areas, point of subjective equality, sorites, symmetry
of matching, transitivity of matching.

1. INTRODUCTION

Consider a description of an experiment in which two stim-
uli were visually presented side-by-side. Let the description
say, in part, that

a participant adjusted the color [or intensity, or
shape] of a stimulus on the right until the ap-
pearance of this stimulus matched the appear-
ance of the stimulus on the left.

The author of this quote would not probably hesitate to
rewrite it as

a participant adjusted the color [or intensity,
or shape] of a stimulus on the right until the
appearance of this stimulus was matched by the
appearance of the stimulus on the left.

Or

a participant adjusted the color [or intensity,
or shape] of a stimulus on the right until the
appearance of this stimulus and the appearance
of the stimulus on the left matched each other.

Note that we are not dealing here with differently formu-
lated instructions to a participant, nor with different pro-
cedures of adjustment. Rather we have three “theoretical”
descriptions of a certain performance (under a given in-
struction and by a given procedure), and these three de-
scriptions appear interchangeable. This theoretical belief
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is likely to be shared by the participants in such an experi-
ment themselves: if a participant declares “I think that now
this right shape matches this left one,” then the questions
like “And do you also think that the left one matches the
right one?” or “Do you also think they both match each
other?” are likely to be met by a questioning stare.

This simple observation leads us to propose that a valid the-
oretical definition of the notion “stimulus y matches stimu-
lus x”1 should be constructed so that the relation it depicts
be symmetric:

y matches x if and only if x matches y. (1)

Note that if x and y in the relation “y matches x” are,
say, the left and the right stimuli, respectively (and so the
relation in question means that the right stimulus matches
the left one in some property or overall, but ignoring the
conspicuous difference in locations), then they retain these
locations in the relation “x matches y.” So, the statement
in (1) for left-right stimuli should be read as

y (on the right) matches x (on the left)
if and only if

x (on the left) matches y (on the right).

Analogously, if x and y in the relation “y matches x” are
presented in a temporal succession, x first, y second, then
(1) means

y (second) matches x (first)
if and only if

x (first) matches y (second),

1 We use boldface letters, x,y,. . ., to denote stimulus values when
we discuss stimuli of arbitrary nature (whether representable by
numbers, functions, sets, names, etc.) and when stimulus values
are known to be vectors of real numbers (as in the most of this
paper). When stimulus values are single real numbers we may use
lightface letters, x, y, . . ..
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and not (contrary to a common procedural mistake)2

y (second) matches x (first)
if and only if

x (second) matches y (first).

The latter statement is generally wrong due to the presence
of constant error (here, time order effect).

Our goal in this paper is to construct a definition of match-
ing and to experimentally test its compliance with the
symmetry requirement (1) for the matching-by-adjustment
paradigm. Given our opening example, one might wonder
why we need a theoretical definition of matching in the first
place? Why cannot we simply say that stimulus y matches
stimulus x when an observer says so? The reason is that
pairwise comparisons are probabilistic: one cannot say “y
is judged to be the same as x” without adding “in this trial”
(and then in another trial this may not be true) or “with this
probability” (and then another stimulus y′ will be judged
to be the same as x with some other probability). As a
result, the identity of a stimulus y matching x has to be
computed from a set of responses rather than observed in
a single one.

To make this clear, consider the classical paradigm of
greater-less comparisons. Let us say x is the stimulus pre-
sented on the left, y is presented on the right, and in re-
sponse to a left-right pair (x,y) a participant says which
of the two contains more of a certain property (say, bright-
ness). The participant is not allowed to say that the two
stimuli are equally bright, so one could not identify the
matching relation with the participant’s judgments even if
they were deterministic. The fact is, however, they are
probabilistic, and each pair of stimuli maps into a proba-
bility with which the right stimulus is judged to be greater
(in brightness) than the left one,

ξ (x,y) = Pr [y is judged to be greater than x] . (2)

If we view this function as y 7→ ξ (x,y), with x fixed, then
the match (or point of subjective equality, PSE) for x is
traditionally defined as any value of y (may not be unique if
y is not unidimensional)3 for which ξ (x,y) = 1/2. Viewing
the function as x 7→ ξ (x,y), with y fixed, the match (or
PSE) for y is analogously defined as any value of x at which
ξ (x,y) = 1/2. It is easy to see that with this definition of
matching, y matches x if and only if x matches y.

2 This is an example of why it is always important to think of the x
and y stimuli being compared as belonging to distinct “observation
areas” (Dzhafarov, 2002b), such as left vs right, first vs second,
left-and-red vs right-and-green vs left-and-green vs right-and-red,
etc.

3 “Unidimensional” and “univariate” in this paper always mean “rep-
resentable by real numbers.” Non-unidimensional stimuli can but
need not be multidimensional (representable by vectors of real num-
bers): they may instead be representable by functions, sets, names,
etc.

The symmetry of the matching relation, however, is not
always a mathematical necessity. With other definitions
of matching it may be an empirical hypothesis. Nor is
this hypothesis always innocuous and trivial. It often has
in fact unexpectedly restrictive consequences. To see this,
consider the paradigm of same-different comparisons. Let
stimuli x,y, again, be presented on the left and on the
right, respectively, and let a participant say in response to
a pair (x,y) whether the two stimuli are different (in some
respect, such as brightness, or overall). Each stimulus pair
now is associated with the probability

ψ (x,y) = Pr [y and x are judged to be different] . (3)

A natural definition of a match (PSE) for x here is any value
of y such that ψ (x,y) is the smallest value of the function
y 7→ ψ (x,y). Analogously, any value of x at which the
function x 7→ ψ (x,y) achieves its minimum value is taken
to be a match (PSE) for y. With this definition of matching
it is no longer obvious that y matches x if and only if x
matches y. In fact, it is very easy to construct models that
would be incompatible with this statement. This is true,
in particular, for Thurstonian-type models, a widely used
theoretical tool about which Luce (1977, p. 462) said that
“this conception of internal representation of signals is so
simple and so intuitively compelling that no one ever really
manages to escape from it.”

Consider the simplest such a model, proposed in Luce and
Galanter (1963). Stimuli x and y in this model are mapped
into independent univariate normal random variables Rx

and Ry, and the response “same” is given if and only if
|Rx −Ry| is less than some fixed constant. Suppose that
the variances σ2

x and σ2
y are continuously differentiable

functions of the corresponding means, σ2
x = f1 (µx) , σ2

y =
f2 (µy) . Since in this case any two x-values that map into
an Rx with a given mean, hence also a given variance, are
equivalent (i.e., they match or do not match any stimulus
y together), and analogously for y-values, we can conve-
niently speak of “stimuli µx and µy” in place of x and y.4
Assuming that µx and µy fill in respective intervals of reals,
it can easily be shown (Dzhafarov, 2003a, 2006) that there
are some functions H and G such that (A) any stimulus
µx is matched by a single µy = H (µx), (B) any stimulus
µy is matched by a single µx = G (µy), but (C) G is not
the inverse of H unless the variances σ2

x and σ2
y have con-

stant values. In other words, if σ2
x and σ2

y in this model
change with stimuli, then the PSE of the PSE of a given
stimulus (µx or µy) is generally different from this stimulus.
One can show that this situation cannot be “corrected” by
replacing the independent univariate normal distributions
in this model with more complex and stochastically inter-
dependent distributions on other probability spaces (pro-
vided that the model remains “well-behaved” in some rather

4 This is an example of the (re)labeling of stimuli mentioned in Sec-
tion 2, resulting in all equivalent stimuli receiving one and the same
label.
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nonrestrictive sense; see Dzhafarov, 2003a-b, and Kujala
& Dzhafarov, 2009). We see that the requirement that y
match x if and only if x matches y is far from being innocu-
ous: it imposes rather stringent constraints on the possible
Thurstonian-type models (see Dzhafarov, 2006, in response
to Ennis, 2006).

Another modeling scheme for which the requirement in
question is critical is the “probability-distance hypothesis”
(Dzhafarov, 2002a). In this class of models, assuming that
both x and y stimuli (say, presented on the left and on
the right, respectively) take their values in some common
set Z, the probability with which x and y are judged to
be different is an increasing function Φ of some metric D
imposed on Z:

ψ (x,y) = Φ [D (x,y)] . (4)

Although traditionally applied to greater-less rather than
same-different judgments, this modeling scheme pertains to
what Luce and Edwards (1958, p. 232) called “the old, fa-
mous psychological rule of thumb: equally often noticed dif-
ferences are equal.” Now, a direct application of (4) implies
that y 7→ ψ (x,y) achieves its minimum (i.e., y matches x)
if and only if y = x; and that x 7→ ψ (x,y) achieves its
minimum (i.e., x matches y) if and only if x = y. The
symmetry requirement therefore must be satisfied in or-
der for the model to hold. A more sophisticated approach
takes into account the possibility of constant error (non-
coincidence of the values of a stimulus and its PSE) and
modifies (4) as

ψ (x,y) = Φ [D (H (x) ,y)] ,

where H is some bijective function. It is easy to see that
both y 7→ ψ (x,y) and x 7→ ψ (x,y) achieve their (com-
mon) minimum if and only if y = H (x), ensuring thereby
that y matches x if and only if x matches y.

Yet another issue in which the symmetry in question plays
an important role is known in philosophy as the percep-
tual variety of the “sorites paradox” (see, e.g., the collec-
tions of chapters edited by Beall, 2003, and Keefe & Smith,
1999). In both philosophy and psychophysics the issue is
also known as that of nontransitivity of matches (Good-
man, 1951; Luce, 1956). Somewhat simplifying, let the
matching y for x be determined uniquely, y = H (x), and
let the matching x for y be determined uniquely as well,
x = G (y). Then the PSE for y = H (x) is x′ = G ◦H (x).
If G is not the inverse of H, x′ does not generally coincide
with x. The PSE for x′ in turn is y′ = H◦G◦H (x), which
does not generally coincide with y and therefore does not
match the initial value of x. We obtain thus a “tetradic
soritical sequence” (Dzhafarov & Dzhafarov, 2010b)

(left) x is matched by (right) y,
(right) y is matched by (left) x′,
(left) x′ is matched by (right) y′,

but
(left) x is not matched by (right) y′.

(5)

This situation does not occur if matches are symmetric,
G ≡ H−1. Then x′ = x and y′ = y, that is, the last
element of the sequence, y′, matches its first element, x.5

It should be mentioned, to prevent misunderstandings, that
the possibility or impossibility of soritical sequences is de-
termined not only by the issue of symmetry of matches
but also by that of their uniqueness. Thus, many authors
take it for granted that if y matches x then any y∗ which
is sufficiently close to y will also match x. This position,
however, is logically untenable as it leads to a contradiction
(see Dzhafarov & Dzhafarov, 2010a, for a detailed analy-
sis). Not to discuss this on a general level, let matching
be determined through the function ξ (x,y) in (2), and let
the stimulus values be unidimensional, which we indicate
by using the notation x = x, y = y. Let (x, y) be a left-
right pair of matching stimuli, which we know to mean that
ξ (x, y) = 1/2. It would be fallacious now to maintain that
whenever this happens, ξ (x, y + ε) must remain equal to
1/2 for sufficiently small |ε| — such an assertion would in
fact imply that the function y 7→ ξ (x, y) is constant over
all values of y. If the latter is not the case, then there must
be at least one value of y matching x such that no value y∗
to the right and/or to the left from y matches x, however
close to y. It is reasonable to assume in fact, as it is done
in all models and fits of psychometric functions known to
us from the literature, that the value of y (or x) for which
ξ (x, y) = 1/2 is unique for all x (respectively, y) — because
with conventional choices of stimulus continua y 7→ ξ (x, y)
is strictly increasing in the vicinity of its median (respec-
tively, x 7→ ξ (x, y) is strictly decreasing in the vicinity of its
median). Even if we speculate, with no empirical justifica-
tion, that in some cases the function y 7→ ξ (x, y) may have
a plateau at the level 1/2 over some interval ]y − ε, y + ε[,
it is reasonable to assume then (in the absence of any em-
pirical evidence to the contrary and in accordance with the
regular well-matchedness hypothesis formulated in Section
2) that any two y1, y2 stimuli in this interval are equivalent:
ξ (x, y1) = ξ (x, y2) for all x.

Let us return now to our opening example: two stimuli,
one of them fixed, the other manipulated by a person until
it appears matching the fixed one. A mapping of some
physical process (such as trackball rotation) into a set of
stimuli normally requires a parametrization of stimuli by
reals, so we may assume that x and y are vectors of reals.
If we imagine the adjustment procedure repeated infinitely
many times under the same conditions, each fixed stimulus,
x or y, will correspond to a random variable Yx with y-
values (respectively, a random variable Xy with x-values).

5 We have here another example of why it is always important to
think of the x and y stimuli being compared as belonging to dis-
tinct observation areas. Transitivity or intransitivity of matching
is usually discussed in terms of traditional triadic sequences (given
x matched by y matched by z, is x matched by z?) but this does
not make sense in the common case when there are just two ob-
servation areas (say, left and right) whereby z belongs to the same
observation area with x (one cannot compare two “left” stimuli).
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How should one define the matching stimulus (PSE) for x or
y in this situation? The traditional answer is to take some
measure of central tendency of Yx and Xy, such as their
expected values or componentwise medians. One needs,
however, a theory that would justify suitable choices for
this measure. Most important in the present context, given
different choices one should opt for those that ensure (or
at least make it plausible) that the matching relation is
symmetric: denoting a measure of central tendency by m,

y =m [Yx] if and only if x = m [Xy] . (6)

This consideration makes it clear that a suitable defini-
tion of the PSE for x or y has to be tied to a particu-
lar parameterization of stimuli. Indeed, with no conven-
tional choice of m, if (6) holds for x and y will it also
hold for x′ = T1 (x) and y′ = T2 (y) across all possible
reparametrizations T1,T2, even if one confines the latter,
as we do in this paper, to diffeomorphisms only (contin-
uously differentiable bijections with continuously differen-
tiable inverses).

2. AN APPROACH TO MATCHING BY ADJUST-
MENT

2.1. Regular Well-Matchedness

The general notion of a regular well-matched stimulus space
has been developed in Dzhafarov and Dzhafarov (2010b) for
an arbitrary set of stimuli and observation areas (defined,
e.g., by multiple locations of stimuli compared in shape,
or multiple colors of stimuli compared in brightness). For
detailed discussions of the notion of an observation area and
its importance in the theory of comparative judgments see
Dzhafarov (2002b), Dzhafarov and Colonius (2006), and
Dzhafarov and Dzhafarov (2010b). Here we confine our
consideration to the case when stimuli belong to two fixed
observation areas. Let us agree to use letters x and a to
denote stimulus values in the one of them (say, left, or first),
and letters y and b to denote stimulus values in the other
(right, second). More rigorous notation would be (x, 1) or
x(1), meaning the stimulus with value x in observation area
1, and analogously for y, but the simplified notation seems
sufficient in the present context.

Let us assume that the set of all x and y stimuli is en-
dowed with a binary relation M (“is matched by”) which
can only hold true for two stimuli from different observa-
tion areas: xMy or yMx but never x1Mx2 or y1My2.
Let us also define a binary relation E (“is equivalent to”)
which, on the contrary, only holds for two stimuli from one
and the same observation area: x1Ex2 means that for any
y, yMx1 ⇐⇒ yMx2; analogously, y1Ey2 means that for
any x, xMy1 ⇐⇒ xMy2.

We say that the x and y stimuli form a regular well-
matched space if they satisfy the following statements:

WM (well-matchedness property). For any stimulus (x
or y) there is a stimulus in another observation area
(respectively, y or x) such that the two stimuli match
each other (xMy and yMx).

R (regularity property) If two stimuli in the same observa-
tion area (x1,x2 or y1,y2), are matched by another
stimulus (respectively, y or x), then they are equiva-
lent (x1Ex2, or y1Ey2, respectively).

The requirement of regular well-matchedness is all one
needs to ensure that matching is “non-paradoxical”: no pos-
sibility for nontransitive sequences like (5), and no viola-
tions of symmetry, (1). It is convenient in the present con-
text to reformulate the definition of a regular well-matched
space of stimuli in the form maximally emphasizing the
symmetry property. Assume that all x and y stimuli have
been (re)labelled so that any two equivalent stimuli receive
one and the same label. Retaining the same notation (x
and y) for thus (re)labeled stimuli, no two different x (or
y) stimuli are equivalent. With this proviso, the stimuli
form a regular well-matched space if the following state-
ments hold:

MF (matching is a function) For every stimulus there is
one and only one stimulus in the other observation
area which matches it; that is, there is a function H
such that xMy ⇐⇒ y = H (x), and a function G
such that yMx⇐⇒ x = G (y).

MS (matching is symmetric) For any x,y, yMx ⇐⇒
xMy.

The equivalence of MF-MS to WM-R is obvious. The
functions H and G are referred to as PSE functions, with
H (x) being the PSE for x and G (y) the PSE for y. Once
MF is accepted, the propertyMS says that the functions
H and G are bijective and each other’s inverses: G ≡ H−1.
This formulation is close to the definitions of Regular Min-
imality and Regular Mediality given in Dzhafarov (2003a)
and Dzhafarov and Colonius (2006) for, respectively, same-
different and greater-less comparisons (the formulation in
Dzhafarov & Dzhafarov, 2010b, is better suited for multiple
observation areas).

The reason MF-MS is more convenient for our purposes
than WM-R is that it is usually easy to construct a def-
inition of matching that satisfies MF , and whenever this
is the case (as it is, e.g., in the Luce-Galanter model men-
tioned in Section 1), the question of whether a stimulus
space is regular well-matched reduces to the title question
of this paper. Most importantly in the present context,
MF is trivially satisfied for the matching-by-adjustment
paradigm: if each x corresponds to a one and only one
random variable Yx (with values representing declared y-
matches to x in different trials), then any measure of cen-
tral tendency m [Yx] is a function of x, m [Yx] = H (x);
and analogously with y and m [Xy] = G (y). The ques-
tion is whether m can be chosen so that G ≡ H−1. Fig.
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Figure 1: x and y stimuli (for illustration purposes unidimen-
sional) with the PSE functions H (x) and G (y). The abscissa
segment and ordinate segment depict “sufficiently large” areas
of stimuli around x0 and y0 = H (x0), respectively. Left-hand
panel: the symmetry assumption,MS, is not satisfied, and the
two functions do not cross within the areas depicted. Middle
panel: MS is satisfied. Right-hand panel: MS is not satisfied
but the two functions have numerous crossings within the ar-
eas depicted. In the left-hand panel the PSE for the PSE of
x0 is not x0 itself, and analogously for y0 = H (x0): there are
systematic differences between G ◦H (x0) and x0, and between
H (x0) and H ◦G ◦H (x0) which may be detectable if the pro-
cedure is repeated many times and the errors of matching are
sufficiently well-behaved. In the middle panel the PSE for the
PSE of x0 is x0 itself, and analogously for y0 = H (x0): if the
procedure is repeated many times any variance among succes-
sive adjustments of x and y will be due to matching errors only.

1 illustrates three situations of interest: when MS is vi-
olated, when it is satisfied, and when it is violated but it
is difficult if not hopeless to distinguish it from the case
of compliance with MS in a realistic experiment. With
an appropriately formulated general model the situations
illustrated in the left-hand and middle panels of the figure
can be made sources for competing statistical hypotheses.

2.2. General Model

The general model in question is as follows. Let the val-
ues of x and y (after equivalent stimuli have been iden-
tically labeled) be representable by real-valued vectors,
x =

(
x1, . . . , xn

)
, y =

(
y1, . . . , yn

)
, filling in two open

connected areas of Rn.6 Let the random vectors Yx and
Xy be as defined above. We assume the existence of two
diffeomorphic transformations, x = T1 (a) and y = T2 (b),
with each of a and b filling in Rn, such that YT1(a) = T2 (h (a) + δb) ,

XT2(b) = T1 (g (b) + δa) ,
(7)

6 It is usually assumed that the values of x and y belong to the same
set, but this assumption is not critical for our analysis. The latter
would even apply to a case when x stimuli are, say, visual and y
stimuli auditory.

where h and g are continuously differentiable functions,
and (δa, δb) is a 2n-vector of independent normally dis-
tributed variables with zero means.7 We define the PSE
functions for, respectively, x = T1 (a) and y = T2 (b) as
the continuously differentiable functions T2 ◦ h (a) = T2 ◦ h ◦T−1

1 (x) = H (x) ,

T1 ◦ g (b) = T1 ◦ g ◦T−1
2 (y) = G (y) .

(8)

In our general notation, xMy if and only if y = H (x) ,

yMx if and only if x = G (y) .
(9)

Note that this definition of the PSE functions H and G
does not tell us how to compute them from Yx and Xy, re-
spectively, as our general model does not specify the trans-
formations T1,T2. We will be able to circumvent this diffi-
culty in the application of the model to our experiments (in
Section 3.1) by using linear approximations to T1 and T2.
In Section 7 we mention an approach which may make the
reliance on approximations unnecessary. This issue is re-
lated to the uniqueness properties of T1,T2, which is worth
mentioning even if not essential for the analysis to follow.

Clearly, if T1,T2 exist, then T1 ◦ L1,T2 ◦ L2 will be an-
other pair of transformations providing (7), for any choice
of orthogonal linear transformations L1,L2. Linear trans-
formations, however, are inconsequential, as they do not
change the PSE functions H and G. If x,y belong to R1

or R2 (arguably the most important cases amenable to ex-
perimental analysis), then it is known that within a class
of transformations including diffeomorphisms (under cer-
tain constraints trivially satisfied in our general model),
linear transformations are the only ones which preserve the
normality of δa and δb (Ghosh, 1969; Khatri & Mukerjee,
1987). In other words, for univariate and bivariate stim-
uli the PSE functions in the general model are determined
uniquely. There are reasons to conjecture (Khatri, 1987)
that this is also true for n > 2 , but the results we know of
are less general than for n = 1, 2. There does not, however,
seem to be a known example of a nonlinear diffeomorphism
in Rn that would map n+ 1 normal distributions with dis-
tinct means into n + 1 normal distributions with distinct
means.

2.3. Null Model

We say “null model” instead of “null hypothesis” to empha-
size that the former is an essentially non-statistical theoret-
ical construct which may be used as a source of (generally

7 The only property of these variables essential for this paper is their
independence and symmetry around zero. The normality, however,
is convenient due to the uniqueness properties mentioned at the
end of this section.



6 Dzhafarov and Perry

more than one) statistically testable consequences, which
then will be referred to as null hypotheses.

The null model is obtained from the general model by posit-
ing that h and g in (7) are diffeomorphisms, and

g ≡ h−1.

It follows from (8) that

H−1 (y) = T1 ◦h−1 ◦T−1
2 (y) = T1 ◦ g ◦T−1

2 (y) = G (y) ,

or (as illustrated in the middle panel of Fig. 1)

G ≡ H−1.

From (9) we have then

xMy if and only if yMx.

2.4. Alternative Model

The alternative model corresponds to the left-hand panel
of Fig. 1. Since its difference from the right-hand panel
is a matter of scale only, the alternative model has to be
formulated in reference to the set of stimuli recorded in
a specific experiment (whether set by experimenter or ad-
justed by participant). Let {x1, . . . ,xM} and {y1, . . . ,yN}
be these stimuli. Let us define a sufficiently large stimulus
area for x as any open connected area X of x-values that
contains {x1, . . . ,xM} ∪ {G (y1) , . . . ,G (yN )}, where G is
the true PSE function for y as defined by (8) in the general
model. Analogously, a sufficiently large stimulus area Y
for y is any open connected area of y-values that contains
{y1, . . . ,yN} ∪ {H (x1) , . . . ,H (xM )}.

The alternative model says that in some sufficiently large
areas X and Y the graphs of the corresponding compo-
nents of PSE functions H (x) and G (y) do not cross. This
means that for any i = 1, . . . , n, the ith component of the
difference H (x) − y has one and the same sign across all
x ∈ X and y ∈ Y such that H (x) ∈ Y and G (y) = x;
analogously, for any i = 1, . . . , n, the ith component of the
difference G (y) − x has one and the same sign across all
y ∈ Y and x ∈ X such that G (y) ∈ X and H (x) = y.

3. PING-PONG MATCHING PARADIGM

If there was no matching error involved, then starting with
any x ∈ X one could create two sequences of stimuli, one in
each observation area (let them be again “left” and “right”),
chain-matched as shown in Fig. 2. Under our alternative
model, each stimulus in each observation area is different
from the one immediately following it. Moreover, for any
i = 1, . . . , n, the differences xi

1 − xi
2, xi

2 − xi
3, xi

3 − xi
4, etc.,

have one and the same sign, and so do the differences yi
1−yi

2,
yi
2−yi

3, yi
3−yi

4, etc., in the other observation area. If the null

model is true, however, then (in the absence of matching
errors) all x’s are the same and so are all y’s, whence all
the componentwise differences between successive stimuli
in either observation area are zero.

The ping-pong matching paradigm proposed in Dzhafarov
(2006) is aimed at distinguishing between these two com-
peting possibilities in the presence of matching errors. The
logic of the paradigm is presented in Fig. 3. As an example,
in three ping-pong matching experiments reported in Dzha-
farov (2006), stimuli were straight line segments presented
side-by-side in a frontal plane, and in each trial a partici-
pant had to adjust one of the segments until it appeared of
the same length as the other one, held fixed. Every time a
“balance point” was achieved, the balance was upset by ran-
domly changing the length of the segment which was fixed
in the previous trial, and the participant had to adjust it
“back,” until it matched the length of the other segment
(which remained fixed at its previously established value).
This alternating procedure was replicated 200 times (100
balance points on each side), and each of these 200-trial se-
ries was repeated 10-25 times. In reference to Fig. 3, x = x
and y = y are unidimensional, so the first-order differences
are ∆xk = xk+1 − xk and ∆yk = yk+1 − yk.

As shown below (Sections 3.1-3.3), to the extent one can
drop nonlinear terms in certain Taylor expansions, it fol-
lows from the null model that the distributions of the ∆xk

and ∆yk should be symmetric around zero. The histograms
and statistics shown in Fig. 4 do not contradict this pre-
diction.

Dzhafarov (2006), however, does not offer a general model
of matching-by-adjustment. Also, one can be skeptical
about the generalizability of unidimensional results to mul-
tidimensional stimuli.8 The present work is to fill in these
gaps. In the remainder of this section we show how the gen-
eral model of Section 2 and its null and alternative versions
apply to the ping-pong adjustment paradigm.

3.1. Application of the General Model

Let us enumerate the trial pairs (as described in the legend
to Fig. 3) 1,2, . . . , N , in chronological order. Denote the
balance points established in the kth trial pair by (yk,xk)
and the first-order differences (or ∆’s for short) by ∆xk =
xk+1−xk and ∆yk = yk+1−yk. It is shown in the appendix
that the general model of Section 2 implies

8 In particular, the possibility of a special status of unidimensional
stimuli was mentioned by Janne V. Kujala and R. Duncan Luce
(personal communications to the first author, 2006).
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left: x0 x1 x2 · · ·
q q q
x → H (x) → G ◦H (x) → H ◦G ◦H (x) → G ◦H ◦G ◦H (x) → H ◦G ◦H ◦G ◦H (x) → · · ·

q q q
right: y1 y2 y3 · · ·

Figure 2: A chain-matched sequence of left and right stimuli. The arrows should be read “is matched by” (i.e., they represent the
relation M).

 ∆yk = vk +
∑k

i=1 M1,i,kδai +
∑k+1

i=1 M2,i,kδbi + o,

∆xk = wk +
∑k+1

i=1 N1,i,kδai +
∑k+1

i=1 N2,i,kδbi + o,
(10)

where M···,N··· denote n × n matrices, and o desig-
nates any function whose norm |o| (say, the supremal
one) is o {1} |(δa1, δb1, . . . , δak+1, δbk+1)|. We know that
(δak, δbk) is a 2n-vector normally distributed with zero
mean and a diagonal variance matrix, for every k. Let
us additionally assume that (δak, δbk) and (δak′ , δbk′) are
independent for any k 6= k′. It follows then that to the ex-
tent one can ignore the o-terms, every component ∆yi

k of
∆yk and every component ∆xi

k of ∆xk are approximately
normally distributed (i = 1, . . . , n). Note however that
(∆xk,∆yk) and (∆xk′ ,∆yk′) for k 6= k′ generally have dif-
ferent means and variances, and any two components of the
4n-vector (∆xk,∆yk,∆xk′ ,∆yk′) are generally stochasti-
cally interdependent. The sequences

{
∆yi

k

}
k=1,2,...,N

and{
∆xi

k

}
k=1,2,...,N

therefore are not generally sequences of iid
variables.

3.2. Null Hypotheses

The situation simplifies considerably under the null model.
As shown in the appendix, (10) then acquires the form

 ∆yk = M1δak + M2δbk+1 + o,

∆xk = N1δak+1 + N2δbk+1 + o,
(11)

where the matrices M1,M2,N1,N2 are now fixed. To the
extent one can ignore the o-terms, it follows that for i =
1, . . . , n, either of

{
∆yi

k

}
k=1,2,...,N

and
{

∆xi
k

}
k=1,2,...,N

is
a sequence of iid variables normally distributed around zero
(although any two variables from ∆xi

k, ∆yi
k, ∆xj

k, ∆yj
k with

i 6= j are generally interdependent). One can drop index k
and speak of random variables ∆y = M1δa + M2δb + o,

∆x = N1δa′ + N2δb + o,
(12)

where (δa, δa′, δb) is a 3n-vector of independent normal
variates with zero means. Since the smaller the values of

∣∣∆yi
∣∣ the more likely it is to correspond to small values

of |δa| , |δa′| , |δb| in (12) and the better justified one is in
dropping the o-terms, one should expect that for a suffi-
ciently small εi > 0, the values of ∆yi in the interval 0± εi

should be distributed symmetrically around zero; and the
same should be true for ∆xi in an interval 0± εi.

The choice of εi and εi, for i = 1, . . . , n, depends on the
precision needed (which in turn depends on sample size)
and on the test of symmetry one chooses to use (cruder
tests allow for wider intervals). Thus, εi and εi may very
well be chosen differently in the three null hypotheses we
use to assess the compliance of the experiments reported
below with the symmetry prediction of the null model.

H10: For some sequence 0 < εi
1 < . . . < εi

li
= εi,

Pr
[
−εi

m+1 ≤ ∆yi < −εi
m

]
= Pr

[
εi

m ≤ ∆yi < εi
m+1

]
,

where m = 0, 1, . . . , li − 1 and εi
0 = 0; and an anal-

ogous statement is true for ∆xi and some partition
0 < εi1 < . . . < εimi

= εi.

H20: The population mean of ∆yi-values falling between
−εi and εi is zero; and the same is true for ∆xi be-
tween −εi and εi.

H30: The population median of ∆yi-values falling between
−εi and εi is zero; and the same is true for ∆xi be-
tween −εi and εi.

In order not to bias the outcomes in favor of the nulls,
in the analysis of our experiments (Section 5) we simply
put ε = ε = ∞, that is, we used the entire range of data.
In H10, however, we could only choose narrow grouping
bins

[
εi

m, ε
i
m+1

]
and

[
εim, ε

i
m+1

]
in a small vicinity of 0,

lumping together more peripheral values. We used the same
grouping scheme in all conditions of both our experiments.

3.3. Alternative Hypotheses

Under the alternative model, for any i = 1, . . . , n, the ran-
dom variables in the sequence

{
∆yi

k

}
k=1,2,...,N

are neither
identically distributed nor independent. But they are all
distributed normally with the means

{
vi

k

}
k=1,2,...N

, all pos-
itive or all negative. Let us denote this common sign of the
vi

k’s by sgn
(
vi
)
. By aggregating ∆yi

k across all k we create
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x0 

trial pair 1 

x1 

x2 

x3 

y1 

y2 

y3 

trial pair 2 trial pair 3 

Figure 3: A schematic representation of ping-pong adjustments.
The top and bottom panels correspond to two observation ar-
eas, the vertical axes representing stimulus values (which need
not, however, be unidimensional). Trials may or may not be
separated by time intervals. A series of adjustments consists of
many consecutive trial pairs. In the first trial of any trial pair,
x remains fixed (solid horizontal lines, top panel) at the value
established at the end of the previous trial pair; the value of
stimulus y at the beginning of this first trial is randomly off-
set (dashed vertical lines, bottom) so that it generally does not
match x, and the participant adjusts this value (oblique solid
lines, bottom) until it seems to match x (the encircled points,
bottom); in the second trial of the trial pair, y remains fixed
(solid horizontal lines, bottom) at the value established at the
end of the previous trial; the value of stimulus x at the beginning
of this second trial is randomly offset (dashed vertical lines, top)
so that it generally does not match y, and the participant ad-
justs this value (oblique solid lines, top) until it seems to match
y (the encircled points, top). The stimuli x1,x2,x3, . . . and
y1,y2,y3, . . . represented by the encircled points are referred to
as “balance points.” In this work we focus on the first-order
differences ∆xk = xk+1 − xk and ∆yk = yk+1 − yk between
balance points.

a random variable ∆yi which equals ∆yi
k with probability

1/N . Since for any positive numbers α < β,

sgn
(
Pr
[
α ≤ ∆yi

k < β
]
− Pr

[
−α ≤ ∆yi

k < −β
])

= sgn
(
vi

k

)
,

we have

sgn
(
Pr
[
α ≤ ∆yi < β

]
− Pr

[
−α ≤ ∆yi < −β

])
= sgn

(
vi
)
.

It follows that the conclusion we have drawn from the
null model, that the values of ∆yi in some interval
0 ± εi should be distributed symmetrically around zero,
is false under the alternative model. In particular,
sgn

(
Pr
[
0 ≤ ∆yi < εi

]
− Pr

[
−εi ≤ ∆yi < 0

])
= sgn

(
vi
)

whence the median of ∆yi in any interval 0± εi (including
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Figure 4: Histograms of first-order differences for ping-pong ad-
justments of line segments’ lengths. The data are shown for a
single participant in three experiments: with two short horizon-
tal lines on the left and on the right (top panel), and with a
horizontal line on the left and a vertical line on the right (mid-
dle panel for short lines, bottom panel for longer lines). The
abscissae are calibrated in screen pixels (1 px ≈ 55 sec arc).
The means and medians are shown in sec arc. See the opening
text of this section and Dzhafarov (2006) for details.

for εi =∞) also shares the sign with vi. The same is true
about the mean ∆yi, which equals 1

N

∑N
k=1 v

i
k. The con-

sideration of ∆xi
k and their mixture ∆xi is analogous and

leads to the same conclusions.

We can now formulate, for each i = 1, . . . , n and any choice
of εi, εi , the alternative hypotheses corresponding to H10-
H30 of the previous section.

H1A: For any sequence 0 < εi
1 < . . . < εi

li
= εi chosen in

H10, it is not true that

Pr
[
−εi

m+1 ≤ ∆yi < −εi
m

]
= Pr

[
εi
m ≤ ∆yi < εi

m+1

]
,

where m = 0, 1, . . . , li− 1; and an analogous negative
statement holds for ∆xi.9

H2A: The population mean of ∆yi-values falling between
any −εi and εi chosen in H20 is not zero; and the
same holds for ∆xi.

9 This statement could have been strengthened: not only are not all
the differences Pr

ˆ
−εi

m+1 ≤ ∆yi < −εi
m

˜
−Pr

ˆ
εi
m ≤ ∆yi < εi

m+1

˜
equal to zero, we know also that they are all positive or all negative.
Our goal is, however, to formulate the H1A as a simple negation of
H10, so that one of them has to be true within the confines of the
general model.
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H3A: The population median of ∆yi-values falling between
−εi and εi chosen in H30 is not zero; and the same
holds for ∆xi.

We have mentioned in the previous section how we chose
the intervals and partitions for the experiments reported
below.

4. MATERIALS AND METHODS

4.1. Participants

Seven paid volunteers, students at Purdue (six females and
one male) and the second author of this paper (LP) served
as participants in two experiments. The paid volunteers,
naive as to the aims and designs of the experiments, are
identified as P1-P3 (in the location experiment) and P4-
P7 (in the shape experiment). LP participated in both
experiments. All participants were aged around 20 and
had normal or corrected to normal vision.

4.2. Stimuli and Procedure

The stimuli used are exemplified in Fig. 5 and described
in its legend, together with the observation conditions. In
each trial a participant changed the parameters of one of the
two stimuli by rotating a trackball on which the participant
rested her/his dominant hand.

In the location experiment the horizontal and vertical ro-
tations of the trackball controlled the horizontal (x1 or y1)
and vertical (x2 or y2) coordinates of one of the dots. Each
trial began by the two circles with the dots appearing on
the screen. In accordance with the logic of ping-pong ad-
justments (Fig. 3), one of the dots was kept at the same
location as established at the end of the previous trial (or, in
trial 1, at the initial value (27 px, 16 px)), while the other
dot at the beginning of the trial was at a randomly cho-
sen location as shown in Fig. 6. The participant was in-
structed to move this dot until its location matched that
of the other, fixed dot, and to click a button on the track-
ball device when satisfied. With this click the trial ended
and the two stimuli disappeared, to appear again 0.5 s
later. Each series of ping-pong adjustments consisted of
100 trial pairs (100 y-adjustments in the odd-numbered
trials and 100 x-adjustments in the even-numbered ones).
There were two such series per participant per day, sepa-
rated by a few minutes, each preceded by a practice series
of 20 trial pairs (which was not recorded). In total each
of the four participants worked through 20 ping-pong se-
ries. This amounted to the total of 2000 balance points for
each of y1, y2, x1, x2, yielding 1980 values for each of the
corresponding first-order differences.

In the shape experiment the horizontal and vertical ro-
tations of the trackball controlled the amplitudes A3 (x1

x 

x 

y 

y 

Figure 5: Stimuli used in the location experiment (top panel)
and the shape experiment (bottom). In both experiments the
two observation areas are defined as “left” and “right.” The two
stimuli were displayed on a flat-panel monitor viewed (using a
chin rest with forehead support) from the distance of 90 cm,
making 1 screen pixel ≈ 62 sec arc. The stimuli were grayish-
white on black, of a comfortably low fixed luminance, viewed
in darkness. In the location experiment the stimulus values x
on the left and y on the right are locations of the dots within
their circles: they are measured by the horizontal and vertical
Cartesian coordinates of the dots with respect to the circles’
centers. The width of the circumferences and the diameter of
the dots in the experiment were 5 px, the circles’ radii measured
70 px, and the distance between the circles’ centers was 150
px. The initial value of x in the experiment was (27 px, 16 px),
corresponding to (π/6, 0.45 · radius) in polar coordinates. In the
shape experiment the stimulus values x on the left and y on the
right are the amplitudes A3 and A5 in the formula for a “floral”
shape in polar coordinates: R + A3 cos 3θ + A5 cos 5θ, where
|A3| + |A5| ≤ R. In the experiment R was 70 px, the distance
between the floral shapes’ centers was 300 px, and the width of
the contours 5 px. The initial value of x in this experiment was
A3 = A5 = 0.2R = 14 px.

or y1) and A5 (x2 or y2), respectively. Each trial be-
gan by the two shapes appearing on the screen. One of
the shapes remained the same as established at the end of
the previous trial (or, in trial 1, it was at the initial value
(A3 = 14 px, A5 = 14 px)), while the other shape at the be-
ginning of the trial was randomly chosen as shown in Fig. 6.
The participant was instructed to adjust this shape until it
matched the other, fixed shape, and to click the button on
the trackball device when satisfied. With this click the trial
ended and the two stimuli disappeared, to appear again 0.5
s later. Each series of ping-pong adjustments consisted of
110 y-adjustments (in the odd-numbered trials) and 110
x-adjustments (in the even-numbered ones), preceded by a
practice series of 20 trial pairs (which was not recorded).
There was one recorded series per participant per day, with
a few minutes break in the middle (after trial 110). In to-
tal each of the five participants worked through 9 ping-pong
series, providing the total of 990 balance points for each of
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Figure 6: A detailed view of the adjustment procedure in the
location (left) and shape (right) experiments. The left-hand pic-
ture shows the first quadrant of the circle in which the location of
the dot is manipulated. The cross shows the location of the dot
in the previous trial. Denoting its polar coordinates by (θ, r), at
the beginning of the current trial the dot’s location is randomly
chosen according to the uniform distribution over the rectangle
[θ − π/18, θ + π/18] × [r − 0.1 · radius, r + 0.1 · radius] in polar
coordinates (shown by the colored area). The right-hand pic-
ture shows the space of the A3, A5-amplitudes, |A3|+ |A5| ≤ R
for the shape being adjusted. At the beginning of the current
trial the values of A3, A5 (irrespective of their values in the
previous trial) are randomly chosen according to the uniform
distribution over the square [−0.5R, 0.5R] × [−0.5R, 0.5R]. A
participant could change the A3, A5-values freely within the en-
tire diamond-shaped area, but at any given (A3, A5) the rate
of further change (per rotation angle of the trackball) in any of
the four directions shown was proportional to the correspond-
ing distances of (A3, A5) to the borders (updating quasicontin-
uously and ensuring thereby that the boundary could never be
reached).

y1, y2, x1, x2 and 981 values for each of the corresponding
first-order differences.

5. RESULTS

The main results are presented in Figs. 7-10 (location ex-
periment) and Figs. 11-15 (shape experiment). Each panel
shows a histogram of first-order differences (∆’s) in one of
the two components of x or y. The bins of the histograms
are all 1 pixel wide (62 sec arc), but in the location ex-
periment the ∆’s are integer numbers of pixels (so the 1-
pixel-wide bins are quasicontinuous representations of their
integer centers), while in the shape experiment the ∆’s are
grouped into the intervals between successive integers. The
insets show the time series of the matching adjustments
from which the ∆’s were computed: the abscissa of the
inset shows successive trials in which the adjustments are
made (1, 3, 5, ... for the right adjustments and 2, 4, 6, ...
for the left ones), the ordinate axis of the inset corresponds
to the abscissa of the histogram.

Each panel shows the results of three tests:

(H10) that the histogram of ∆’s is symmetric around zero
(against the generic alternative);
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Figure 7: Histograms of the first-order differences (∆’s) for the
location experiment, participant LP. The insets show the time
series of the matching adjustments from which the ∆’s were
computed. Each panel contains the mean and the median of
the corresponding ∆ (in sec arc), with the p-values for the hy-
potheses that the population mean and median are zero, as well
as the χ2(df = 9) and the p-value for the symmetry test de-
scribed in the text.
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Figure 8: Histograms of the ∆’s for the location experiment,
participant P1. The rest as in Fig. 7.

(H20) that the expected value of ∆ is zero (against the
two-directional alternative), and

(H30) that the median ∆ in the population is zero (i.e.,
that Pr [∆ > 0] + Pr [∆ = 0] /2 = 1/2, against 6= 1/2).

The symmetry in H10 means that Pr [∆ ∈ interval i] =
Pr [∆ ∈ interval − i] for i = 1, . . . , 9, where the intervals
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Figure 9: Histograms of the ∆’s for the location experiment,
participant P2. The rest as in Fig. 7.
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Figure 10: Histograms of the ∆’s for the location experiment,
participant P3. The rest as in Fig. 7.

i and −i are defined as

i = −9 −8 . . . −1 1 . . . 8 9
∆ < −8 ∆ = −8 . . . ∆ = −1 ∆ = 1 . . . ∆ = 8 ∆ > 8

and

i = −9 −8 . . . −1 1 . . . 8 9
∆ < −8 −8 ≤ ∆ < −7 . . . −1 ≤ ∆ < 0 0 ≤ ∆ < 1 . . . 7 ≤ ∆ < 8 ∆ ≥ 8

for the location experiment and the shape experiment, re-
spectively. Note that the frequency of ∆’s in the intervals
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Figure 11: Histograms of the ∆’s for the shape experiment,
participant LP. The rest as in Fig. 7.
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Figure 12: Histograms of the ∆’s for the shape experiment,
participant P4. The rest as in Fig. 7.

-9 and 9 was very small in the location experiment, which,
combined with the fact that 8 pixels (≈ 492 sec arc) seems
a good candidate for the notion of being “small,” was the
reason for choosing this range for a “detailed view.” For
uniformity, we used the same range for the shape experi-
ment, although the frequency of ∆’s in the intervals -9 and
9 was not small for participants P5 and, especially, P4.

The test for the means was the standard t-test with the
test statistic

mean ∆
st. err. ∆

The test for the medians was the χ2(df = 1) test with the
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Figure 13: Histograms of the ∆’s for the shape experiment,
participant P5. The rest as in Fig. 7.
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Figure 14: Histograms of the ∆’s for the shape experiment,
participant P6. The rest as in Fig. 7.

test statistic

(number of ∆ > 0− number of ∆ < 0)2

number of all ∆′s
.

The symmetry test was the χ2(df = 9) test with the test
statistic

9∑
i=1

(number of ∆ ∈ interval i− number of ∆ ∈ interval − i)2

number of ∆′s in intervals i and − i
.

A3 Left Sym χ2 (9)= 11.70
p= .23

N= 981

Mean= 5”
p= .42

Median= 16” 
p= .02

N= 981

Mean= 5” 
p= .58

Median=  13”
p= .05

N= 981

Mean= 9” 
p= .16

Median= 9”
p= .08

Sym χ2 (9)= 13.93
p= .12

A5 Left

A3 Right Sym χ2 (9)= 11.04
p= .27

A5 Right Sym χ2 (9)= 11.57
p= .24

N= 981

Mean= 9”
p= .06

Median= 14”
p= .01

B
al

an
ce

 P
o

in
t 

(p
x)

Trial

Trial

B
al

an
ce

 P
o

in
t 

(p
x)

B
al

an
ce

 P
o

in
t 

(p
x)

Trial

B
al

an
ce

 P
o

in
t 

(p
x)

Trial

Figure 15: Histograms of the ∆’s for the shape experiment,
participant P7. The rest as in Fig. 7.

6. DISCUSSION

There are obvious individual differences in the patterns of
the time series for balance points (the insets of the graphs).
Our goal, however, is confined to their single feature: the
lack or presence of a systematic trend, as revealed by the
analysis of the first-order differences. In assessing the re-
sults, note that the choice of the significance level for a test
(the alpha below which a p-value is considered rejecting the
null hypothesis) is dubious when one deals with multiple
tests: the computation of alpha depends on one’s subjec-
tive decision on how the different tests should be grouped.
Setting the alpha for a given test for a given condition for
a given participant in a given experiment at 0.05 means
that the Type I error probability for 12 generally interde-
pendent tests per participant per experiment (3 tests × 4
∆’s) is anywhere between 0.05 and 0.6, making the overall
Type I error probability across all tests for all conditions
and all participants be anywhere between 0.19 and 0.97
for the location experiment, between 0.23 and 0.99 for the
shape experiment, and between 0.37 and 1.0 if the two ex-
periments are combined. The formula for these calculations
is

1− (1− α)p ≤ Pr [Type I error] ≤ 1− (1− α× k)p, (13)

where k is the number of tests per participant per experi-
ment (in our case 12) and p is the number of independent
applications of these k tests (four in the location experi-
ment and five in the shape experiment), the tests for differ-
ent participants×experiments being considered stochasti-
cally independent. To fix the lower boundary for the over-
all Type I error probability at 0.05 one needs to set the
alpha for a given test×condition×participant×experiment
at 0.013 for the locations experiment, at 0.010 for the shape



Matching by Adjustment 13

Experiment significance overall rejections
per test Type I error /out of

location α = 0.01 0.04 — 0.40 0/48
α = 0.05 0.19 — 0.97 0/48

shape α = 0.01 0.05 — 0.47 0/60
α = 0.05 0.23 — 0.99 5/60

both α = 0.01 0.09 — 0.68 0/108
α = 0.05 0.36 — 1.0 5/108

Table I: An assessment of the results presented in Figs. 7-10
(location experiment) and Figs. 11-15 (shape experiment). The
third column shows the number of tests rejecting their null-
hypotheses out of the total number of tests. The Type I error
is computed according to (13).

experiment, and at 0.006 if the two experiments are com-
bined. Rounding these figures to the conventional ones, we
are justified to compare the p-values in our tests to 0.05
and 0.01. The results are summarized in Table I.

The conclusions one can derive from the location experi-
ment are unequivocal. At α = 0.05 the null hypothesis is
rejected in none of the 48 tests presented in the 16 pan-
els of Figs. 7-10 (although the probability of a rejection
happening by chance, with all nulls true, is greater than
0.19). Equally important is that the values of the mean
and the median are obviously very small (note that a single
screen pixel measured 62 sec arc). The matching regular-
ity hypothesis can be upheld for locations with very high
confidence.

For the shape experiment none of the 60 tests presented
in the 20 panels of Figs. 11-15 rejects the null hypothesis
at α = 0.01 (with the overall probability of Type I error
exceeding 0.05). The hypothesis that the population means
are zero is not rejected at α = 0.05, and the mean ∆’s are
very small. However, in one case out of 60 (Fig. 14, right
A5) the distribution’s symmetry is rejected at α = 0.05,
and the hypothesis that the population median is zero is
rejected at α = 0.05 in four out of 60 cases (right A5 in
Fig. 12, left A5 in Fig. 14, left A3 and right A5 in Fig.
15). Still, the logic of our tests leads us to conclude that
for the shape experiment, too, there is little if any evidence
against the null model of Sections 2.3 and 3.2. Note that
there are no figure panels where we see a rejection occurring
at α = 0.05 in more than one of the three tests. The
occasional rejections can therefore be assumed to be Type I
errors (whose probability in the shape experiment exceeds
0.23). Moreover, even if the rejected null hypotheses are
indeed false, it is still possible (and probable, in view of the
rest of the data) that these were the cases when the error
terms were not sufficiently small to warrant dropping the
o-terms in (12).

7. CONCLUSION

The symmetry of matching, MS of Section 2.1, being a
“natural” proposition firmly built in our colloquial language
as well as in the language and practice of psychophysics, it
seems to be a reasonable scientific strategy to dismiss this
proposition only if the evidence against it is compelling. We
have shown that in the matching-by-adjustment paradigm,
with a reasonable definition of the PSE functions satisfying
MF of Section 2.1, there is no empirical evidence against
MS: y matches x if and only if x matches y.

Our paper does not, however, provide an algorithm for
computing the precise matches for x and y from the dis-
tributions of the balance points Yx and Xy, respectively.
Rather, to the extent the use of the linear part of (12)
is justifiable, our null model upholds the traditional text-
book recommendation, usually confined to unidimensional
stimuli (see, e.g., Gescheider, 1985, p.54): approximate the
distribution of within-trial matches to a given stimulus by
a normal distribution and take its mean as the (approxi-
mate) PSE for this stimulus. It is also common to advise
(ibid) that if the distribution is not normal, a transforma-
tion may be applied first to make it normal. Our general
model (Section 2.2) suggests a multidimensional version of
the advice in question: transform the distribution of within-
trial matches to a given stimulus into a normal distribution
with uncorrelated components and then take its mean as
the PSE for this stimulus. Glossing over statistical issues,
this procedure provides a “direct access” to the variables
a,b of (7), modulo linear transformations inconsequential
for the analysis, making thereby the use of linear approxi-
mations unnecessary. Note that such transformations need
not exist: thus, in the unidimensional case, no diffeomor-
phism would translate Yx1 ,Yx2 ,Yx3 of which the first two
are normal with distinct means and the third one is not
normal, into three normal variates (Ghosh, 1969). An em-
pirical demonstration that the transformation postulated
in the general model does not exist would not necessarily
falsifyMS, but one would have then to seek other ways of
operationalizing and testing it.

Appendix

We outline derivations of (10) and (11)-(12). For the kth
trial pair,

bk = h (ak−1) + δbk,

ak = g (h (ak−1) + δbk) + δak

= g ◦ h (ak−1) + ∂g◦h(ak−1)
∂h(ak−1)

δbk + δak + o,

where δak and δbk are adjustment errors and |o| is
o {1} |(δak, δbk)|. Applying this recursively starting with
k = 1, we get
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bk = h ◦ [g ◦ h]k−1 (a0) +
∑k−1

i=1
∂h◦[g◦h]k−1(a0)

∂[g◦h]i(a0)
δai

+
∑k

i=1
∂h◦[g◦h]k−1(a0)

∂h◦[g◦h]i−1(a0)
δbi + o,

ak = [g ◦ h]k (a0) +
∑k

i=1
∂[g◦h]k(a0)

∂[g◦h]i(a0)
δai

+
∑k

i=1
∂[g◦h]k(a0)

∂h◦[g◦h]i−1(a0)
δbi + o,

where we use the notation [f ]p for f ◦f ◦ . . .◦f (p times), and
the |o|’s are o {1} |(δa1, δb1, . . . , δak−1, δbk−1, δbk)|. Re-
calling that x = T1 (a) and y = T2 (b), we get

yk = T2 ◦ h ◦ [g ◦ h]k−1 (a0)
+
∑k−1

i=1
∂T2◦h◦[g◦h]k−1(a0)

∂[g◦h]i(a0)
δai

+
∑k

i=1
∂T2◦h◦[g◦h]k−1(a0)

∂h◦[g◦h]i−1(a0)
δbi + o,

xk = T1 ◦ [g ◦ h]k (a0)
+
∑k

i=1
∂T1◦[g◦h]k(a0)

∂[g◦h]i(a0)
δai

+
∑k

i=1
∂T1◦[g◦h]k(a0)

∂h◦[g◦h]i−1(a0)
δbi + o,

with the |o|’s being o {1} |(δa1, δb1, . . . , δak, δbk)|. It fol-
lows that

∆yk =
(
T2 ◦ h ◦ [g ◦ h]k (a0)−T2 ◦ h ◦ [g ◦ h]k−1 (a0)

)
+
∑k−1

i=1

∂(T2◦h◦[g◦h]k(a0)−T2◦h◦[g◦h]k−1(a0))
∂[g◦h]i(a0)

δai

+
∑k

i=1

∂(T2◦h◦[g◦h]k(a0)−T2◦h◦[g◦h]k−1(a0))
∂h◦[g◦h]i−1(a0)

δbi

+∂T2◦h◦[g◦h]k(a0)

∂[g◦h]k(a0)
δak + ∂T2◦h◦[g◦h]k(a0)

∂h◦[g◦h]k(a0)
δbk+1 + o,

∆xk =
(
T1 ◦ [g ◦ h]k+1 (a0)−T1 ◦ [g ◦ h]k (a0)

)
+
∑k

i=1

∂(T1◦[g◦h]k+1(a0)−T1◦[g◦h]k(a0))
∂[g◦h]i(a0)

δai

+
∑k

i=1

∂(T1◦[g◦h]k+1(a0)−T1◦[g◦h]k(a0))
∂h◦[g◦h]i−1(a0)

δai

+∂T1◦[g◦h]k+1(a0)

∂[g◦h]k+1(a0)
δak+1 + ∂T1◦[g◦h]k+1(a0)

∂h◦[g◦h]k(a0)
δbk+1 + o,

(14)

where the |o|’s are o {1} |(δa1, δb1, . . . , δak+1, δbk+1)|. We
get (10) after renaming the coefficients. Recalling the defi-
nition of H and G in (8), note that T2 ◦ h ◦ [g ◦ h]k (a0) = H ◦ [G ◦H]k (x0) ,

T1 ◦ [g ◦ h]k (a0) = [G ◦H]k (x0) .

In the null model g ≡ h−1, and (14) becomes ∆yk = ∂T2◦h(a0)
∂a0

δak + ∂T2◦h(a0)
∂h(a0)

δbk+1 + o,

∆xk = ∂T1(a0)
∂a0

δak+1 + ∂T1(a0)
∂h(a0)

δbk+1 + o.
(15)

This corresponds to (11). Note that the |o|’s here
are o {1} |(δa1, δb1, . . . , δak+1, δbk+1)|. Since the 3n-
vector (δak, δak+1, δbk+1) is identically distributed for all

k, however, we can drop the index k altogether, de-
note the 3n-vector (δa, δa′, δb), and view the |o|’s as
o {1} |(δa, δa′, δb)|. This yields (12).
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