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Abstract

We discuss three measures of the degree of contextuality in contextual systems of dichotomous random variables.
These measures are developed within the framework of the Contextuality-by-Default (CbD) theory, and apply to incon-
sistently connected systems (those with “disturbance” allowed). For one of these measures of contextuality, presented
here for the first time, we construct a corresponding measure of the degree of noncontextuality in noncontextual sys-
tems. The other two CbD-based measures do not suggest ways in which degree of noncontextuality of a noncontextual
system can be quantified. We find the same to be true for the contextual fraction measure developed by Abramsky,
Barbosa, and Mansfield. This measure of contextuality is confined to consistently connected systems, but CbD allows
one to generalize it to arbitrary systems.
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1 Introduction

1.1 We will consider certain measures of contextuality (degree of contextuality in a contextual system) and see if they can
be naturally extended into measures of noncontextuality (degree of noncontextuality in a noncontextual system). What
we mean by an extension being “natural” is that it uses essentially the same mathematical construction as the measure of
contextuality being extended. Let us illustrate this by an example. Let R be a system of random variables, and let F (R)
be a real-valued continuous functional, in the sense that small changes in the distributions of R result in small changes
of F (R). Let the following Bell-type inequality be accepted as a definition, or derived as a theorem: the system R is
noncontextual if and only if F (R) ≤ 0. Suppose that in the universe of possible systems R the value of F (R) varies on
the interval (a, b), with a < 0 < b. It is natural then to consider a positive value of F (R) as the degree of contextuality
of R, increasing as F (R) increases from 0 to b:

F (R) > 0 =⇒ CNT = F (R) . (1)

Equally naturally, this measure can be extended to a measure of noncontextuality, increasing as F (R) decreases from 0
to a:

F (R) ≤ 0 =⇒ NCNT = −F (R) . (2)

By contrast, if the functional F (R) varied on an interval [0, b), the degree of contextuality would be defined as before, but
it would not naturally extend to a measure of noncontextuality: all noncontextual system would be mapped into zero, so
any extension would require ideas and principles other than those used in the construction of the functional F .

1.2 We will consider three contextuality measures, all based on the Contextuality-by-Default (CbD) theory and applicable
to arbitrary systems of dichotomous random variables.1 Two of our measures, CNT1 and CNT2, are, in a well-defined
sense, mirror images of each other, but we will see that only one of them, CNT2, is naturally extendable to a measure of
noncontextuality. CNT2 for a contextual system of random variables is defined as the L1-distance between the surface of
a certain polytope and an external point representing the system. The points lying on or inside the polytope represent
noncontextual systems, and it is natural to define the extension of CNT2 into a measure of noncontextuality, NCNT2,
as the L1-distance from an internal point of the polytope to its surface. CNT1, too, can be defined as the L1-distance
between a certain polytope and an external point representing a contextual system. However, all noncontextual systems

1In the contemporary version of CbD [18, 20], any system of random variables is to be presented in a canonical form, one in which each
original random variable is replaced with a set of jointly distributed dichotomous variables.

1



in this case are represented by points lying on the surface of the polytope, as points of zero contextuality. As a result,
any extension of CNT1 into a measure of noncontextuality would require that one go beyond the construction underlying
CNT1.

1.3 The third CbD-based measure, CNT3, is of a different kind. Here, one maps the system into a certain distribution
of quasiprobabilities, numbers that sum to unity but are allowed to be negative. CNT3 is measured by how small the
negative part of the quasiprobability distribution can be made: the larger this minimal negative mass the more contextual
the system. This measure is not naturally extendable to a measure of noncontextuality because all noncontextual systems
are identically characterized by this negative mass being zero.

1.4 We also consider the measure of contextuality called contextual fraction, proposed in Refs. [1,6,24] and developed in
Ref. [2]. The logic of this measure is similar to that of CNT3: contextuality is measured by how close certain quasiprob-
abilities (in this case, nonnegative numbers allowed to sum to less than unity) can be made to a proper probability
distribution. The measure has been only formulated under the constraint that random variables measuring the same
property in different contexts are identically distributed. This constraint, called consistent connectedness in CbD, is more
generally known as the no-disturbance principle (or “no-signaling”, in the case of spatially distributed systems). We provide
a CbD-based generalization of contextual fraction to arbitrary systems, and show that this measure, too, does not have a
natural noncontextuality counterpart.

1.5 It is important here to dispel a possible confusion. Any measure of the degree of contextuality in a contextual system
can be associated with some complementary measure that can be interpreted as the degree of noncontextuality in this
contextual system. Thus, in the opening example of this paper, if F (R) > 0, one could define its contextuality degree as
F (R) /b, and consider 1 − F (R) /b the “degree of noncontextuality” in this contextual system. In Abramsky, Barbosa,
and Mansfield’s construction [2] a generalized version of this construction is introduced explicitly: 1 minus contextual
fraction is noncontextual fraction, for any contextual system. Our usage of the term “measure of noncontextuality” is
different — it refers to a degree of noncontextuality in a noncontextual system. The noncontextual fraction of Abramsky
and colleagues is not a measure of noncontextuality in this sense because it identically equals 1 for all noncontextual
systems. Returning to our opening example, 1− F (R) /b is not a measure of noncontextuality in our sense, because it is
predicated on contextuality, F (R) > 0. If F (R) ≤ 0, something like F (R) /a, assuming a < 0, would be an appropriate
measure of noncontextuality (and, if one so wishes, one could define 1 − F (R) /a as the “contextual fraction” of this
noncontextual system).

1.6 One’s interest to measures of noncontextuality can be justified in essentially the same way as one’s interest to
measures of contextuality, except that one knows much more about the latter. Thus, one should be interested if a system,
be it contextual or noncontextual, is stably so: whether a small perturbation of the random variables it is comprised of
will change its (non)contextuality status. Larger values of (non)contextuality mean more stable (non)contextuality. A
closely related reason is statistical. If contextuality or noncontextuality of a system is established on a sample level, one
should be interested in whether this finding is reliable: e.g., whether a high-level confidence interval for its contextuality
or noncontextuality degree lies entirely in the range of contextuality or noncontextuality values, respectively. This is an
especially important task in fields outside quantum physics, e.g., in the contextuality analysis of human behavior [8,12,23].
Non-physical applications provide additional reasons for one’s interest in measures of noncontextuality: e.g., some models
of decision making can predict both contextual and noncontextual systems of random variables, and noncontextual systems
may be linked to features of decision making that are, if anything, of greater interest than those in contextual systems [8]. In
quantum physics, there is a growing interest to the question of whether certain classical systems could exhibit contextuality
similar to that found in quantum systems [25, 29, 32]. Here, it might be useful to quantify the “classicality” and “non-
classicality” of systems by measures of, respectively, noncontextuality and contextuality, preferably chosen so that they
form each other’s natural extensions. One can argue that degree of contextuality has been linked to quantum advantage in
computation, communication complexity, and other matters of intrinsic or practical interest [9, 10, 26], while nothing like
this is currently known about noncontextuality. However, this may very well be due to the simple fact that no measures
of noncontextuality have so far been proposed and studied.

1.7 The three measures of contextuality considered in this paper are CbD-based, which means that they are not con-
strained by the assumption of consistent connectedness. We had to leave out a large number of interesting contextuality
measures discussed in the literature under the consistent connectedness constraint (with the exception of the contextual
fraction measure that we generalize to apply to arbitrary systems). Thus, most of the measures of nonlocality (as a special
case of contextuality) reviewed in Ref. [11] cannot be naturally extended to measures of locality (noncontextuality). The
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measures of contextuality constructed in relation to Bell-type criteria of noncontextuality for consistently connected sys-
tems, as, e.g., in Ref. [4], usually can be extended to measures of noncontextuality along the lines of our opening example.
The fact that we do not discuss these measures in detail is a reflection of the focus of this paper rather than our view of
their relative importance.

2 Basics of the Contextuality-by-Default approach

2.1 A system R of random variables is a set whose elements are random variables Rcq labeled in two ways: by their
contents q ∈ Q (that which the random variable measures or responds to) and their contexts c ∈ C (the conditions under
which this random variable is recorded):

R =
{
Rcq : c ∈ C, q ∈ Q, q ≺ c

}
, (3)

where q ≺ c indicates that content q is measured (or responded to) in context c. Throughout this paper, the set of contents
Q and the set of contexts C are finite, and all random variables in the system are Bernoulli, with values 0/1.

2.2 In CbD, with no loss of generality, one can make q ≺ c hold true for all q and c, by placing in every “empty” (q, c)-cell
a dummy variable with a single possible value [16]. We will not be using this construction in this paper, as it is convenient
to think of the relation ≺ as the format of the system R, the arrangement of the random variables without information
of their distributions.

2.3 In each context c, the subset of random variables

Rc =
{
Rcq : q ∈ Q, q ≺ c

}
(4)

is jointly distributed, i.e., it is a random variable in its own right. It is referred to as the bunch for (or corresponding to)
context c. For each content q, the subset of random variables

Rq =
{
Rcq : c ∈ C, q ≺ c

}
(5)

is referred to as the connection for (or corresponding to) content q. The elements of a connection are not jointly distributed,
they are stochastically unrelated. (This is reflected in the notation, R vs R: the bunch Rc is a random variable in its own
right, while the connection Rq is not.) More generally, any Rcq and Rc

′

q′ are stochastically unrelated unless c = c′. The
terminology above is illustrated in Fig. 1.2

2.4 A system is consistently connected (satisfies the “no-disturbance” requirement) if the distribution of each random
variable in it depends on its content only. If this is not the case, the system is inconsistently connected. The latter
term can also be used for arbitrary systems, that may but need not be consistently connected. Consistent connectedness
(non-disturbance) can sometimes be understood in the strong sense, as in Refs. [1, 15]: if several contents q1, . . . , qk are
measured in two contents c, c′, then the joint distributions of

{
Rcq1 , . . . , R

c
qk

}
and

{
Rc
′

q1 , . . . , R
c′

qk

}
coincide. Nothing will

change in this paper if consistent connectedness is understood in this strong sense, because we generally assume systems
are not consistently connected even in the weaker, more general sense.

2.5 The general definition of a coupling for an indexed set X of random variables is that it is a jointly distributed
and identically indexed set Y of random variables such that, for any subset X of X possessing a joint distribution, the
corresponding subset of Y is identically distributed. In particular, every element of X is distributed as the corresponding
element of Y . In accordance with this general definition, a coupling of a system R is a set of jointly distributed random
variables

S =
{
Scq : c ∈ C, q ∈ Q, q ≺ c

}
, (6)

such that, for any context c, the bunches Sc and Rc are identically distributed.
2One might protest that given the notion of a context and a content, the corresponding notions of a bunch and a connection are unnecessary.

It is indeed possible, as we have done in some of our publications, to avoid the use of the latter two terms by speaking instead of context-sharing
and content-sharing variables. However, in discussing measures of (non)contextuality and algorithms computing them, the use of the terms in
question, e.g., when speaking of “bunch probabilities” and “connection probabilities”, is convenient.
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Figure 1: Illustration for the basic terms of CbD. (a) A system R of random variables, with 4 contents measured in
5 contexts. Each variable in the system is uniquely identified by its content and its context. All random variables are
dichotomous, 0/1. (b) The format of the system R, showing which content is measured in which context. It can also
be used as a simplified representation of R, since the identification Rcq is uniquely reconstructed from the position of the
corresponding star. (c) Shows 5 bunches of the system. The random variables within a bunch are jointly distributed, i.e.,
each bunch is a random variable. (d) Shows 4 connections of the system. The random variables within a connection are
stochastically unrelated.

2.6 In CbD, we are interested not in just any coupling of R but in those with a certain property. It can be introduced
as follows. For each separately taken connection Rq one can find its multimaximal coupling

Tq =
{
T cq : c ∈ C, q ≺ c

}
, (7)

defined as a coupling in which, for every c, c′ in which q is measured, the probability of T cq = T c
′

q is maximal possible (among
all possible couplings of Rq, or, equivalently, for given marginal distributions of Rcq and Rc

′

q ). With only dichotomous

variables in play, every connection has a unique multimaximal coupling, and for any subset
{
Rcq, R

c′

q , . . . , R
c′′...′

q

}
of a

connection Rq, the probability of T cq = T c
′

q = . . . = T c
′′...′

q is maximal possible [20, 21]. It should also be noted that
maximization of T cq = T c

′

q = . . . = T c
′′...′

q means that both

T cq = T c
′

q = . . . = T c
′′...′

q = 1 (8)

and
T cq = T c

′

q = . . . = T c
′′...′

q = 0 (9)

are maximized (recall that the values of all variables are encoded 0/1).

2.7 A system R is defined as noncontextual if it has a coupling S whose restrictions to all connections are multimaximal
couplings of these connections. The system is contextual if no such coupling S exists. Equivalently, a system R is
noncontextual if it has a coupling S which is also a coupling for the multimaximal couplings Tq of connections Rq (q ∈ Q).
Yet another way of saying this is to define R as contextual if its bunches are incompatible with the multimaximal couplings
of its connections (cannot be “sewn together” within a single overall distribution).

3 Vectorial representation of systems

3.1 Any system R can be described by a vector of bunch probabilities. Abramsky and Brandenburger [1] call it an
empirical model. For any context c, assuming the nc random variables in its bunch were enumerated Rc1, . . . , R

c
nc
, we
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define

p(c) =



p
(c)
1
...
p
(c)
i
...

p
(c)
2nc


=



Pr
[
Rc1 = 0, . . . , Rcj = 0, . . . , Rcnc

= 0
]

...
Pr
[
Rc1 = r1, . . . , R

c
j = rj , . . . , R

c
nc

= rnc

]
...

Pr
[
Rc1 = 1, . . . , Rcj = 1, . . . , Rcnc

= 1
]

 , (10)

where Pr stands for probability, and r1, . . . , rnc
run through all 2nc combinations of 0/1’s. The vector of bunch probabilities

is defined as

p(b) =



pc1

...
pcj

...
pc|C|

 (11)

(the boldface index b stands for “bunches”).

3.2 For any content q, assuming the mq elements of the corresponding connection were enumerated R1
q , . . . , R

mq
q , any

coupling
(
T 1
q , . . . , T

mq
q

)
(not necessarily multimaximal) of this connection is defined by

p(q) =



p(q),1
...

p(q),i
...

p(q),2mq

 =



Pr
[
T 1
q = 0, . . . , T jq = 0, . . . , T

mq
q = 0

]
...

Pr
[
T 1
q = s1, . . . , T

j
q = sj , . . . , T

mq
q = smq

]
...

Pr
[
T 1
q = 1, . . . , T jq = 1, . . . , T

mq
q = 1

]

 , (12)

with the same meaning of the terms as in (10). The vector of connection probabilities is defined as

p(c) =



pq1
...

pqj
...

pq|Q|

 (13)

(the boldface index c stands for “connections”).

3.3 Finally we stack up the two vectors, for bunches and for connections, to obtain the complete vector of probabilities.

p(·) =

[
p(b)

p(c)

]
. (14)

We include connection couplings in this representation of the system even though they are computed rather than observed.
This means that one and the same system can be represented by multiple probability vectors, depending on the couplings
we choose for connections.

3.4 Complete vectors of probabilities will be used in Section 7, when we discuss a generalized version of a measure
proposed in Ref. [2]. However, for purposes of computing CbD-based measures of contextuality, p(·) is not convenient
because of its redundancy: one cannot change any component of p(c) or p(q) without changing some of its other components.
We will deal therefore with one of the numerous versions of a reduced vector of probabilities in which components can be
changed independently. The variant we choose is introduced in Ref. [19]. It is based on the idea of replacing p(c) in (10)
with probabilities

Pr
[
Rcqi = 1 : i ∈ I

]
=

〈∏
i∈I

Rcqi

〉
(15)
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for various subsets I of {1, . . . , nc}. Analogously, p(q) in (12) is replaced with probabilities

Pr
[
T cjq = 1 : j ∈ J

]
=

〈∏
j∈J

T cjq

〉
(16)

for various subsets J of {1, . . . ,mq}. These probabilities (and also the events whose probabilities they are, when this
cannot cause confusion) are referred to as k-marginals, where k = 0, 1, 2, . . . is the order of the marginals (the number of
the random variables involved). The 0-marginal is a constant 〈〉 taken to be 1, and the 1-marginals〈

Rcq
〉
= Pr

[
Rcq = 1

]
= Pr

[
T cq = 1

]
=
〈
T cq
〉

(17)

are shared by the bunches and the connections. Because of this, to avoid redundancy, we put the 0-marginal and all
1-marginals in one group, all higher-order marginals for bunches into a second group, and all higher-order marginals for
(couplings of) connections into a third group.

3.5 Let us order in some way all random variables in the system: Rc1q1 , . . . , R
cN
qN . Define

pl =



1
Pr
[
Rc1q1 = 1

]
...

Pr
[
Rciqi = 1

]
...

Pr
[
RcNqN = 1

]


=



〈〉〈
Rc1q1
〉

...〈
Rciqi
〉

...〈
RcNqN

〉


, (18)

where the boldface index l stands for “low-order marginals”.

3.6 For a given context c, let us enumerate 1, . . . , 2nc−nc−1 all nonempty and non-singleton subsets of the corresponding
bunch:

(
nc

2

)
2-marginals followed by

(
nc

3

)
3-marginals etc. Define

pc =



pc1
...
pci
...

pc2nc−nc−1

 =



Pr [Rc1 = 1, Rc2 = 1]
...

Pr
[
Rci,1 = 1, . . . , Rci,j = 1, . . . , Rci,ni,c

= 1
]

...
Pr
[
Rc1 = 1, . . . , Rcj = 1, . . . , Rcnc

= 1
]


=



〈Rc1Rc2〉
...〈

Rci,1 . . . R
c
i,j . . . R

c
i,ni,c

〉
...〈

Rc1 . . . R
c
j . . . R

c
nc

〉


, (19)

and the reduced vector of bunch probabilities

pb =



pc1

...
pcj

...
pc|C|

 . (20)

3.7 We analogously define, having imposed some couplings (not necessarily multimaximal) on the connections,

pq =



pq,1
...
pq,i
...

pq,2mq−mq−1

 =



Pr
[
T 1
q = 1, T 2

q = 1
]

...
Pr
[
T i,1q = 1, . . . , T i,jq = 1, . . . , T

i,mi,q
q = 1

]
...

Pr
[
T 1
q = 1, . . . , T jq = 1, . . . , T

mq
q = 1

]


=



〈
T 1
q T

2
q

〉
...〈

T i,1q . . . T i,jq . . . T
i,mi,q
q

〉
...〈

T 1
q . . . T

j
q . . . T

mq
q

〉


. (21)

The reduced vector of connection probabilities is
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pc =



pq1
...

pqj
...

pq|Q|

 . (22)

As mentioned in Section 2.6, with reference to [20,21], if the couplings of connections are chosen to be multimaximal, then
all these probabilities are maximal possible, given the values of the corresponding 1-marginal probabilities.

3.8 Without loss of generality, one can delete from pc all k-marginals with k > 2. As shown in Ref. [20], the 1-
marginals and 2-marginals define multimaximal couplings of the connections uniquely, and this makes them sufficient for
all CbD-based measures of contextuality.

3.9 Finally,

p =

 pl

pb

pc

 (23)

is the reduced vector of probabilities representing system R.

3.10 Any component of pc or of pq can generally change its value while other components remain fixed (which is
impossible in p(c) and p(q)). However, the range of possible changes is limited: every k-marginal probability is limited
from above by any k − 1-marginal it contains, and from below by any (k + 1)-marginal containing it.

4 Contextuality in vectorial representation

4.1 Consider a system R with N dichotomous random variables, and let v be the 2N -component vector of possible values
of a(ny) coupling S of the entire system. An element of v can be viewed as a conjunction of events{

Scq = rcq : c ∈ C, q ∈ Q, q ≺ c
}
, (24)

with rcq = 0/1. Then any given S is specified by a 2N -vector x of the probabilities with which the corresponding elements
of v occur. Clearly,

x ≥ 0, ‖x‖ = 1, (25)

where the inequality is componentwise, and the norm is L1. We call x a coupling vector for R.

4.2 Let p be a (reduced) vector of probabilities. Then the ith component of p is the joint probability

Pr
[
Scq = 1 : (c, q) ∈ Di

]
=

〈 ∏
(c,q)∈Di

Scq

〉
(26)

for some Di. The latter can be a low-marginal event, in which case it is empty or a singleton; or Di can be a bunch event,
in which case it consists of a fixed c paired with two or more q’s; or else it can be a connection event, in which case it has
a fixed q paired with two or more c’s (or with precisely two c’s, in view of Section 3.8).

4.3 We now construct a Boolean matrix M having 2N columns, with the jth column being labeled by the jth value of v
(j = 1, . . . , 2N ). This matrix is the same for all systems in the format of R. The ith row of this matrix is labeled by the
event (26) whose probability is the ith element of p. If all the random variables in this event equal to 1 in the jth value
of v, then we put 1 in the cell (i, j) of M. All other cells of M are filled with zeros.
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4.4 The matrix can be presented as

M =

 Ml

Mb

Mc

 , (27)

with Ml, Mb, and Mc corresponding to the pl-part (low-marginal probabilities), pb-part (bunch probabilities), and pc-
part (connection probabilities) of p, respectively. In particular, the first row of M corresponds to the zero-marginal 1,
and this row contains 1 in all cells.

4.5 Let

p∗ =

 p∗l
p∗b
p∗c

 (28)

be a (reduced) vector of probabilities whose pl-part and pb-part consist of empirical probabilities (estimated from an
experiment or predicted by a model), and pc-part consists of the connection probabilities for multimaximal couplings.
Then the system R represented by p∗ is noncontextual if and only if

Mx = p∗ (29)

for some nonnegative coupling vector x. If no such nonnegative x exists, then R is contextual. In reference to (25), note
that ‖x‖ = 1 is guaranteed by the first row of M (consisting of 1’s only) and first element of p∗ (〈〉 = 1).

4.6 As a step towards measures of contextuality, consider the convex polytope

P = {p : Mx = p, for some x ≥ 0} . (30)

It corresponds to the set of all possible couplings of all systems having the same format as R (because matrices M are in
a one-to-one correspondence with system formats).

4.7 A specific system R is defined by specifying the vectors pl = p∗l and pb = p∗b. This defines a convex polytope which
is a cross-section of the polytope P,

Pc = {pc : Mcx = pc, for some x ≥ 0,Mlx = p∗l ,Mbx = p∗b} . (31)

We refer to it as the feasibility polytope (for system R). It corresponds to the set of all possible couplings of system R.

4.8 A symmetrically opposite construction is the convex polytope

Pb = {pb : Mbx = pb, for some x ≥ 0,Mlx = p∗l ,Mcx = p∗c} . (32)

We can call it the noncontextuality polytope (for system R), as it corresponds to all noncontextual systems with the same
1-marginals as R. Another way of describing Pb, to emphasize its symmetry with Pc, is that Pb corresponds to all possible
couplings of the multimaximal couplings of the system’s connections.

4.9 Clearly, system R is noncontextual if and only if p∗c ∈ Pc and p∗b ∈ Pb, with the two statements implying each other,

p∗c ∈ Pc ⇐⇒ p∗b ∈ Pb. (33)

5 Measures of contextuality

5.1 For a contextual system R, p∗c is outside Pc, and the L1-distance between them is a natural measure of contextuality,

CNT1 = min
pc∈Pc

‖p∗c − pc‖ = 1 · p∗c − max
pc∈Pc

(1 · pc) , (34)

where the equality follows from p∗c ≥ pc (componentwise). We can also write

CNT1 = 1 · p∗c − max
x≥0,Mlx=p∗l ,Mbx=p∗b

(1 ·Mcx) . (35)
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To interpret, since the system R is contextual, its bunches are incompatible with the multimaximal couplings of its
connections. CNT1 measures how close the couplings of these connections that are compatible with the system’s bunches
can be made to the multimaximal ones.

5.2 This measure was the first one proposed within the framework of CbD [27, 28].3 Its linear programming implemen-
tation is

find maximizing subject to
x 1 ·Mcx x ≥0

Mlx = p∗l
Mbx = p∗b

. (36)

A solution x∗ must exist, and any such x∗ yields

CNT1 = 1 · (p∗c −Mcx
∗) = 1 · (p∗ −Mx∗) . (37)

5.3 The “symmetrically opposite” measure is the L1-distance of p∗b from the contextuality polytope Pb,

CNT2 = min
pb∈Pb

‖p∗b − pb‖ = min
x≥0,Mlx=p∗l ,Mcx=p∗c

‖p∗b −Mbx‖ . (38)

The interpretation should be clear. SinceR is contextual, the multimaximal couplings of its connections are not compatible
with its bunches. CNT2 measures how close the bunches that are compatible with these multimaximal couplings can be
made to the observed bunches.

5.4 This measure is introduced here for the first time. Its linear programming implementation is

find minimizing subject to
x 1 · d −d ≤ p∗b −Mbx ≤ d

x,d ≥0
Mlx = p∗l
Mcx = p∗c

. (39)

Again, for any solution x∗,
CNT2 = ‖pb

∗ −Mbx
∗‖ = ‖p∗ −Mx∗‖ . (40)

5.5 The third measure to consider, CNT3, has been proposed in Ref. [19], and brought to its present form in Refs. [18,20].
However, the ideas on which it is based date back to Paul Dirac, with contemporary elaborations, including relating it
to contextuality, found in Refs. [1, 3, 13, 14, 30]. The measure is based on the observation [19] that if one drops the
nonnegativity constraint in (25), replacing thereby probability distributions with signed-measure distributions, then the
set

Y = {y : My = p∗} (41)

is nonempty. Clearly,
y ∈ Y =⇒ 1 · |y| ≥ 1, (42)

were the absolute value is computed componentwise. The system then is noncontextual if and only if there is a y ∈ Y
with

1 · |y| = 1 · y = 1. (43)

It follows that

CNT3 = min
y∈Y

(1 · |y|)− 1 (44)

is a natural measure of contextuality. As shown in Ref. [19], this minimum is always attained. The quantity 1 · |y| is called
total variation (of the signed measure), so CNT3 can be referred as the minimum total variation measure (minus 1).

3More precisely, the measure proposed in Refs. [27, 28] is twice CNT1.
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5.6 The linear programming implementation of CNT3 is

find minimizing subject to:
y+,y− 1·y− M (y+−y−) = p∗

y+,y− ≥ 0
. (45)

With any solution y∗+,y
∗
−,

CNT3 = 1 ·
∣∣y∗+ − y∗−

∣∣− 1. (46)

6 Noncontextuality

6.1 Consider now the situation when R is noncontextual. With respect to the CNT1 measure, this means that p∗c ∈ Pc.
The question we pose is whether CNT1 can be extended into a noncontextuality measure by computing

NCNT1 = inf
pc 6∈Pc

‖p∗c − pc‖ = min
pc∈∂Pc

‖p∗c − pc‖ , (47)

where ∂(polytope) indicates the boundary of the polytope. The answer to this question turns out to be negative: while
this distance is well-defined, it is zero for any p∗c. Indeed, if p∗c were an interior point of Pc, one could increase some
of the probabilities in (21) by a small amount and still remain within Pc. But this is impossible, since all k-marginal
probabilities with k > 1 have maximal possible values. CNT1 does not have a noncontextual counterpart.

6.2 The situation is different with CNT2. The measure

NCNT2 = inf
pb 6∈Pb

‖p∗b − pb‖ = min
pb∈∂Pb

‖p∗b − pb‖ (48)

is well-defined and varies as p∗b varies within Pb. To interpret, since R is noncontextual, the multimaximal couplings of
its connections are compatible with its bunches. NCNT2 measures how far these bunches are from those that are not
compatible with these multimaximal couplings. To compute NCNT2 we can make use of the following theorem [31]: a
point on the boundary of a convex polytope L1-closest to an interior point differs from the latter in a single coordinate.
This means that all we have to do is to increase or decrease the probabilities in (19) one by one as far as possible without
leaving the polytope, and to choose the smallest increase or decrease at the end.

6.3 The linear programming implementation of this procedure is as follows. Let all elements of p∗b be enumerated
1, . . . ,K. Then, for every i = 1, . . . ,K,

find maximizing subject to
d+i ,x d+i pb

∗ + d+i ei = Mbx
d+i ,x ≥0
Mlx = p∗l
Mcx = p∗c

(49)

and
find maximizing subject to
d−i ,x d−i pb

∗ − d−i ei = Mbx
d−i ,x ≥0
Mlx = p∗l
Mcx = p∗c

, (50)

where ei is the unit vector with the ith component equal to 1. Once the solutions d∗+i , d∗−i for i = 1, . . . ,K are determined,

NCNT2 = min
i=1,...,K

{
min

(
d∗+i , d∗−i

)}
. (51)

6.4 Consider now CNT3. If R is noncontextual, there is a nonnegative x such that Mx = p∗, and

CNT3 = 1 · x− 1 = 0.

There seems to be no way to extend it to a noncontextuality measure without modifying its logic.
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7 Contextual fraction

7.1 We discuss next the measure called contextual fraction (CNTF) [1,2] (see also Refs. [6, 24]). It has been formulated
for consistently connected systems only, and its CbD-based generalization is not unique. We will consider one such
generalization, obtained by treating multimaximal couplings of connections as if they were additional bunches. This can
in fact be used to formally redefine every system into a consistently connected one, as proposed by Amaral, Duarte, and
Oliveira in Ref. [5].4 We prefer, however, to simply complement bunch probabilities with connection probabilities rather
than redefining the system itself.

7.2 Unlike the three measures considered above, however, CNTF requires that we deal with complete vectors of proba-
bility p(·), as defined in (14), rather than reduced vectors. We need to accordingly replace the Boolean matrix M with
the Boolean matrix M(·) such that the system R represented by p∗(·) is noncontextual if and only if

M(·)x = p∗(·), (52)

with x defined as above. The structure of M(·) is described in Ref. [19], and its summary is as follows. Recall the definition
of vector v in Section 4. The columns of matrix M(·) are labeled by the elements of v in the same way as in matrix M.
The ith row of this matrix is labeled by the event whose probability is the ith element of p∗(·) in 10 and 12. If all the
random variables in this event have the same values in the jth value of v, then we put 1 in the cell (i, j) of M(·). All
other cells of M(·) are filled with zeros.

7.3 Consider the convex polytope
Z = {z : M(·)z ≤ p∗(·), z ≥ 0,1 · z ≤ 1}. (53)

This polytope is nonempty, because, e.g., it contains z = 0. If Z contains a z with 1 · z = 1, then M(·)z = p∗(·) because
the elements of every p(c) in (10) and every p(q) and (12) sum to 1, and the corresponding rows of M(·) sum to a row
consisting of 1’s only. Such a system therefore is noncontextual. If 1 · z < 1 for all z ∈ Z, the system is contextual, and
its degree of contextuality can be measured by the difference between 1 and the maximal total mass 1 · z achievable in Z:

CNTF = 1−max
z∈Z

(1 · z) . (54)

The linear programming formulation of this measure is

find maximizing subject to:
z 1·z M(·)z ≤ p∗(·)

z ≥0
1 · z ≤ 1

. (55)

Can this measure be naturally extended to a measure of noncontextuality? The answer is negative, for the same reason
as in the case of CNT3. If Z contains a vector z such that 1 · z = 1, then M(·)z = p∗(·) and CNTF = 0. We do not have
conceptual means here to distinguish different noncontextual systems.

8 Conclusion

8.1 We have provided an overview of three CbD-based measures of contextuality. Two of them, CNT1 and CNT2 are
L1-distances between a probability vector representing a system and a convex polytope. For either of the measures, if the
probability vector is not outside the polytope, a natural way of extending this measure to a noncontextuality measure is
to compute the L1-distance from the point to the surface of the polytope. We have seen, however, that in the case of
CNT1, the probability vector never gets inside the feasibility polytope (31): as CNT1 decreases to zero, and the vector

4Amaral and coauthors use maximal couplings rather than multimaximal ones, and they allow for multivalued variables (as we did in the
older version of CbD, e.g., in Ref. [19]). The difference between the two couplings of a set {X1, . . . , Xn} is that in the multimaximal coupling
{Y1, . . . , Yn} we maximize probabilities of all equalities Yi = Yj (whence it follows that we also maximize the probability of Yi1 = Yi2 = . . . = Yik
for any subset of {Y1, . . . , Yn}), whereas a maximal coupling {Z1, . . . , Zn} only maximizes the single chain equality Z1 = Z2 = . . . = Zn. The
reasons we adhere to multimaximal couplings and canonical systems, with all variables dichotomized, were laid out in Refs. [18, 20, 21]. Here,
it will suffice to say that our multimaximal couplings are unique, whereas maximal couplings generally are not, even for dichotomous variables
(if there are more than two of them). Since measures of (non)contextuality generally depend on what couplings are being used, the approach
advocated in Ref. [5] faces the problem of choice.
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becomes noncontextual, it sticks to the polytope’s surface. By contrast, for CNT2, as its value decreases to zero, the
vector of probabilities continues to move inside the contextuality polytope (32). CNT2 therefore is naturally extended to
NCNT2 , the distance from an interior point to the polytope’s surface.

8.2 The third CbD-based measure, CNT3, is of a different kind. It measures the degree of contextuality by dropping
the nonnegativity constraint in (25) for coupling vectors x, and determining how close the vectors y thus obtained can
be made to a proper probability distribution while satisfying My = p∗. The logical structure of this measure is close to
Abramsky, Barbosa, and Mansfield’s CNTF measure, CbD-generalized to apply to arbitrary systems. Here the degree of
contextuality is measured by replacing the summing-to-unity constraint in (25) with 1 · z ≤ 1, and determining how close
the vectors z can be made to a proper probability distribution while satisfying M(·)z ≤ p∗(·). Both these measures do not
lend themselves to natural noncontextuality extensions. The values of these two measures, total variation less 1 in CNT3

and 1 minus total mass in CNTF, vary with probability vectors representing contextual systems but freeze at zero values
for all noncontextual systems.

8.3 The relationship between the four measures of contextuality discussed in this paper is far from being clear. One
nice feature of CNT1, the oldest CbD-based measure, is that it is proportional to the violation of the generalized Bell
inequalities in the case of cyclic systems [22,27,28]:

CNT1 =
1

4
max

(ι1,...,ιk)∈{−1,1}n:
∏n

i=1 ιi=−1

n∑
i=1

ιi
〈
RiiR

i
i⊕1
〉
− n+ 2−

n∑
i=1

∣∣〈Rii〉− 〈Ri	1i

〉∣∣ , (56)

where the dichotomous variables are assumed to be ±1-valued rather than Bernoulli.5 Here, the bunch for context ci
(i = 1, . . . , n) consists of two random variables Rii, Rii⊕1, where i ⊕ 1 = i + 1 for i < n and n ⊕ 1 = 1. (This inequality
generalizes to arbitrary systems the inequality proved in Ref. [7], in a very different way, for consistently connected
systems.) Our analysis [17] shows that in the case of cyclic systems

CNT1 = CNT2. (57)

It has been conjectured, based on numerical computations conducted with the help of Víctor Cervantes, that in the case
of cyclic systems

CNT3 = 2CNT1/(n− 1) = 2CNT2/(n− 1). (58)

Beyond cyclic systems, however, we know that CNT1 and CNT3 are not generally related to each other by any function [13].
The relations between the three CbD-based measures and CNTF is yet to be investigated.

8.4 It is worth mentioning that all measures of contextuality (and noncontextuality) involve a certain degree of arbitrari-
ness. For instance, both CNT1 and CNT2 could be constructed with another Lp or L∞ replacing L1, and there seem to
be no unchallengeable principles to guide one’s choice (although L1 may be argued to be preferable because of the addi-
tivity of probabilities). The choice of a reduced vector of probabilities adds another dimension of arbitrariness: although
all reduced representations are linear transformations of the complete one, minL1-distance values for them may not be
related to each other in a simple way. It seems therefore that one could profitably use several measures to characterize
a given system. At the same time, the fact that only some measures of contextuality naturally extend into measures of
noncontextuality may provide principled guidance in constraining the multitude of possibilities.
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