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Abstract

In quantum physics there are well-known situations when measurements of the same property in different contexts
(under different conditions) have the same probability distribution, but cannot be represented by one and the same
random variable. Such systems of random variables are called contextual. More generally, true contextuality is observed
when different contexts force measurements of the same property (in psychology, responses to the same question)
to be more dissimilar random variables than warranted by the difference of their distributions. The difference in
distributions is itself a form of context-dependence, but of another nature: it is attributable to direct causal influences
exerted by contexts upon the random variables. The Contextuality-by-Default (CbD) theory allows one to separate
true contextuality from direct influences in the overall context-dependence. The CbD analysis of numerous previous
attempts to demonstrate contextuality in human judgments shows that all context-dependence in them can be accounted
for by direct influences, with no true contextuality present. However, contextual systems in human behavior can be
found. In this paper we present a series of crowdsourcing experiments that exhibit true contextuality in simple decision
making. The design of these experiments is an elaboration of one introduced in the “Snow Queen” experiment (Decision
5, 193-204, 2018), where contextuality was for the first time demonstrated unequivocally.
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1 Introduction
A response to a stimulus (say, a question) is generally a random variable that can take on different values (say, Yes or
No) with certain probabilities. The identity of a random variable, in nontechnical terms, is what uniquely distinguishes
this random variable from other random variables.1 The distribution of this random variable (probabilities with which it
takes on different values) is part of this identity, but clearly not the entire identity: think of a handful of fair coins — a
set of distinct random variables with the same distribution. Other stimuli (e.g., other questions posed together or prior
to a given one) may directly influence the identity of the response to the given stimulus by changing its distribution. In
fact, this change in the distribution, mathematically, is how the “directness” of the influence is defined. True contextuality
is such dependence of the identity of a response to a stimulus on other stimuli that cannot be wholly explained by such
direct influences. We will elaborate this definition below.

Contextuality is at the very heart of quantum mechanics (see, e.g., Liang, Spekkens, & Wiseman, 2011), where it can
be observed by eliminating (or at least greatly reducing) all direct influences by experimental design. (In quantum physics
“response to a stimulus” has to be replaced with “measurement of a property,” but this is in essence the same input-output
relation.) This paper addresses a question that ever since the 1990’s interested researchers in physics, computer science,
and psychology, the question of whether true contextuality can be observed outside quantum mechanics, with special
interest (largely for philosophical reasons we will not be discussing) in whether it is present in human behavior. Many
previous behavioral experiments designed to answer this question (e.g., Aerts, 2014; Aerts, Gabora, & Sozzo, 2013; Asano,
Hashimoto, Khrennikov, Ohya, & Tanaka, 2014; Bruza, Kitto, Nelson, & McEvoy, 2009; Bruza, Kitto, Ramm, & Sitbon,

1In rigorous mathematical terms, a random variable is defined as a (measurable) function mapping a domain probability space into another
(measurable) space. Its distribution is just one property of this function, the probability measure it induces on the codomain space.
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2015; Bruza, Wang, & Busemeyer, 2015; Cervantes & Dzhafarov, 2017a, 2017b; Dzhafarov & Kujala, 2014b; Dzhafarov,
Kujala, Cervantes, Zhang, & Jones, 2016; Dzhafarov, Zhang, & Kujala, 2015; Zhang & Dzhafarov, 2017) have been shown
to result in systems of random variables that are noncontextual. This prompted Dzhafarov, Zhang, and Kujala (2015) to
consider the possibility that human behavior may never exhibit true contextuality. It turns out, however, that contextual
systems in human behavior can be found. In this paper we describe a series of experiments that, added to one previously
conducted (Cervantes & Dzhafarov, 2018), demonstrate this unequivocally.

It should be emphasized at the outset that it would be incorrect to think of contextuality as being “surprising”
and “strange” while noncontextuality is “trivial” and “expected.” In the absence of constraints imposed by a general
psychological theory, comparable to quantum mechanics, we have no justification for such judgements. One might argue
in fact that it is most surprising that so many experiments in psychology are described by noncontextual systems of random
variables. Nor would it be correct to assume that typical psychological models, even very simple ones, can only predict
noncontextual systems: thus, in the concluding section of this paper we mention a simple model that, on the contrary,
predicts only contextual systems (and has to be dismissed because of this). Contextuality analysis is not a predictive
model of behavior, and both contextual and noncontextual systems are compatible with “ordinary” psychological models.
In that, as we point out in Section 4, psychology is not different from quantum physics, where (non)contextuality of a
system is established based on the laws of quantum physics but is not used to derive or revise them. What contextuality
analysis elucidates is the nature and structure of random variables — arguably, the most basic and mandatory construct
in the scientific analysis of empirical systems, whether in psychology or elsewhere. In a well-defined and mathematically
rigorous sense, in a contextual system random variables form true “wholes” that cannot be reduced to sets of distinct
random variables measuring or responding to specific elements of contexts while being also cross-influenced by other
elements of contexts. This makes contextuality analysis inherently interesting, but we need much greater knowledge
of which behavioral systems are contextual and which are not in order to determine what other properties of behavior
these characteristics are related to. We will return to the role and meaning of contextuality after we introduce necessary
definitions, theoretical results, and empirical evidence.

1.1 Direct influences and true contextuality
We introduce the basic notions related to contextuality analysis using a simple example — responses to three Yes/No
questions asked two at a time. Most of the experiments reported below are of this kind. Let, e.g., the three questions be

q1: Do you like chocolate?

q2: Are you afraid of pain?

q3: Do you see your dentist regularly?

Let a very large group of people be divided into three subgroups: in the first subgroup each respondent is asked questions
q1 and q2; in the second subgroup each respondent is asked questions q2 and q3; and in the third subgroup the questions
are q3 and q1. We call these pairwise arrangements of questions contexts, and we denote them c1, c2, c3, respectively. It
does not matter for the example whether the questions are asked in a fixed order, randomized order, or (if in writing)
simultaneously. A response to question qi asked in context cj is a random variable that we denote Rj

i : some of the people
in the subgroup corresponding to context cj will answer question qi with Yes, others with No. Assuming the subgroups
are so large that statistical issues can be ignored, by counting the numbers of responses we can get a good estimate of the
probability distribution for our random variable:

Rj
i :

Y es No response
pji 1− pji probability

. (1)

All in all we have six random variables in play, and they can be arranged in the form of the following content-context
matrix (Dzhafarov & Kujala, 2016):

R1
1 R1

2 c1
R2

2 R2
3 c2

R3
1 R3

3 c3

q1 q2 q3 system R3

. (2)

Now, the distributions of the responses to question qi should be expected to differ depending on the context in which
it is asked. For instance, when q1 (Do you like chocolate?) is asked in combination with q2 (Are you afraid of pain?), the
probability of R1

1 =“Yes, I like chocolate” may be relatively high, because chocolate is usually liked, and the mentioning
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of pain in q2 may make it sound especially comforting. However, when the same question q1 is asked in context c3,
in combination with mentioning a dentist, the probability of R3

1 =“Yes, I like chocolate” may very well be lower. The
same reasoning applies to the two other questions: the responses to each of them will generally be distributed differently
depending on its context. This type of influence exerted by a context on the responses to questions within this context can
be called direct influence. Indeed, the dependence of R1

1 (responding to q1) on q2 (another question in the same context)
is essentially of the same nature as the dependence of R1

1 on q1: a response to q1 is based on the information contained
in q1 and (even if to a lesser extent) on the information contained in q2. The other question in the same context can be
viewed as part of the question to which a response is given.

Is all context-dependence of this direct influence variety? As it turns out, the answer is negative. Imagine, e.g., that
all direct influences are eliminated by some procedural trick, and each question in each context is answered Yes with
probability 1/2. This means, in particular, that R1

1 and R3
1 have one and the same distribution,

R1
1 :

Y es No
1/2 1/2

, R3
1 :

Y es No
1/2 1/2

, (3)

and if one does not take into account their relations to R1
2 (in context c1) and to R3

3 (in context c3), one could consider R1
1

and R3
1 as if they were always equal to each other — essentially one and the same random variable.2 And similarly for R1

2

and R2
2, and for R2

3 and R3
3. If one looks at each column of matrix (2) separately, ignoring the row-wise joint distributions,

then one can write
R1

1 = R3
1

R1
2 = R2

2

R2
3 = R3

3

. (4)

Consider, however, the possibility that no respondent ever gives the same answer to both questions posed to her. Thus, if
she answers Yes to q1 in context c1 (which can happen with probability 1/2), she always answers No to q2, and vice versa.
Denoting Yes and No by +1 and −1, respectively, we have a chain of equalities

R1
1 = −R1

2

R2
2 = −R2

3

R3
1 = −R3

3

, (5)

and it is clear that (4) and (5) cannot be satisfied together: combining them would lead to a numerical contradiction. We
should conclude therefore that when the joint distributions within contexts are taken into account, R1

1 and R3
1, or R1

2 and
R2

2, or R2
3 and R3

3 cannot be considered always equal to each other. In at least one of these pairs, the two random variables
should be more different than it is warranted by their individual distributions (which are, in this example, identical). This
is a situation in which we can say that the system exhibits true contextuality , the kind of context-dependence that is not
reducible to direct influences (in this example, absent).

Empirical data, especially outside quantum physics, almost always involve some direct influences, but the logic of finding
out whether they also involve true contextuality remains the same. Continuing to use matrix (2) as a demonstration tool,
we first look at the columns of the matrix one by one, ignoring the contexts. For each pair of random variables in a column
(responses to the same question), we find out how close to each other they could be made if they were jointly distributed. In
other words, we find the maximal probabilities with which each of the equalities in (4) can be satisfied. Then we investigate
whether all the variables in our system can be made jointly distributed while preserving these maximal probabilities. If
the answer is negative, we conclude that the contexts force the random variables sharing a column to be more dissimilar
than warranted by direct influences (differences in their individual distributions). We then call such a system contextual .
Otherwise it is noncontextual . This is the gist of the approach to contextuality called Contextuality-by-Default (CbD),
and we illustrate it in the next section by a detailed numerical example.

CbD forms the theoretical basis for the design and analysis of our experiments. For completeness, however, another
approach to the notion of contextuality should be mentioned, one treating context-dependent probabilities as a generaliza-
tion of conditional probabilities defined through Bayes’s formula (Khrennikov, 2009). With some additional assumptions
these contextual probabilities can be represented by quantum-theoretical formalisms — state vectors in complex Hilbert
space and Hermitian operators or their generalizations. Applications of such approach to cognitive psychology can be
found in Khrennikov (2010) and Busemeyer and Bruza (2012), among other monographs and papers. CbD, by contrast,
is squarely within classical probability theory. Although contextuality in CbD can be called “quantum-like” due to the
origins of the concept in quantum physics, CbD uses no quantum formalisms.

2The “as if” here serves to circumvent the technicalities associated with the fact that, strictly speaking, we are dealing here not with R1
1 and

R3
1 themselves but with their probabilistic copies (couplings) that are jointly distributed. See Dzhafarov and Kujala (2014a, 2017b) for details.
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1.2 A numerical example and interpretation
The following numerical example illustrates how CbD works. Let there be just two dichotomous questions, q1 and q2,
answered in two contexts, c1 and c2 (e.g., in two different orders, as in Wang & Busemeyer, 2013). The content-context
matrix here is

R1
1 R1

2 c1
R2

1 R2
2 c2

q1 q2 system R2

. (6)

Assume that the joint distributions along the rows of the matrix are as shown:

c1 R1
2 = Y es R1

2 = No
R1

1 = Y es 1/2 0 1/2
R1

1 = No 0 1/2 1/2
1/2 1/2

c2 R2
1 = Y es R2

1 = No
R2

2 = Y es a 1/2− a 1/2
R2

2 = No 3/4− a a− 1/4 1/2
3/4 1/4

, (7)

where a is some value between 1/4 and 1/2. Knowing these distributions means that, for any filling of the matrix (6)
with values of the random variables R1

1, R
1
2, R

2
1, R

2
2 (Yes or No, for a total of 16 combinations), we know the row-wise

probabilities: e.g.,
R1

1 = Y es R1
2 = Y es p1 (Y es, Y es) = 1/2

R2
1 = Y es R2

2 = No p2 (Y es,No) = 3/4− a
. (8)

We see from (7) that R1
2 and R2

2 (the responses to question q2) are distributed identically. Because of this, if they were
jointly distributed (see footnote 1), the maximal probability with which they could be equal to each other would be 1:

q2 R2
2 = Y es R2

2 = No
R1

2 = Y es 1/2 0 1/2
R1

2 = No 0 1/2 1/2
1/2 1/2

. (9)

The responses to question q1, however, are distributed differently, and in the imaginary matrix of their joint distribution,

q1 R2
1 = Y es R2

1 = No
R1

1 = Y es 1/2 0 1/2
R1

1 = No 1/4 1/4 1/2
3/4 1/4

, (10)

the maximal possible probability of R1
1 = R2

1 = Y es is 1/2, and the maximal possible value of R1
1 = R2

1 = No is 1/4.
Therefore, if they were jointly distributed, the maximal probability with which R1

1 = R2
1 would be 3/4. Now, with these

imaginary distributions, for any filling of the matrix (6) with Yes-No values of the random variables R1
1, R

1
2, R

2
1, R

2
2, we

also have the column-wise probabilities: e.g.,

R1
1 = Y es R1

2 = Y es
R2

1 = Y es R2
2 = No

p′1 (Y es, Y es) = 1/2 p′2 (Y es,No) = 0
. (11)

The problem we have to solve now is: are these column-wise probabilities compatible with the row-wise probabilities in (8)?
The compatibility means that, to any of the 16 filling of the matrix (6) with values of the random variables R1

1, R
1
2, R

2
1, R

2
2,

we can assign a probability, e.g., p
(
R1

1 = Y es,R1
2 = Y es,R2

1 = Y es,R2
2 = No

)
, such that the row-wise sums of these

probabilities agree with (8) and the column-wise sums agree with (11). This is a classical linear programming problem:
for any given value of a it is guaranteed that either such an assignment of probabilities will be found (so that the system
is noncontextual) or the determination will be made that such an assignment does not exist (the system is contextual).
In our case, however, one need not resort to linear programing to see that no such assignment of probabilities is possible
for any value of a other than 1/2. Indeed, we see from the c1-distribution in (7) and from (9) that, with probability 1,

R1
1 = R1

2 = R2
2. (12)

So, R1
1 and R2

2 are essentially the same random variable, say X. But, from (10), this X equals R2
1 with probability 3/4,

whereas from the c2-distribution in (7), this X equals R2
1 with probability 2a − 1/4, which is not 3/4 if a 6= 1/2. The

conclusion is that the joint distributions along the two rows of the content-context matrix (6) prevent the responses to
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the same questions in the two columns of the matrix to be as close to each other as they can be if the two columns are
viewed separately. The system therefore is contextual for any a 6= 1/2.

Why is this interesting? In psychological terms, the interpretation of the question order effect seems straightforward:
the first question reminds something or draws one’s attention to something that is relevant to the second question. What is
shown by the contextuality analysis of our hypothetical question-order system is that this interpretation is only sufficient
for a = 1/2, being incomplete in all other cases. The responses to two questions posed in a particular order form a
“whole” that cannot be reduced to an action of the first question upon the second response: the identity of the two random
variables changes beyond the effect of this action on their distributions. We will return to this issue in the concluding
section of the paper.

The reader should not forget that we are discussing a numerical example rather than experimental data. The large
body of experimental data on the question-order effect collected by Wang and Busemeyer (2013) has been subjected to
contextual analysis in Dzhafarov, Zhang, and Kujala (2015), the result being that the responses to any of the many pairs
of questions studied exhibit no contextuality. In fact, almost all question pairs are in a good agreement with the “QQ law”
discovered by Wang and Busemeyer (2013),

Pr
[
R1

1 = R1
2

]
= Pr

[
R2

1 = R2
2

]
, (13)

and, as shown in Dzhafarov, Zhang, and Kujala (2015), this law implies no contextuality: this system of random variables
is entirely describable in terms of each response being dependent on “its own” question, plus the second respond being
also influenced by the first question. The idea of a “whole” being irreducible to interacting parts is not therefore an
automatically applicable formula. To see if it is applicable at all, in psychology, one should look for empirical evidence
elsewhere. Such evidence is presented below.

1.3 Contextuality-by-Default
CbD was developed (Dzhafarov, Cervantes, Kujala, 2017; Dzhafarov & Kujala 2014a, 2016, 2017a, 2017b; Kujala, Dzha-
farov, & Larsson, 2015) as a generalization of the quantum-mechanical notion of contextuality (Abramsky & Branden-
burger, 2011; Fine, 1982; Kochen & Specker, 1967; Kurzynski, Ramanathan, & Kaszlikowski, 2012). The latter only
applies to consistently connected systems, those in which direct influences are absent, i.e., responses to the same stimulus
(or measurements of the same property) in different contexts are distributed identically. In physics this requirement is
known by such names as “no-signaling,” “no-disturbance,” etc.; in psychology it is known as marginal selectivity (Dzha-
farov, 2003; Townsend & Schweickert, 1989). This requirement is never satisfied in behavioral experiments (Dzhafarov &
Kujala, 2014b; Dzhafarov, Kujala, Cervantes, Zhang, & Jones, 2016; Dzhafarov, Zhang, & Kujala, 2015), and it is often
violated in quantum physical experiments too (Adenier & Khrennikov, 2017; Kujala, Dzhafarov, & Larsson, 2015). The
main difficulty faced by many previous attempts to reveal contextuality in human behavior was that they could not apply
mathematical tests predicated on the assumption of consistent connectedness to systems in which this requirement does
not hold. As mentioned in the introduction, a CbD-based analysis of these experiments (Dzhafarov & Kujala, 2014b; Dzha-
farov, Kujala, Cervantes, Zhang, & Jones, 2016; Dzhafarov, Zhang, & Kujala, 2015) showed that all context-dependence
in them was attributable to direct influences. The first unequivocal evidence of the existence of contextual systems in
human behavior was provided by Cervantes and Dzhafarov’s (2018) “Snow Queen” experiment.

The idea underlying the design of the “Snow Queen” experiment (and all the experiments reported below) is suggested by
the criterion (necessary and sufficient condition) of contextuality when CbD is applied to cyclic systems with dichotomous
random variables (Dzhafarov, Kujala, & Larsson, 2015; Kujala & Dzhafarov, 2016; Kujala, Dzhafarov, & Larsson, 2015).
In such a system n questions and n contexts can be arranged as

q1
c1

q2
c2 · · ·

cn−2

qn−1
cn−1

qn

cn

(14)

The number n is referred to as the rank of the system. The question-order system (6) considered in Section 1.2 is the
smallest possible cyclic system, of rank 2,

q1
c1

q2.

c2

(15)

The system (2) in Section 1.1 is a cyclic system of rank 3,

q1
c1

q2
c2

q3,

c3

(16)
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and it is used in four of the six experiments reported below. The remaining two are analyzed as cyclic systems of rank 4,

q1
c1

q2
c2

q3
cn−1

q4

cn

, (17)

with the content-context matrix
R1

1 R1
2 c1

R2
2 R2

3 c2
R3

3 R3
4 c3

R4
1 R4

4 c4

q1 q2 q3 q4 system R4

. (18)

To formulate the criterion of contextuality in cyclic systems, we encode the values of our random variables by +1
and −1. Then the products of the random variables in the same context, such as R1

1R
1
2, are well-defined, and so are the

expected values E
[
R1

1R
1
2

]
, E
[
R2

2R
2
3

]
, etc. For instance, if the joint distribution of R1

1 and R1
2 (responses to questions q1

and q2 in context c1) is
c1 R1

2 = +1 R1
2 = −1

R1
1 = +1 a b a + b

R1
1 = −1 c d c + d

a + c b + d

, (19)

then R1
1R

1
2 has the distribution

R1
1R

1
2 = +1 R1

1R
1
2 = −1

a + d b + c
, (20)

and the distribution of R1
1 and R1

2 is described by the expected values

E
[
R1

1

]
= (a + b)− (c + d) ,

E
[
R1

2

]
= (a + c)− (b + d) ,

E
[
R1

1R
1
2

]
= (a + d)− (b + c) .

(21)

We will also need a special function, sodd: given some real numbers x1, . . . , xn,

sodd (x1, . . . , xn) = max (±x1 ± . . .± xn) , (22)

where each ± is to be replaced with + or −, and the maximum is taken over all choices that contain an odd number of
minus signs. Thus,

sodd (x, y) = max (−x + y, x− y) ,
sodd (x, y, z) = max (−x + y + z, x− y + z, x + y − z,−x− y − z)

etc.
, (23)

The theorem proved by Kujala and Dzhafarov (2016) says that a cyclic system of rank n is contextual (exhibits true
contextuality) if and only if

D = sodd
(
E
[
R1

1R
1
2

]
,E
[
R2

2R
2
3

]
, . . . ,E [Rn

nR
n
1 ]
)
− (n− 2)−∆ > 0, (24)

where
∆ =

∣∣E [R1
1

]
− E [Rn

1 ]
∣∣+
∣∣E [R1

2

]
− E

[
R2

2

]∣∣+ . . . +
∣∣E [Rn−1

n

]
− E [Rn

n]
∣∣ . (25)

The value of ∆ is a measure of direct influences, or of inconsistent connectedness. It shows how much, overall, the
distributions of responses to one and the same question differ in different contexts. If ∆ = 0, the system is consistently
connected: the response to a given question is not influenced by the other questions with which it co-occurs in the same
context.3 One can loosely interpret sodd as a measure of the “potential true contextuality”: it shows how much, overall,
the identities of the random variables responding to the same question differ in different contexts. The contextuality test
for a cyclic system therefore can be viewed as a test of whether these differences exceed those due to direct influences
alone. The failure of the previous attempts to find contextuality in behavioral data may be described by saying that the

3The special case of (24) for ∆ = 0 was proved, by very different mathematical means, in Araújo, Quintino, Budroni, Cunha, & Cabello
(2013).
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empirical situations chosen for investigation had too strong direct influences for the amount of potential true contextuality
they contained.

The idea of the “Snow Queen” experiment was to make the value of sodd as large as possible, increasing its chances of
“beating” ∆, a quantity that cannot be controlled by experimental design.4 The formal structure of the experiment was
a cyclic system of rank 4, with q1 and q3 being two choices of characters from a story (Snow Queen, by H.C. Andersen),
and q2 and q4 being two choices of attributes of these characters.

R1
1 R1

2 c1
R2

2 R2
3 c2

R3
3 R3

4 c3
R4

1 R4
4 c4

q1 :
Gerda
Troll q2 :

beautiful
unattractive q3 :

Snow Queen
old Finn woman q4 :

kind
evil system SQ4

. (26)

For instance, in context c3, a respondent could choose either Snow Queen or old Finn woman, and also choose either “kind”
or “evil.” The instruction said the choices had to match the story line. The respondents knew, e.g., that Snow Queen
is beautiful and evil, and that the old Finn woman is unattractive and kind.5 It is easy to show that if all respondents
followed the instruction correctly, sodd in this experiment had to have the maximal possible value of 4. The amount of
direct influences measured by ∆ was considerable, but the left-hand side expression in (24) was well above zero, with very
high statistical reliability (evaluated by 99.99% bootstrap confidence intervals).

One possible criticism of the “Snow-Queen” experiment can be that the paired choices were too “asymmetric”: choice
of a character, such as Gerda, and choice of a characteristic, such as “beautiful,” seem too different in nature. In the
experiments reported below the paired choices were “on a par.” Otherwise, the experiments followed the same logic,
ensuring the highest possible value for sodd. This value equals n, the rank of the cyclic system. In quantum physics,
the systems with this property (if, additionally, they are consistently connected, i.e., ∆ = 0), are called PR-boxes, after
Popescu and Rohrlich (1994). In our experiments n was 3 or 4.

2 Method

Participants
We recruited 6192 participants on CrowdFlower (2018) between February 7 and 12, 2018. They agreed to participate
in this study by accepting a standard consent from. The consent form and the interactive experimental procedure were
provided via a Qualtrics survey hosted by City University London. The study was approved by City University London
Research Ethics Committee, PSYETH (S/L) 17/18 09. (The number of participants was chosen so that we could construct
reliable 99.99% bootstrap confidence intervals for each context in each experiment, as described below.)

Materials and procedure
Each respondent participated in all six experiments, in a random order. For each of the experiments, each participant was
randomly and independently assigned to one of the conditions (contexts). In each context, a participant was introduced
to a pair of choices to be made by a fictional Alice; each choice was between two alternatives. There were three contexts
in Experiments 1-4, and four contexts in Experiments 5 and 6. Figure 1 shows the way the instruction and choices were
presented to respondents in one context of Experiment 1.

Experiments 1 to 4

In experiments 1-4, in each context, the character Alice was faced with two choices out of a set of three dichotomous choices.
The participant was asked to select a pair of responses that respected Alice’s preferences as stated in the instructions (see
Fig. 1). The system would not allow the respondent to make only one choice or two choices contradicting the instructions.
The following depicts the situations presented, while table 1 summarizes the sets of dichotomous choices.

4In physics the situation is different: one can eliminate or greatly reduce direct influences by, e.g., separating two entangled particles by a
space-time interval that prevents transmission of a signal between them.

5This instruction is an analogue of the quantum-mechanical preparation, an empirical procedure preceding an experiment with the aim of
creating a specific pattern of high correlations between measurements.
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Figure 1: The appearance of the computer screen to the participant if assigned to context c1 in experiment 1. The
participant was required to choose an option for each question, in this case each menu section; the next experiment or the
end of the survey would be reached by clicking the ‘Next’ arrow. If the participant had made both choices in accordance
with the instructions, in this case having chosen Soup (H) with Beans (L) or Salad (L) with Burger (H), clicking the ’Next’
arrow allowed the survey to continue; otherwise the participants were prompted to revise or complete their responses.

Table 1: Dichotomous choices in experiments 1 to 4. Each respondent was asked to make two choices (q1&q2 or q2&q3 or
q3&q1), randomly and independently assigned to this respondent in each experiment.

q1 q2 q3

1. Meals Starters: Main course: Dessert:
Soup (H)* or Salad (L) Burger (H)* or Beans (L) Cake (H)* or Coffee (L)

2. Clothes Skirt: Blouse: Jacket:
Plain* or Fancy Plain* or Fancy Plain* or Fancy

3. Presents Book: Soft toy (bear): Construction set:
Big expensive book (E)* or Smaller book(C) (E)* or (C) (E)* or (C)

4. Exercises Arms: Back: Legs:
Hard* or Easy Hard* or Easy Hard* or Easy

* Denotes the response encoded with +1

Experiment “Meals.” Alice wishes to order a two-course meal. For each course she can choose a high-calorie option
(indicated by H) or a low-calorie option (indicated by L). Alice does not want both courses to be high-calorie nor
does she want both of them to be low-calorie.

Experiment “Clothes.” Alice is dressing for work, and chooses two pieces of clothing. She does not want both of them
to be plain, nor does she want both of them to be fancy.

Experiment “Presents.” Alice wishes to buy two presents for her nephew’s birthday. She can choose either a more
expensive option (indicated by E) or a cheaper option (indicated by C). Alice does not want both presents to be
expensive or both presents to be cheap.

Experiment “Exercises.” Alice is doing two physical exercises. Alice does not want both exercises to be hard or both
to be easy.

Experiments 5 and 6

In experiments 5 and 6, in each context, the character Alice was faced with two choices out of a set of four. In all other
respects the procedure was similar to that in Experiments 1-4. The participant was asked to select a pair of responses
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Table 2: Dichotomous choices in experiments 5 and 6. Each respondent was asked to make two choices (q1&q2 or q2&q3
or q3&q4 or q4&q1), randomly and independently assigned to this respondent in each experiment.

q1 q2 q3 q4

5. Directions West—East fork NorthWest—SouthEast fork North—South fork NorthEast—SouthWest fork
← or → ↖ or ↘ ↑ or ↓ ↗ or ↙

6. Colored figures one of one of one of one of

For each choice qi, the response encoded by +1 is the one on the left: e.g., for q1 in Experiment 5, the response ← was
encoded by +1.

that respected the character’s preferences as stated in the instructions. The following depicts the situations presented,
while table 2 summarizes the sets of dichotomous choices.

Experiment “Directions.” Alice goes for a walk, and has to choose path directions at forks. Alice wants the two
directions to be as similar as possible (i.e., the angle between them to be as small as possible).

Experiment “Colored figures.” Alice is taking a drawing lesson, and is presented with two pairs consisting of a square
and a circle (the pairs being labeled as “Section 1” and “Section 2”). Alice needs to choose one figure from each
section, and she wants the two figures chosen to be of similar color.

3 Results
In Experiments 1-4, irrespective of the specific content of the questions, there were three dichotomous choices, q1, q2, q3,
offered to the respondents two at a time. Denoting, for each of the choices, one of the response options +1 and the other
−1, the results have the following form:

c1 R1
2 = 1 R1

2 = −1
R1

1 = 1 0 p1 p1
R1

1 = −1 1− p1 0 1− p1
1− p1 p1

c2 R2
3 = 1 R2

3 = −1
R2

2 = 1 0 p2 p2
R2

2 = −1 1− p2 0 1− p2
1− p2 p2

c3 R3
1 = 1 R3

1 = −1
R3

3 = 1 0 p3 p3
R3

3 = −1 1− p3 0 1− p3
1− p3 p3

(27)

In reference to the CbD criterion (24)-(25), it follows that in these experiments

sodd
(
E
[
R1

1R
1
2

]
,E
[
R2

2R
2
3

]
,E
[
R3

3R
3
1

])
= sodd (−1,−1,−1) = 3, (28)

so that D in (24) is
D = 2−∆, (29)

where
∆ =

∣∣E [R1
1

]
− E

[
R3

1

]∣∣+
∣∣E [R2

2

]
− E

[
R1

2

]∣∣+
∣∣E [R3

3

]
− E

[
R2

3

]∣∣
= 2 |p1 + p3 − 1|+ 2 |p2 + p1 − 1|+ 2 |p3 + p2 − 1| . , (30)

Table 3 presents the observed values of p̂1, p̂2 and p̂3 for each context of each of Experiments 1-4, and the corresponding
numbers of participants from which these probabilities were estimated.

In Experiments 5 and 6 there were four dichotomous choices, q1, q2, q3, q4, and each respondent was offered two of
them, forming one of four possible contexts. Denoting, again, for each of the choices, one of the response options +1 and
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Table 3: Probability estimates p̂1, p̂2, p̂3 that determine the outcomes of Experiments 1-4 in accordance with (27), and the
sizes N1, N2, N3 of the samples from which these estimates were computed.

Experiment c1 c2 c3
p̂1 N1 p̂2 N2 p̂3 N3

1. Meals 0.349 2090 0.658 2052 0.653 2050
2. Clothes 0.639 1996 0.566 2086 0.435 2110
3. Presents 0.547 2081 0.387 2052 0.515 2059
4. Exercises 0.590 2058 0.306 2024 0.580 2110

Table 4: Probability estimates p̂1, p̂2, p̂3, p̂4 that determine the outcomes of Experiments 5 and 6 in accordance with (31),
and the sizes N1, N2, N3, N4 of the samples from which these estimates were computed.

Experiment c1 c2 c3 c4
p̂1 N1 p̂2 N2 p̂3 N3 p̂4 N4

5. Directions 0.471 1549 0.706 1504 0.645 1537 0.750 1602
6. Colored figures 0.419 1603 0.819 1589 0.360 1482 0.154 1517∗

* One participant assigned to context c4 was excluded from Experiment 6 because she or he did not complete the responses
in accordance with the instructions.

another −1, the results have the following form:

c1 R1
2 = 1 R1

2 = −1
R1

1 = 1 p1 0 p1
R1

1 = −1 0 1− p1 1− p1
p1 1− p1

c2 R2
3 = 1 R2

3 = −1
R2

2 = 1 p2 0 p2
R2

2 = −1 0 1− p2 1− p2
p2 1− p2

c3 R3
4 = 1 R3

4 = −1
R3

3 = 1 p3 0 p3
R3

3 = −1 0 1− p3 1− p3
p3 1− p3

c4 R4
1 = 1 R4

1 = −1
R4

4 = 1 0 p4 p4
R4

4 = −1 1− p4 0 1− p4
1− p4 p4

(31)

In reference to the CbD criterion (24)-(25), it follows that in these experiments

sodd
(
E
[
R1

1R
1
2

]
,E
[
R2

2R
2
3

]
,E
[
R3

3R
3
4

]
,E
[
R4

4R
4
1

])
= sodd (1, 1, 1,−1) = 4, (32)

whence, once again,
D = 2−∆, (33)

where
∆ =

∣∣E [R1
1

]
− E

[
R4

1

]∣∣+
∣∣E [R1

2

]
− E

[
R2

2

]∣∣+
∣∣E [R2

3

]
− E

[
R3

3

]∣∣+
∣∣E [R3

4

]
− E

[
R4

4

]∣∣
= 2 |p1 + p4 − 1|+ 2 |p2 − p1|+ 2 |p3 − p2|+ 2 |p4 − p3| .

(34)

Table 4 presents the observed values of p̂1, p̂2, p̂3, p̂4 in Experiment 5 and 6, and the corresponding numbers of participants
from which these probabilities were estimated.

Table 5 shows the estimated values of D = 2 − ∆ in all our experiments. We see that contextuality is observed in
Experiments 1-4 and 5. Experiment 6, however, shows no contextuality: the negative value in the bottom row indicates
that direct influences here are all one needs to account for the results.

We evaluate statistical reliability of these results in two ways. The first way is to compute an upper bound for the
standard deviation of D̂ and use it to conservatively test the null-hypothesis D = 0 (the maximal noncontextual value)
against D > 0 (contextuality). In Experiment 6 the alternative hypotheses changes to D < 0 (noncontextuality), with
D = 0 in the null hypothesis interpreted as the infimum of contextual values. We begin by observing that each p̂i has
variance p(1−p)

Ni
≤ 1

4Ni
≤ 1

4Nmin
, where Nmin is the smallest among Ni for a given experiment, as shown in Tables 3 and
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Table 5: Estimated values of D = 2 − ∆ in Experiments 1-4 (n = 3) and 5-6 (n = 4). Positive (negative) values of D
indicate contextuality (resp., noncontextuality).

1. Meals 2. Clothes 3. Presents 4. Exercises 5. Directions 6. Colored figures

D̂ = 2− ∆̂ 1.361 1.440 1.548 1.223 0.758 −0.984

Table 6: Statistical significance of contextuality in Experiment 1-5 and of noncontextuality in Experiment 6.
Experiment: 1. Meals 2. Clothes 3. Presents 4. Exercises 5. Directions 6. Colored

D̂ = 2− ∆̂ 1.361 1.440 1.548 1.223 0.758 −0.984
Nmin 2050 1996 2052 2024 1504 1482

Upper bound for st. dev. of D̂ 0.094 0.095 0.094 0.095 0.146 0.147
Number of st. dev. from zero > 14.5 > 15.1 > 16.5 > 12.9 > 5.1 > 6.6

t-distribution p-value < 10−45 < 10−48 < 10−57 < 10−36 < 10−6 < 10−10

Chebyshev p-value < 0.005 < 0.005 < 0.004 < 0.006 < 0.038 < 0.023

4. Using the independent coupling of stochastically unrelated p̂i’s, commonly adopted in statistics, each summand in (30)
and (34) has a variance bounded by 2

Nmin
. The different summands are not independent, but the standard deviation of

the sum cannot exceed the sum of their standard deviations. This means that 3
√

2
Nmin

for Experiments 1-4 and 4
√

2
Nmin

for Experiments 5-6 are upper bounds for the standard deviation of D̂. These values are reported in Table 6. If we
assume applicability of the central limit theorem, given the very large sample sizes, the t-distribution-based p-values are
essentially zero. If we make no assumptions, the maximally conservative p-values based on Chebyshev’s inequality are
still below the conventional significance levels.

In our second statistical analysis, we computed bootstrap distributions and constructed the 99.99% bootstrap confi-
dence intervals for D from 500000 independent resamples for each context of each experiment (Davison & Hinkley, 1997).
These are presented in Figure 2. As we see, the left endpoints of the confidence intervals for experiments 1-5 are well
above zero. For experiment 6, the 99.99% bootstrap confidence interval (Fig. 2) has the right endpoint well below zero,
indicating reliable lack of contextuality.

4 Discussion
Our results confirm beyond doubt the presence of true contextuality, separated from direct influences, in simple decision
making. Compared to the “Snow Queen” experiment (Cervantes & Dzhafarov, 2018), where the paired choices belonged
to different categories (choice of characters, such as “Gerda or Troll,” was paired with the choice of characteristics, such as
“kind or evil”), in our experiments the paired choices belonged to the same category (e.g., two levels of arm exercises were
paired with two levels of leg exercises). The fact that our results are similar to those of the “Snow Queen” experiment
shows that this difference is immaterial. What is material is the design that ensures a very large value of sodd in the
contextuality criterion (24). In our experiments it was in fact the largest possible value, one equal to the rank of the cyclic
system, n. This value in all but one of our experiments was sufficient to “beat” direct influences, measured by ∆ (in the
sense that their difference exceeded n− 2). The one exception we got, with “Colored figures,” is also valuable, as it shows
that the presence of true contextuality in our experiment is an empirical finding rather than mathematical consequence
of the design: even with sodd maximal in value, direct influences may very well exceed the value of sodd− (n− 2), making
the the value of D in (24) negative.

As explained in Cervantes and Dzhafarov (2018), in much greater detail than in the present brief recap, it is important
that the design we used was between-subjects, i.e. each respondent in each experiment was assigned to a single context
only. The reason for this is that if a single respondent were asked to make pairs of choices in all three contexts (in
Experiments 1-4) or in all four contexts (in Experiments 5 and 6), it would have created an empirical joint distribution of
all the random variables in the respective systems. This would contravene the logic of CbD, in which different contexts
are mutually exclusive, and the random variables in different rows of content-context matrices are stochastically unrelated
(have no joint distribution).

One might question another aspect of our experimental design: the fact that the respondents were not allowed to con-
travene their instructions and make incorrect choices (e.g., choose two “high” options or two “low” options in Experiments
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Figure 2: Histograms of the bootstrap values of D̂ = 2− ∆̂ for Experiments 1-6. The solid vertical line indicates the
location of the observed sample value. The vertical dotted lines indicate the locations of the 99.99% bootstrap confidence
intervals.
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1-4). The main reason for this is that in a crowdsourcing experiment, with no additional information about the respon-
dents, it is difficult to understand what could lead a person not to follow the simple instructions. Ideally, one would want
to separate data due to deliberate non-compliance or disregard from “honest mistakes,” and this is impossible. In fact, it
is hard to fathom what an “honest mistake” in a situation as simple as ours might be. In the “Snow Queen” experiment
(Cervantes and Dzhafarov, 2018), where the choices were, arguably, less simple than in the present experiments, incorrect
responses were allowed, and their percentage was just over 8%. Their inclusion or exclusion did not make any difference
for analysis and conclusions.

In the opening of the paper and at the end of Section 1.2 we alluded to the interpretation of true contextuality in
terms of the “wholes” irreducible to interacting “parts.” One must not mistake this interpretation for the old adage that
“the whole is something besides the parts” (Aristotle) or, as reformulated by Kurt Koffka (1935), “the whole is something
else than the sum of its parts” (p.176). These and similar statements are not only vague, they have also been rendered
essentially meaningless by their indiscriminate application to all kinds of situations. In most of cases one has a justifiable
suspicion that what is meant is that parts interact, or that someone can discern a pattern in them. This is probably
always true when the parts are deterministic entities. In the case of random variables, however, there is a rigorous analytic
meaning of saying that the whole is different from, and indeed greater than a system of parts with all their interactions.
Random variables measuring or responding to one and the same “part” (property or stimulus) have different identities
in different “wholes” (contexts), with the difference being greater than warranted by the mere distributional differences
caused by their interactions with other elements of the “wholes.” If this sounds too philosophical to be of importance in
scientific practice, we have an example of quantum mechanics to counter this view.

Contextuality in quantum mechanics is not a predictive theory, and it is never used to derive any parts of quantum-
mechanical theory. Rather the other way around, quantum-mechanical theory is used to determine a system’s behavior,
from which it is possible to establish if the system is contextual. Thus, in the most famous example of quantum contex-
tuality, involving spins of entangled particles (Bell, 1964, 1966), the correlations between spins are computed by standard
quantum-theoretic formulas, and the results are used to establish that, for certain choices of axes along which the spins
are measured, the system is contextual. The computations themselves make no use of contextuality, nor are they being
amended in any way as a result of establishing contextuality or lack thereof. Nevertheless, the contextuality analysis
of spins of entangled particles (Bell, 1964, 1966; Clauser, Horne, Shimony, & Holt, 1969; Fine 1982), mathematically
related to a special case of our contextuality criterion (24), with n = 4 and ∆ = 0, is considered highly significant. A
prominent experimental physicist, Alain Aspect, called it “one of the profound discoveries of the [20th] century” (Aspect,
1999), and teams of experimentalists have put much effort into verifying that the quantum-mechanical predictions used
to derive it are correct (Handsteiner et al., 2017). The reason for this is, of course, that contextuality reveals something
about one of the most fundamental aspects of quantum theory: the nature of random variables used to describe quantum
phenomena. Thus, it is significant that typical systems of random variables describing classical mechanics happen to be
noncontextual, while some quantum-mechanical systems are contextual. In time it has also become clear that, in addition
to its foundational significance, quantum contextuality correlates with physical properties that can be used for practical
purposes. Physicists and computer scientists at present are beginning to pose the question of “contextuality advantage” or
“contextuality as a resource,” which is the question of whether contextuality or noncontextuality of a system can be utilized
for practical purposes. It is argued, e.g., that the degree of contextuality (a notion we have not discussed in this paper,
see Dzhafarov, Cervantes & Kujala, 2017; Kujala & Dzhafarov, 2016) is directly related to computational advantage of
quantum computing over conventional one (Abramsky, Barbosa, & Mansfield, 2017; Frembs, Roberts, & Bartlett, 2018).

Psychology shares the mandatory use of random variables with quantum physics: stochasticity of responses in most
areas of psychology is inherent, it cannot be reduced by progressively greater control of stimuli and conditions. The status
and role of contextuality therefore can be expected to be similar. The same as in quantum physics, contextuality analysis
is not a predictive model competing with other models. Thus, in constructing a model to fit our data, contextuality
analysis can help only in the trivial sense: as with any other property of the data, if contextuality or noncontextuality
of them is established, a model is to be rejected if it fails to predict this property. As an example, one could attempt
to fit our data by a model with responses being chosen from some “covertly” evoked initial responses actualized with the
aid of some conflict resolution scheme. Assume that each question q has a probability h of being “covertly” answered +1
(standing here for one of the two options), and that in a context c = (q, q′) these covert responses occur independently,
so that (+1,+1) occurs with probability hh′, (+1,−1) with probability h (1− h′) etc. If the combination of covert
responses is allowed by the instructions (e.g., West and North-West in Experiment 5, or Red and Orange in Experiment
6), they turn into observed responses; if the combination is prohibited (say, West and South-East, or Red and Blue), the
respondent randomly flips one of the two responses, say, with probability 1/2. Then the observed probability of choosing
an allowed combination (+1,−1) is computed as h (1− h′) + hh′/2 + (1− h) (1− h′) /2. This model can be shown to
predict that a system in our experiments is contextual, but it is incompatible with the noncontextuality in Experiment
6. This was only one example, however. Simple models that can predict both contextual and noncontextual outcomes
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in our experiments can be readily constructed, because all one has to predict are three probabilities (p1, p2, p3) in (27)
for Experiments 1-4, and four probabilities (p1, p2, p3, p4) in (31) for Experiments 5-6. Consider, e.g., a model with eight
triples (+1,+1,+1) , (+1,+1,−1) , . . . , (−1,−1,−1), mental states evoked with certain probabilities, with the following
decision rule: if the context is (qi, qj), i, j = 1, 2, 3 and the mental state contains ri (+1 or −1) and rj (+1 or −1) in
the ith and jth positions, respectively, then respond (ri, rj) if this response combination is allowable; if the combination
is forbidden, choose one of the allowable combinations with probability 1/2. The model has 7 free parameters, and it
can fit (p1, p2, p3) in Experiments 1-4 precisely. For Experiments 5 and 6, the eight triples have to be replaced with
16 quadruples. We need not get into discussing such models here: it was not a purpose of our experiments to achieve
a deeper understanding of how someone chooses to eat soup and beans over burger and salad. Rather our aim was to
capitalize on the psychological transparency and modeling simplicity of such choices to firmly establish that “quantum-
like” contextuality can be observed outside quantum physics, in human behavior. Recall that many previous attempts
to demonstrate behavioral contextuality have failed, so our paper is only one of the first two steps (the other one being
the “Snow Queen” experiment in Cervantes & Dzhafarov, 2018) on the path of identifying contextual systems in human
behavior.

Thinking by analogy with the “contextuality advantage” mentioned above, can we, at this early stage of exploration,
point out any properties of human behavior as correlating with or being indicated by contextuality? One obvious fact
is that in our experiments contextuality is negatively related to the value of ∆, the amount of direct influences. Lack
of direct influences means that the probability of choosing a particular option, say, burger, is the same irrespective of
what context this option is included in (e.g., whether the plain skirt is chosen in the skirt-blouse combination or in the
jacket-skirt one). The lack of direct influences would result in the maximal possible value of D = 2. This simplicity,
however, is specific to our design, in which sodd function does not vary. For a more general class of systems of random
variables, one cannot simply replace contextuality with a measure inversely related to the amount of direct influences
(we even have examples when the two are synergistic rather than antagonistic). Another dimension of human behavior
that can be related to contextuality can be called the degree of “similarity” or “unanimity” of decisions across pools of
respondents, or across repeated responses by the same person when a within-subject design is possible (as in Cervantes
& Dzhafarov, 2017a, b, and Zhang & Dzhafarov, 2017). Consider, e.g., one of our Experiments 1-4, and assume that
the respondents agreed among themselves on what option to choose in each context. The system then would become
deterministic and noncontextual, with D = −4 or D = 0, depending on the pattern of choices agreed upon. Small
deviations from an agreed-on pattern would result in small deviations from the corresponding values of D. On the other
extreme we have maximal diversity, when in each context the opposite options are chosen with equal probabilities. In
this case the system would reach the maximal possible degree of contextuality. Again, it is not possible to simply replace
contextuality with some measure of unanimity, such as variance: the maximal value of contextuality can also be achieved
without maximal diversity of responses, and “deep noncontextuality,” with D between −4 and 0, can be achieved with
non-deterministic systems. With due caution, one can conjecture that the degree of (non)contextuality, for a given format
of the content-context matrix, may reflect a combination of the two dimensions mentioned: (in)consistency of choices
across contexts (reflecting the amount of direct influences) and unanimity/diversity of choices made in each context across
a pool of respondents or repeated in a within-subject design (reflecting the amount of determinism/stochasticity). We
will not know if this or other relations of contextuality to various aspects of behavior can be established until we broaden
our knowledge of the degree of (non)contextuality to a much larger class of behavioral systems.
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