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Observers reacted to the change in the movement of a random-dot field whose initial velocity,
Vo, was constant for a random period and then switched abruptly toanother value, V

1
. The two

movements, both horizontally oriented, were either in the same direction (speed increments or
decrements), or in the opposite direction but equal in speed (direction reversals). One ofthe two
velocities, V

0
or V

1
, could be zero (motion onset and offset, respectively). in the range of speeds

used, 0-16 deg/sec (dps), the meanreaction time (MRT) for a given value ofV
0

depended on V,— V
0
I

only: MRT r + c(Vo)/I V,— V
0~

,where ~3
= 2/3, r is a velocity-independent component of MRT,

and c(V
0

) is a parameter whose value is constant for low values of V
0

(0—4 dps), and increases
beginning with some value of ITo between 4 and 8 dps. Theseand other data reviewed in the paper
are accounted for by a model in which the time-position function of a moving target is encoded
by mass activation of a network of Reichardt-type encoders. Motion-onset detection (V

0
= 0) is

achieved by weighted temporal summation of the outputs of this network, the weights assigned
to activated encoders being proportional to their squared spatial spans. By means of a “subtrac-
tive normalization,” the visual system effectively reduces the detection of velocity changes (a
change from V

0
to V) to the detection of motion onset (a change from 0 to V1 — V

0
). Subtractive

normalization operates by readjustment of weights: the weights of all encoders are amplified or
attenuated depending on their spatial spans, temporal spans, andthe initial velocity V

0
. Assign-

ment of weights and weighted temporal summation are thought of as special-purpose computa-
tions performed on the dynamic array of activations in the motion-encoding network, without
affecting the activations themselves.

In this paper, we propose a possible mechanism by which
the human visual system detects changes in the fronto-
parallel movement of a visual target. The term mechanism
is understood here as a computational algorithm im-
plementedon a quasi-neuronal networkof elementary mo-
tion encoders. We propose to treatencoding of visualmo-
tion and detection of motion changes as two distinctly
different parts of the computational algorithm. We con-
sider motion encoding to be a general-purpose computa-
tion that is (relatively) task independent, whose outcome
is a dynamic array of elementarY activations represent-
ing the time-position function of a moving target. In our
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model, the time-position function is represented by pairs
of spatial positions occupied by a fixed point on the mov-
ing target at different pairs oftime moments. The dynamic
array of elementary activations contains sufficiently rich
information about the encoded motion so that specific
questions about the motion can be answered by means of
special-purpose (task-specific) computations performed
on the outputs of the encoding network. Such questions
include, among others, ‘‘Has the target moved at all?”
and “Has it changed its speed or direction?” In our model,
the special-purpose computation involved in the detection
of motion changes is a particular form of weighted sum-
mation (averaging) of the elementary activations across
the network: the weights assigned to different elementary
encoders depend on the initial movement whose changes
are to be detected. The notion of special-purpose detec-
tion computationsperformed on the array of primary en-
coders is close, but not identical to, the notion of fast-
learning task-specific visual modules recently proposed
by Poggio, Fahle, and Edelman (1992).
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734 DZHAFAROV, SEKULER, AND ALLIK

We studied movement changes that included the begin-
fling of a movement following a period of rest (motion
onset), cessation of a movement (motion offset), and
changes in motion direction or speed (direction reversals,
speed decrements, and speed increments). The scope of
our analysis is restricted to one class of moving patterns,
namely, high-contrast (well above contrast threshold) spa-
tially localized luminance perturbations (such as a single
dot, a thin line, or a random-dot field) that move rigidly
along a single straight line, with no changes occurring
ineither the pattern itself or its background. The pattern’s
motion then is uniquely determined by a function relat-
ing the unidimensional position x of any point taken on
the moving pattern to time: x = x(t). We studied the de-
tection of motion changes by means of the simple reac-
tion time (RT) paradigm: observers responded by press-
ing a key “as rapidly as possible” as soon as any change
in the initial movement (or rest) of a target was detected.
Consequently, we were concerned not only with the out-
come of the hypothetical visual computations, but also
with the time course of these computations.

In our experiments, a target moved with a constant
velocity, V

0
, which abruptly changed to another value,

V1, after a certain period of time that was longer than
1 sec. We denote this stimulus paradigm schematically
as V

0
t—°V

1
t. Either of the two V values may be zero; for

example, motion-onset stimulus corresponds to 0—* Vt.
The detection mechanism proposed, however, is applica-
ble to a broader class of motion changes, also generically
referred to as changes in motion velocity. Namely, de-
tectability and detection-time predictions can be derived
from our model for changes from a uniform rectilinear
motion (or rest), V0t, to a movement described by any
time-position function, x(t), as shown in Figure 1. For
example, a criticalpart of our discussion of motion-onset

decrement

~~::edment

Figure 1. Left panels: Unidimensional spatial position (x) of a tar-
get versus time (t) in velocity-change detection (bottom) and, as a
special case, in motion-onset detection (top). The period of rest or
uniform motion precedingt 0 is assumed to last indefinitely. Right
panel: The five velocity-change types studied in our experiments:
motion onset (V

0
= 0); motion offset (V

1
= 0); speed increment

(V
0

< Vi); speed decrement (V
0

> V
1
); and direction reversal (V

0
=

-V,).

detection relates the 0—*V1t stimulus to the situation in
which visual motion is created by a single instantaneous
shift in the target position: 0—°A(a step-function motion
of amplitude A).

Motion-onset detectian occupies a special place among
other velocity changes: according to the model proposed,
detection of a velocity change, V

0
t—°x(t), is realized by

visual computations of essentially the same structure as
detection of the motion onset 0—*x(t) — V0t. In other
words, when confronted with the need to detect a change
from a uniform motion V0t to another motion, x(t), the
detection system effectively subtracts the initial uniform
motion from the ongoing motion, x(t) — 17

0t, thereby re-
ducing the task to that of motion-onset detection. In terms
of the proposed mechanism, this subtraction is achieved
by readjustments of the weights with which the elemen-
tary encoding activations are summated.

In velocity-change detection, the existence of an al-
gorithm effectively subtracting the initial uniform motion
from the ongoing motion is suggested by the findings of
A. B. Sekuler, E. B. Sekuler, and R. Sekuler (1990), who
studied reaction times to 300 changes in direction of mo-
tion, with speed held constant. It was shown in their ex-
periments that the mean RT to such changes is not influ-
enced by uncertainty about the initial direction (i.e., by
the number and range of possible initial directions), pro-
vided that the initial motion lasts longer than about
0.5 sec. For shorter durations, the mean RT was shown
to increase with uncertainty about the initial direction. It
was suggested, therefore, that within the period of about
0.5 sec, the motion-processing system learns to subtract
the initial motion vector from the ongoing motion, that
is, to take the initial vector for a new origin (zero, or
“norm of rest”) in the space of velocity vectors. Accord-
ingly, this process was termed the normalization (ofvisual
motion in detection of velocity changes); subtractive
normalization is more specific, and this is the term we
use in this paper.

Assuming that a computational mechanism for motion-
onset detection is established, one can think of three pos-
siblemechanisms for subtractive normalization. The first
possibility is the one we elaborate on in this paper: sub-
tractive normalization occurs on the level of special-
purpose computations performed on the activation output
of the motion-encoding network. As mentioned earlier,
we propose that this is achieved by readjustments of the
weights with which elementary activations are summated
in the detection computations, without affecting the acti-
vations themselves. The second possibility is that subtrac-
tive normalization is a sensory adaptation phenomenon,
that is, a selective transformation of the activation pat-
tern in the encoding network (e.g., self-inhibition of ac-
tivated units). We will argue against the sensory adapta-
tion interpretation in the concluding part of our discussion
of the normalization mechanisms. The third possibility
that one can think of a priori offers a simple mechanistic
alternative to computational considerations: detection of
the change V0t—~x(t)is reduced to that of 0—*x(t) — J7~t
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by “aftertracking” eye movements. The assumptions be-
hind this third possibility are (1) that motion-onset-detection
computations are performed in retinal rather than exter-
nal coordinates; (2) that the observers pursue the mov-
ing patterns smoothly and accurately (which is notusual,
unless they are specifically instructed to pursue; see
Hallett, 1986, and Kowler, 1990); and (3) that the initial
tracking velocity is maintained for a sufficiently long pe-
riod after the velocity has changed. Empirical evidence
indeed exists (Lightstone, 1973, cited in Hallett, 1986;
Mitrani & Dimitrov, 1978; Mitrani, Dimitrov, Yakimoff,
& Mateeff, 1979; Whittaker & Eaholtz, 1982) that smooth
pursuit continues for several hundred milliseconds after
the object being tracked suddenly disappears, stops, or
reverses motion direction (the “aftertracking” or “over-
pursuit” phenomenon).

The simplest test of the aftertracking hypothesis (and
of the relevance of the pursuit eye movements in general)
is to ask the subject to maintain steady fixation and tomon-
itor the eye movements, discarding all trials when the eyes
move. This is precisely what was done in one of the ex-
periments reported in A. B. Sekuler et al. (1990); they
found essentially the same course of the normalization pro-
cess (RT dependence on duration and range of the initial
motion directions) under steady fixation as they didunder
free looking. If aftertracking were the major, or “natu-
ral” mechanism for solving the velocity-change-detection
task, one would expect that the RT pattern would be dis-
rupted under steady fixation, or at least that the RTs would
be lengthened (as the observer would have to relearn the
task by different means). The actual data show, if any-
thing, that RTs under steady fixation are somewhat shorter.
(Onecould suggest that the aftertracking hypothesis could
be saved by replacing the eye movements with a “mov-
ing attentional focus.” This interpretation cannot be dis-
missed by our analysis, except that the computational al-
gorithm we propose can be viewed, if one so wishes, as
the mechanism by which the visual system realizes the
“moving attentional focus.”)

Subtractive Normalization as a Descriptive Term
We operationally define the concept of subtractive nor-

malization as a particular dependence of RT on velocity
changes. As mentioned earlier, the observers in our ex-
periments responded by pressing a key as soon as possi-
ble following a detected velocity change, V

0
t—~V

1
t. All

other stimulus parameters were either held constant or
counterbalanced across different values of V0 and V~(e.g.,
luminance/contrast values, duration of the initial phase,
spatial patternof the target, etc.). Consequently, RTcan
be viewed as determined by the time-position function
only, which in turn is determined by the values of V

0
and

V
1
: RT = RT (J”~,V1). (These and subsequent boldface

symbols indicate quantities that are random variables.)
Consider first the motion-onset-detection task, when
V

0
= 0. Then, RT = RT (V), where V = V~.A tradi-

tional way to analyze this situation involves two logical

steps (see Dzhafarov, 1992, for detailed discussion; see
Luce, 1986, for a review).

First, RT as a function of V is additively decomposed
into two components, a velocity-dependent component D,
and a velocity-independent component R:

RT(V) = F(V) + R, (1)

The velocity-independent component includes not only
motor-execution time, but also all sensory and sensory-
motorcomponents whose distributions do not change with
V. The value of D (stochastically) decreases with increas-
ing V; indeed, this is well known to hold for RT as a whole
(Ball & R. Sekuler, 1980; Tynan & R. Sekuler, 1982),
and by definition, R plays no role in any systematic change
of RT as a function of V.

Second, some mechanism or computational rule is pos-
tulated, whose output determines the detectability level,
or “perceptual salience,” of motion as a function of V.
To account for RTs, this output value should be thought
of as developing in physical time, continuously or as a
step function. The simplest detection rule then defines D
as the period between motion onset and the moment when
the developing output value exceeds a certain critical level
for the first time. As shown in Dzhafarov (1993), the out-
put can always be considered a deterministic process (de-
pending on V), whereas the critical value, termed the
“criterion,” is a random variable, C, whose distribution
does not depend on V. The component D, therefore, can
always be presented as a deterministic function D(V, C)
of two arguments: velocity V itself and a V-independent
random criterion C. Equation 1 can now be rewritten as

RT(V) = D(V, C) + R. (2)

Once the function D(V, C) is known, the equation uniquely
specifies the dependence of RT on V for any two given
values of C and R. The equation does not, however, spec-
ify the distributions of these values, nor does it exclude
the possibility that these distributions may change if one
changes stimulation parameters other than V (e.g., size of
the moving dots, adaptation to a previously presented mo-
tion) or task parameters(e - g., speed-accuracy emphasis).

To be less abstract, consider the following model of
motion-onset detection (Bonnet, 1977, 1982; Cohen &
Bonnet, 1972; Johnson& Leibowitz, 1976; for applications
to the RT paradigm, see Ball & R. Sekuler, 1980; Tros-
cianko &Fahle, 1988; Tynan & R. Sekuler, 1982). In this
so-called critical-distance model, the velocity-dependent
component D is simply the period within which a moving
dot traverses some critical distance. Denoting this distance
by C, we have the following special case of Equation 2:

RT(V) = CIVI’ + R.

Forany given values ofC and R, the model uniquely speci-
fies the dependence of RT on V: a power function with
the exponent of —1. Assuming this model, we say that
visual motion is subtractively normalized in detection of
velocity changes, V

0
t—*V

1
t, if
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RT(VO, V
1

) = C1V1_V01t + R.

In the general case (Equation 2), one has a subtractive
normalization if

RT(VO, V
1

) = D(V-V0, C) + R, (3)

where the distributions of C and R may depend on task
and stimulation parameters, but not on the value of V

1
.

Given that all such parameters are the same for both
motion-onset stimuli (V0 = 0) and velocity-change stim-
uli (V

0
> 0), the only parameter that may systematically

influence the distributions of C and R is the value of V
0

(and/or parameters confounded with V0, such as the time
it takes a single dot to traverse a fixed distance):

C = C(V0) and R = R(V0). (4)

Notice that for detection of motion onset, both C and R
have been defined as velocity-independent random vari-
ables, which for detection of velocity changes translates
into their independence from V1, butnot necessarily from
V0.

Once the subtractive normalization is found, one can dis-
tinguish between its different degrees or forms. For ex-
ample, assuming that Equation 3 holds, one can speak
about a strong subtractive normalization ifR does not de-
pend on V0, that is, if its distribution is the same for both
motion-onsetdetection and velocity-change detection. In
this case, R is a “pure delay” with respect to the prin-
cipal variables of the task; it does not depend on either
velocity, V

0
or V1. Recall that R includes sensory and

sensory-motor subcomponents, in addition to motor-
execution time. A subtractive normalization, therefore, is
not guaranteed to be strong. Finally, if neither C nor R
exhibit a dependence on V

0
, one can say that subtractive

normalization is complete. In this case, the RT distribu-
tions are the same for all (1”~,V

1
) pairs with the same dif-

ference V = V1—V0.
All these definitions can be trivially generalized to the

detection of V0t—*x(t), where x(t) is not necessarily a uni-
form motion, V1 t. We do not do this here, because Equa-
tions 1-4 are all we needtoanalyze our experimental data.
In fact, we only use a weak version of these formulas, with
RT distributions being characterized by their mean values
only. Forbrevity, however, in most instances we will con-
tinue to speak of a subtractive normalization instead of
using the more rigorous term “subtractive normalization
in the mean.”

METHOD

Procedure
The display consisted of 200 spatially random, bright dots pre-

sented under computer control on a large,dim x-ycathode-ray tube
screen (HewlettPackard Model 132 lA, with P-3 1 phosphor). The
background luminance was about 1.5 cd/m

2
. The dots were 6’ of

arc in diameter, and dot—background contrast was set at four to five
times threshold. At the start ofeach trial, the dots appeared and simul-
taneously began moving inside a 16°-diamcircular aperture. The
dots moved horizontally in a fixed spatial phase along parallel paths.
When a dot reached the edgeof the display, it wrapped around, reap-

pearing sometime later at the opposite edge. The dots’ velocity was
controlled by the size of steps, or displacements, from one frame
to the next, keeping frame rate constant at 100 Hz, A new set of
spatially random dots was generated on each trial. The display was
viewed binocularly with the observer’s head steadied in a chinrest.
No fixation point was used, and no specifics as to how to view the
display were given in the instructions.

The experiment consisted of 35 different conditions, each cor-
responding to one velocity pair, (J’, V). They were tested one at
a time in blocks of 50 trials. Over the entire study, each condition
was tested on threedifferent occasions, yielding a total of ISO trials
per condition. The duration of the V

0
phase varied according to a

uniform distribution ranging from 1 to 2 sec. Trials were initiated
by the observer.

In 30 conditions, movement during both phases, 1’~,and V, was
in a rightward direction. In all these conditions, the subject reacted
to a change in speed only. Velocity pairs were chosen from the set
of0 (stationary dots), 1,2, 4, 8, and 16 deg/sec (dps), with the con-
straint that the two velocities in a condition could not be the same.

In the remaining five conditions, speeds during both phases were
the same. In these conditions, rightward motion during the foreperiod
changed abruptly to leftward motion, with the same speed. In all
these conditions, the subject reacted to a change in direction only.
Speeds were 1, 2, 4, 8, and 16 dps.

In addition, we carried out an auxiliary experiment in order to
find out whether any of the obtained results could be specifically
associated with our choice of the number of dots in the display—
200. This experiment consisted of 39 different conditions, each cor-
responding to 1 of 13 velocity pairs (V~,V

1
),and one of three dot

densities: 50, 100, or 200 dots per screen. A subset of the velocity
pairs used in the main experiment was used here: (0,1), (0,4), (0,16);
(1,8); (2,1); (4,0), (4,16), (4,—4); (8,4); and (16,0), (16,1), (16,2),
(16,—16), where the minus sign indicates leftward motion. In all
other respects, the auxiliary experiment was identical to the main one.

In both the main and auxiliary experiments, mean RTs werecalcu-
lated after discarding RTs below 100 msec or greater than 1,000 nisec.
The number ofdiscarded trials was fairly constant for all conditions,
and constituted less than 5 9f of trials.

Subjects
One of the observers in the main experiment was an author of this

report (R.W.S.); the other observer (J.F.) was naive with respect
to the purposes ofthe study. A third observer (J .L.M.), also naive,
served in the auxiliary experiment.

RESULTS

Ordinal-Level Analysis
Figure 2 shows the mean RT (MRT) plotted against the

values of V
1
— V

0
. For ease of interpretation, the data for

different values of V
0

are shown in separate panels. The
theoretical curves are fitted to the MRTs averaged over
Observers J.F. and R.W.S.; the curves are discussed be-
low, but they may be used at this stage as visual aids for
determining relative positions of the data points. The
curves are shown separately inFigure 3A; the lower curve
is the one used to fit the data for V0 = 0, 1, 2, and 4 dps
inFigure 2 (the same curve for all four data sets), the mid-
dle and upper curves of Figure 3A are used to fit the data
for V

0
= 8 and 16 dps, respectively. Keeping these prop-

erties ofthe curves in mind, one can notice the following
characteristics of the data shown in Figure 2.

1. For a given V
0
, MRT decreases as the difference be-

tween V
1

and V
0

increases in either direction.
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Figure 2. Mean RT as a function of V
1
— Vo for Observers J.F. and R.W.S. Six panels correspond to six different values of V

0
. In

the panels for V
0
�r 0, speed-increment data form the right branches of the curves; direction-reversal data are the leftmost points in

each panel; motion-offset data are the points corresponding to the abscissa value of — V
0

(marked by arrows); and the rest of the left
branches are formed by speed-decrement data. The left branch for the motion-onset data (V

0
= 0) is shown for uniformity. The theoret-

ical curves are presented separately in Figure 3. They are fitted to MRT values averaged over the 2 observers: mean quadratic approxi-
mation error is 6.9 msec; SEM 3.4 msec.
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Figure 3. (A) The theoretical curves of Figure 2: MRT = r +

c(V
0
) V

1
— Vo 2/3, with r = 197 msec, c(0) = c(1) = c(2) = c(4) =

0.115, c(8) = 0.187, c(16) = 0.287 (sec
4
’
3
deg

213
). (B) The mean qua-

dratic error of approximation for the MRTs of Figure 2 by
r + c(V

0
) V

5
— V

0
~ with different values of~,under the restric-

tion c(0) = c(1) = c(2) = c(
4
).

2. In ordering the various MRT values for a given V0,
only absolute values of velocity difference matter, V

1
—

V0 , irrespective of whether they represent speed incre-
ments (right branches), speed decrements (left branches),
direction reversals (the leftmost data points ineach panel),
motion onsets (the panel for V

0
= 0), or motion offsets

(the points corresponding to the abscissa value of — ~ in

each panel). The Wilcoxon two-group test applied to the
MRT pairs corresponding toequal decrements and incre-
ments from a common F~value (e.g., [4,0] vs. [4,8] dps)
reveals no systematic difference between them (two-sided
p = .89, n = 2 observers x 4 pairs = 8). At the same
time, the Goodman-Kruskal gamma for the association of
MRT with I V

1
— V

0
, computed separately for six different

V
0
values and 2 observers, is —1 in 10 out of 12 cases (one-

sidedp = .001 in 6x5 association, and for V0 = 0, p =

008 in 5 X 5 association). The two exceptions are Ob-
server R.W.S., V0 = = —O.86,p = .008, one in-
version in 6x5 association) and V0 = 16 (-y = —0.73,
p = .014, two inversions in 6x5 association).

3. For a given value of V1—V01, MRT increases as
V0 increases from some value above4 dps. No such trend
is discernible for V0 values between 0 and 4 dps; within
this range, MRT is solely determined by V~— V

0
(the

Goodman-Kruskal gamma between MRT and V1 — V0
computed over this range is —0.96 for J.F. and —0.94
for R.W.S., p = .000, 23x11 association).

The scatterplot in Figure 4 presents the results of the
auxiliary experiment, in which we varied the number of
dots in the display. MRT values corresponding to the same
(V

0
, V

1
) values but different numbers of dots (200, 100,

and 50) are plottedagainst each other pairwise. The verti-
cal axes have been shifted with respect to each other for
better readability. Any differences due to different num-
bers of dots are reflected in deviations of the data from
the identity lines (the expected loci of data points if MRT

M RT
(msec)

450

400 -

350 -

250 -

200

200

200
200 250 300 350 400 450

M RT (msec)

Figure 4. Mean RTs for 200-, 100-, and 50-dot displays plotted
against each other. Each symbol represents MRTs corresponding
to the same velocity pair but two different numbers of dots (Ob-
server J.L.M.). The graphs are vertically shifted with respect to each
other by 50-msec steps. The theoretical lines are unit slope zero in-
tercept identity lines.
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-32 -24 -16 -8 8
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16 24
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did not differ at all with number of dots). Clearly there
are no large systematic deviations, although the MRTs for
50 dots (MRTIO) do show a tendency to exceed the cor-
responding MRT100 and MRT200 (the Friedman rank sums
are, respectively, 34.5, 22.5, and 21 ma 13 x3 table,p =

.015). This effect, however, is very small, as can be seen
from the fact that lowering MRT50 values by only 2 or
3 msec would result in incrementing the Friedman testp
value to .125 and .232, respectively. The mean quadratic
deviation of the MRTs from the corresponding values of
(MRTS0O + MRT100+ MRT50)/3 is 6.0 msec. We conclude
that the large change from 50 to 200 dots has a remarka-
bly small effect on MRT. Therefore, our principle results
do not seem to be restricted to the particular number of
moving dots used in the main experiment.

Quantitative Analysis
The ordinal-scale propertiesof the data discussed in the

preceding section are simple consequences ofthe fact that
the data can be well approximatedby the theoretical curves
shown in Figure 3A. For reasons that will be clear from
the following text, the approximation was first sought for
the motion-onset data (V0 = 0) in the form

MRT(0, V) = r + cIVI’3,
where r is the mean value of R in Equation 1 (the velocity-
independent component of RT), and c is a positive con-
stant that can be interpreted as the mean value of the de-
tection criterion. This formula is compatible with the fol-
lowing special form of Equation 1:

RT(V) =f(C)IVI’3 + R,

where f(C) is an arbitrary function. We found that virtu-
ally perfect approximation can be achieved when fi is set
very close to —2/3, r close to 0.2 sec, and c close to 0.1
(note that given ~ = —2/3, c is measured in sect13deg23).

We found further that MRTs for V0 = 1-, 2-, and 4-dps
velocity changes fall on the same curve when plotted
against V = V

1
—V

0
:

MRT(V0, V1) = r + cIV1—VoI~,
where r, c, and f3 are as above. In this range of V0, there-
fore, there appears to be a complete subtractive normal-
ization (in the mean).

The MRT values for 17~= 8 and 16 dps fall above the
curve just described, but they still can be reasonably well
approximated by Equation 6 with the same values of~i3(=
—2/3) and r (= 0.2 sec) but higher values of c (about 0.2
and 0.3 sec”3deg213 for 8 and 16 dps, respectively). Com-
bining the results for all V

0
values used, we conclude that

(in the mean) there is a strong subtractive normalization
in detection of velocity changes, but that overall the
normalization is not complete.

The curves shown in Figures 2 and 3A were obtained
as a result of a simultaneous approximation of all data
points by

MRT(V0, V
1

) = r + c(Vo)tV
1
—VoI~

213
,

..i... .t.. ~ +I,,e .-.s’17\ h,so th,~ e,-,-,s~ ~ fnr V

= 0, 1, 2, 4 dps. Figure 3B shows that under the same
restrictions, the quality of approximation deteriorates if
/1 = —2/3 in Equation 7 is changed in either direction.
The absolute value of the deterioration, in the range of j3
shown in Figure 3B, is rather small, however. Figure 3B,
therefore, only illustrates the optimality of choosing j3 =
— 2/3, but does not allow one to defmitively reject other
values between —1 and — 1/3. Equation 7 suggests (though
does notprove) the following special form of Equation 3:

RT(VO, V1) =f(C)j V1—V01’3 + R,

where ~3 —2/3, f(C) generally depends on V0, and R
is a V0-independent random variable.

An important characteristic of the quality of approxi-
mation provided by Equation 7 is that a variety of more
general models, ofwhich Equation 7 is a special case, yield
only negligible gain in fit. For example, models in which
both c and r are allowed to depend on V0, or in which
IV1_V0 is replaced with I V/°—sgn(V

0
)iVo~°’j~,and other

reasonable generalizations ‘wetried, reduced the quadratic
approximation error by less than 0.5 msec. The values of
the parameters of these more general models either con-
verge to those of Equation 7 (e.g., a is set close to 1 at

(5\ the optimum), or show an obviously chaotic dependence
‘‘ onV~.’

Figure 5 demonstrates, in a format different from that
of Figure 2, the applicability of Equation 7 to the results
of our auxiliary experiment (see the preceding section and
Figure 4). One can see that all MRTs, irrespective of what
kindof change is being detected, after appropriate normal-
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Figure 5. MRT versus V
5
— V

0
in log—log plots (Iog~)for Observer

J.L.M., auxiliary experiment (the MRTs are averaged across 200-,
100-, and 50-dot displays; see Figure 4). Different symbols cor-
respond to speed increments (including motion onsets), speed dec-
rements (including motion offsets), and direction reversals. The ve-
locity pairs are identified numerically. The theoretical straight line
is log[~MRT—r)/c(V

0
)]= —(2/3)tog~V~—V

0~
,wherer = 238 msec,

c(0) = c(1) = c(2) = c(4) = 0.165, c(8) = 0.260, c(16) = 0.325
(sec”

3
deg

213
). Mean quadratic approximation error is 0.146 loge
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ization (subject to the same restrictions as above), fall on
a straight line with a slope of —2/3 when plotted against

V
1
— V

0
I in log-log coordinates.

DISCUSSION

Mechanisms of Motion-Onset Detection
Our experimental data indicate a strong subtractive nor-

malization of visualmotion in detection of velocity changes;
the visual system seems to effectively reduce this task to
that of motion-onset detection. Obviously, a theoretical
interpretation of this finding critically depends on one’s
understanding of possible mechanisms of motion-onset de-
tection. This is the subject ofthis section, in which we at-
tempt to justify the negative-exponent power function re-
latingMRT to V(Equation 5), account for the exponent’s
empiricalvalue (fi —2/3), and provide a theoretical in-
terpretation for parameter c. In accordance with our dis-
tinction between general-purpose encoding computations
and special-purpose detection computations, we begin with
a brief and admittedly simplistic discussion of the hypo-
thetical encoding network.

Since Reichardt’s (1961) work on the insect’s optomotor
system, most psychophysical models of visual motion en-
coding have beenbasedon the idea of quadruple computa-
tions: the responseof an elementary motion encoder is based
on characteristics of four luminance profiles sampled from
two spatial areas at two moments of time (see Nakayama,
1985, for a review; see also van Doom & Koenderink,
1983; van Doom, Koenderink, & van de Grind, 1984;
van Santen &Sperling, 1984, 1985). Denoting the centers
of the two areas (along the horizontal axis) by X and
X+z~.X,the sampling moments by Tand T+~T,and as-
suming that thetwo areas are identical except for the shift,
a quadruple computation is formally an operation on a 2 x 2
matrix formed by the luminance profiles corresponding
to (X, T), (X+~X, T), (X, T+~T), and (X+z~X,
T+ z~T). The parameters E~Xand ~ Tare referred to as,
respectively, the spatial span and temporal span of an en-
coder. Withoutgetting into detail, when applied to a rigid
motion ofa sharply localized pattern, many formally dif-
ferent quadruple operations (including the determinant-
type computation proposed by Reichardt) are equivalent
to the following simple rule. An encoder with spatiotem-
poral span (AX, ~ T) can only be activated if

x(t+z~T)— x(t) = (8)

where x(t) is as defined above: spatial position x at mo-
ment t of a fixed point taken on the moving target. As-
sume, as an idealization, that if an encoder with parame-
ters (AX, ~ T) exists, then thereare sufficiently many such
encoders, so that (1) the centers X of their left (or right)
spatial areas cover the visual space densely, and (2) the
luminance profiles within any such area can be sampled
at any moment T. Then the pattern shift described in Equa-
tion 8 is both sufficient and necessary for the activation
of a (AX, z~T)encoder.2

We now consider three simple schemes of motion-
detection computations that can be performed on the out-
puts of the networkof motion encoders. Wechoose these
three schemes not as a result ofa systematic or exhaustive
analysis of possibilities, but simply because they lead to
motion-detection models that have been proposed in the
literature. The descriptions of each of the models contain
further assumptions concerning the network of motion en-
coders.

A Single-Encoder Scheme 1 (the critical-distance
model). The simplest assumption one can make is that mo-
tion detection occurs if and only if at least one motion en-
coder is activated. This detection rule implies the follow-
ing. Consider a time-position functionx(t). At any moment
t, one can compute from this function the set of the
spatiotemporal distances (z~.X,~ T) for all pairs of spatio-
temporal locations the pattern has passed through before
the moment t. For example, if a pattern rests for an in-
definitely long period, and at a zero moment begins mov-
ing with a constant velocity V (the situation we had in our
motion-onset-detection trials), then t units of time later the
set of the pairwise spatiotemporal distances will contain
all (z~X,~ T) constrained by ~X Vt. Anotherexample
that will be useful for our discussion is detection of in-
stantaneous displacements. If a pattern rests for an in-
definitely longperiod, and at a zero moment shifts instan-
taneously to another position (say, A spatial units to the
right), where it stays, then t units of time later the set of
the pairwise spatiotemporal distances will consist of all
(AX, ~ T) = (A, ST). Now, if an observer fails todetect
such a motion before some moment t, then this means that
the network does notcontain motion encoders whose (z~X,
~ T) parameters match at least one of the pairwise
spatiotemporal distances in the set just described.

Suppose, for example, that the network only contains
encoders with z~X> ~Xmin (a minimum spatial span, with
no restrictions on temporal span z~T). Then x(t) will be
detected precisely atthe moment t when for the first time
x(t) — x(t—~T)= ~Xmin for some value of~T.Thus,
in the case of a uniform motion starting at a moment zero,
the detection will occur as soon as Vt = ~Xmjn. One can
recognize here a prediction of the critical-distance model,
mentioned earlier. The model provides a rather poor ac-
count of known threshold and RT data (including those
reported in this paper). It is known, for example, that the
minimumexcursionrequired to make a horizontal motion
just visible dependscritically on other kinematic parame-
ters, such as translation time for unidirectional motions
(Johnson & Scobey, 1980; Scobey & Johnson, 1981) and
waveform and frequency for oscillations (Dzhafarov & Al-
lik, 1984; Dzhafarov, Allik, Linde, & Piastolov, 1981;
Nakayama & Tyler, 1978; Tyler & Torres, 1972). When
applied to detection of instantaneous displacements, the
model predicts that no detection will occur if the displace-
ment magnitude A is less than ~Xmjn, but that detection
will be instantaneous once A exceeds L~Xmin Attempts to
modify the model in order toexclude this obviously wrong



DETECTION OF CHANGES IN SPEED AND DIRECTION OF MOTION 741

prediction (MRT is in fact a linear function ofA2, as dis-
cussed below) would probably lead to a version of the
model we consider next.

A Single-Encoder Scheme 2. This model was proposed
by van den Berg and van de Grind (1989) on the basis of
extensive research done by van Doom, Koenderink, and
van de Grind (van de Grind, Koenderink, & van Doom,
1983, 1986; van Doom & Koenderink, 1982a, 1982b,
1983, 1984). According to the model, the spatial and tem-
poral spans z~Xand ~ T, in the network of motion encoders,
are notpaired in an all-to-all fashion. Instead, for any value
of the spatial-to-temporal span ratio, v = ~oXI,~T, there
exists only one pair (AX, ~ T) with this ratio. This en-
coder is termed a detector of velocity v. Results presented
in van Doom & Koenderink (l982a, l982b, 1983, 1984)
show that the relation between (AX, ~ T) and their ratio
v can be described by two power functions,

= av~’and ~T = ave, (9)

where a is a positive constant and 13 is estimated between
—0.4 and —0.5. Equation 9 is, of course, a parametric
equivalent of the explicit formula

~T= cz~oX~, (9*)

where c is a positive constant and a = 131(13+1); hence,
its value should be estimated between —2/3 and — 1. For
applications involving detection of motion onset (a con-
stant velocity V following a period of rest), it is simpler
to use Equation 9.

The predictions concerning MRT are derived in the fol-
lowing way. (1) Assume that a motion encoder is acti-
vated only if a temporal change occurs at or close to its
first sampling moment (in van den Berg & van de Grind,
1989, this importantassumption is implicit); (2) then the
first sampling moment of the encoder tuned to V will coin-
cide with the momentofmotion onset; (3) the second sam-
pling will occur ~ T = aV~units of time later and LiX =

aV~1spatial units apart; (4) the two samples will match
and the encoder tuned to V will be activated; (5) no en-
coder with L’0T < aVa will achieve a match, and hence,
the encoder tuned to V will be the first to respond (in fact,
the only one to respond). As a result, the V-dependent
RT component will equal ~.1T= aV5, with the exponent
between —0.4 and —0.5.

This prediction provides a good account of the motion-
onset data presented in this paper (Figure 1, panel 1~= 0).
Even though the optimal exponent appears closer to — 2/3
than to —0.5 (see Figure 3B), the difference is too small
towarrant a preference judgment. Figure 6 presents some
additional data sets on MRT tomotion onset available from
threeearlier publishedpapers and one unpublishedexper-
iment. In all these cases, the optimal exponent is close to
—2/3 (surprisingly, even for Collewijn’s, 1972, data on
optokinetic nystagmus in the rabbit). The stability of this
data pattern does exclude models of the critical-distance
type (see Troscianko & Fahie, 1988, for a contrary opin-
ion). The model of van den Berg and van de Grind (1989),
however, cannot be rejected on the basis of these motion-

onset data, because the exponent of —0.5 provides an
almost equally good approxin3ation (moreover, the value
—0.4 or —0.5 for 13 in Equation 9 is an empirical esti-
mate derived from independent experiments, and one can-
not exclude the possibility that more precise measurements
could bring this value even closer to —2/3).

A more serious problem is encounteredwhen the model
is applied to detection of instantaneous shifts. Figure 7
presents MRT values plotted against the magnitude of the
shift, which is almost perfectly approximated by a power
function with the exponentof —2. This value has beenveri-
fied by a thorough analysis of RT versus magnitude of shift,
presented in Dzhafarov (1992), and it holds not only for
the means but also for all percentiles of RT distributions
that are not too close to the distribution margins. The ap-
proximation of the data in Figure 7A by a power function
with the exponent of —1 or less provides a fit that is in-
ferior to the one shown in the figure by a factor of 10 or
more (in terms of time-dimensioned mean quadratic er-
rors, see Figure 7B). The predictions of the model pro-
posed by van den Berg and van de Grind (1989) can eas-
ily be derived from Equation 9* using the same logic as
above. The predicted exponent equals a in Equation 9*;
that is, it falls between —2/3 and — 1, which is clearly un-
acceptable. There seems to be no way to improve this pre-
diction without simultaneously worsening the prediction
quality for uniform motion onset.

The model also has difficulties in accounting for the
known data on kinematic thresholds. For example, mini-
mum amplitude of oscillation required for just visibility
of a horizontal motion depends on the oscillation wave-
form (Dzhafarov & Allik, 1984; Dzhafarov et al., 1981;
Nakayama & Tyler, 1978; Tyler & Torres, 1972), con-
trary to what the model predicts. A modification of the
model that might bring it closer to such data would require
shifting the focus of the analysis from the relationship be-
tween spatial and temporal spans to temporal changes
within the sampling areas; sampling in such a modifica-
tion would have to be treated as an extended computation.
A more detailed discussion of these issues is beyond the
scope of this paper. The reason for mentioning the difficul-
tiesencounteredby the model in question is not todismiss
it, but rather to justify considering the alternative approach
to which we turn next.

A mass activation scheme. The approach is to consider
motion detection as a computation over the distributed pat-
tern ofactivations within the networkof motion encoders,
rather than as a result of activation of an encoder (or a
group of encoders)with a given spatiotemporal span. The
assumptions are that toa first approximation, all sampling
areas (defined in external rather than retinal coordinates)
are essentially identical, that they cover the visual field
densely, and that sampling within any given area occurs
within negligibly short intervals rapidly following each
other. The sampling areas are spatially interconnected in
an all-to-all fashion, or at least within a range of intercenter
distances from zero tosome large value. Moreover, each
spatial connection contains a set ofparallel lines with built-
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Figure 6. MRT to motion onset as a function of motion speed 1’, taken from previous studies. The bottom right panel represents the
optokinetic nystagmus latency in the rabbit. All data are approximated by negative-exponent power functions with the exponent of —2/3.

in delays ranging from zero to some large value. Again,
to a first approximation, the delay values densely cover
the interval just mentioned (no nonnegligible gaps between
successive delay values), and all delay values are associated
with all spatial connections. In this network, every pair
of spatial areas (say, centered at x and x+ ~ X) and every
pair of sampling moments (t and t+i~T)define one
elementary quadruplecomputation. The resultof this com-
putationwill be activation (say, Boolean 1) if and only if
Equation 8 is satisfied; otherwise, the result will be no ac-
tivation (Boolean 0). Any position-time function x(t),
therefore, at a moment twill be encoded by all (AX, ~ T)
such thatx(t) — x(t—~T)= LXX.

The elementary quadruplecomputations can be concep-
tually grouped in many different ways: by their spatial span

LiX (“spatialshift detectors”), by their temporal span z~T
(“time delay detectors”), by their spatial-to-temporal span
ratio v = z~XIL\T (“velocity detectors”), or by any other
function of (z~T, AX). There seems to be no universal,
context-independent reason for preferring one possible
conceptual grouping to another.

Underthe assumptions made, therealwayswifi be a mass
activation within the network at any moment for any mo-
tion, soa reasonable motion-detection computation should
be based on some form of temporal summation (or aver-
aging) across the activated units. In such averaging, each
quadruple computation can be taken with some weight w,
which generally may depend on its defining spatiotemporal
parameters: w = w(t, x, t+z.~.T, x+z~X),that is, the two
samplingmoments and two areas of the computation. As-
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Figure 7. MRT to instantaneous displacements versus displace-
ment magnitude, from Dzhafarov (1992). The theoretical curve in
panel A is a power function with the exponent of —2, r + cA
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Panel B shows the mean quadratic error of approximation for the
same MRTs by r + cA~with different values of ~3.

suming spatiotemporal homogeneity, the absolute coor-
dinates canbe droppedand the weight becomesa function
of the spatiotemporal span only:

w = w(~X,z~T). (10)

The result of averaging at some moment t then can be ap-

proximated by the following expression:
E(t) =

~ w(t
2

—t
1

,x
2

—x
1

)B(t
2

—ti,x
2

—xi)dt
2

dti, (11)
8—1 t1

where r is the effective duration of the summation win-
dow, and B is the Boolean value of the activation (ensur-
ing that only activated encoders are being counted). Mo-
tion is detected when this value reaches some criterion
value C, a random variable.

Dzhafarov and Allik (1984; Dzhafarov, Allik, & Linde,
1983) proposed a particularly simple form for the weight-
ing function w:

w(~X,~T) = (~X)2. (12)

The general idea is that in the set of activated encoders,
those with larger spatial spans convey more evidence for
the presence of motion than those with smaller spatial
spans. It is also natural to assume that encoders with small
spatial spans are to a greater extent false-alarm prone, for
example, due to small-amplitude involuntary eye move-
ments that have not been compensated for. Averaging in
general is an effective means for suppressing spurious ac-
tivations, but its effectiveness is enhanced by assigning
greater weights to larger spatial spans. The temporal spans
of motion encoders, according to Equation 12, are not rel-
evant provided they are within the summation window
(t, t—r).

The particular form of the monotomc dependence of w
on z~Xchosen, w(~X)= (z~X)2,directly follows from
the analysis of RT to instantaneous displacements (Dzha-
farov, 1992; see Figure 7) - As we show in the Appen-
dix, MRT in this case is approximately a linear function
of w(A)

1
, the reciprocal of the weighting function for a

spatial span equal to the displacement magnitude. MRT
is empirically shown to be a linear function of A2, so the
function w(A) has to be A2

- This result has a certain mathe-
matical appeal, because in the case of squaring, Equa-
tion 11 is simply the moving variance of the spatial posi-
tions passed through within a temporal window of length r:

E(t) = a2{x(u): t—r < u < t}. (13)

The function E(t) therefore can be appropriately termed
kinematic power. A numerical illustration of how the
kinematic power is computed from the activation pattern
of the postulated network of motion encoders in given in
Figure 8.

As mentioned above, spatial positions of the sampling
areas are assumed tobe defined inexternal rather than reti-
nal coordinates. This implies the existence of some form
of compensation for eye movements prior to the motion-
encoding network. Less than perfectcompensation will re-
sult in localization errors that will modify the kinematic
powervalues. It is shown in the Appendix, however, that
under certain assumptions, localization errors do notchange
the formal structure of the model, only C now has to be
interpreted as the difference between a random criterionand
the localization error variance (perhaps normalized by
anothernoise term; see Appendix for details). For motion
detection to occur, the kinematic power computed in ex-
ternal error-free spatial coordinates (Equation 13) has to
reach this difference value.

The model successfully accounts for kinematic thresh-
old data relating the minimum excursionrequired forjust

horizontal
location

20
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Figure 8. A discretized version of kinematic power computations
in motion-onset detection. Circles represent sevenevenly spaced sub-
fields at seven evenly spaced sampling moments. Any four circles
forming a rectangle (i.e., defined by twosampling moments, Ti and
T2, and two area centers, Xi and X2) represent one elementary
quadruple computation yielding Boolean 1 (activation), if and only
if the time-position function (shown by the thick line) passes through
its lower left and upper right corners. Horizontal dashed lines show
the reference time-position function (in this case, no motion) from
which the ongoing motion is to be distinguished. In this example,
we assume that the summation window (r) is five sampling moments
long. The tables to the right of the diagram list all activated quad-
ruples (Ti, T2, X1, X2) whose sampling moments (Ti and T2)
fall between some moment T ( 5, 6, or 7) and moment T — r =

T — 5 + 1. The bottom row shows the weights with which the acti-
vations are being summated, W = (X2 X1)2. Kinematic powerE
at moment T is the mean weight between T and T — 5 + 1, that
is, the weight total divided by the number of activated quadruples
(10 in our case).

visibility of motion to the waveform, frequency, or dura-
tion of the motion (Dzhafarov & Allik, 1984; Dzhafarov
et al., l98l).~When applied to the detection of onset of
uniform motion (constant velocity V following a period
of rest), the model predicts that MRT is a negative-
exponent power function of V, with the exponent value
of —2/3 (Equation 5; Figure 2, panel V0 = 0). A formal
derivation of this fact is given in the Appendix, where it
is also shown that c in Equation 5 representsthe mean value
of a random variable monotonically related to the crite-
rion C.

Readjustment of Weights
Mechanisms of strong subtractive normalization.

One appealing consequence of treating motion-onset de-
tection as a special-purpose computation (specifically,
weighted averaging or summation over the pattern of ac-
tivated elementary motion encoders) is that other motion-
related tasks can, in principle, be solved by simply read-
justing the weights or summation intervals while using
the same algorithm of summation (averaging). In partic-
ular, it is easy to see how the strong subtractive normal-
ization indicated by our experimentscan be computation-
ally realized in this way. The weighting function following
the V

0
phase should be readjusted tobecome (compare with

Equation 12)

where V0 is an “estimate” of V
0

computed within some
period during the V

0
phase of motion. Based on A. B.

Sekuler et al. (1990), this period could be about 0.5 sec
(see our introductory discussion).

Provided that the summation (averaging) algorithm
otherwise remains the same (Equation 11), the moving
variance of Equation 13 is transformed into

E(t, V0) — a2{x(u)_~Towt—r < u < t}. (15)

Applying this computation to the two-velocity motion,
V

0
t—o V t, and assuming that V0 1/a, one gets Equation 7

and hence accountsfor the strong subtractive normaliza-
tion. A numerical illustration of how the modified kine-
matic power is computed to detect a change in a unit-
velocity motion is given in Figure 9.

One can think of several possible computational schemes
for V0 that would be compatible with our model—we men-
tion two. A straightforward possibility follows from the
fact that by the end of the summation time r, the kinematic
power E(t), computed according to Equation 13 within the
V

0
phase, stabilizes at the level proportional to V~(see

Equation A2 in the Appendix). As a result, a normalized
square root of this value can be taken as V0. (Note that
the summation algorithm in our model, Equation 13, could
be formulated directly in terms of the moving standard
deviation of spatial positions, E(t)°

5
,rather than moving

variance. Note also that the value of the summation time,
r, has been estimated from kinematic threshold data to be
on the order of 0.5 sec; Dzhafarov & Allik, 1984;
Dzhafarov, Allik, & Linde, 1983.)Another possibility is
that V0 is computed as an average of the spatial-to-temporal
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Figure 9. A discretized version of kinematic power computations
in velocity-change detection. The network, the time-position func-
tion, and the summation window are the same as in Figure 8. The
ongoing motion is to be distinguished from a unit-velocity motion,
V

0
= 1 (time-position function shown by dashed lines). The activated

quadruples are, ofcourse, the same as in Figure 8,but the weights
here are computed by Equation 14: [(X2 —Xl) — V
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this example we assume that V
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= 1 precisely.
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span ratios, ~X0/~ T0, of the encoders activated during the
V

0
phase. The average could be computed, for example,

as the mean spatial span of the activated encoders weighted
by their temporal spans.

In our analysis of the experimental data (and in Fig-
ure 9), we haveassumed that V0 equals V0 precisely. More
realistically, however, V0 is subject to random fluctuations.
and itcould even be slightly biased with respect to the true
value of V

0
(a large bias would result in a high value of

the modified kinematic power at the end of the V0 phase,
leading to a high rate of very short and premature false
alarms, which we did notobserve in our experiments). Ad-
mitting even moderate variability in V0 would consider-
ably increase the “fitability” of our model compared with
that demonstrated in Figures 2 and 5, thereby lowering
the model’s empirical falsifiability. (The fitting procedure
itself would also change dramatically—an observation that
can be added to the comments made in Note 2.) It is for-
tunate, therefore, that the model provides a reasonable
first-order approximation without such considerations of
variability being utilized. These considerations, however,
might be necessary in order to account for the empirical
fact that the parameter c in Equation 7 increases at higher
values of V

0
.

It is shown in the Appendix that the parameter c is the
mean value of a random variable (3Cr)”3, a monotonic
function of bothcriterion (corrected for noise factors) and
summation time (the latter could also be considered a ran-
dom variable, but for simplicity we have notdone so). It
is clear then that theobserved increase in c(V

0
) that occurs

at velocities of 8 and 16 dps can be equally attributed to
an increase in the mean criterion level and an extension
of the summation time. There is no way todecide between
these two possibilities on the basis of MRT values only.
Both manipulations can counteract the effect of computa-
tional errors in weight readjustments and help to keepdis-
criminability of signal from noise constant.

A question arises: If the value of c( 1/a) is determined
primarily by the level of variability (computational error)
in setting the value of V0, then why does this level increase
at high velocities while remaining roughly constant at lower
velocities? We will briefly discuss one possible solution.

Consider a single dot that appears at one border of a
screen, moves towardanother border, and disappears when
it reaches it. In the two computational schemes mentioned,
the adjustment of V0 requires some time, which we denote
by 0. Again, for simplicity we do not consider 0 to be a
random variable. In the first scheme, based on kinematic
power, 0 cannot be less than r, the summation time for
E(t). In the second scheme, based on spatial-to-temporal
span ratios, 0 cannot be less than the maximal temporal
span in the subpopulation of motion encoders utilized in
the computation. As a result, if a velocity change, V

0
t—~V

1
t,

occurs while the moving dot is within the distance of V
0
0

from the border at which it first appeared, then the value
of V0 cannot be set equal (or close) to V0, as intended; in-
deed, the adjustment of V0 will now include a portion of
time after motion velocity has already changed to V1. For
example, in the spatial-to-temporal span ratio scheme, the

averaging will include encoders with ~X0/~ T0 equal (or
close) to V

0
, but also those with ~X0/~ T0 equal (or close)

to i”2 the same will be true for the kinematic power scheme.
Let us term such adjustmentsof V0 “defective,” as opposed
to “normal” adjustments—those that take place entirely
within the V

0
phase of motion, that is, when a velocity

change occurs after the dot has moved beyond the distance
V00.

In a multiple-dot constant-flow display, as in our exper-
iments, some proportion of dots will be within the V0Odis-
lance from their starting points at any moment of time,
irrespective of how long the movement has lasted. Figure
10 illustrates and quantifies this fact for circular displays.
The vertical axis of the graph and the shaded areas in the
diagrams could be interpreted as the proportion of “defec-
tive” adjustments of V0, if these adjustments were made
separately for different dots. Throughout this paper we
have carefully avoided, due to the lack of relevant empir-
ical information, a discussion of possible cooperative al-
gorithms pooling the results of the postulated computa-
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Figure 10. Proportion of dots associated with “defective” adjust-
ments of V

0
as a function of distance traversed within the period

of adjustment 0 (set equal to 0.5 sec) in circular display diameter
units. The theoretical curve is (co—sina)/r + (~tr—a)/1r 2V

0
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0values, shown numerically in degrees per second, for a 16°-diam
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tions across many dots. Thus, in Figures 8 and 9 the
time-position function is presented by a single line, rather
than a set of parallel lines for separate coherently moving
dots. Our model has been based on the idealized picture
in which all computations are essentially identical for all
moving dots, so that any reasonable pooling algorithm,
at whatever computational stage it takes place, would pro-
duce the same result.

Obviously, ifthe computations are essentially identical
for most rather than all moving dots, an effective pooling
algorithm that ignores the “outliers” can be easily con-
structed (e.g., by ignoring the dots that are within a cer-
tain criticaldistance from their starting positions). It is also
obvious, however, that the effectiveness of such an al-
gorithm should diminish as the proportion ofthe “outliers”
increases, as it does with increasing V0: Even if all the “out-
liers” continue to be effectively detected (which seems
very difficult, if not impossible), the level of variability
in the resultant pooled computation should increase, sim-
ply due to the shrinking proportion of the remaining
dots.This adds yet another source of noise to those con-
sidered in the Appendix for kinematic power E(t). This
additional noise, which is dependent on V0, makes it nec-
essary to adopthigher values of the parameter c for higher
initial velocities. Note that this conclusion is notbased on
specific assumptions about the pooling algorithm, includ-
ing the question of whether the pooling occurs at the
weight-assignment stage or after the kinematic powerhas
been computed for individual dots.
As an illustration only, inFigure 10 the critical distance

from the left border is set at about 0.17 diameterlengths.
This value has been chosen so that for a 16°-diamdisplay

MMRT
(msec)

200 -

= 0 deg/sec V
0

= 0 deg/sec

150 -

100 -

-32 -24 -It -0 0 0 16 24 32

— V
0

deg/sec

(as inour experiments), assuming 0 0.5 sec, the criti-
cal value of 1”~falls between 4 and 8 dps. Alternatively,
the demarcation line can be thought of as reflecting the
critical proportion of ignored dots, beyond which the rel-
ative effectiveness of pooled computations decreases. In
Figure 10, this proportion has been set at about 30%. For
smaller displays than ours, assuming the same value of
o and the same demarcation line, the critical value of V0will be lower. Thus, the speed of 4 dps in an 8.9°-diam
display corresponds to roughly the same noise level (per-
cent “defective”) as 8 dps does in a l6°-diamdisplay.
The 8.9°-diamdisplay has been chosen for the compari-
son because such a display was used in the recent work
by Hohnsbein and Mateeff(1992), which we considernext.

Hohnsbein and Mateeff (1992) measured RT to veloc-
ity changes in the movement of a random-dot field,
V0t—~V~t, with one of the two velocities equal to zero
(motion-onset detection, V0 = 0, and motion-offset detec-
tion, V1 = 0). Their experimental design was similar to
ours, with the two most important differences being that
(1) as mentioned, they used a smaller aperture (8.9° in
diameter), and (2) their observers maintained steady fix-
ation (the fixation point was located4.5°below the aper-
ture’s center). Median RTFs were arithmetically averaged
across observers and plotted against angular speed values
in the same range as ours, 0-16 dps. Hohnsbein and
Mateeff approximated the data by a power function
a +bVT, where Vstands for the nonzero speed in V0t—~V1 t,
and all threeparameters, a, b, andy, are different for mo-
tion onset and motion offset.
Our analysis of these data is shown in Figure 11 and can

be summarized as follows. (1) We first fit Equation 7 to

MMRT
(msec)
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Figure 11. Onset—offset data from Hohnsbein and Mateeff (1992) plotted in the format similar to that of Figures 2 and 3A. The vertical
axis (MIMRT) represents the means computed over median RTs for 6 observers. The curves are of the form MMRT = r + c(V

0
) V

2
— ~ 2)3, where r = 231 msec, c(0) = c(0.5) = c(l) = c(2) = 0.082, c(4) = 0.134, c(8) = 0.205, c(16) = 0.282 (sec”

3
deg

213
). The first

ofthe four curves (for V, = 0,0.5, 1,2 dps) is shown in panel A; mean quadratic approximation error is 6.0 msec. This curve is replotted
in panel B together with the three curves passing through the points corresponding to Vo = 4, 8, and 16 dps.

= 0 deg/sec V
0

= 0 deg/sec
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motion-onset data, (2) then we observe that the points rep-
resenting V0 = 0.5, 1, and 2 dps are reasonably well ap-
proximated by the same curve, but that (3) the points rep-
resenting V

0
= 4, 8, and 16 dps fall above this curve.

According to our model, these three data points lie on three
separate curves, corresponding to the same value of rand
the same exponent of —2/3 as for the rest of the data, but
to threedifferent values of c( V0). These curves do not, of
course, have any value in testing our model, but are shown
only for completeness and comparability with Figures 2
and 3. The agreement of Figure 11 with these figures is
obvious, except for the fact that the critical value of V

0
is

now lower, between 2 and 4 dps. This is, however, pre-
cisely what one should expect on the basis of the discus-
sion related to Figure 10.

The similarity between Hohnsbein and Mateeff’s (1992)
data and our present data is theoretically significant also
because it demonstrates that maintaining steady fixation
in velocity-change detection does not affect the quantita-
tive form of the relations, as compared with free look-
ing. This fact lends additional support to our assumption
that motion encoding, at least to a first approximation,
is defined in external rather than retinal coordinates. It
also agrees with the results of the experiment with moni-
tored fixation by A. B. Sekuler et al. (1990), discussed
in the introductory section of this paper.

Sensory adaptation and readjustment of weights. The
readjustment of weights in our model is not necessarily
(and probably is not de facto) a sensory adaptation phe-
nomenon, even though the latter can also be described in
similar terms. For example, Barlow (1972) discusses sen-
sory adaptation in neuronal networks as a selective am-
plification of weights related to new information and at-
tenuation of weights related to old information. The weights
in this case, however, are understood as a characteristic
of the encoding network per se: changes in these weights
lead to a transformation of the activation pattern evoked
by a given stimulus. Such changes are task nonspecific and
manifest themselves in a variety ofadaptation aftereffects.
In motion perception, these are changes in the perceived
velocity of motion (Scott, Jordan, &Powell, 1963), water-
fall illusion (Wohlgemuth, 1911), motion-specific eleva-
tion of contrast thresholds (see R. Sekuler, 1975, and
Nakayama, 1985, for reviews), and motion-specific ele-
vation of kinematic thresholds (Allik, Tepp, & Livshits,
1977; Dzhafarov & Allik, 1981).

Wehave no evidence that any of these changes took place
in our experiments. In fact, for our model to work pre-
cisely as intended, we have toassume, at least as an ideali-
zation, that the activated encoders are always determined
by Equation 8, irrespective of the immediate history of ac-
tivation. It is important to recognize that the weights in
our model are notpart of the encoding process per Se, but
only determine to what extent and which activated units
are taken into account in order to answer a partictilar ques-
tion about visual motion. In other words, the weights are
components of a special-purpose computation performed
on the dynamic array of elementary activations encoding
the time-position function of a moving target. Many such

special-purpose computations can and probably do run in
parallel, and each can utilize its own set of weights as-
sociated with one and the same dynamic array of elemen-
tary activations. The readjustment of weights, therefore,
is conceptually closer to the fast learning of Poggio et al.
(1992) than to sensory adaptation. We realize, however,
that the distinction between the general-purpose encoding
and special-purpose detection promoted in this paper may
be less than absolute, in which case there might be situa-
tions in which transient sensory adaptation would be in-
distinguishable from task-specific readjustments of sum-
mation weights.

Extended principle of the labeled line. The interpre-
tation proposed raises an epistemological question: How
does the visual system know which elementary motion en-
coders should be taken with which weights, and which
weights should be transformed to solve the velocity-
change-detection task? The answer is: By the labeled line
principle. Each motion encoder in our simplified network
is characterized by the centers of its two subfields, X and
X+ ~X, which therebybecome their “labels,” fixed values
logically assigned to the encoders by the mechanisms
receiving their outputs. (If more than one encoder is as-
sociated with a given pair of centers, Xand X+~X,then
the labels should be extended to include other fixed charac-
teristics, e.g., sizes of the subfields, sampling phase and
frequency, etc.) The mechanisms receiving (in our model,
summating) activation of the encoders, therefore, “know”
these activations by the encoders’ labels, X and X+i~X.
As a result, the manner in which a particular activation
is processed (in our model, the weight with which it is
pooled with other activations) can be based on the activa-
tion label, rather than its value per se (the latter is either
0 or 1 in our model). In detection of velocity changes, the
labels ofthe initial activations (during, say, the first 0.5 sec
of the V0 phaseof the motion) can be used by the detection
system to modify the weights with which activations are
subsequently summated.

Although widely used, the principle of the labeled line
has played a surprisingly limited role in computational
models of motion encoding and detection. According to
its usual interpretation, all the principle proposes is that
visual motion is encoded by specialized mechanisms, so
that some motion characteristics, such as direction, are
“known” from the labels of the maximally activated mech-
anisms. That is, from the point of view of a mechanism
into which the labeled encoders feed, the labels are on a
nominal scale only; the identity of a label can be picked
up, or read, but not entered as a value into subsequent com-
putations. It is not difficult to see, however, that the la-
beled line principle could accommodate labels on scales
other than nominal. Quantified labels of the encoding units
(such asX and X+~X) could enterinto the visual compu-
tations together with the units’ variable outputs. This
modification of the labeled line principle looks trivial, but
it opens new powerful possibilities.

As an abstract example, consider threeencoders, S1, S2,
and S~,feeding into another mechanism, S. Let the out-
puts of these encoders received by S be R1, 1?2, and R3 (not
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necessarily Boolean, and generally changing in time). As-
sume that the three encoders have been labeled (from the
“point of view” of S) by three spatial points with coor-
dinates X1, X2, and X3. The extended principle of the la-
beled line allows that these coordinates be directly utilized
in the computations performed by S together with the out-
puts R

1
, R

2
, R

3
. For example, the response of S can be

proportional to X~—X2 I if the outputs of the three encoders
form a certain pattern (say, R1 +R2—R3 = 1), to 1X2X3 I
if they form another pattern, and soon. The computations
in our model are, of course, much simpler, but they fol-
low the same general principle: spatial coordinates are not
present in the encoders’ outputs, but they are built into the
circuitry of the detection system (5), and determine its
input-output transformations.
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NOTES

1. We confineourselves to this descriptive characterization ofthe good-
ness of fit because the traditional lack-of-fit F statistics (testing Equa-
tiOn 7 against the hypothesis that all RT distributions are well described
by their means) would make very little sense here, for two reasons (aside
from the obvious fact that the traditional distributional assumptions, nor-
mality and homoscedasticity, aregrossly violated in the case of RT dis-
tributions). First, as shown in the Discussion sections and the Appen-
dix, the negative-exponent power functions are explicitly introduced as
only a first-order approximation to “true” functions. Second, the anal-
ysis ofthe RT distributions in terms of their moments after they have
been censored (trimmed) below and above certain values (0. 1 and I sec
in our case) is itself a crude procedure that can only be justified if the
analysis is being confined to MRT5 only (due to their robustness under
censoring). The variance values(that are necessary for computing lack-
of-fit statistics) and higher moments are sensitive to censoring and are
therefore unreliable (see DzhafaroV, 1992, for a more detailed discus-
sion of these issues; see also Ratcliff, 1979).

2. This description involves a simplifyingassumption, which we sug-
gest may be acceptable at least insofar as rigidly moving sharply local-
ized patterns are concerned. The assumption is that the luminance pro-
file characteristics are sampled by an encoder at certain moments (i.e.,
intervals whose duration is negligibly small) rather than withinextended
intervals, so that the luminance profiles are only characterized by their
spatial rather than spatiotemporal properties. Indirect evidence that this
simplification may in fact be plausible can be found in the series ofob-
servations that the visual system within a certain range ofvelocities and
exposure times can effectively preserve spatial details of a moving pat-
tern (Burr, 1980, 1981; Burr, Ross, & Morrone, 1986; Fable & Pog-
gio, 1981; Westheimer & McKee, 1975, 1977).

3. The original version of the model was termed the “local disper-
sion model,” and it contained one additional operation: smoothing of
F (t) by averaging its values acrossa large time window. Some form of
smoothing may indeed be a plausible assumption when dealing with just-
visible motion thresholds measured by the method of adjustments. In-
deed, ifE(t) reflexes the perceptual salience ofmotion, then theobserver
is compelled to adjust motion parameters so that E(t) is at some crite-
rion value on average. In the RT paradigm, however, the observer sim-
ply responds as soon as the criterion value is reached for the first time.
The averaging assumption in this case is notjustified, contrary to Allik
and Dzhafarov (1984).

APPENDIX

In this appendix we derive the approximate formulas for MRT
to onset ofuniform motion, 0—f Vt, and to instantaneous shift in

the target position: O—*A. We also briefly consider the effect of
additive and multiplicative computational errors on the detec-
tion algorIthm.

Equation 13 is equivalent to

I çt ft
E(t) = j lx(t

2
)—x(ti)l

2
dt

2
dt,2 t—r

1.1 1.1 2

= ~ [x(u)]
2
du — r ~ x(u)du . (Al)

(_7

According to the detection rule adopted in this paper, motion
detection occurs when E(t) reaches a criterion C for the first time
(C is a nonnegative random variable). If an additive localization
error E is involved, so thatx(u) in Equation Al should be replaced
with x(u)+E, then, assuming that E is independent of x and its
autocorrelation in time is close to a delta function, Equation Al
transforms into

E(t) = E(t)ideai + o2(E),

where a2(E) is the variance of F, and E(t)taeai is the value com-
puted according to Equation Al. The detection rule E(t) = C

can now be rewritten as E(t)ideal = C” — a2(E), and to prevent
false alarms, the minimum of C* should be adjusted to exceed
e
2
(E). Since thus defined C”’ — a

2
(E) is a nonnegative random

variable, it can be renamed back to C, thereby restoring the origi-
nal (error-free) formulation of the detection rule: E(t)jdeai C.
(The approximate delta-function assumption is only a mathe-
matical simplification—it can be dropped without affecting the
final computational formulas. The independence assumption is
more important: the model becomes much more flexible if E
is allowed to correlate with .x’) A multiplicative error is in-
troduced and handled analogously. If spatial shifts [x(t

2
) —x(ti)I

are matched to spatial spans ~ X with a positive multiplicative
error Em, then [x(t

2
) —x(t~)]in Equation Al should be replaced

with EmEX(tz) —x(ti)I. Under assumptions analogous to those
made above, the situation is reduced to the following redefini-
tion of the detection rule:

C*~~~a2(E)
E(t)ideai = = 2

~(Em)

where js stands for the mean value.
Applying Equation Al to the 0—~Vt stimulus,

(0 if t 0

~Vtift >0

we have

1 t 3 1 t4
(yr)

2
-~-(--~-) (~)

E(t)= 1

j~(Vr)
2

ift < r

(A2)

ift r

Equating Equation A2 to C and solving for t, one gets an ex-
pression for the velocity-dependent component D(V, C) of RT
(Equation 2). Assuming that t is very small compared with r,
we can omit in Equation A2 all powers of tlr butthe lowest, which
yields



750 DZHAFAROV, SEKULER, AND ALLIK

D(V, C) (3Cr~’
3
V

213
. (A3) D(A, C) (Cr)A

2
. (AS)

Consequently, Consequently,

MRT(V) cV~
3

+ r, MRT(A) cA
2

+ r,

where c is the mean value of (3Cr)”
3

, and r is the mean value where c now is the mean value of(Cr), and r is the mean value
of R, the velocity-independent component of RT. ofR, interpreted as the amplitude-independent component of RT.

Now applying Equation Al to the 0—~Astimulus, It is of great importance that the inverse squaring of ampli-
tude in Equation A5 and squaring of shifts in Equation Al are

0 if t o interdeducible. If one replaces the squaring operation in Equa-
x(t) tion Al with some other function w(}x(t

2
)—x(t~) ), then Equa-

A if t > 0 tion AS assumes the form

we have D(A, C) (Cr)w(AY’.

\ 2 , As a result, the operation vv( Ix(t2)—x(ti) ), that is, the weight

A
2

— if t < r assigned to encoders with the spatial span of x(t
2

) —x(t
1
) , can

E(t) = (A4) be empirically identified as squaring by showing that MRT is
indeed a linear function ofA

2
(for a detailed discussion oflineariz-

0 if t r ing transformations, see Dzhafarov, 1992).

where the second power of tir can be dropped if one assumes
tir ~ 1. Equating Equation A4 to C and solving fort, one gets
the following approximate expressions for the amplitude- (Manuscript received November 20, 1992;
dependent component D(A, C) of RT: revision accepted for publication April 30, 1993.)


