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Multidimensional Fechnerian Scaling:
Probability-Distance Hypothesis

Ehtibar N. Dzhafarov

Purdue University

The probability-distance hypothesis states that the probability with which
one stimulus is discriminated from another is a function of some subjective
distance between these stimuli. The analysis of this hypothesis within the
framework of multidimensional Fechnerian scaling yields the following
results. If the hypothetical subjective metric is internal (which means,
roughly, that the distance between two stimuli equals the infimum of the
lengths of all paths connecting them), then the underlying assumptions of
Fechnerian scaling are satisfied and the metric in question coincides with the
Fechnerian metric. Under the probability-distance hypothesis, the Fechnerian
metric exists (i.e., the underlying assumptions of Fechnerian scaling are
satisfied) if and only if the hypothetical subjective metric is internalizable,
which means, roughly, that by a certain transformation it can be made to
coincide in the small with an internal metric; and then this internal metric is
the Fechnerian metric. The specialization of these results to unidimensional
stimulus continua is closely related to the so-called Fechner problem proposed
in 1960’s as a substitute for Fechner’s original theory.  ©2001 Academic Press

INTRODUCTION

The historical origins of the probability-distance hypothesis lie in what Luce and
Edwards (1958, p. 232) refer to as “the old, famous psychological rule of thumb:
equally often noticed differences are equal, unless always or never noticed.” The
source of this formulation remains obscure. Several authors (Bock & Jones, 1968,
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p. 24; Edwards, 1957, p. 41; Guilford, 1954, p. 39) attribute it to Fullerton and
Cattell (1892), but in that paper the issue is not even mentioned.

Being applied to an n-dimensional continuous space IM™ = Re" of stimuli x =
(x!, ..., x") endowed with psychometric functions

¥, (y) =Pr [y is discriminated from x]J,

the assertion, stated less aphoristically, is as follows: There is a subjective metric
D(x, y) imposed on the stimulus space, such that

0 if D(x,y)<D,,
Y (y)={ f[D(x,y] if D.<D(x,y)<D" )
1 if D(x,y) = D*

where f is a continuously increasing function, while D, = 0, D* < o0 are two constants
(on the extended set of reals).

It should be emphasized that, unlike in Luce and Edwards (1958) and most of the
related literature, the discrimination probabilities ,(y) considered in the present
paper do not involve a semantically unidimensional subjective property (such as
“intensity,” “‘size,” or “attractiveness’’) with respect to which x and y are compared
in terms of “greater than.” Rather, whichever of the variety of suitable experimen-
tal procedures or computations is used to obtain the judgment ““y is discriminated
from x in a given trial,” the latter is interpreted as indicating that x and y do not
appear to the observer as one and the same stimulus, whatever and however many
subjective attributes their perception may involve.

If D, >0, (1) implies that each stimulus x is surrounded by a neighborhood of
stimuli, {y: D(x,y) < D,}, that can never be discriminated from x , while outside
this neighborhood every stimulus is discriminated from x with some nonzero prob-
ability (see Fig. 1). This naive version of a ‘“‘just-noticeable difference” has long
since been abandoned in psychophysics, and I rule it out in this paper by putting
D, =0.

Looking at the other end of the equation, the possibility that D* is finite and
that, consequently, all stimuli outside the spherical neighborhood {y: D(x, y) < D*}
are discriminated from x with probability 1 is debatable. Fortunately, the value of
D* makes no difference for the analysis to be presented, as this analysis only makes
use of the relationship between D(x, y) and ¥, (y) in the region of arbitrarily small
values of D(x, y).

For our purposes, therefore, one can reformulate (1) as follows: There is a metric
D(x,y) imposed on the stimulus space, such that (at least) on some interval 0 <
D(x,y) < D*< oo,

¥ (y) = FID(x, y) ], @

where f is a continuously increasing function. This statement does not say anything
about the value of Y (y) outside the interval 0 < D(x, y) < D*.
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FIG. 1. Examples of psychometric functions satisfying Eq. (1), with D* > 0 (right front) and D* =0
(left back). The functions are shown in small vicinities of their minima in a two-dimensional stimulus
space.

Following Dzhafarov and Colonius (2001), the term “metric”’ in this paper is
understood in the generalized sense of an oriented metric, which means that D(X, y)
is assumed to satisfy the properties

(positivity) x#y= D(x,y)>0
(zero-value) D(x,x)=0 3)
(triangle inequality) D(x,y)+ D(y, z) = D(x, z),

whereas the property
(symmetry)  D(x,y) = D(y, X) “4)

is treated as optional: its use is always stated separately, as an addendum to a state-
ment involving oriented metrics. The reason for this is that the symmetry property
is not an integral part of the theory of metrics we are concerned with in this paper
(the internal and internalizable metrics, as explained below). By dispensing with this
requirement in (2) one loses the unnecessarily restrictive prediction y,(y) = ¥, (x),
but hardly anything else. By the same token, if y,(y) =y,(x) is found to hold
empirically for a certain discrimination task, the symmetry can be added to the list
of the defining properties of D(x,y) with virtually no other modifications. (See
Comment 1 in the Appendix.)
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Irrespective of whether the symmetry is adopted or dropped, (2) has too little
empirical content to be interesting. As pointed out by Kiener (unpublished
manuscript), based on a more general remark by Beals, Krantz, and Tversky (1968),
if Y, (x) = const <, (y) whenever x #y, then (2) is trivially satisfied by putting, for
example,

D(x.y) {O if x=y,
X =
VT4 i x#y.

It is easy to verify that D thus defined is a (generally oriented) metric and that f
continuously increases on the the interval (0,2), which includes the range of
nonzero values of D.

There are many ways of constraining the distance D in (2) to exclude such
“pathological” constructs. The weakest constraint that suits the purposes of the
present development is as follows. Presenting y as x+us (s>0), where u=
(u', ..., u") is an arbitrary nonzero direction vector, let D(x, y) have the following
properties:

(continuity) D(x,y) is continuous in (X, y)

©)

(monotonicity) D(x, x+us) decreases to 0 with s > 0+.

Following Dzhafarov (2001), I use the term ‘“‘decreasing to zero with s -» 0+ to
designate that the function vanishes at s =0 (which in our case is automatic) and
that it strictly increases on some right-hand vicinity of s =0 (the width of which
generally depends on x, u). I call the constraint (5) imposed on the distance D the
monotonic continuity of D. In essence, it precludes the possibility that the value of
D(x,y) may jump in response to small changes in (X, y) or that it may infinitely
oscillate, alternately decreasing and increasing, as y approaches x along a straight
line. With this constraint in place, we arrive at the final formulation of the

PROBABILITY-DISTANCE HYPOTHESIS. There is a (generally oriented) monotoni-
cally continuous metric D(X,y) imposed on the stimulus space, such that (at least) on
some interval 0 < D(Xx,y) <D*< oo Eq.(2) holds with a continuously increasing
Sfunction f.

The probability-distance hypothesis is of a special interest in the context of the
general theory of multidimensional Fechnerian scaling, MDFS (Dzhafarov, 2001;
Dzhafarov & Colonius, 1999a, 1999b, 2001). In this theory the discrimination prob-
abilities ,(y) are used to compute a certain (Fechnerian) metric G(x,y) on the
stimulus space. As stated in Dzhafarov and Colonius (2001), MDFS is motivated
by an expectation (in no way, however, derivable from the theory itself) that
Fechnerian distances computed from discrimination probabilities should underlie a
variety of behavioral measurements. It is reasonable to expect then that the
psychometric functions themselves, ¥/, (y), should be first and foremost among the
behavioral measurements to be expressible as functions of Fechnerian distances
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among stimuli. In the simplest case, G(x, y) may play the role of D(x,y) in the
formulation of the probability-distance hypothesis, that is, i, (y) may be a contin-
uously increasing function of G(x, y) (that can be shown then to satisfy the mono-
tonic continuity constraint). It is also possible, however, that the dependence of
Y. (y) on Fechnerian distances is less direct. As an example, it is conceivable that
Y, (y) in certain stimulus spaces could be a function of three Fechnerian distances,
G(x,Y), G(x, 0), and G(o,y), where o is a fixed, “special” stimulus (say, the white
color in a color space).

The computation of a Fechnerian metric only depends on the shapes of the
psychometric functions in arbitrarily small vicinities of their minima, which means
that one can deform i, (y) outside such vicinities without affecting the ensuing
Fechnerian metric. As a result, the general theory of MDFS neither predicts nor
rules out any of the possible relationships between G and . A study of such rela-
tionships, therefore, can be viewed as one of the main lines in the development of
the theory of MDFS toward a network of competing empirically testable models.
This paper takes a first step in this direction by posing the following question:
Assuming that the probability-distance hypothesis is true, so that Y, (y) is a continu-
ously increasing function of a monotonically continuous metric D(X,y), what is the
relationship between this D(X,y) and the Fechnerian metric G(x,y)? In particular,
does G(x,y) have to exist (i.e., all the underlying assumptions of MDFS be
satisfied) if the probability-distance hypothesis holds true, and if G(x, y) exists does
it have to coincide with D(x, y)?

The first of the main results obtained in this paper (by a fairly straightforward
argument) is that if D(x,y) is an internal metric, then G(x,y) exists and coincides
with D(x,y). In other words, ,(y) cannot be determined by an internal metric
other than the Fechnerian one. Roughly, D(x, y) is internal if its value equals the
infimum of the lengths of all sufficiently smooth paths connecting x with y. As
discussed in Section 5, the specialization of this result to unidimensional stimulus
spaces is closely related to the so-called Fechner problem (Creelman, 1967; Falmagne,
1971; Krantz, 1971; Luce & Edwards, 1958; Luce & Galanter, 1963; Pfanzagl,
1962).

In Section 4 I introduce the concept of an internalizable metric: roughly, this is a
metric that can be monotonically transformed to coincide in the small with an
internal metric. The latter is determined uniquely, and I call it the internal conjugate
of the original, internalizable metric. The second main result obtained in this paper
is that if D(x,y) in the probability-distance hypothesis is an internalizable metric,
then the Fechnerian metric G(X, y) exists and coincides with the internal conjugate
of D(x,y).

The third main result is that if both the Fechnerian metric G(x, y) exists and the
probability-distance hypothesis holds true, then D(x, y) in this hypothesis must be
an internalizable metric, with G(x, y) being its internal conjugate.

In the presentation below I follow the notation, terminology, and rely on the
results established in Dzhafarov and Colonius (2001). A familiarity with this work
is desirable, but it is not necessary for the reader who is willing to overlook techni-
cal details.



6 EHTIBAR N. DZHAFAROV

1. IMMEDIATE CONSEQUENCES OF
THE PROBABILITY-DISTANCE HYPOTHESIS

In accordance with Dzhafarov and Colonius (1999a, 2001), the stimulus space on
which the distance function D(x,y) and the psychometric functions ,(y) are
defined is an open connected region M™ of Re” endowed with the conventional
topology (see Comment 2).' The computation of Fechnerian distances in MDFS is
contingent upon three assumptions, referred to simply as the First, Second, and the
Third Assumptions of MDFS (see Comment 3). Of these, the Third Assumption is
treated as optional, as it only serves to ensure that the Fechnerian metric G(x, y) is
symmetric. Rather than listing these assumptions here all at once, I begin by pre-
senting certain elementary consequences of the probability-distance hypothesis and
identifying these consequences as satisfying the First Assumption and (if the metric
D is symmetric) the Third Assumption of MDFS. The Second Assumption is
discussed subsequently.

Let the psychometric functions y,(y) satisfy (2), with D(x, y) satisfying (3) and
(5). The positivity and zero-value properties of D(x,y) imply that, for any given
X, ¥, (y) assumes its global minimum at y = x, that is,

X # Y = (x) <y (y). (©6)

Moreover, on putting
f(0)= lim f(D)
D—0+
and observing that

Ui (x) = yinx SID(x, ¥)]1= f(0),

we also have the following constant self-similarity property:
The value of Y, (x) is the same for all x. @)
The continuity of D(x, y) implies that
Y, (y) is continuous in (X, y), ®)
while the monotonicity implies that, for any fixed x and u,
Y, (x+us)—y,(x) decreases to zero with s > 0+. 9
The properties (6), (8), and (9) (but not the constant self-similarity property)

constitute the First Assumption of MDFS (see Comment 4). This part of the
discussion therefore can be summarized as

!'In the following, all references to numbered comments refer the reader to the Appendix.
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THEOREM 1.1. Under the probability-distance hypothesis, the First Assumption of
MDEFS is satisfied.

Assume now that D(x, y), in addition, has the property of symmetry, (4). Then

¥ (y) =¥, (%),

from which it follows, of course, that

U (xHus) =Y () _

N A (10)

On presenting ¥, ,,(X) —¥,(X) as Y, [(Xx+us)—us]—i,(x) and observing that,
by continuity,

lim l/jthus[(X'i_us) —llS] _¢x+us(x+US) _

1
50+ Y(x—us) —y(x) ’

we conclude that (10) implies

. Y (xXtus) =y (x)
Slir& Y (x—us)—y (x) L

(11

This limit statement constitutes the Third Assumption of MDFS, and we have

THEOREM 1.2. Under the probability-distance hypothesis, if D(X,y) is symmetric
then the Third Assumption of MDFS is satisfied.

2. FUNDAMENTAL THEOREM OF FECHNERIAN SCALING

Since

h =y (x+us) -y, (x)

(the quantity referred to as the psychometric differential) continuously decreases to
zero with s —» 0+, it has the inverse function

s=@_,(h), h>0,

continuously decreasing to zero with 2 — 0+ and referred to as the stimulus
differential. (®, , may be defined only below a certain A-value, depending on x, u.)
The Second Assumption of MDFS is that, for some fixed (x,, uy,) and any (x, u),
the limit ratio

e P
nos D (h)

is finite, positive, and continuous in (x, u). In other words, stimulus differentials
corresponding to equal psychometric differentials are comeasurable in the small
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(with a continuous coefficient of asymptotic proportionality). This assumption is
equivalent to the following statement, proved in Dzhafarov and Colonius (2001).
(The symbol ~ connecting two expressions indicates that they are asymptotically
equal; i.e., their ratio tends to 1.)

THEOREM 2.1 (Fundamental Theorem of MDFS). There exists a transformation
@(h), continuously decreasing to zero with h — 0+, such that, when applied to psycho-
metric differentials . (x+us) —,(x), it makes them all comeasurable in the small
with s,

DY (x+us)—y (x)]~ F(x,u) s (ass—>0+), (12)

where F(X, ) is positive and continuous.

For the purposes of the present analysis this statement is more convenient to deal
with than the (equivalent to it) formulation of the Second Assumption itself.
F(x, u) is referred to as the (Fechner—Finsler) metric function. Intuitively, it deter-
mines the Fechnerian distances G(x, x+us) between “infinitesimally close” stimuli
(as s > 0+4). For the following it is important to note that F(x, u) is determined by
(12) uniquely, and @(4) asymptotically uniquely (as # — 0+), up to multiplication
by one and the same arbitrary constant k > 0. That is, all allowable substitutions
for F(x, u) and @(#) in (12) are given by

F*(x,u) = kF(x, u),

(13)
®D*(h) ~ kd(h) (ash—0+).
(In Dzhafarov and Colonius (2001), this uniqueness statement is given as part of
the Fundamental Theorem.) The transformation @& is referred to as the global
psychometric transformation.

The properties (3) and (5) of D(x,y), with or without (4), are too general to
ensure that the statement of the Fundamental Theorem holds true under the prob-
ability-distance hypothesis. As an example, let the stimulus space be represented by
the interval (0, c0) and the metric D(x, y) be defined on this interval as

Jy—x if x<1,y<1,x<y
D(x, y) = J1=x+/y—1 if x<1,y>1
, Jy—1—-/x—1 if x>1,y>1,x<y

D(y, x) if x>y.

One can easily verify that D(x, y) satisfies all properties of the (symmetric) mono-
tonically continuous metric. Let

v.(y) = f[D(x, y)],
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with some continuously increasing function f differentiable at zero. Then, as
s— 04,

FOVus i x<1,
Y (x+us) =y (x) = f[D(x, x+us)] = f(0) ~{ £'(0)

lu| s if x>1,
2 /x—1

and it is clear that no transformation @ can make all psychometric differentials
comeasurable in the small with s (see Comment 5).

As the metric function F(x, u) (from which a Fechnerian metric is computed) is
only defined through (12), this example shows that in its general form the probability-
distance hypothesis does not imply the existence of a Fechnerian metric. The situation
changes, however, if one assumes that the monotonically continuous metric D(X, y)
is internal, or internalizable, as discussed below.

3. INTERNAL METRICS

A systematic theory of internal metrics is presented in Dzhafarov and Colonius
(2001). Here, I briefly recapitulate the aspects of this theory that are needed in the
context of the probability-distance hypothesis.

An internal metric D (generally oriented) on a stimulus space 9™ (an open
connected region of Re”) is induced by a metric function A(x, u), defined on all
pairs of x € M™, u e Re"— {0}, and satisfying the requirements

(positivity) AMx,u) >0,
(continuity) A(x, u) is continuous in (X, u), (14)

(positive Euler homogeneity) AMX, ku) = kA(x, u) for k> 0.
If, in addition, one wishes to ensure that D is symmetric, one can also posit
(symmetry) A(X, u) = A(x, —u). (15)

In this paper, however, this property is treated as optional, on a par with (4). (See
Comment 6.)

Connecting any two points x and y by a piecewise differentiable path z: [a, b] —
IMM®™, z(a) = x, z(b) =y, the (oriented) length of this path is defined as

LT = [ a0, 0] dr,

and the function D(x,y) is defined as the infimum of L[z(¢)] across all paths
leading from x to y. (See Comment 7.) Thus defined D(x,y) is automatically a
continuous distance function, that is, it satisfies the positivity, zero-value, triangle
inequality, and continuity constraints of (3) and (5). Therefore an internal metric is
monotonically continuous if and only if it satisfies the monotonicity constraint
in (5).
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An important property of an internal metric D is that D(x, x+us) is right-
differentiable at s =0+,

dD(x, x+ . D, x+ -

dD(x, x +us) — lim M:,{(X, u), (16)
ds s—04 §—0+ K

where A(x,u) is a metric function, as it satisfies all the properties in (14). In

addition, A(x, u) is (generally nonstrictly) convex, that is,

A%, up +uy) < Ax, up) +A(x, wy), (17)

for any direction vectors u,, u,. This metric function is called the min-metric function
associated with the internal metric D(x, y). If A(x, u), the original metric function
by means of which D(x,y) is obtained, is convex itself, then A(x,u) = A(x, u). If
A(x, u) is not convex, so that A(x, u) # A(x, u), A(x, u) can be used to construct a
metric, say, D(x, y), by the above described procedure of defining lengths of con-
necting paths and taking their infima. A natural question to ask is what is the rela-
tionship between this metric D, induced by A(x,u), and the original metric D,
induced by A(x, u). A remarkable property of /T(x, u) is that the two metrics coin-
cide, D=D (a proof of this fact can be found in Dzhafarov & Colonius, 2001,
where it is called the Busemann—Mayer identity). (See Comment 8.)

For a given stimulus x, the set of direction vectors u e Re”— {0} satisfying the
equality A(x, u) =1 is called the indicatrix centered at x . The closed contour of the
indicatrix, formed by the endpoints of its vectors u, is convex in the usual geometric
sense (no points of a chord connecting any its two points fall outside the contour) if
and only if A(x, u) is convex in the sense of (17). The metric function A(x, u) and the
collection of the indicatrices attached to all possible locations x determine each
other uniquely.

The Fechnerian metric G(x,y) in the theory of MDFS is an internal metric
induced by the (Fechner—Finsler) metric function

Fexu) — tim P09 901

s> 0+ S

(18)

That F(x, u) satisfies all the properties in (14) follows from the First and Second
Assumptions of MDFS. In accordance with the above described procedure,

G(x, y) = inf | " FLa(e), #(0)] dt,

the infimum being taken across all piecewise differentiable paths z(¢#) connecting
z(a) =x to z(b)=y. As F(x,u) is determined (by the psychometric functions)
uniquely up to the multiplication by a positive constant, the same uniqueness
statement holds for the Fechnerian metric G(x, y).

The indicatrices corresponding to the metric function F(x,u) (the Fechnerian
indicatrices) have a simple interpretation in terms of the shapes of the psychometric
functions ¥, (y). Refer to Fig. 2. The contours of the Fechnerian indicatrices are
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FIG. 2. A horizontal cross section of a psychometric function at a very small elevation from its
minimum level is approximately geometrically similar to the Fechnerian indicatrix attached to the point
at which the minimum is achieved.

asymptotically similar to the contours formed by horizontally (i.e., parallel to the
stimulus space) cross-sectioning the psychometric functions ,(y) at a small eleva-
tion A from their minima (as # — 0+, the geometric similarity improves). In the
general theory of MDFS the Fechnerian indicatrices (and hence the cross-section
contours just described) need not be convex, as illustrated by Fig. 2.

We are prepared now to discuss the probability-distance hypothesis under the
assumption that D(x, y) is a (monotonically continuous) internal metric, induced by
some min-metric function A(x, u). Observe first that if ¥, (y) is a continuously
increasing function of D(x,y), it is also a continuously increasing function of
kD(x,y), for any k> 0. The Fechnerian metric G(x, y), as we know, also can be
multiplied by an arbitrary positive constant. To simplify the comparison of the two
metrics, and with no loss of generality, it is convenient to agree that D(x, y) in the
probability-distance hypothesis and G(x, y), if it exists, are chosen so that

D(a,b) = G(a,b) =1

for some fixed arbitrary stimuli a, b. This allows one to speak of the Fechnerian
metric computed from a given set of psychometric functions. The metric function
F(x, u) then is also determined uniquely, while the global psychometric transfor-
mation @(#) is determined asymptotically uniquely (compare with (13)).

Since the probability-distance hypothesis implies the constant self-similarity
property, (7), the assumption (2) can be written as

D(Xs Y) = ¢[¢X(Y) _l//x(x)]a
where
p(h)=f"(h+c),  c=y(x),

is a function continuously decreasing to zero with 2 — 0+ . Then, by (16),

S =Y (0] _

1i lim
s—0+ S s—>0+

= (x, u),

D(x, x+us)
s
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where A(x, u) is continuous and positive. On eliminating the middle expression,

i S +U9) Y ()]

s> 0+ N

= A(x, u)

is the statement of the Fundamental Theorem of MDFS, with ¢ =& and 1= F.
Recalling Theorem 1.1 and (in the symmetric case) Theorem 1.2, we conclude that
all underlying assumptions of MDFS are satisfied and the Fechnerian metric
G(x,y) induced by F(x,u) = J(x, u) exists and coincides with D(x,y). We also
conclude that under the probability-distance hypothesis the Fechner—Finsler metric
function F(x,u)=A(x,u) must be convex (for 1 a min-metric function). This
completes the proof of

THEOREM 3.1. Under the probability-distance hypothesis, if D(X,Y) is an internal
metric, then

(1) the Fechnerian metric G(X,y) exists and coincides with D(X, y);
(i) the metric function F(X, w) that induces G(X,y) is convex;

(iii) the relationship (2) has the form
() =27 '[G(x, y)]+e,  0<G(x,y)<G*< oo,

where ¢ =, (x) and @ is a variant of the global psychometric transformation.

(See Comment 9.)

To put this result differently, psychometric functions cannot be determined by
any internal metric other than the Fechnerian metric; and if they are determined by
the Fechnerian metric, then their horizontal cross sections made just above their
minima have convex contours.

4. INTERNALIZABLE METRICS

I introduce now a broad generalization (to the best of my knowledge not con-
sidered in mathematics before) of the notion of an internal metric. A metric D(X, y)
on a stimulus space IMM™ is called internalizable if there exists a transformation g()
decreasing to zero with 2 — 0+ , such that

i

s—>0+

im M =6(x, u) (19)

is positive and continuous for all x € M™, ue Re"—{0}. It is easy to see that, for
any k>0,

3(x, ku) = lim g[D(x, x+ (ku) 5)] — % lim g[D(x, x+u(ks))]

s—0+ s ks— 0+ ks

=k do(x, w),

that is, d(x, u) is positive Euler homogeneous (see (14)).
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If D(x, y) is symmetric, then the continuity of both D(X, y) and g implies

5(x, —u) = lim SL2CLXUS)]
s—>0+ N
. g[D(x—us, (x—us)+us)] ..  g[D(x,x+us)]
- xl_lgl+ g[D(x, x+us)] sl_l»I(I)l+ s = o(x, ).

That is, the symmetry of D(x, y), (4), implies the symmetry of d(x, u) in the sense of
(15).

The function J4(x, u) (that may but need not be convex) thus can be viewed as a
metric function, and it induces on the stimulus space a certain internal metric,
D(x,y), that I call the internal conjugate of D(x,y). Note that D(x,y) may but
generally does not coincide with g[ D(x,y)]. The latter generally is not even a
metric.

It is easy to see that J(x, u) is determined by (19) uniquely, and g asymptotically
uniquely, up to the multiplication by one and the same arbitrary constant k > 0.
That is, all allowable substitutions for d(x, u) and g in (19) are given by

0*(x, u) =k d(x, u),
g"(D) ~ kg(D) (asD—0+).

Indeed, for any pair of functions g* and ™ that satisfy (19), one should have

Foow)_ . gD x )] g"(D)
o(x,u) s-o+ g[D(X,x+us)] bp-o+ g(D) ’

for some k > 0. This uniqueness result implies, of course, that the internal conjugate
D(x,y) of an internalizable metric D(x, y) is determined uniquely up to the multi-
plication by a positive constant.

As an example of an internalizable metric and its internal conjugate, consider a
unidimensional stimulus space represented by (0, co) and the function D(x, y) =

/|x—y|. This function can easily be checked to be a monotonically continuous

metric. It is not internal, because, as s — 0+, M — 00, contrary to (16). At the
same time,
D?(x, x+us
Q - |ul (ass—>0+),
s

which satisfies (19). Hence D(x, y) is internalizable, and its internal conjugate,
induced by 6&(x, u) =|u|, is D(x, y) =|x—y|. Another, perhaps more familiar,
example is the relationship between the Euclidean chord metric (an internalizable
metric) and the Euclidean arc metric (its internal conjugate) on any curvilinear
contour, say, a circle. In this case, the transformation g is simply the identity, and
the two metrics coincide in the small.
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Consider now the probability-distance hypothesis with D(x,y) being a (mono-
tonically continuous) internalizable metric. By the same logic as in the previous
section, it is convenient to agree that the internal conjugate D(x, y) of D(x, y) and
the Fechnerian metric G(X, y), if it exists, are chosen so that

D(a,b)=G(a,b) =1,

for some arbitrarily chosen stimuli a, b.
Now, using the same argument as in the proof of Theorem 3.1, one can rewrite
(2) as

glD(x, ¥)1 =LY (¥) — ¥ (0],

where

¢(h)=glf'(h+0)], =y (x),

is a function continuously decreasing to zero with 2 — 0+ . Then, by (19),

li li

s—>0+ S s—0+

U —Y (0] _ éM:&(x, w),

with J(x,u) positive and continuous. Eliminating the middle expression, one
obtains the statement of the Fundamental Theorem of MDFS, with ¢ =@ and
J0 = F. It follows, on recalling Theorems 1.1 and (in the case of a symmetric D) 1.2,
that the Fechnerian metric G(X, y) induced by F(x, u) = d(x, u) exists and, by defi-
nition, coincides with the internal conjugate D(x, y) of D(x, y). We have therefore

THEOREM 4.1. Under the probability-distance hypothesis, if D(X,y) is an inter-
nalizable metric, then

(i) the Fechnerian metric G(X,y) exists and coincides with the internal conju-
gate D(x, y) of D(x, ),
(ii) the relationship (2) has the form

(V) =2 {g[G(x, y)]} +c,  0<G(x,y)<SG*< o,

where ¢ =, (x), @ is a variant of the global psychometric transformation, and g is
defined by (19).

Clearly, this theorem includes Theorem 3.1 as its special case.
An example of a monotonically continuous metric that is not internalizable has
already been given in Section 2,

Jy—x if x<1,y<1,x<y,
D(x, y) = JSI=x+/y—1 if x<ly>1,
, Jy—1—/x—1 if x>1,y>1,x<y,

D(y, x) if x>y.
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This metric is not internalizable because the transformation g[D(x, y)] in (19)
would have to be different for x < 1 and x > 1 (by the same argument as in Section
2 and Comment 5, on substituting g for f). In Section 2 this example is used to
demonstrate that the probability-distance hypothesis may hold when no Fechnerian
metric exists. This suggests that the relationship between the Fechnerian metrics
and the internalizability of D in the probability-distance hypothesis may be deeper
than is indicated by Theorem 4.1 alone. This is indeed the case, for we have the
following

THEOREM 4.2. Under the probability-distance hypothesis, if the Fechnerian metric
G(x,y) exists, then D(X,y) is an internalizable metric whose internal conjugate
D(x, y) coincides with G(x, y).

Proof. Being a continuously increasing function of ,(y) —y,(x) (due to the
constant self-similarity property), D(x, y) is also a continuously increasing function
of D[y, (y)—v,(x)], where @ is the (continuously increasing) global psycho-
metric transformation (see (12) or (18)) that exists by the premise of the theorem.
Presenting this fact as

YID(x, ¥)] = P[Y(y) — ¥ (x)],

we have, by (18),

IS ) T (SO R Y

Since F(x, u) is a metric function, D(X, y) satisfies the definition of an internalizable
metric. ||

5. UNIDIMENSIONAL CONTINUA AND THE FECHNER PROBLEM

I consider now the specialization of the results established in Section 3 to a
unidimensional stimulus space MY, an open interval of reals endowed with
psychometric functions

Y. () =Pr [y is discriminated from x].

Note that here, too, as in the general case, the discrimination is not assumed to be
based on a semantically unidimensional subjective property along which the stimuli
can be compared in terms of “greater than.” There is, of course, no logical reason
why if the stimuli vary along a single physical dimension their discrimination
should be subjectively unidimensional, too.

Let the probability-distance hypothesis hold for ,(y) and an internal metric on
IO, Then, by Theorem 3.1, the assumptions of MDFS are satisfied and

V() =27[G(x, N]+Y(x), 0<G(x,y) <G, (20)
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where G is the Fechnerian metric, @ is (a variant of) the global psychometric trans-
formation, and ¥, (x) = const. Choosing an arbitrary stimulus o, one can put

G(o, x) if x>0
U,(x)= .
—G(x, 0) if x<o
and
G(x,0) if x=o
U_(x)= .
—G(o, x) if x<o.

As follows from the properties of an internal metric (Section 3), U, (x) is a contin-
uously right-differentiable and U_(x) a continuously left-differentiable increasing
function, with

dU,(x) dG(x, x+s) _

dx+ ds s=04 =F@x 1)
dU_(x) dG(x,x—s)

dx— dS ot (xﬂ )7

where F(x,u) is the (Fechner—Finsler) metric function that induces G (see
Comment 10). The two functions, U, (x) and U_(x), coincide if and only if G(x, y)
is symmetric. Clearly,

o (U0 i <y
“””‘{ULw—wa if x>y,

and one can rewrite (20) as

U, (»)-U, (0)]+¥,(x) if x<y

o . @1
U (x)=U_-N]+¥.(x) if x>y

mm={

This representation allows one to relate the unidimensional specialization of the
probability-distance hypothesis to the so-called Fechner problem proposed by Luce
and Edwards (1958) and Luce and Galanter (1963) as a replacement for the original
Fechner theory (see Dzhafarov & Colonius, 1999a, for a discussion of possible
interpretations of Fechner’s theory). Stated in slightly modified terms, the Fechner
problem is as follows:

Given a unidimensional stimulus space endowed with psychometric functions
7.(y) =Pr [y is judged to be greater than x in attribute 2],

find continuously increasing functions U and f such that 0 <y (y) <1 implies

() =fIU()-Ux)]. (22)
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The involvement of a semantically unidimensional subjective attribute £ (a
“subjective correlate” of the stimulus continuum) makes a direct comparison of (22)
with (21) impossible. One way of dealing with this situation within the framework
of MDFS is to construct a separate unidimensional Fechnerian theory based on the
application of a global psychometric transformation @* to the quantity y (y)—
7,(x), so that @*[y,(x+s5)—y,(x)] becomes comeasurable in the small with 5. An
implementation of this approach can be found in Dzhafarov and Colonius (1999a),
in the context of a “revised” interpretation of Fechner’s original theory. In this
paper I consider an alternative, although in the final analysis equivalent, approach:

Assuming the representation (22) holds, find a transformation

H[y.(»]1=v.(»)

that satisfies the representation (21).

This turns out to be possible, and quite trivially so, but only if one makes an
additional assumption that the function U in (22) is continuously differentiable.

Note first that unlike in (21), where ¥, (y) and ¥, (x) are not generally related to
each other by any function, (22) implies that, for x <y, y,(x) is a decreasing func-
tion of y.(y), as both these quantities on this domain are monotonic functions of
U(y)—U(x). Consequently, and because of the fact that y, (x) = f(0), one can put

I'Ty(x)=7,(0)]1=7.0)—7(x), x<y,

where I'(h) is a positive function continuously decreasing to zero with 42— 0+.
Define now .. (y) by

7:(¥) —y.(x) if x<y
()= HIn( )]={ 23)
VOV =HDODT= s 01 i sy

(see Comment 11), and define a function @ by
f)—y.(x)=@7'(h), h>0.
Then
¥.(») =H[y.(»)1=27' (UK -UE)), 24
and one easily recognizes in this a special case of (21), with ¥, (x)=0 and U, =

U_ =U. The function @ is (a variant of) the global psychometric transformation in
the sense of MDFS, for (24) implies

lim PG tus)—y. ()] _ dPY.()]

s> 0+ N dy y=x+

|u| = U"(x) |ul,
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where U'(x) |u| plays the role of the metric function F(x,u) that induces the
(symmetric) Fechnerian metric

G(x, y) =U(»)=U(x)|.

To further specialize this case, assume, in addition, as is often done in the psycho-
physical literature, that the psychometric function y,(y) is differentiable in y at
y = x. Then (see Comment 12)

(25)

where U’(x) plays the role of F(x,1)= F(x, —1). In accordance with the general
theory of MDFS, this means that the Fechnerian distance G(a, b) is obtained by
integrating between a and b the slopes of the psychometric functions y,(y) at y = x.
This consequence of (22) and of the smoothness assumptions complementing it
essentially coincides with the result of the analysis of the Fechner problem by
Pfanzagl (1962). Variants of this result can also be found in Krantz (1971),
Falmagne (1971), and, with probabilities converted into d’-scores, Creelman (1967).

6. CONCLUSION

The theorems proved in this paper can be combined together to state the
following.

Under the probability-distance hypothesis, the Fechnerian metric G(X,y) exists if
and only if the (monotonically continuous) metric D(X, y) in (2) is internalizable; then
G(X,y) is the internal conjugate D(x,y) of D(X,y). If D(X,y) in (2) is internal, then
D(x,y) = D(x,y) = G(x,y), and the metric function F(x, u) in (18) is convex.

In relation to the Fechner problem discussed in Section 5, it should be noted that
the analysis of this problem in the psychophysical literature includes also sufficient
conditions for the representability of y.(y) in the form (22) (Falmagne, 1985).
This issue is beyond the scope of the present paper, as it only deals with necessary
conditions of the probability-distance hypothesis, its consequences within the
framework of MDFS.

Some important work has been done to generalize the Fechner problem to
psychometric functions

7.(y) =Pr [y is judged to be greater than x in attribute 2],

involving multidimensional stimuli but retaining the unidimensionality of the
subjective attribute & (Aczél & Falmagne, 1999; Falmagne, 1979; Falmagne &
Iverson, 1979). MDFS cannot handle this paradigm directly. Rather, as shown
in Dzhafarov and Colonius (1999a), MDEFS requires that the multidimensional
stimulus space in this situation be reparametrized into a unidimensional one, by
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factorizing the n-dimensional space into (n—1)-dimensional subspaces on which
suitably defined functions

o, (y) = H[y,(y)] = Pr [y differs from x in attribute #]

achieve their minima and by treating these subspaces as equivalence classes. Once
this is done, ¢,(y) acquires a y,(y)-form, and the treatment becomes formally
equivalent to the one in Section 5. Technical details of this analysis, however, are
beyond the scope of this paper.

I conclude with a commentary on two simple consequences of the probability-
distance hypothesis:

(no constant error) Y, (y) achieves its minimum aty = x,

(constant self-similarity) Y (x) does nor depend on x.

As stated in the Appendix, Comment 4, it is part of the First Assumption of
MDFS that ,(y) attains its single minimum at some point h(x) diffeomorphically
related to x. The difference h(x) —x is traditionally referred to as the constant error
of discrimination, whereas h(x) is considered the “point of subjective equality” for
the reference stimulus x. One might, therefore, interpret the first of the conse-
quences above as a rather stringent prediction that under the probability-distance
hypothesis the constant error of discrimination must always be zero. Within the
framework of MDFS, however, this interpretation would be incorrect. The constant
error of discrimination is a manifestation of the fact that the reference stimulus x
and the comparison stimulus y in ,(y), strictly speaking, belong to two different
subspaces, in essence due to what Fechner (1887/1987, p.217) called the “non-
removable spatiotemporal non-coincidence of the [reference and comparison]
stimuli” (see Comment 1). Accordingly, the “stimulus space” in the theory of
MDFS is in fact the space of comparison stimuli into which the reference stimuli
are projected by means of the transformation h(x). In other words (see Dzhafarov
& Colonius, 1999a, 2001), before one computes Fechnerian distances from
psychometric functions, one has to rename all reference stimuli x into comparison
stimuli h(x) and redefine the psychometric functions as

U(y) = ‘/;h(x)()’)-

For simplicity of notation, however, one may continue to write {,(y) instead of
lph(x)(y), having agreed that x in i/, (y) stands for the point of subjective equality for
some reference stimulus rather than for this stimulus itself. This, of course, guaran-
tees that Y, (y) achieves its minimum at y=x (under the First Assumption). Accord-
ingly, D(x, y) in the formulation of the probability-distance hypothesis, (2), should
be understood as the distance between x, the point of subjective equality for a
reference stimulus h™'(x), and y, a comparison stimulus. Thus the “no constant
error”’ consequence of the probability-distance hypothesis is not a falsifiable
prediction; it holds true by construction.

By far more important for the empirical viability of the probability-distance
hypothesis is the constant self-similarity prediction, y,(X) = const(x). Unlike the
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symmetry property of a metric, the zero-value property, D(x, x) =0, from which
this prediction is derived cannot be dropped without changing the very nature of
the concept of a metric, and thereby the spirit and intent of the probability-distance
hypothesis. Empirical evidence suggests that the constant self-similarity may be
violated when discrimination probabilities {,(y) are obtained by direct same—
different judgments (Krumhansl, 1978; Rothkopf, 1957). A systematic dependence
of the value of ¥/, (x) on x has been demonstrated recently in the (yet unpublished)
experiments conducted in the laboratories of H. Colonius (discrimination of uni-
dimensional tones) and J. Allik (discrimination of two-dimensional localizations of
a dot).

Given the prevailing trends in the development of psychophysics subsequent to
Thurstone’s classical paper (1927), one might “automatically” assume that to
handle violations of the constant self-similarity one would have to abandon the
probability-distance hypothesis in favor of a Thurstonian approach, in which dif-
ferent stimuli are represented by random variables differently distributed in a
hypothetical perceptual space and the judgments of similarity are determined by
random representations of paired stimuli. Multidimensional variants of this
approach are described in Ashby and Perrin (1988), Ennis (1992), and Ennis, Palen,
and Mullen (1988). The Thurstonian mechanism of generating discrimination prob-
abilities is perfectly compatible with the theory of MDFS, but a thorough mathe-
matical analysis, to be presented elsewhere, shows that, given the regular minimality

property,

Ui (y)

S

AR

violations of the constant self-similarity cannot be accounted for by this mechanism
as readily as one might expect, even in a much more general conceptual setting than
is commonly adopted. In contrast, the nonconstant self-similarity can be incor-
porated in a radical elaboration of the probability-distance hypothesis that capi-
talizes on the fact that x and y in ¥, (y) have their origins in different stimulus sub-
spaces (see above). This elaboration is beyond the scope of the present paper, but
its mention here illustrates my general approach to the probability-distance
hypothesis: Its scientific value rests less on its ability to explain empirical data than
on its usefulness in serving as a building block, or a benchmark, in constructing
and characterizing more sophisticated models, with a greater claim to empirical
veridicality.

APPENDIX: TECHNICAL COMMENTS

1. When considering the symmetry of the psychometric functions or such
issues as the constant error of discrimination (see the Conclusion), it is critical to
keep in mind that the reference stimulus x and the comparison stimulus y in , (y)
belong to different spatial or/and temporal observation intervals (e.g., the reference
is presented first, or to the left of the comparison stimulus).
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2. The “conventional topology” means that the convergence of stimuli,
x; »Xx (i=1,2,...), is equivalent to the simultaneous convergence of all stimulus
components,

max |x! — x/| = 0.

j=1..n

The convergence of stimulus pairs, (X;, y;) — (X, y), stimulus-direction pairs, (X;, u;) —
(x, u), etc., is understood in the same componentwise sense.

3. There is also a fourth assumption, added to the theory in Dzhafarov
(2001), to restrict the class of possible global psychometric transformations (see
below) to functions regularly varying at the origin. This assumption, however, does
not bring any nontrivial modifications to the discussion of the probability-distance
hypothesis, and I do not involve it here for this reason. For the reader familiar with
the notion of regular variation it would suffice to note that to incorporate the
Fourth Assumption of MDFS in the present treatment one has to require, in addi-
tion to (2), (3), and (5), that the composite function f[D(X,, X, +u,s)] be regularly
varying at s = 0+ with a positive exponent, for some fixed (x,, u,).

4. In fact, the First Assumption only stipulates that iy, (y), for any given x,
attains its global minimum at some point diffeomorphically related to x . This point
need not be equal to x. This equality, however, can be achieved by a simple
“recalibration” of the reference stimuli x (see Dzhafarov & Colonius, 1999a, 2001),
which is implicitly assumed in the text to have been done. In order to not slow the
development down, I defer a more detailed explanation to the Conclusion.

5. @(h) must asymptotically equal kA (k > 0) in the region x > 1 (recall the
uniqueness statement for @), and, as @(h) cannot depend on x, this would not work
for x < 1.

6. The symmetry of the metric function A(x, u) is sufficient but not neces-
sary for the symmetry of the ensuing metric D(x,y). The necessary condition is
formulated in terms of min-metric functions (discussed below).

7. Tt is readily demonstrable (see Dzhafarov & Colonius, 2001) that D(x, y)
is invariant with respect to all possible diffeomorphic reparametrizations of the
connecting paths and of the stimulus space as a whole.

8. In reference to Comment 6, D(x, y) is symmetric if and only if A(x, u) is
symmetric.

9. In Theorem 3.1 (and later in Theorem 4.1) one has to say “a variant of
@” because @ in (12) and (18) is determined only asymptotically uniquely (as its
argument approaches zero).

10. In the unidimensional case, F(x, u) values are determined by the values of
F(x,1) and F(x, —1),

F(x,u)=F(x, £lul) = F(x, £ 1) [u].
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11. This transformation generalizes a variant of the “mirror-reflection”
procedure described in Dzhafarov and Colonius (1999a),

() =700 -1,

which pertains to the special case when y,(y)+7,(x) = 1.
12. From (23), for s > 0,

dy.(y) s
dy ’

y=x

l//x(x-i_s) _l/Ix(x) = J)x(x+s)_yx(x) ~

while from (24),

DY (x+5) =¥ (x)] ~U'(x) 5.

It follows that

o)
tim 20 _ oy, .,

h—>0+

exists, and putting it, with no loss of generality, equal to 1, we obtain (25).
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