Perceptual Separability
of Stimulus Dimensions:
A Fechnerian Analysis

Ehtibar N. Dzhafarov
Purdue University, Indiana

Consider a situation in which, say, elliptically shaped visual stimuli continuously
vary in the lengths of their radii, a and b, all other parameters being held fixed.
This is a simple example of a two-dimensional continuous stimulus space: Each
stimulus can be described by two coordinates, (x', x?), taking their values within a
region of Re x Re.! The dimensions (x', x?) can be chosen in an infinity of ways.
One can put x' =a, x> =b, or x' =a:b, x> =ab (aspect ratio and size), or one
can even choose dimensions for which one has no conventional geometric terms,
say, x! = exp(2a + 3b), x* = log(3a + 2b). The number of dimensions, in this
case two, is a topological invariant (i.e., it is constant under all-continuous one-
to-one transformations of the space), but the choice of the dimensions is arbitrary:
With any given choice of (x!, x?), one obtains other representations by arbitrarily
transforming these dimensions into ' = ¥'(x!, x?), ¥ = ¥%(x!, x?), provided the
transformations are one-to-one and smooth. If one imposes a certain “subjective”

'Following the traditional differential-geometric notation adopted in Dzhafarov and Colonius
(1999, 2001), I use superscripts rather than subscripts to refer to point coordinates and (later) co-
ordinates of direction vectors. The notation (x', xz}, (x1y, (x?) refers to frames of reference, or axes,
whereas (x!, x%), (v!, y%), (x1), (%), etc., denote coordinates of different stimuli with respect to
specified frames of reference, or axes.
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(computed from perceptual judgments) metric on the stimulus space, this metric
must be invariant with respect to the choice of stimulus dimensions. In multi-
dimensional Fechnerian scaling (MDFS), on which this work is based, this in-
variance is achieved automatically by the procedure of computing Fechnerian
distances.

The choice of the dimensions describing elliptically shaped visual stimuli, how-
ever, may interest one from another point of view, pertaining to the focal issue of
this work. One might hypothesize that with some choice of (x!, x?), say, x' = a:b
(aspect ratio) and x> = ab (size), the two dimensions are processed separately, so
that perceptual distinctions between two ellipses can be, in some sense, computed
from the perceptual distinctions between their aspect ratios (irrespective of size)
and their sizes (irrespective of aspect ratio), whereas, one might hypothesize, such
a reduction to individual dimensions cannot be achieved with other choices, say,
x! = a and x? = b, in which case the dimensions have to be viewed as processed
integrally. ;

Ashby and Townsend (1986) analyze several theoretical concepts (separabil-
ity, orthogonality, independence, performance parity) proposed in the literature
in an attempt to capture this intuitive distinction. They propose to interpret these
concepts within the framework of the General Recognition Theory (Ashby &
Perrin, 1988), as different aspects of the mapping of stimuli into hypothetical ran-
dom variables that take their values in some perceptual space. If one can define
in this space two coordinate axes, (p', p?) (or two subspaces spanning two dis-
tinct sets of axes), such that the p' component and p> component of the random
variable representing a stimulus (x', x?) depend on only x' and x2, respectively,
then one can say that the dimensions (x') and (x?) are perceptually separable.
(The separability, perhaps by an abuse of language, is sometimes attributed to the
perceptual dimensions (p') and (p?) rather than the stimulus dimensions.) With
this definition, the stochastic relationship between the p' and the p? components
of the random variable representing (x', x?) may depend on the (x', x2) in an
arbitrary fashion, provided the selective correspondence (x! < p!, x% <> p?) is
satisfied on the level of marginal distributions. Thomas (1996) adapts this ap-
proach to the situation in which pairs of stimuli are judged on the same—different
scale, which is especially relevant to the Fechnerian analysis presented in this
chapter.

A different attempt to rigorously define perceptual separability is made by
Shepard (1987) within the framework of multidimensional scaling. Shepard posits
that stimuli are represented in a perceptual space by points separated by distances
negative-exponentially related to some “stimulus generalization” measure, that,
for our purposes, can be thought of as a probability of confusing one stimulus
with another. It is traditionally postulated in multidimensional scaling, or derived
from equivalent premises (Beals, Krantz, & Tversky, 1968; Tversky & Krantz,
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1970), that one can define in this perceptual-space coordinate axes (p’, ..., )
with respect to which the interstimulus distances D in the space form a Minkowski
power metric:

D" s s 0%)s lghsones@®] = [p* ' 4 o |p* =4 .

From the multidimensional scaling of several stimulus spaces, Shepard (1987)
suggested that the exponent r of this power metric equals 1 (city-block metric)
if the stimuli are analyzable into separately processed dimensions, and it equals
2 (Euclidean metric) if they are not. Although the relationship between subjective
distances and stimulus confusion probabilities is central to Shepard’s theory, he
did not define the perceptual separability in terms of these confusion probabilities,
relying instead on operational criteria external to his theory (such as those described
in Garner, 1974). He also did not seem to consider the possibility that, just as stimuli
with perceptually separable dimensions (by some criteria) can always be presented
in a frame of reference whose axes are not perceptually separable (by the same
criteria), so the “perceptual integrality” of stimuli corresponding to r = 2 could
generally be a function of a specific choice of stimulus dimensions, rather than a
property of the stimuli per se.

In this chapter I present a new approach to the issue of perceptual separability
of stimulus dimensions, based on the theory of MDES (Dzhafarov, 2001, 2002a,
2002b, 2002¢, 2002d; Dzhafarov & Colonius, 1999, 2001). This chapter closely
follows Dzhafarov (2002c¢).

Historical precursors of MDFS can be traced back to Helmholtz’s (1891) and
Schrédinger’s (1920) reconstructions of color metrics from color-discrimination
data. In MDFS, subjective (Fechnerian) distances among stimuli are computed
from the probabilities with which stimuli are discriminated from their close neigh-
bors in a continuous stimulus space. Accordingly, the concepts explicating the
intuitive idea of perceptual separability are formulated in this chapter solely in
terms of discrimination probabilities. Specifically, I propose to treat dimensions
(x') and (x?) as perceptually separable if the following two conditions are met:

1. The probability with which a stimulus x = (x', x?) is discriminated from
nearby stimuli y = (y', y?) can be computed from the probabilities with which
x is discriminated from y, = (y', x?) (differing from x along the first dimension
only) and from y, = (x', y?) (differing from x along the second dimension only);

2. The difference between the probabilities with which x = (x!, x?) is discrim-
inated from nearby y; = (y', x?) and with which x is discriminated from itself does
not depend on x2; and analogously for x = (x', x?) and nearby y; = (x', y?).

If the probabilities with which each stimulus is discriminated from nearby
stimuli are known, then MDES allows one to uniquely compute the Fechnerian
distances among all stimuli comprising the stimulus space. The following ques-
tion therefore is a natural one to ask in relation to the definition of perceptual
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separability just outlined: Given that (x') and (x?) are separable, how is the Fechne-
rian distance between stimulia = (a', a?) and b = (b', b?), not necessarily close,
related to the corresponding coordinatewise Fechnerian distances, between a and
b, = (b', a*) and between a and b, = (a', b?)? The answer to this question is the
main result of this work. It turns out, with the Fechnerian distances denoted by G,
that

G(a,b) = G(a,b,) + G(a,b,), r > 1.

This means that the Fechnerian metric in a stimulus space with perceptually sepa-
rable dimensions is a Minkowski power metric with respect to these dimensions.

This result may appear similar to Shepard’s (1987) suggestion. The resem-
blance, however, is rather superficial. First, in MDFS the metric is imposed directly
on the stimulus space rather than on a hypothetical perceptual space (which may
even have a different dimensionality). Second, it is the power function form per se
of the Fechnerian metric that is indicative of perceptual separability, rather than a
specific value of the exponent r. I show below that the value of r is determined by
the value of the fundamental characteristic of MDFS, p, the psychometric order
of stimulus space. Specifically, » = pif > 1, and r = 1 otherwise. Roughly, the
psychometric order 1 determines the degree of flatness/cuspidality of discrimina-
tion probability functions at their minima, and this characteristic has nothing to do
with perceptual separability.’

The theory to be presented is formulated for two-dimensional stimulus spaces,
but it can be readily generalized to arbitrary dimensionality, or even to an arbitrary
number of subspaces spanning several dimensions each. This generalizability is
the main reason why I keep in this chapter the notation adopted in Dzhafarov and
Colonius (1999, 2001) for n-dimensional stimulus spaces.

PERCEPTUAL SEPARABILITY:
DEFINITION AND PROPERTIES

Consider a two-dimensional stimulus space 91, an open connected region of Re?,
and let (x', x*) be a coordinate system imposed on this space. The stimulus space is
assumed to be endowed with psychometric (discrimination probability) functions

Yx(y) = Prob (y is discriminated from x),

2A new theoretical development described in Dzhafarov (2002d), based on two fundamental prop-
erties of perceptual discrimination (called regular minimality and nonconstant self-similarity), shows
that s generally cannot exceed unity. This means that in the case of perceptual separability r = 1,
precisely as Shepard suggested but with a very different justification. This and other relevant results
from Dzhafarov (2002d) are not reflected in the present chapter, as they were obtained long after the
chapter had been accepted for publication.
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where x = (x!, x2) € 91, y={ vy, ¥%) € 9 I refer to the stimulus space together
with the psychometric functions defined on it as the discrimination system (9, ).

Given a stimulus x = (x!, x?), the stimulus that lies s > 0 units away from x
in the directionu = (u', u?) can be denoted by x + us = (x! + u's, x? + u?s); u'
and #? may be any real numbers, except that they cannot vanish simultaneously.
The difference

Yy(x+us) = Yy(x+us) — Yu(x), s=>0

is referred to as the psychometric differential (at X, u), and it plays a central role
in Fechnerian computations. The underlying assumptions of MDFS ensure that
following, if necessary, a certain ‘“‘elimination of constant error” procedure
whose description can be found in, e.g., Dzhafarov & Colonius, 1999, 2001, the
psychometric differentials are positive (for s > 0) and continuously decrease to
zero as s — 0+. The definition of perceptual separability is formulated below
in terms of the psychometric differentials W rather than the discrimination
probabilities ¥ per se.

In the subsequent presentation I also use the following convention. Given a
direction vectoru = (', u?), I denote its coordinate projections (u', 0) and (0, u?)
by u; and u,, respectively.

Definition A (Refer to Fig. 1.1). The coordinate system (x', x?) forms a di-
mensional basis for the discrimination system (91, ¥) if for any stimulus x one
can find an open neighborhood 91, € M of x such that, whenever x + us € 91,

Wy(x 4+ us) = Hy [Wx(X 4+ u;s), Uy(X + uzs)], (1)

where H, is some function differentiable on 9t,.

FIG. 1.1. A diagram for Definition A (dimensional basis).
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Observe that the functions Hy are allowed to be different for different x. One
should note the following two important properties of Hy. First,

Hy [Wx(X 4 uys), 0] = We(xX +uys), Hy [0, Ui(Xx + ur5)] = Wy(X + uys),
Hy(0,0) =0 (2)

The second property is

dHx(a, b) _ 0Hx(a, b)

= ],
da dab a=b=0 )

a=b=0

See Dzhafarov (2002c) for the proof.
As a simple example of Hy, consider the discrimination system in which

Uy(x+us) =1 —[1 — We(x+uys)][1 — Uy(x + ws)]. 4)

Hy here does not depends on x. If, in addition, ¥ (x) = 0, this equation can be
rewritten by substituting ¥ for W, and it can be interpreted as saying that the
discriminations along (x') and (x?) are stochastically independent and that two
stimuli are discriminated whenever they are discriminated along either of these
dimensions.

One can obtain a wealth of special cases for Hy by choosing an arbitrary
strictly monotone (differentiable) function 7x(a), 0 < a < 1, vanishing at a = 0,
and putting

Uy(x +us) = Tx_l{Tx[le(x +uys)] 4 T [Wx(x + uas)]}. (5)

In particular, this equation reduces to Equation 4 if 7y(a) = T'(a) = log(1 — a).
The following lemma is part of the foundation of the Fechnerian analysis of
perceptual separability (see Dzhafarov, 2002c¢ for the proof).

Lemma A (Additivity in the small). If (x', x?) forms a dimensional basis for
(9N, ), then

WX+ us) ~ WUe(x +uys) + Ue(X + uss) (ass — 04). (6)

(The symbol ~ indicates that the two expressions it connects are asymptotically
equal, i.e., their ratio tends to 1. The term in the small means “at the limit” or
“asymptotically”.) As u = u; + up, one recognizes in Equation 6 an asymptotic
version of the conventional factorial additivity (of the main effects of changes
along the two dimensions on V).
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FIG. 1.2. A diagram for Definition B (detachability, shown for the
horizontal axis only).

The next definition requires that we confine the consideration to some open
rectangular area R = (x}¢, X4,,) X (Xjrg, X5,,) of 9. Accordingly, the discrimina-
tion system (91, V) is restricted to (R, ¥). The area R may be infinite in either or
both dimen.sions (i.e., some or all of the symbols x;. ., xslup, b xszup may stand for
+00), and it may coincide with the entire 9.

Definition B (Refer to Fig. 1.2). The dimension (x') is detachable from the
discrimination system (R, ) if for any value of x' one can find an open vicinity
n, S (g Xgup) of x', such that whenever x' +u's € n/ |, Wy(x + uys) does not
depend on x* € (x7;, xfup). In other words, whenever x € R and x' + u's € v,

W(x +uys) = Wa(x! 4+ uls). (7)

Analogously for the detachability of (x?) from (R, 1): Whenever x € R and x? +
2
uss € ng,

Wy (X + wps) = W2 (x? + u’s). (8)

The reason for confining the definition of detachability to a rectangular area
R is simple: if 9N is shaped differently, one can find x', x' + u's, x7, and x3
such that (x!, x2) € 91, (x! +u's, x2) € 9, whereas (x' +u's,x3) ¢ M. As a
result, W, (x + u;s) would be defined for some and not defined for other val-
ues of x?, which would mean that it does depend on x2, contrary to the
definition.
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The following definition of perceptual separability is simply the conjunc-
tion of the previous two, except that the dimensional basis is now restricted to

(R, ).

Definition AB.  The dimensions (x') and (x?) are perceptually separable with
respect to the discrimination system (R,v) if (x!, x?) forms a dimensional basis
for (R, ¥) and if both (x') and (x?) are detachable from (R, V).

Two aspects of this definition are significant for the subsequent development.
First, one can readily verify thatif (x') and (x?) are perceptually separable, then so
are all the smooth monotonic transformations (“recalibrations”) thereof, (¥') and
(¥%). Second, the application of this definition to Lemma A immediately yields
the following result.

LEMMA AB (Detachable additivity in the small). If (x') and (x2) are per-
ceptually separable with respect to (R, v), then, within R,

Wy(x +us) ~ W (x! +u's) + W (x? + u’s) (as s — 04). (9)

I show in the next section that these two properties directly lead one to the
Minkowski power-metric structure of the Fechnerian metric.

PERCEPTUAL SEPARABILITY:
FECHNERIAN ANALYSIS

The theory of MDFS is based on four assumptions about the shapes of the psycho-
metric functions Y (y) (Dzhafarov, 2002a; Dzhafarov & Colonius, 2001). Rather
than describing them here, I confine the discussion to those consequences of these
assumptions that are relevant for the present analysis.

First, the assumptions of MDFS guarantee that the psychometric functions
Vx(y) look more or less as shown in Fig. 1.3 (ignore for now the values of 1¢): For
any X, ¥ (y) is continuous, attains its global minimum at some point, and increases
as one moves a small distance away from this point in any direction. Note that
Ux(y) is generally allowed to be different from y(x), and y(x) is allowed to
vary with X. By a certain procedure that eliminates constant error by “renaming”
reference stimuli (Dzhafarov & Colonius, 1999, 2001) one can always ensure that
the minimum of ¥ (y) is attained at y = x , which in this chapter is assumed to be
the case. This makes all psychometric differentials Wx(x + us) positive at s > 0
and continuously decreasing to zero as s — 0+.
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FIG. 1.3. Possible appearances of psychometric functions.

The assumptions underlying MDFS also ensure that all psychometric differen-
tials can be asymptotically decomposed as

W (x +us) ~ [F(x,u)R(s)]" (ass — 0+), (10)

with the following meaning of the right-hand terms. The constant .« > 0, referred to
as the psychometric order of the stimulus space, is one and the same for all reference
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stimuli x and directions of transition u, and it is determined by psychometric
differentials uniquely. R(s) is some function regularly varying (at the origin) with
a unit exponent.? It, t0o, is one and the same for all psychometric differentials
and is determined by them asymptotically uniquely. The latter means that R(s)
in Equation 10 can be replaced only with R*(s) ~ R(s) (as s — 0+). Finally,
F(x, u) in Equation 10 is the (Fechner—Finsler) metric function, also determined
uniquely. F(x, u) is positive (for u # 0), continuous, and Euler homogeneous, the
latter meaning that, for any k,

F(x, ku) = |k|F(x, u). (11)

This metric function is all one needs to compute Fechnerian distances. Briefly,
the logic of this computation is as follows. When any two points (stimuli) a and
b are connected by a smooth path x(7): [a, b] — 9, x(a) = a, x(b) = b, the psy-
chometric length of this path is defined as

b
L[x(r)]:[ Fx(1), x(¢)dt.

The Fechnerian distance G(a, b) is defined as the infimum of L[x(z)] across all
smooth paths connecting a and b. The thus-defined G(a, b) is a continuous dis-
tance function, invariant with respect to all possible smooth transformations of
coordinates (Dzhafarov & Colonius, 1999, 2001).

The metric function F(x, u) can be given a simple geometric interpretation in
terms of the shapes of psychometric functions. This is achieved through the im-
portant concept of a Fechnerian indicatrix. For a given stimulus x, the Fechnerian
indicatrix centered at x is the contour formed by the direction vectors u satisfying
the equality F'(x, u) = 1. The set of the indicatrices centered at all possible stimuli
and the metric function determine each other uniquely. It turns out (Dzhafarov &
Colonius, 2001) that the Fechnerian indicatrices are asymptotically similar to the
contours formed by horizontally cross-secting ¥(y) at a small elevation A from
their minima; the smaller the /4, the better the geometric similarity (see Fig. 1.4).

Figure 1.4 and the top panel of Fig. 1.3 illustrate the geometric meaning of
the psychometric order p. As shown in Dzhafarov and Colonius (2001), if one
cross-sects different psychometric functions by vertical planes passing through

3The unit-regular variation of R(s) means that R(ks)/R(s) — k ass — 0+, Forexample, R(s) = s
is such a function, and in many respects any unit-regularly varying R(s) is indistinguishable from s
(Dzhafarov, 2002a). The reader who is willing to overlook technical details may, with no serious
consequences for understanding this work, assume that R(s) = s, and hence Equation 10 has the form

We(Xx +us) ~ F(x, m)*s*  (ass — 0+4).

This is the so-called power-function version of MDFS (Dzhafarov & Colonius, 1999). The more general
theory adopted in the this chapter is called the regular variation version of MDFS (Dzhafarov, 2002a).
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FIG. 1.4. A horizontal and two vertical cross sections of a psy-
chometric function near its minimum.

their minima in various directions, then the cross sections confined between the
minima and some small elevation & are horizontally scaled asymptotic replicas of
each other. At the very minima of the psychometric functions these cross sections
have a certain degree of flatness/cuspidality, and this degree is determined by the
value of w, from very flat (if w is large) to pencil sharp (« = 1) to needle-sharp
(if u is close to zero). The fact that px is one and the same for all psychometric
differentials means that a specific degree of flatness/cuspidality is shared by all
psychometric functions.*

We are now prepared to derive the main result of this work. Let the dimen-
sions (x') and (x?) be perceptually separable with respect to (R, /). On applying
Equation 10 to the coordinate projections u; = (', 0) and u, = (0, u?) of u=
(u', u?), one gets

7 ) ~ [F(x, u))R(s)]*
(x+uys) ~ [F(x,u;)R(s)] (i 5=+ 04) (12)
Wy(x + was) ~ [F(x, up)R(s)]"

4 As indicated in footnote 2, certain basic properties of psychometric functions eliminate the pos-
sibility of p& > 1 (see Dzhafarov, 2002d).
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It follows from Equations 7 and 8 that F(x, u;) in Equation 12 cannot depend on
x?, whereas F(x, u,) cannot depend on x'. Hence one can put

F(x,w) = F[x,u'(1,0)] = |u'|F[x,(1,0)] = Fi(x")[u'|
F(x, ) = F[x,u*(0, )] = [u?|F[x,(0, 1)] = F(x*)[u?|

where one makes use of the Euler homogeneity, Equation 11. Equation 12 now
can be rewritten as

W(x +uwps) = Walx! +uls) ~ FixH#ul|* R(s)*
(as s — 0+).

Wy (X + ups) = Vo (x? + u?s) ~ F(x?)*|u?|* R(s)*

Applying this to the right-hand side of Equation 9 in Lemma AB, and using
Equation 10 for its left-hand side, one gets

F(x, w)*R(s)* ~ Fi(x"Y[u' |*R(s)* + B |u?|“R(s)* (as s — 0+4),
which can only be true if
Fx,u)* = Fi(xY ul|* + B> | u?|*. (13)

To see that this structure of the metric function induces the Fechnerian metric
with a Minkowski power-metric structure, choose an arbitrary point 0 = (o', 0?)
and componentwise recalibrate (x', x?) into

x-'(x‘)=f Fy(x)dx, xz(xz):f F>(x)dx. (14)

9
o=

According to the remark immediately following Definition AB, the axes (&')
and (¥°) are perceptually separable. Presenting x = (x!, x?) in Equation 13 as
% = (!, %), in new coordinates, the direction u = (1!, u?) attached to x also
acquires new coordinates, i = (', @#*). From Equations 14, these new coordinates
are

i' = FixY', @ = B(x)u? (15)

It follows that F(x,u) in Equation 13, when written in new coordinates as
F(%,0) = F(x, u), has the structure

F(x, ) = F(a) = /|a'|* + |a®|+. (16)
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The Fechnerian indicatrices corresponding to this metric function,
@' + et =1, (17)

have the same shape for all stimuli X at which they are centered. This shape is com-
pletely determined by the psychometric order w, as shown in the lower panel of
Fig. 1.5 (filled contours). Recall from the preceding discussion of indicatrices that
these shapes describe the horizontal cross sections of the psychometric functions
(Fig. 1.5, upper panel) at a small elevation above their minima. Recall also that ;
has another geometric interpretation: It determines the shape (flatness/cuspidality)
of the vertical cross sections of the psychometric functions in the vicinity of their
minima (Fig. 1.5, middle panel). We see therefore that in the case of perceptually
separable dimensions the shapes of the horizontal and vertical cross sections (gen-
erally completely independent) are interrelated, being controlled by one and the
same parameter, /L.

Figure 1.5 demonstrates that the indicatrices for i > 1 are convex in all direc-
tions (nonstrictly convex if u = 1). A general theory of Fechnerian indicatrices
is presented in Dzhafarov and Colonius (2001). Without recapitulating it here, 1
simply state the fact that if a Minkowskian indicatrix corresponding to F(ii) is con-
vex,’ then the Fechnerian metric it induces is computed as G(X, §) = F(|% — §|).
Applying this to Equation 16, with i > 1, one gets

G(X, ) VIR = §lm + |52 — 32|- (18)

I
=
B
|
‘-ﬂ
[

That is, the Fechnerian metric induced by Equations 16 and 17 is a Minkowski
power metric, with the exponent equal to y, provided the latter is not less than 1.

One can also see in Fig. 1.5 that the Fechnerian indicatrix is not convex when
p < 1 (in fact, it is then concave in all directions, except for the coordinate ones).
The general theory (Dzhafarov & Colonius, 2001) stipulates that the metric induced
by a nonconvex indicatrix is the same as the one induced by its convex closure,
which is the minimal convex contour containing it. In our case it is obvious (see the
enclosing contour in Fig. 1.5 for i = Y,) that the convex closure of an indicatrix
corresponding to any value of u < 1 is the “diamond” described by |iz! | + |i%]| = 1.
As aresult, when . < 1, the Fechnerian metric induced by Equations 16 and 17 is

Gx,y) = F(x—y|) = | — 3| + |¥* — 7, (19)

the city-block metric, which is familiar to psychophysicists.®

SIndicatrices and the corresponding metric function are called Minkowskian whenever F(x, @i) =
F(ii). The power-metric structure arrived at in Equation 16 is just a special case.
5See footnote 2.
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This equation can be combined with Equation 18 in the following statement. If
(x!) and (x?) are perceptually separable, then they can be recalibrated (smoothly
transformed) into (X') and (¥?) in such a way that

G& y) = |x' — 5" + x> - 5", (20)

with the exponent r = max{u, 1}.

In essence, this statement fulfills the goal of the present analysis, except that it
seems more satisfying to formulate the main result of this work without mentioning
the recalibration procedure (or any specific calibration at all) for the dimensions
(x') and (x?). This can be readily achieved. Recall that the definition of perceptual
separability is formulated for some rectangular area R € 9. One consequence of
this provision is that if one chooses a point of origin in (R, 0 = (o', 0%), and draws
through this point the coordinate lines {(x', x?) € R: x* = 0*} and {(x'. x?) € R :
x! = o'}, then, for any x = (x', x?) e Rand y = (y', ¥?) € R, their projections
x; = (x!,0%),y1 = (', 0) on the first axis and x, = (0!, x?), y» = (0, ¥*) on
the second axis are stimuli belonging to . Observe now, in reference to Equation
20, that

1! — 5! = Gxy, y1), 172, Y2 = G(xa, y2).

With this, the development presented in this chapter can be summarized in the
following theorem (see Fig. 1.6).

Theorem AB (Minkowski power-metric structure of Fechnerian metric).
Let the dimensions (x') and (x?) imposed on the stimulus space 91 be perceptually

x2
[

] S

1 G(x,y)

FIG. 1.6. A diagram for Theorem AB.
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separable with respect to the discrimination system (R, 1). Then the Fechnerian
metric G on this space is a Minkowski power metric with respect to the dimensions
(x') and (x?):

Gx,y) = G(x1,y1) + G(x2,¥2)", (21)
where r = max{u, 1}, u being the psychometric order of the space.

Note that the choice of the origin 0 = (o', 0?) used to define the coordinate
projections of x and y need not be mentioned, because G(x, y;) and G(x», y,) are
invariant with respect to this choice.

POSSIBLE EXTENSIONS

The definition of perceptual separability proposed in this work is mathematically
unambiguous, based on observable or computable discrimination judgments, and
leads to an interesting result within the framework of MDFS, the power-function
Minkowski structure of the Fechnerian metric. The theory implies definite and
nontrivial relationships between the horizontal and the vertical cross sections of
the discrimination probability functions that can be subjected to experimental anal-
ysis. The theory is also readily extendible to an arbitrary number of perceptually
separable dimensions or subspaces. None of these features, however, guarantees
that the theory is empirically feasible. It is appropriate therefore to discuss in this
concluding section some directions in which the theory could be generalized, if
eventually found unsatisfactory in its present form.

One approach is to generalize the notion of a psychometric differential while
preserving its basic properties and retaining the theory of perceptual separa-
bility as is. Specifically, one can define a generalized psychometric differential
as

Wi (x +us) = YT [Yx(x + us)] — C[¥x(X)]),

where I' is some smooth monotonic function. One could interpret this as the
transformation of observable discrimination probabilities into “true” probabili-
ties, implying thereby that the latter are “contaminated” by some extraperceptual
biasing factors, whose influence can be made additive by an appropriately chosen
I" transformation. Alternatively (or equivalently, depending on one’s approach),
V¥ (x + us) could be interpreted as a sensitivity index, on a par with the familiar d'.

A less radical approach from the standpoint of MDEFES is to generalize the
present theory by relaxing some of the defining properties of perceptual separa-
bility. One might argue, for example, that Definition A alone captures the essence
of perceptual separability, whereas the detachability constraint can be relaxed or
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dropped altogether. Following this hypothetical suggestion, let us call dimensions
(x") and (x?) weakly perceptually separable if they form the dimensional basis for
a discrimination system (91, 1), in accordance with Definition A. The Fechnerian
metric under weak separability does not have the Minkowski power metric struc-
ture. However, by applying Equations 10 and 12 to Lemma A, one can demonstrate
the truth of the following statement.

Theorem A (Local Minkowski power-metric structure of Fechnerian metric).
Let the dimensions (x') and (x?) imposed on the stimulus space 91 be weakly
perceptually separable with respect to the discrimination system (91, v/). Then the
(Fechner—Finsler) metric function F on this space has the structure

Fx,u)! = F(x, w))* + F(x, up)”,

where p is the psychometric order of the space. This in turn implies that the
Fechnerian metric G is locally a Minkowski power metric with respect to the
dimensions (x') and (x?2):

G(x,x+us) ~ G, x+us) + Gx, x+ us) (ass — 04),

where r = max{u, 1}.

This result is stronger than it might appear. The shapes of and the relationship
between the vertical and the horizontal cross sections of the psychometric functions
in the vicinity of their minima remain in the case of weak separability precisely
the same as illustrated in Fig. 1.5, except that the calibration of the axes mentioned
in the legend should now be understood in a local sense. The weak perceptual
separability therefore may be sufficiently rich in consequences to be of interest.

These examples may suffice to demonstrate the generalizability of the percep-
tual separability theory. At this stage, however, the scientific value of the theory
may to a greater extent depend on its development in the opposite direction, to-
ward more specialized empirically falsifiable models, constructed by combining
the theory’s abstract and general premises with plausible constraints of a more
technical and domain-specific nature.
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