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Abstract
A row (or column) of an n× n matrix complies with Regular Minimality (RM) if it has a unique minimum entry which is also a unique

minimum entry in its column (respectively, row). The number of violations of RM in a matrix is defined as the number of rows (equivalently,
columns) that do not comply with RM. We derive a formula for the proportion of n× n matrices with a given number of violations of RM
among all n×n matrices with no tied entries. The proportion of matrices with no more than a given number of violations can be treated as the
p-value of a permutation test whose null hypothesis states that all permutations of the entries of a matrix without ties are equiprobable, and the
alternative hypothesis states that RM violations occur with lower probability than predicted by the null hypothesis. A matrix with ties is treated
as being represented by all matrices without ties that have the same set of strict inequalities among their entries.
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1. PRELIMINARIES

Let m : X ×Y → R+ be some discriminability measure,
mapping pairs of stimuli x ∈ X and y ∈ Y into the set of non-
negative reals. The sets X and Y represent two distinct ob-
servation areas (Dzhafarov, 2002b; Dzhafarov & Colonius,
2006a): in a pairwise presentation paradigm, even if x and y
have the same value (say, they are two colors with identical
color coordinates), they must occupy different spatial and/or
temporal positions to be perceived as two distinct stimuli. So x
and y should be designated as, say, x =

��
x1,x2,x3� , left

�
and

y =
��

y1,y2,y3� , right
�
. Strictly speaking, they can never be

equal. The values of m(x,y) may be probabilities with which
stimuli x and y (when presented as an ordered pair, say, x on
the left and y on the right) are judged to be different; or they
can be average numerical estimates of the “dissimilarity” be-
tween x and y. The values of m(x,y), however, can also be
computed from responses to individual presentations of x and
y, one at a time. Thus, they can be computed as some version
of the Kullback-Leibler divergence between the probabilities
with which x and y are classified into a fixed set of several cat-
egories (Dzhafarov, 2010). In a case like this, the difference
between the two observation areas reduces to distinguishing X
as the set of stimuli “considered (written) first” and Y as the
set of stimuli “considered (written) second” when x and y are
compared (theoretically, within the computational procedure).

In this paper we are only concerned with the case when
X and Y consist of n elements each. Then the function
m(x,y) can be presented as an n× n matrix with entries mi j
(i, j ∈ {1, . . . ,n}). The rows i = 1, . . . ,n represent stimuli in
one observation area (e.g., presented first in time or on the
left), the columns j = 1, . . . ,n represent stimuli in another ob-
servation area (presented second or on the right). The cells
(i, j) of the matrix represent ordered pairs of stimuli (e.g., first-
second, left-right, or even “written first”-“written second”). In
the present context only ordinal properties of mi j matter rather
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than the values themselves. With no loss of generality, there-
fore, we will adopt henceforth the following

Convention 1.1. Unless otherwise specified, all entries mi j
in any matrix M mentioned in this paper are assumed to be
represented (replaced) by their ranks (ordinal positions).

Thus, the matrix

M1 =





3 1 15 20 23
2 5 6 13 9

16 17 4 11 8
18 19 24 12 7
14 22 25 10 21





represents (replaces) any matrix in which m12 is the smallest
value, m21 is the next smallest value, etc., and m53 is the largest
value. This rank order matrix has no ties among its entries. In
the case of ties the ranks of the tied entries are averaged in the
conventional manner. Thus, in the matrix

M2 =





1 2.5 15 23 20
5 2.5 6 8.5 13
17 16 4 8.5 11
19 18 23 7 10
23 14 23 23 12





we have m12 = m22 = (2+3)/2, m24 = m34 = (8+9)/2, and
m14 = m43 = m51 = m53 = m54 = (21+ . . .+25)/5.

An n×n matrix M is said to comply with Regular Minimal-
ity (RM) if

(A) every row and every column of M contains a
unique minimum entry, and
(B) an entry which is minimal in its row is also
minimal in its column (hence also vice versa).

The interpretation of this principle is simple. If mi j is a unique
minimum entry in the ith row, then in the second observation
area (set Y , represented by columns) the jth stimulus is less
discriminable than any other stimulus in Y from the ith stim-
ulus in the first observation area (set X , represented by rows).
So, the jth stimulus in Y can be considered the best match
for the ith stimulus in X . Symmetrically, if mi j is a unique
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minimum entry in the jth column, then the ith stimulus is less
discriminable than any other stimulus in X from the jth stim-
ulus in Y : the ith stimulus in X therefore can be considered
the best match for the jth stimulus in Y . With this interpreta-
tion, RM states that every stimulus, in either observation area,
has a unique best match in the other observation area, and the
relation “is the best match for” is symmetric.1

In our examples above, M1 is RM-compliant: for instance,
1 is the unique minimum entry in the first row, and it is also
the unique minimum entry in the column in which it occurs,
the second one, so that the first row and the second column
are each other’s best matches; and analogously for the row-
column pairs (2,1), (3,3), (4,5), (5,4). By contrast, M2 does
not satisfy RM, because, e.g., 12 is the unique minimum entry
in the fifth row but not in the fifth column in which it occurs;
another violation occurs in the second row, where 2.5 is the
unique minimum value without being the unique minimum in
its (second) column.

The notion of RM has been proposed in Dzhafarov (2002b)
and elaborated in Dzhafarov (2003), Dzhafarov and Colo-
nius (2006a), and Kujala and Dzhafarov (2008, 2009). It
was shown to have nontrivial consequences for a variety of
issues of traditional importance, ranging from Thurstonian-
type modeling of discrimination probabilities (see, e.g., Dzha-
farov, 2006, in response to Ennis, 2006) to the “probability-
distance” hypothesis (Dzhafarov, 2002a) to Fechnerian Scal-
ing (see, e.g., Dzhafarov & Colonius, 2007) to matching-by-
adjustment procedures (Dzhafarov & Perry, 2010) to the com-
parative version of the ancient “sorites” paradox (Dzhafarov
& Dzhafarov, 2010).

In an earlier paper (Trendtel, Ünlü, & Dzhafarov, 2010) a
formula was derived for the proportion of RM-compliant ma-
trices among all rank order matrices of a given size and with
no ties among their entries. This proportion was given the fol-
lowing “meta-probabilistic” interpretation. Let the initial n2

entries of an n×n matrix (before converting them into ranks)
be theoretical values of a discriminability measure (e.g., dis-
crimination probabilities), and let the set of all such values
be a subset R of reals of a positive Lebesgue measure (e.g.,
the interval [0,1] in the case of probabilities). Impose on all
n2 entries one and the same probability measure µ absolutely
continuous with respect to the Lebesgue measure. It can be
loosely interpreted as a “random generator” of the theoreti-
cal discriminability values. Then in the space Rn2 the RM-
compliant matrices occupy a certain subset, and the product
measure µ× . . .× µ (n2 times) of this subset is interpreted
as “the probability of obtaining an RM-compliant matrix by
chance.” Since the absolute continuity of µ makes the product
measure of matrices with tied values zero, and since the use
of one and the same µ for all entries makes all permutations
of any given set of entries equiprobable, the product measure
in question equals the proportion of RM-compliant matrices

1 The property (A) of RM should be qualified as follows. Two rows (or two
columns) of a matrix are considered equivalent if they have identical en-
tries. The uniqueness requirement (A) should be taken to hold up to this
equivalence relation: in some initial (not even necessarily square) matrix
the set of matching columns for any given row is nonempty and consists of
pairwise equivalent columns, and the same holds for the set of rows match-
ing a given column. Another way of stating this is to say that (A) holds
after any two equivalent rows (or columns) in an initial matrix have been
merged into a single one. See Dzhafarov and Colonius (2006a) for a more
detailed discussion.

among all n×n rank order matrices with no ties.
In this paper the work done in Trendtel et al. (2010) is ex-

panded in three directions. First, we propose a way of count-
ing the number of violations of RM in a matrix, and we derive
a formula for the proportion pr

n of matrices with r violations
of RM among all n× n rank order matrices with no ties. The
formula derived in Trendtel et al. (2010) corresponds to r = 0.
Second, in addition to the “meta-probabilistic” interpretation
mentioned above we propose a statistical interpretation of pr

n
in which p≤r

n = ∑r
i=0 pi

n (the proportion of matrices with no
more than r violations of RM) becomes the p-value of a per-
mutation test. The null hypothesis of this test essentially says
that “there is no order among the ranks,” while the alterna-
tive hypothesis states that “few or no violations of RM occur
more frequently than stated in the null hypothesis.” Third, we
propose a way of representing rank order matrices with ties by
classes of rank order matrices without ties. If a matrix M (with
ties allowed) is represented by a set

�
M�

1, . . . ,M
�
k
�

of rank or-
der matrices without ties, and if ri denotes the number of vi-
olations of RM in M�

i (i = 1, . . . ,k), then the violations of RM
in M are characterized by the vector of violations (r1, . . . ,rk).
In the permutation test a “surrogate p-value” (as explained in
Section 6) for such a matrix may be computed as an unknown
value within the interval

�
p≤min{r1,...,rk}

n , p≤max{r1,...,rk}
n

�
.

2. NUMBER OF VIOLATIONS OF RM

Recall Convention 1.1. In this section the matrices are al-
lowed to have ties. The rows and columns of a matrix are
identified by their ordinal positions: row 1, column 6, etc.

Definition 2.1. A column j of a matrix M is said to match (to
be a match for) a row i if mi j is the unique minimum entry in
the row i (i.e., j� �= j ⇒ mi j� > mi j). A row i is said to match
(to be a match for) a column j if mi j is the unique minimum
entry in the column j (i.e., i� �= i⇒ mi� j > mi j). If a row i and
a column j match each other, (i, j) is referred to as a matching
pair.

Lemma 2.2. A match, if it exists, is unique: no row (column)
can have more than one column (respectively, row) matching
it. The set of all matching pairs in an n×n matrix is a bijection
{i1, . . . , ik}→ { j1, . . . , jk}, k ∈ {0, . . . ,n}.

Proof. The uniqueness statement follows from the uniqueness
of the minimum requirement in the definition of matching. In
the set of matching pairs therefore, if (i, j) �= (i�, j�), then both
i �= i� and j �= j�. The second statement of the lemma follows.

Definition 2.3. A row i (column j) of a matrix is said to be
RM-compliant if it forms a matching pair with some column
j (respectively, row i); if additionally i = j, we say that row i
(column j) is RM-compliant in a canonical form. A row i (col-
umn j) which is not RM-compliant is called RM-contravening.

Lemma 2.4. Any RM-compliant row forms a matching pair
with an RM-compliant column, and vice versa. The num-
ber of the RM-compliant rows equals the number of the RM-
compliant columns. The number of the RM-contravening rows
equals the number of the RM-contravening columns.

Proof. If m is the set of all matching pairs (i, j) then the set
of all RM-compliant rows is the first projection of m, and the
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set of all RM-compliant columns is the second projection of
m. The first two statements of the lemma follow. Since every
row (column) is either RM-compliant or RM-contravening,
the numbers of the RM-contravening rows and columns are
also equal.

Remark 2.5. There is, obviously, no natural pairing of RM-
contravening rows with RM-contravening columns.

Remark 2.6. A matrix satisfies the property of RM (Section 1)
if and only if all of its rows (or columns) are RM-compliant.
This paper, however, is also consistent with a “gradualized”
view, in which the “degree” of the RM-compliance of an n×n
matrix with r RM-contravening rows (columns) is understood
as 1− r/n.

The number of violations of RM can be defined in more
than one way. For instance, in each row i one could find the
minimum di of its entries, determine the columns { j1, . . . , jki}
in which this minimum value occurs, and compute

n

∑
i=1




ki−1+ ∑
j∈{ j1,..., jki}

∑
i� �=i

Truth
�
mi� j ≤ di

�



 ,

where Truth is 1 or 0 according as the inequality holds or
fails. This quantity equals 0 if and only if every row is
RM-compliant (i.e., the matrix satisfies RM). If we exchange
columns and rows in the formulation of this measure we will
get another, generally different measure. We adopt, however,
the following, arguably the simplest way of counting the vio-
lations.

Definition 2.7. The number of violations of RM in a matrix is
the number of RM-contravening rows (or columns) it contains.

So the number of violations of RM in an n× n matrix is a
number between 0 (in which case the matrix is RM-compliant)
and n.

Lemma 2.8. The number of violations of RM in a matrix is
invariant with respect to arbitrary permutations of its rows
and columns.

Proof. Let the number of violations of RM in an n×n matrix
M be r ∈ {0, . . . ,n}, whence the number of the matching pairs
(i, j) in M is n− r. By arbitrary permutations α and β of the
rows and columns, respectively, we transform M into a matrix
M�. Its entries m�

i j are related to the entries mi j of M as

m�
α(i),β( j) = mi j.

If mi j in M is the unique minimum entry in the row i, then
m�

α(i),β( j) in M� is the unique minimum entry in the row α(i),
as the latter is merely the β-permutation of the row i of M; and
if mi j in M is the unique minimum entry in the column j, then
m�

α(i),β( j) in M� is the unique minimum entry in the column
β( j), as the latter is merely the α-permutation of the column
j of M. It follows that if (i, j) is a matching pair in M, then
(α(i) ,β( j)) is a matching pair in M�. Since permutations are
injective, the number of the matching pairs in M� cannot be
less than n− r. By obvious symmetry, if (i�, j�) is a match-
ing pair in M�, then

�
α−1 (i�) ,β−1 ( j�)

�
is a matching pair in

M, whence the number of the matching pairs in M� cannot be
greater than n− r. The statement of the lemma follows.

3. MATRICES WITHOUT TIES

Convention 3.1. In this section the word “matrix” means a
(rank order) matrix without ties. This convention will remain
in force until Section 6.

Lemma 3.2. Let Mαβ be a matrix obtained from a matrix M
by permutations α and β of its rows and columns, respectively.
Then Mαβ = Mα�β� implies (α,β) = (α�,β�).

Proof. Denoting Mαβ = Mα�β� = M�, the entries of M and M�

are related to each other as

mi j = m�
α(i),β( j)

and

mi j = m�
α�(i),β�( j).

If (α,β) �= (α�,β�) then for some (i, j), m�
α(i),β( j) and m�

α�(i),β�( j)
would have to be two identical entries in different cells, which
is excluded by Convention 3.1.

Lemma 3.3. The number of violations of RM in an n×n ma-
trix cannot exceed n−1.

Proof. The row and the column containing the smallest entry,
1, are a matching pair.

Lemma 3.4. Let an n × n matrix M contain n − r RM-
compliant rows (and columns) with minima d1, . . . ,dn−r (and
possibly some other RM-compliant rows and columns). By ap-
propriately chosen permutations of rows and columns one can
always (and uniquely) bring such an M to a special form M�,
in which

(a) the RM-compliant rows with minima d1, . . . ,dn−r are ar-
ranged in the increasing order of the row minima in the last
n− r positions;

(b) the RM-compliant columns are placed so that these min-
ima are on the main diagonal (in the increasing order);

(c) the remaining (upper left) r× r submatrix of M� equals
the r× r submatrix of M formed by the remaining rows and
columns.

Remark 3.5. A submatrix A� formed by rows and columns�
iA1 < .. . < iAr

�
×

�
jA
1 < .. . < jA

r
�

of a matrix A is consid-
ered equal to a submatrix B� formed by rows and columns�

iB1 < .. . < iBr
�
×

�
jB
1 < .. . < jB

r
�

of a matrix B if any entry
a�iAk jAl

of A� equals the entry b�iBk jBl
of B�, for k, l ∈ {1, . . . ,r}.

Proof. Let i1, . . . , in−r be the RM-compliant rows in M with
minima d1, . . . ,dn−r, listed in the increasing order,

min(d1, . . . ,dn−r) = min(mi11, . . . ,mi1n) <
.. . < min

�
min−r1, . . . ,min−rn

�
= max(d1, . . . ,dn−r) ,

and let these rows be matched by the (RM-compliant) columns
j1, . . . , jn−r, respectively. Let i∗1 < .. . < i∗r and j∗1 < .. . < j∗r
be the remaining rows and columns (listed in their order of
appearance in M). Then the permutations

i∗1 . . . i∗r i1 . . . in−r
α : ↓ . . . ↓ ↓ . . . ↓

1 . . . r r +1 . . . n
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and

j∗1 . . . j∗r j1 . . . jn−r
β : ↓ . . . ↓ ↓ . . . ↓

1 . . . r r +1 . . . n

are easily checked to yield the properties (a), (b), and (c). The
uniqueness of this special form follows from the uniqueness of
the sequences i∗1, . . . , i

∗
r , i1, . . . , in−r and j∗1, . . . , j∗r , j1, . . . , jn−r.

Definition 3.6. We will call a matrix M� in the form satisfying
(a), (b), and (c) of Lemma 3.4 a special matrix containing RM-
compliant rows (and columns) with minima d1, . . . ,dn−r (pos-
sibly in addition to other RM-compliant rows and columns).

Lemma 3.7. Denoting by t{d1,...,dn−r}
n the number of n×n spe-

cial matrices containing RM-compliant rows (and columns)
with minima d1, . . . ,dn−r, and denoting by T {d1,...,dn−r}

n the
number of all n×n matrices with the same property,

T {d1,...,dn−r}
n = [cmb(n,n− r)]2t{d1,...,dn−r}

n ,

where cmb is defined as

cmb(x,y) =
� x!

(x−y)! if x≥ y≥ 0,

0 otherwise.

Remark 3.8. The combinatorial meaning of cmb(x,y) is the
number of permutations of x objects taken y at a time (equiva-
lently, the number of ways y distinct objects can be placed in
x placeholders).

Proof. Any matrix M that can be transformed (in the sense of
Lemma 3.4) to a given special matrix M� can be obtained from
this M� by means of permutations

1 . . . r r +1 . . . n
α−1 : ↓ . . . ↓ ↓ . . . ↓

i∗1 . . . i∗r i1 . . . in−r

and

1 . . . r r +1 . . . n
β−1 : ↓ . . . ↓ ↓ . . . ↓

j∗1 . . . j∗r j1 . . . jn−r

.

Since the positions i∗1 < .. . < i∗r are uniquely determined by
the choice of (i1, . . . , in−r), the number of all distinct per-
mutations α−1 applicable to M� is the number of ways vec-
tors (i1, . . . , in−r) can be chosen among n rows, which is
cmb(n,n− r). Analogously, the number of all distinct per-
mutations β−1 applicable to M� is the number of ways vec-
tors ( j1, . . . , jn−r) can be chosen among n columns, again
cmb(n,n− r). Since, by Lemma 3.2, every combination of
α−1 and β−1 yields a unique matrix M, the number of such
matrices for a given M� is [cmb(n,n− r)]2. Two distinct spe-
cial matrices M� and M�� cannot be transformed into one and
the same M due to the uniqueness statement in Lemma 3.4.
The statement of the lemma follows.

Recall that all the matrices mentioned are assumed to be
without ties. This convention continues to hold in the next
section.

4. MAIN THEOREM

We need the following two auxiliary results.

Lemma 4.1. Let T {d1,...,dn−r}
n be as in Lemma 3.7, and let

U{d1,...,dn−r}
n denote the number of all n× n matrices contain-

ing RM-compliant rows with minima d1, . . . ,dn−r and no other
RM-compliant rows. Then, if r > 0,

U{d1,...,dn−r}
n = T {d1,...,dn−r}

n

−∑r−1
q=0 ∑dn−r+1<...<dn−q U

{d1,...,dn−r}∪{dn−r+1,...,dn−q}
n ,

and if r = 0,

U{d1,...,dn}
n = T {d1,...,dn}

n .

Remark 4.2. Note that presenting the superscripts in T {...}
n and

U{...}
n as sets indicates that the elements of the sets can be writ-

ten in any order without changing these numbers.

Proof. The sets of matrices included in the numbers

U
{d1,...,dn−r}∪{dn−r+1,...,dn−q}
n and U

{d1,...,dn−r}∪
�

d�n−r+1,...,d�n−q�
�

n
are clearly disjoint, for any fixed {d1, . . . ,dn−r} and any dis-
tinct sets

�
dn−r+1, . . . ,dn−q

�
and

�
d�n−r+1, . . . ,d

�
n−q�

�
(q,q� ∈

{0, . . . ,r−1}). The quantity

r−1

∑
q=0

∑
dn−r+1<...<dn−q

U
{d1,...,dn−r}∪{dn−r+1,...,dn−q}
n

therefore is the number of all matrices containing RM-
compliant rows with the row minima d1, . . . ,dn−r and from
1 to r additional RM-compliant rows. The statement for r = 0
is obvious.

Lemma 4.3. Denoting by Sr
n the number of n×n matrices with

exactly r ∈ {0, . . . ,n−1} violations of RM,

Sr
n = ∑

d1<...<dn−r

U{d1,...,dn−r}
n ,

and if r > 0, then for any q ∈ {0, . . . ,r−1},

∑d1<...<dn−r ∑dn−r+1<...<dn−q U
{d1,...,dn−r}∪{dn−r+1,...,dn−q}
n

=
�

n−q
r−q

�
Sq

n.

Proof. The first equality follows from the definitions of Sr
n and

U{d1,...,dn−r}
n , on observing that the sets of matrices counted in

the number U{d1,...,dn−r}
n for different choices of {d1, . . . ,dn−r}

are disjoint. The second equality then follows from presenting

Sq
n = ∑d1<...<dn−q U{d1,...,dn−q}

n

= ∑d1<...<dn−q U
{d1,...,dn−r}∪{dn−r+1,...,dn−q}
n

and observing that in the double-sum

∑
d1<...<dn−r

∑
dn−r+1<...<dn−q

U
{d1,...,dn−r}∪{dn−r+1,...,dn−q}
n

each vector d1 < .. . < dn−q occurs
�

n−q
n− r

�
=

�
n−q
r−q

�

times.
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In the proof of our main result below we use the following
notion. In an n× n matrix M the kth frame, k = 1, . . . ,n, is
defined as the set of cells

{(k, j) : j < k}∪{(i,k) : i < k} .

The number of cells in the kth frame is 2(k−1).

Theorem 4.4. The number Sr
n of n× n matrices with exactly

r ∈ {0, . . . ,n−1} violations of RM is given by the recursive
formula

S0
n = (n!)2 ∑

d1<...<dn

n

∏
k=1

cmb
�
k2−dk,2(k−1)

�
,

Sr
n = [cmb(n,n− r)]2r2!
×∑dr+1<...<dn ∏n

k=r+1 cmb
�
k2−dk,2(k−1)

�

−∑r−1
q=0

�
n−q
r−q

�
Sq

n,

where di∈
�

1, . . . ,n2�, i = 1, . . . ,n.

Proof. Let r ∈ {0, . . . ,n−1} be chosen, and let the n− r
bottom-right diagonal entries in the matrix M be chosen and
arranged as

dr+1 = mr+1,r+1 < .. . < dn = mnn.

We begin by computing the number of ways in which we can
fill the last n− r frames of M so that the last n− r rows and
columns of M are RM-compliant in a canonical form (this will
be referred to below as “RM requirements”).

The nth frame should be filled by 2(n−1) ranks chosen
from the set of n2 − dn ranks exceeding dn. The number of
such choices is

cmb
�
n2−dn,2(n−1)

�
. (1)

Any of these choices complies with the RM requirements, be-
cause any rank exceeding dn will also exceed any dk for k < n.

For k ∈ {r +1, . . . ,n−1}, let now all the frames from the
(k +1)st to the nth have been filled in compliance with the RM
requirements. The kth frame then should be filled by 2(k−1)
numbers chosen from the set of n2−dk numbers exceeding dk,
from which however we should remove all the n2−k2 numbers
used up in the previously filled frames and higher-up diagonal
elements. That is, the kth frame can be filled in by

�
n2−dk

�
−

�
n2− k2� = k2−dk

numbers taken 2(k−1) at a time. The number of such choices
is

cmb
�
k2−dk,2(k−1)

�
.

Any of these choices complies with the RM requirements, be-
cause any rank exceeding dk also exceeds any dk� for k� < k,
and if k� > k then the choice above is irrelevant. Since the
quantity cmb

�
k2−dk,2(k−1)

�
does not depend on the fill-

ings of any of the frames k� > k, the number of ways of filling
all the n− r last frames of M is

n

∏
k=r+1

cmb
�
k2−dk,2(k−1)

�
.

If r = 0, the formula above shows the number of possible
fillings of the entire matrix for a given choice of the diagonal
elements d1 < .. . < dn, i.e., the number t{d1,...,dn}

n of special
matrices in accordance with Definition 3.6. By Lemmas 3.7,
4.1, and 4.3 then

S0
n = ∑d1<...<dn (n!)2 ∏n

k=1 cmb
�
k2−dk,2(k−1)

�

= (n!)2 ∑d1<...<dn ∏n
k=1 cmb

�
k2−dk,2(k−1)

�
.

This result (known from Trendtel et al., 2010) forms the basis
of the recursive formula in the formulation of the theorem.

Assuming now that r > 0, the remaining r×r submatrix can
be filled in r2! ways, given any filling of the last n− r frames
and diagonal elements, and it is easy to see that no filling of
this submatrix would violate the RM requirements (for the last
n− r rows and columns). The quantity

r2!
n

∏
k=r+1

cmb
�
k2−dk,2(k−1)

�

is the number t{dr+1,...,dn}
n of special matrices in accordance

with Definition 3.6, whence

T {dr+1,...,dn}
n = [cmb(n,n− r)]2r2!

n

∏
k=r+1

cmb
�
k2−dk,2(k−1)

�
,

by Lemma 3.7. Applying to this result Lemma 4.1 and Lemma
4.3 (having noted the change in the enumeration of the d’s),

Sr
n = ∑dr+1<...<dn U{dr+1,...,dn}

n = ∑dr+1<...<dn T {dr+1,...,dn}
n

−∑dr+1<...<dn ∑r−1
q=0 ∑d1<...<dr−q U{d1,...,dr−q}∪{dr+1,...,dn}

n

= ∑dr+1<...<dn T {dr+1,...,dn}
n

−∑r−1
q=0 ∑d1<...<dr−q ∑dr+1<...<dn U{d1,...,dr−q}∪{dr+1,...,dn}

n

= [cmb(n,n− r)]2r2!
×∑dr+1<...<dn ∏n

k=r+1 cmb
�
k2−dk,2(k−1)

�

−∑r−1
q=0

�
n−q
r−q

�
Sq

n.

The recursive formula for Sr
n in the formulation of the theorem

follows.

Corollary 4.5. Assuming all n×n matrices are equiprobable,
the probability pr

n that a randomly chosen matrix has r viola-
tions of RM is

pr
n =

Sr
n

n2!
,

where Sr
n is as in Theorem 4.4.

5. PERMUTATION TEST

We will now use the above combinatorial results to con-
struct a permutation test (Good, 2005; Pitman, 1937a-b;
Welch, 1990) for the number of violations of RM. Let M now
be a rank order matrix representing a data matrix. In the be-
ginning, let us continue to assume that the matrix contains no
ties (those will be dealt with in the next section). Intuitively,
it is compelling to think that if the size n of M is sufficiently
large and the number r of RM violations is sufficiently small,
then we have evidence in favor of RM: it seems unlikely that a
large amount of structure (here, many RM-compliant rows and



6 Dzhafarov, Ünlü, Trendtel, Colonius

columns) occurs “by chance alone.” The idea of the “chance”
can be formalized by adopting the following proposition as our
null hypothesis: all rank order matrices (i.e., all permutations
of the ranks 1, . . . ,n2) are equiprobable. This is the assump-
tion of “no structure.” If it is correct, then an n×n matrix with
r violations of RM occurs with the probability pr

n derived in
the previous section.

Now, any structure discernible in M speaks against this null
hypothesis (e.g., larger numbers prevailing above the main di-
agonal, or even numbers alternating with the odd ones as one
reads the matrix row by row), but we are interested in an al-
ternative hypothesis that would make a matrix with smaller
number of violations of RM less consistent with the null hy-
pothesis than a matrix with larger number of violations of RM.
The least committed formulation of this alternative hypothesis
is: for any r ∈ {0, . . . ,n−2}, the probability of obtaining a
matrix with no more than r violations of RM is greater than
follows from the null hypothesis. (The value r = n− 1 is not
included because the probability of no more than n− 1 vio-
lations is 1.) This assumption can be dubbed “nature favors
matching row-column pairs,” or “nature favors RM,” for short.

It is clear now, that if our matrix M contains r violations,
then the probability, under the null hypothesis, of obtaining a
matrix with as many or fewer violations of RM will serve as
the p-value of our test. In other words, given r violations,

p-value = p≤r
n =

r

∑
i=0

pi
n.

The numerical tables in Appendix show pr
n and p≤r

n for val-
ues of n ranging from 2 to 25. Thus, if one obtains a 7× 7
matrix with just one violation of RM, at the significance level
0.05 one should reject the null hypothesis (of “no structure”) in
favor of the alternative hypothesis (that “nature favors RM”).
In a 20×20 matrix, if the number of violations exceeds 6, the
hypothesis of “no structure” at the same level of significance
cannot be rejected.2

It is always possible, of course, that our test will reject the
null hypothesis (“in favor of RM”) and at the same time the
RM-compliance of the entire matrix (or the “complete” RM-
compliance, in the gradualized view mentioned in Remark
2.6) will be rejected by another test.3 Thus, if the entries of
the data matrix are probability estimates for responses “differ-
ent,” it is conceivable that, by treating a theoretical matrix as
a set of independent binomial variables, a confidence region
consisting of the theoretical matrices that agree with the data
matrix will not contain matrices without RM violations, even
if the permutation test p-value is very small. The issue of what
one’s decisions in such cases should be has complex ramifica-
tions, ranging from those applicable to all resampling tests to
those more specific to RM. A detailed discussion is outside the
scope of this paper.

2 It is worth mentioning that 1− p≤r
n may also be looked at as a “meta-

probabilistic” quantification of one’s “surprise” at observing n−r matching
row-column pairs in the absence of prior knowledge of any structural regu-
larities in the matrix, even if its entities are deterministic, such as theoretical
probabilities or theoretical means, with no sampling error involved (see the
penultimate paragraph of Section 1).

3 We are grateful to Janne Kujala for bringing up this issue.

6. HOW TO DEAL WITH TIES

The definition for the number of violations of RM given in
Section 2 applies to matrices with ties, but the probability pr

n
derived in Section 4 does not. There are two ways of dealing
with ties. A direct one is to consider a set V of possible values
for cells of a matrix (before the latter has been converted into
the rank order form), formulate the null hypothesis in terms of
chances for each element of V to fall within each cell, and to
derive the distribution of the number of RM violations under
this hypothesis. Such a theory, if it were applicable to any
set V , would have included the one developed in this paper as
a special case. Another approach is to stay with rank order
matrices, find a way of approximating a matrix containing ties
by its several “untied versions,” and to gauge how small the
numbers of RM violations are in these untied matrices under
the null hypothesis of equiprobable permutations. This is the
approach we adopt in this paper.

Henceforth we drop Convention 3.1. Convention 1.1 re-
mains in force: all matrices are rank order ones, unless other-
wise specified (as will be the case with the “G-untied versions”
in the next section).

Definition 6.1. A matrix M� without ties is said to be an un-
tied version of a matrix M (with possible ties) if m�

i j < m�
i� j� in

M� whenever mi j < mi� j� in M. If
�

M�
1, . . . ,M

�
k
�

is the set of
all untied versions of M, then, denoting by ri the number of
violations of RM in M�

i , the vector (r1, . . . ,rk) is said to char-
acterize violations of RM in M.

Clearly, (r1, . . . ,rk) is determined by a matrix M uniquely
up to arbitrary permutations, and k lies between 1 and n2!
(k = 1 indicating a matrix without ties, k = n2! a matrix with
the value

�
1+n2�/2 in all cells). One cannot associate any p-

value with (r1, . . . ,rk) because we have formulated no null hy-
pothesis for the distribution of matrices with possible ties. We
resort therefore to the computation of a “surrogate p-value,”
Pn (r1, . . . ,rk), whose meaning is established as follows.4 Let
R be a random variable representing the number of RM vio-
lations in matrices without ties, distributed as specified by the
null hypothesis. If we are told that the observed value of R is r,
then the p-value is p≤r

n . A matrix with possible ties, however,
is characterized by a vector (r1, . . . ,rk). We treat this situation
“as if” we were told that the observed number of RM viola-
tions in a matrix without ties (i.e., a value of R) belonged to the
vector (r1, . . . ,rk). With this interpretation in mind, the surro-
gate p-value Pn (r1, . . . ,rk) is the answer to the question: what
is the probability that R does not exceed a number randomly
chosen from the vector (r1, . . . ,rk)?

Adopting the natural convention that “randomly chosen”
here means chosen with probability 1/k, the rigorous pro-
cedure is to “roll a fair k-sided die,” choose ri and put
Pn (r1, . . . ,rk) = p≤ri

n . If this value is very small we reject the
null hypothesis that all matrices without ties are equiprobable.
To justify calling Pn (r1, . . . ,rk) a p-value, even if “surrogate,”
note that when considered a random variable this probability
has a discrete uniform distribution over its attainable values.

4 We are grateful to Matt Jones for pointing out a mistake in the initial version
of the proposed computation.
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Indeed, with obvious notation,

Pn (R1, . . . ,Rk) =






p≤R1
n with probability 1/k
...

...
...

p≤Rk
n with probability 1/k

,

and since each Ri is distributed as R, we have

Pr [Pn (R1, . . . ,Rk)≤ p] =
k

∑
i=1

Pr
�
p≤Ri

n ≤ p
� 1

k
= p

k

∑
i=1

1
k

= p,

for any attainable value p and any given k.
In practice, it may be sufficient to estimate the unknown

value of Pn (r1, . . . ,rk) by the interval
�
min

�
p≤r1

n , . . . , p≤rk
n

�
,max

�
p≤r1

n , . . . , p≤rk
n

��

=
�

p≤min{r1,...,rk}
n , p≤max{r1,...,rk}

n

�
.

With this approach one should be prepared in some cases to
abstain from choosing between retention and rejection of the
null hypothesis at a given significance level.

As the next lemma shows, the factual number r of violations
of RM in M in accordance with Definition 2.7 is not related in
any simple way to the vector of violations (r1, . . . ,rk), except
that r cannot be lower than any of the ri’s.

Lemma 6.2. Any matching row-column pair (i, j) in a ma-
trix M is also a matching pair in any untied version of M.
If the violations of RM in M are characterized by a vector
(r1, . . . ,rk), and the number of violations of RM in M is r, then
r ≥ max{r1, . . . ,rk}, with both equality and strict inequality
possible.

Proof. If (i, j) is a matching row-column pair in M, then
mi j < mi� j for all i� �= i and mi j < mi j� for all j� �= j. By defini-
tion, the same inequalities hold between the corresponding en-
tries of any untied version M� of M . Hence (i, j) is a matching
pair in M�, and no M� can have fewer matching pairs (equiv-
alently, more violations of RM) than M. That the equality
r = max{r1, . . . ,rk} is possible is shown by an example: the
matrix

M =




1 7 3
5 5 5
2 8 9





has r = 2 violations, and its untied versions are

M�
1 =




1 7 3
4 5 6
2 8 9



 ,M�
2 =




1 7 3
4 6 5
2 8 9



 ,M�
3 =




1 7 3
5 4 6
2 8 9



 ,

M�
4 =




1 7 3
5 6 4
2 8 9



 ,M�
5 =




1 7 3
6 4 5
2 8 9



 ,M�
6 =




1 7 3
6 5 4
2 8 9



 ,

yielding the vector of violations (2,2,1,2,1,2). The strict in-
equality r > max{r1, . . . ,rk} will hold whenever r = n (be-
cause, by Lemma 3.3, ri ≤ n−1). To show that this is not the
only case, consider

M =




1 6 7
4 2.5 2.5

8.5 8.5 5





with r = 2 violations of RM. Its untied versions are

M�
1 =




1 6 7
4 2 3
8 9 5



 ,M�
2 =




1 6 7
4 2 3
9 8 5



 ,

M�
3 =




1 6 7
4 3 2
8 9 5



 ,M�
4 =




1 6 7
4 3 2
9 8 5



 ,

with the vector of violations (1,1,1,1).

A large data matrix may contain several groups of cells with
many tied entries in each group, making the number of the
untied versions of the data matrix very large. The analysis can
be simplified by using only reduced vectors of RM violations,
as explained below.

7. REDUCED VECTORS OF RM VIOLATIONS

Let us denote by RM (i, j), the following statement about a
cell (i, j) of a matrix M: the entry mi j is the minimal value
in this row, and for some j� �= j, mi j� = mi j. The “trans-
posed” version of this statement is denoted CM (i, j): the entry
mi j is the minimal value in this column, and for some i� �= i,
mi� j = mi j. Clearly, RM (i, j) and CM (i, j) imply that the row
i (respectively, column j) are RM-contravening. We define a
set of cells G as

G = {(i, j) : RM (i, j) or CM (i, j)} .

This set is either empty or it contains at least two cells.
Given an M and its untied version M�, let an entry a occur

g ≥ 0 times within G in M and t ≥ g times overall in M (t >
0). The following table illustrates the procedure of creating a
matrix M∗ called the G-untied version of M corresponding to
M�:

cells: (i, j)1 . . . (i, j)g | (i, j)g+1 . . . (i, j)t
value in M : a . . . a | a . . . a
value in M� : a1 . . . ag | ag+1 . . . at
value in M∗ : a− g−1

2 . . . a+ g−1
2 | a . . . a

.

The sequence of cells (i, j)1 . . .(i, j)g within G is arranged so
that a1 < .. . < ag, and the rest of the cells containing a in M
are arranged so that ag+1 < .. . < at .

Convention 7.1. We will refer to such a table as the table of
arrangements for a certain value (in this case, a) in M.

Note that by the definition of tied ranks (Section 1), a is
the mean of {a1, . . . ,at}, and that this set consists of all in-
tegers ranging from a− t−1

2 to a + t−1
2 . We compute the

corresponding values in M∗ by replacing every ak outside G
with a (k = g + 1, . . . , t), and replacing every ak within G by
a− (g−1)/2 + k− 1 (k = 1, . . . ,g). These numbers form
the arithmetic progression with difference 1 of which a is the
mean. The correspondence of M∗ to M� is in that these num-
bers are sorted in the same way as a1 < .. . < ag. We create the
matrix M∗ by performing this procedure for all distinct values
a in M.

If g = t in the table of arrangements for every value a in
M, the procedure results in M∗ = M�. Note, however, that if
g < t for some a, the resulting matrix M∗ is not, generally,
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a rank-order matrix, as illustrated by the following table of
arrangements:

cells: (i, j)1 (i, j)2 (i, j)3 | (i, j)4
value in M : 4.5 4.5 4.5 | 4.5
value in M� : 3 4 5 | 6
value in M∗ : 3.5 4.5 5.5 | 4.5

.

No rank-order matrix can have entries 3.5, 4.5, 4.5, 5.5.

Lemma 7.2. Let M∗ be the G-untied version of M correspond-
ing to an untied version M� of M. Then M∗ and M� have the
same set of matching row-column pairs, hence the same num-
ber of RM violations.

Proof. If (i, j) is a matching row-column pair in M�, then
m�

i j < m�
i� j for all i� �= i and m�

i j < m�
i j� for all j� �= j. Consider

the former inequalities first. By Definition 6.1, they imply that
in the matrix M, for any i� �= i, either a = mi j < mi� j = b or
mi j = mi� j = a. In the former case, let the counts of a and b in
M be ta and tb, respectively. Then

a+
ta−1

2
< b− tb−1

2
,

so the ranges of values in M� corresponding to a and b do not
overlap. From the tables of arrangements for a and for b it
is clear then that the same is true for the ranges of values in
M∗ corresponding to a and b. In particular, m∗

i j < m∗
i� j. In

the case mi j = mi� j = a, the cells (i, j) and (i, j�) fall within
G, and the table of arrangements for a then shows that m∗

i j <
m∗

i� j. We conclude that m�
i j < m�

i� j implies m∗
i j < m∗

i� j. The
proof that m�

i j < m�
i j� implies m∗

i j < m∗
i j� being analogous, we

have established that if (i, j) is a matching row-column pair
in M� then so is it also in M∗. The reverse is demonstrated in
a similar way, departing from the observation, apparent from
the tables of arrangements, that if m∗

i j < m∗
i� j then either a =

mi j < mi� j = b or mi j = mi� j = a.

Lemma 7.3. Each G-untied version M∗ of M corresponds to
the same number of untied versions M� of M .

Proof. Consider the table of arrangements for an arbitrary
value a in M. A given M∗ corresponding to an untied ver-
sion M�

1 also corresponds to another untied version, M�
2, if

and only if, for any a, either the matrices M�
1 and M�

2 con-
tain different selections of t − g entries (for the cells outside
G) from the set of all integers ranging from a− t−1

2 to a+ t−1
2 ,

or they contain different permutations of such a selection. Let
(m1,g1, t1) , . . . ,(mN ,gN , tN) be the set of all triads containing
distinct entries mi in M with their counts gi within G and over-
all counts, ti. Then the number of the matrices M� to which a
given M∗ corresponds is

N

∏
i=1

cmb(ti, ti−gi) =
N

∏
i=1

ti!
gi!

.

This number does not depend on the matrix M∗.

It follows that it is always sufficient to characterize the RM
violations in a matrix M by the vector (r1, . . . ,rl) of the num-
bers of RM violations in all G-untied versions M∗

1 , . . . ,M
∗
l of

M. We will call this vector of RM violations reduced. Since
in the full vector of RM violations all the ri’s of the reduced
vector are merely replicated a constant number of times, the
computation of surrogate p-values remains unchanged.

8. TWO ILLUSTRATIONS

Let us illustrate both the permutation test and our method
of dealing with ties on real data. In Dzhafarov and Colo-
nius (2006b) a certain procedure (Fechnerian Scaling) which
is predicated on RM was applied to data matrices taken from
Rothkopf (1957) and Wish (1967). The two data matrices,
however, contain violations of RM, so their use in Dzhafarov
and Colonius (2006b) was justified by deeming the matrices
to provide compelling evidence for RM in spite of these vio-
lations. We now can quantify this judgment.

Rothkopf’s (1957) data set can be arranged in a 36× 36
matrix of pairwise discrimination frequencies (among 36 au-
ditory Morse codes). 35 of the rows and columns of this matrix
are RM-compliant in the canonical form, but the second row
contains two identical minimal values:

. . . j = 2 . . . j = 24 . . .
...

. . .
...

. . .
...

. . .
i = 2 . . . 0.16 . . . 0.16 . . .

...
. . .

...
. . .

...
. . .

i = 24 . . .
. . . . . . 0.09 . . .

...
. . .

...
. . .

...
. . .

All other entries in column 2 are greater than 0.16. So there is
one violation of RM in this matrix in accordance with Defini-
tion 2.7, and the set G consists of the cells (2,2) and (2,24).
Depending on how one breaks the tie between them, the num-
ber of RM violations in the G-untied version of Rothkopf’s
matrix will be 0 or 1. In other words, the RM violations in the
data matrix are characterized by the reduced vector (0,1). The
surrogate p-value of the permutation test therefore ranges be-
tween p0

36 ≈ 5 ·10−21 and p≤1
36 ≈ 6 ·10−18, definitely rejecting

the null hypothesis at any conventional significance level.
Wish’s (1967) data consist of pairwise discrimination fre-

quencies among 32 auditory Morse-code-like signals. They
are arranged in a 32×32 matrix in which 30 rows and columns
are RM-compliant in the canonical form. The two RM-
contravening rows and columns exhibit the following pattern:

. . . j = 20 . . . j = 22 . . .
...

. . .
...

. . .
...

. . .
i = 20 . . . 0.06 . . . 0.03 . . .

...
. . .

...
. . .

...
. . .

i = 22 . . .
. . . . . . 0.03 . . .

...
. . .

...
. . .

...
. . .

All other entries in rows 20, 22 and column 22 are greater than
0.03 and all other entries in column 20 are greater than 0.06.
The set G here is {(20,22) ,(22,22)}. It is easy to see that
irrespective of how one breaks the tie in column 22, we end
up with just one violation of RM: if the rank of the entry in
(20,22) precedes that of the entry in (22,22) then i = 20 and
j = 22 form a matching pair; and if the order of the ranks re-
verses, a matching pair is formed by i = 22 and j = 22. This
means that the RM violations in the data matrix are character-
ized by the reduced vector (1,1). The surrogate p-value of the
test is then p≤1

32 ≈ 10−15, again well below any conventional
significance level.
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9. COMPUTATIONAL ALGORITHM

In formula

Sr
n = [cmb(n,n− r)]2r2!
×∑dr+1<...<dn ∏n

k=r+1 cmb
�
k2−dk,2(k−1)

�

−∑r−1
q=0

�
n−q
r−q

�
Sq

n,

the expression

vr
n = ∑

dr+1<...<dn

n

∏
k=r+1

cmb
�
k2−dk,2(k−1)

�

can be rewritten in a computationally more economic way, us-
ing the inequalities dr+1 ≥ 1, dk ≥ dk−1 +1 for k > r +1, and
dk ≤ k2−2(k−1) for k = r +1, . . . ,n:

vr
n = ∑(r+1)2−2r

dr+1=1

· · ·∑ j2−2( j−1)
d j=d j−1+1

· · ·∑n2−2(n−1)
dn=dn−1+1

∏n
k=r+1

(k2−dk)!

(k2−dk−2k+2)!
.

This expression can be made still more economic computa-
tionally if we rewrite it as

vr
n = ∑(r+1)2−2r

dr+1=1
((r+1)2−dr+1)!

((r+1)2−dr+1−2r)!

· · ·∑ j2−2( j−1)
d j=d j−1+1

( j2−d j)!

( j2−d j−2 j+2)!

· · ·∑n2−2(n−1)
dn=dn−1+1

(n2−dn)!

(n2−dn−2n+2)!
.

Algorithm 9.1. The following is a MathematicaTMprogram
for computing precise vectors

�
p0

n, p1
n, . . . , pn−1

n
�

and�
p0

n, p≤1
n , . . . , p≤n−1

n
�

for arbitrary values of n:

In[1]:=
cmb[a_, b_] := a!/(a - b)!;
up[c_] := c^2 - 2*c + 2;
F[n_, d_, k_] := F[n, d, k] = If[k < n,

cmb[k^2 - d, 2*k - 2]* Sum[F[n, d1, k
+ 1], {d1, d + 1, up[k + 1]}]]; F[n_

, d_, n_] := cmb[n^2 - d, 2*n - 2]
In[2]:=
n = ???; (* ??? to be replaced with the

desired value of n *)
S = P = Array[0 &, n];
Do[ S[[r + 1]] = Sum[F[n, p, r + 1], {p,

1, up[r + 1]}]*(r^2)!*cmb[n, n - r]^2
- Sum[Binomial[n - q, r - q]*S[[q +

1]], {q, 0, r - 1}];
P[[r + 1]] = S[[r + 1]]/(n^2)!, {r, 0, n

- 1}];
Q = Array[0 &, n];
Do[ Q[[i]] = Sum[P[[j]], {j, 1, i}], {i,

1, n}];
Print["P=", P];
Print["Q=", Q]

A variant of this code was used to compute the tables in Ap-
pendix, as well as the surrogate p-values in Section 8.

10. OTHER MEANINGS OF “BY CHANCE”

Our notion of a matrix being obtained “by chance” is based
on the null hypothesis adopted in our permutation test. This
hypothesis states that all rank order matrices (equivalently,
all permutations of a given set of entries, without ties) are
equiprobable. One might object against this choice of the null
hypothesis on the grounds that it is “obviously false,” perhaps
even too easy to reject. As a matter of logic of statistical test-
ing this objection can be countered by pointing out that most
if not all null hypotheses do not aim at describing a realistic
population scenario. Rather they depict some intuitive notion
of “no change,” “no relation,” or “no structure.” One can also
point out that the rejection of our null hypothesis is not based
on finding just any kind of structure in a matrix, but a partic-
ular kind of structure only, the “degree of adherence” to RM.
The probabilities shown in the tables in Appendix do not seem
to support the expectation that with this kind of structure the
null hypothesis should be too easy to reject (although the ex-
pectation being unquantifiable it cannot be definitively refuted
either). Thus, a 15× 15 matrix with 5 violations of RM can
be thought of as revealing a considerable amount of structure
“of the right kind,” 2/3 of its rows and columns being RM-
compliant. Nevertheless, at conventional significance levels it
should be deemed to be consistent with the hypothesis that all
permutations are equiprobable, as p≤5

15 = 0.097.
With all this said, however, it is always possible and per-

fectly reasonable to modify the null hypothesis in light of ad-
ditional knowledge. Thus, all rank order matrices without ties
have the property of every row and every column in them pos-
sessing a single minimum. Suppose that we know, in addi-
tion, that the discriminability values (hence also the ranks rep-
resenting them) monotonically increase as one moves within
any row or any column away from its minimum entry. In
other words, if mi j is the minimum entry in the row i, then
mik1 < mik2 whenever j < k1 < k2 and mik1 > mik2 whenever
k1 < k2 < j (and analogously for columns). The matrices with
this property form a proper subset of the set of all rank or-
der matrices without ties, and it is reasonable then to take
for the null hypothesis that all matrices within this subset are
equiprobable. The alternative hypothesis is modified accord-
ingly: for any r ∈ {0, . . . ,n−2}, the probability of obtaining a
matrix within the subset in question with no more than r vio-
lations of RM is greater than follows from the null hypothesis.

Another example:5 suppose we somehow know that, with
a certain arrangement of rows and columns of a matrix, the
match of the match for a row i or a column j in the matrix
cannot deviate from i (respectively, j) by more than a certain
value ∆. Recall that the (best) match for a row i is the column
h(i) such that mi,h(i) is the smallest value in the ith row; and the
(best) match for a column j is the row g( j) such that mg( j), j is
the smallest value in the jth column (matches are uniquely de-
termined in a matrix without ties). So our hypothetical knowl-
edge is that |g(h(i))− i| ≤ ∆ and |h(g( j))− j| ≤ ∆ for all i
and j. Then the null hypothesis can be formulated as the as-
sumption that all matrices satisfying these inequalities occur
equiprobably, with the alternative hypothesis reformulated ac-
cordingly. Clearly, the smaller the value of ∆, the smaller the
number of RM violations at which the null hypothesis is re-

5 This example is prompted by a comment by Matt Jones.
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jected at a given significance level.
Generalizing, given any nonempty subset M of the set of all

rank order matrices (without tied entries), one can test the null
hypothesis that all matrices within M are equiprobable against
the alternative hypothesis that within M “nature favors RM.”
The p-value in this test is computed as the ratio of the number
of matrices in M with r or fewer violations of RM to the total
number of matrices in M.

APPENDIX

The tables below present numerical values of pr
n and p≤r

n
for n = 2, . . . ,25, rounded to the sixth decimal place.

r p2
r p2

�r

0 0.333333 0.333333
1 0.666667 1.

r p3
r p3

�r

0 0.1 0.1
1 0.6 0.7
2 0.3 1.

r p4
r p4

�r

0 0.028571 0.028571
1 0.342857 0.371429
2 0.514286 0.885714
3 0.114286 1.

r p5
r p5

�r

0 0.007937 0.007937
1 0.15873 0.166667
2 0.47619 0.642857
3 0.31746 0.960317
4 0.039683 1.

r p6
r p6

�r

0 0.002165 0.002165
1 0.064935 0.0671
2 0.324675 0.391775
3 0.4329 0.824675
4 0.162338 0.987013
5 0.012987 1.

r p7
r p7

�r

0 0.000583 0.000583
1 0.024476 0.025058
2 0.183566 0.208625
3 0.407925 0.61655
4 0.305944 0.922494
5 0.073427 0.995921
6 0.004079 1.

r p8
r p8

�r

0 0.000155 0.000155
1 0.008702 0.008858
2 0.091375 0.100233
3 0.304584 0.404817
4 0.38073 0.785548
5 0.182751 0.968298
6 0.030458 0.998757
7 0.001243 1.

r p9
r p9

�r

0 0.000041 0.000041
1 0.002962 0.003003
2 0.041464 0.044467
3 0.193501 0.237968
4 0.362814 0.600782
5 0.290251 0.891032
6 0.09675 0.987783
7 0.011847 0.99963
8 0.00037 1.

r p10
r p10

�r

0 0.000011 0.000011
1 0.000974 0.000985
2 0.017537 0.018522
3 0.109117 0.127639
4 0.286432 0.41407
5 0.343718 0.757789
6 0.190955 0.948743
7 0.046764 0.995508
8 0.004384 0.999892
9 0.000108 1.

r p11
r p11

�r

0 3. � 10�6 3. � 10�6

1 0.000312 0.000315
2 0.007017 0.007332
3 0.056136 0.063467
4 0.196475 0.259943
5 0.330079 0.590021
6 0.275065 0.865087
7 0.112272 0.977359
8 0.021051 0.998409
9 0.001559 0.999969
10 0.000031 1.

r p12
r p12

�r

0 1. � 10�6 1. � 10�6

1 0.000098 0.000098
2 0.002685 0.002783
3 0.026848 0.029631
4 0.120814 0.150445
5 0.270623 0.421068
6 0.315727 0.736796
7 0.193302 0.930098
8 0.060407 0.990505
9 0.008949 0.999454
10 0.000537 0.999991

11 9. � 10�6 1.

r p13
r p13

�r

0 0. 0.
1 0.00003 0.00003
2 0.00099 0.00102
3 0.012099 0.013119
4 0.068059 0.081178
5 0.196009 0.277187
6 0.304902 0.582089
7 0.261345 0.843434
8 0.122505 0.965939
9 0.030248 0.996188
10 0.00363 0.999818
11 0.00018 0.999998

12 2. � 10�6 1.

r p14
r p14

�r

0 0. 0.

1 9. � 10�6 9. � 10�6

2 0.000354 0.000363
3 0.00519 0.005553
4 0.035682 0.041235
5 0.128454 0.169689
6 0.256909 0.426598
7 0.29361 0.720207
8 0.192681 0.912889
9 0.071363 0.984252
10 0.014273 0.998525
11 0.001415 0.99994
12 0.000059 0.999999

13 1. � 10�6 1.

r p15
r p15

�r

0 0. 0.

1 3. � 10�6 3. � 10�6

2 0.000123 0.000126
3 0.002135 0.002261
4 0.017617 0.019878
5 0.077515 0.097394
6 0.193789 0.291183
7 0.284751 0.575934
8 0.249157 0.825091
9 0.129192 0.954283
10 0.038758 0.993041
11 0.006406 0.999447
12 0.000534 0.999981
13 0.000019 1.
14 0. 1.

r p16
r p16

�r

0 0. 0.

1 1. � 10�6 1. � 10�6

2 0.000042 0.000043
3 0.000848 0.000891
4 0.008266 0.009157
5 0.043645 0.052802
6 0.13336 0.186162
7 0.244947 0.431109
8 0.275565 0.706674
9 0.190514 0.897188
10 0.080016 0.977204
11 0.019839 0.997043
12 0.002755 0.999798
13 0.000196 0.999994

14 6. � 10�6 1.
15 0. 1.

r p17
r p17

�r

0 0. 0.
1 0. 0.
2 0.000014 0.000014
3 0.000326 0.000341
4 0.003712 0.004053
5 0.023165 0.027218
6 0.084939 0.112157
7 0.190679 0.302836
8 0.268143 0.570979
9 0.238349 0.809328
10 0.133475 0.942803
11 0.04633 0.989134
12 0.009652 0.998786
13 0.001142 0.999928
14 0.00007 0.999998

15 2. � 10�6 1.
16 0. 1.
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r p18
r p18

�r

0 0. 0.
1 0. 0.

2 5. � 10�6 5. � 10�6

3 0.000122 0.000127
4 0.001605 0.001732
5 0.011684 0.013416
6 0.050632 0.064049
7 0.136398 0.200446
8 0.234433 0.43488
9 0.260481 0.695361
10 0.187547 0.882908
11 0.086798 0.969706
12 0.025316 0.995022
13 0.004494 0.999516
14 0.000459 0.999975
15 0.000024 0.999999

16 1. � 10�6 1.
17 0. 1.

r p19
r p19

�r

0 0. 0.
1 0. 0.

2 1. � 10�6 1. � 10�6

3 0.000045 0.000046
4 0.000671 0.000717
5 0.005637 0.006355
6 0.0285 0.034855
7 0.090736 0.125592
8 0.187143 0.312735
9 0.254145 0.56688
10 0.228731 0.795611
11 0.136104 0.931716
12 0.052929 0.984645
13 0.013154 0.997799
14 0.002013 0.999812
15 0.000179 0.999991

16 8. � 10�6 1.
17 0. 1.
18 0. 1.

r p20
r p20

�r

0 0. 0.
1 0. 0.
2 0. 0.
3 0.000016 0.000017
4 0.000272 0.000289
5 0.002616 0.002905
6 0.015258 0.018163
7 0.056673 0.074836
8 0.13814 0.212976
9 0.225117 0.438093
10 0.247629 0.685722
11 0.184187 0.869908
12 0.092093 0.962002
13 0.030516 0.992518
14 0.006539 0.999057
15 0.000872 0.999929
16 0.000068 0.999997

17 3. � 10�6 1.
18 0. 1.
19 0. 1.

r p21
r p21

�r

0 0. 0.
1 0. 0.
2 0. 0.

3 6. � 10�6 6. � 10�6

4 0.000108 0.000114
5 0.001172 0.001286
6 0.007815 0.009101
7 0.033493 0.042594
8 0.095247 0.137841
9 0.183438 0.321279
10 0.242138 0.563417
11 0.220126 0.783543
12 0.137579 0.921121
13 0.058613 0.979735
14 0.016747 0.996481
15 0.003126 0.999607
16 0.000366 0.999974
17 0.000025 0.999999

18 1. � 10�6 1.
19 0. 1.
20 0. 1.

r p22
r p22

�r

0 0. 0.
1 0. 0.
2 0. 0.

3 2. � 10�6 2. � 10�6

4 0.000042 0.000044
5 0.000509 0.000553
6 0.003848 0.004401
7 0.01885 0.023251
8 0.061851 0.085102
9 0.138973 0.224075
10 0.216798 0.440873
11 0.236507 0.67738
12 0.180665 0.858045
13 0.096212 0.954258
14 0.035343 0.989601
15 0.008797 0.998397
16 0.001443 0.999841
17 0.00015 0.99999

18 9. � 10�6 1.
19 0. 1.
20 0. 1.
21 0. 1.

r p23
r p23

�r

0 0. 0.
1 0. 0.
2 0. 0.

3 1. � 10�6 1. � 10�6

4 0.000016 0.000016
5 0.000215 0.000232
6 0.00183 0.002061
7 0.010156 0.012217
8 0.038086 0.050303
9 0.098741 0.149044
10 0.179708 0.328751
11 0.231689 0.560441
12 0.212382 0.772823
13 0.138237 0.911059
14 0.063476 0.974535
15 0.020312 0.994848
16 0.004443 0.999291
17 0.000646 0.999937
18 0.00006 0.999997

19 3. � 10�6 1.
20 0. 1.
21 0. 1.
22 0. 1.

r p24
r p24

�r

0 0. 0.
1 0. 0.
2 0. 0.
3 0. 0.

4 6. � 10�6 6. � 10�6

5 0.000089 0.000095
6 0.000843 0.000937
7 0.005262 0.0062
8 0.022365 0.028565
9 0.066267 0.094832
10 0.139161 0.233993
11 0.209317 0.44331
12 0.22676 0.67007
13 0.177114 0.847184
14 0.099401 0.946585
15 0.03976 0.986345
16 0.011183 0.997528
17 0.002167 0.999695
18 0.000281 0.999975
19 0.000023 0.999999

20 1. � 10�6 1.
21 0. 1.
22 0. 1.
23 0. 1.

r p25
r p25

�r

0 0. 0.
1 0. 0.
2 0. 0.
3 0. 0.

4 2. � 10�6 2. � 10�6

5 0.000036 0.000038
6 0.000377 0.000415
7 0.002632 0.003047
8 0.012585 0.015633
9 0.042262 0.057895
10 0.101429 0.159324
11 0.176034 0.335359
12 0.222488 0.557847
13 0.205374 0.76322
14 0.138313 0.901533
15 0.06762 0.969153
16 0.023773 0.992925
17 0.005923 0.998848
18 0.001024 0.999872
19 0.000119 0.999991

20 9. � 10�6 1.
21 0. 1.
22 0. 1.
23 0. 1.
24 0. 1.
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