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The underlying assumptions of Fechnerian scaling are complemented by an
assumption that ensures that any psychometric differential (the rise in the
value of a discrimination probability function as one moves away from its
minimum in a given direction) regularly varies at the origin with a positive
exponent. This is equivalent to the following intuitively plausible property:
any two psychometric differentials are comeasurable in the small (i.e.,
asymptotically proportional at the origin), without, however, being asymp-
totically equal to each other unless the corresponding values of the Fechner–
Finsler metric function are equal. The regular variation version of Fechnerian
scaling generalizes the previously proposed power function version while
retaining its computational and conceptual simplicity. © 2001 Elsevier Science (USA)

1. INTRODUCTION

This paper introduces and justifies a special version of the theory of Fechnerian
scaling proposed in its general form by Dzhafarov and Colonius (1999a, 1999b,
2001). This special version, in which the relationship between Fechnerian distances and
discrimination probabilities is greatly simplified, is obtained by adding one intuitively
plausible assumption to the three assumptions underlying the general theory.

To briefly outline the context, given an n-dimensional space of stimuli x=
(x1, ..., xn) endowed with psychometric functions (Fig. 1)

kx(y)=Prob[y is discriminated from x],

the Fechnerian distances among stimuli are computed from psychometric differentials

kx(x+us)−kx(x),

where s \ 0 is the stimulus differential, the magnitude of the transition from sti-
mulus x to stimulus x+us in the direction u=(u1, ..., un) ] 0. The underlying
assumptions of Fechnerian scaling (briefly recapitulated in the next section) ensure



FIG. 1. Possible appearance of a psychometric function (in two-dimensional stimulus space).

that all psychometric differentials continuously increase with s in appropriately
chosen (right-hand) vicinities of zero. Fechnerian scaling begins with computing
from the psychometric differentials the metric function F(x, u), the function that
determines the Fechnerian distances G(x, x+us) between ‘‘infinitesimally close’’
stimuli (as sQ 0+). This in turn allows one to compute the psychometric length of
any sufficiently smooth path connecting any two points a and b within the stimulus
space, and, by finding the infimum of all such lengths, to compute the Fechnerian
distance G(a, b) between these points. (See Dzhafarov and Colonius, 1999a, 2001,
for details.)

The geometric aspects of Fechnerian scaling (i.e., the computation of Fechnerian
distances from the metric function) are not discussed in this paper. It focuses
instead on the initial step of Fechnerian scaling only, the computation of F(x, u)
from psychometric differentials. The main assumption upon which this computa-
tion is based is that, for any two line elements (x1, u1) and (x0, u0) (i.e., two stimuli
with attached to them directions of transition), the stimulus differentials s1 and s2
corresponding to equal psychometric differentials,

kx1 (x1+u1s1)−kx1 (x1)=kx0 (x0+u0s0)−kx0 (x0)=h,

are comeasurable in the small (see Fig. 2). The precise meaning of the comeasur-
ability in the small is that, as h in the expression above tends to zero, the two
stimulus differentials, considered as functions of h, s0=s0(h) and s1=s1(h) , tend to
zero too, but their ratio converges to a finite positive quantity,

0 < lim
hQ 0+

s0(h)
s1(h)

<..
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FIG. 2. Two psychometric differentials of equal magnitude and the corresponding stimulus differentials.

Based on this assumption, the Fundamental Theorem of Fechnerian scaling
(Dzhafarov & Colonius, 2001) says that there exists a global psychometric trans-
formation F, such that when this transformation is applied to psychometric differ-
entials corresponding to one and the same stimulus differential s, it makes them all
comeasurable in the small with s. The metric function F(x, u) is then the coefficient
of the asymptotic proportionality between the F-transformed psychometric differ-
entials and the stimulus differential s,

F[kx(x+us)−kx(x)] Ã F(x, u) s (as sQ 0+). (1)

(Symbol ’ indicates that the two expressions are asymptotically equal, i.e., their
ratio tends to 1.) The transformation F in the general theory can be any function,
provided it vanishes at zero and increases in some (right-hand) vicinity of zero.

The motivation for the present work comes from the power function version of
Fechnerian scaling (Dzhafarov & Colonius, 1999a, 2001), in which all psychometric
differentials are asymptotically representable as

kx(x+us)−kx(x) ’ F(x, u)m sm (as sQ 0+). (2)

The exponent m > 0 is referred to as the psychometric order of the stimulus space,
and is determined uniquely. The representation (2) follows from the assumption
that the global psychometric transformation F in (1) is, asymptotically, a power
function (whose exponent, in reference to (2), is 1/m):

F(h) ’ m
`h (as hQ 0+).

Equation (2) makes the relationship between psychometric differentials and the
corresponding values of the metric function especially transparent. To give just one
example of the application of (2), consider the simple probability summation model
in which kx(x)=0 and

1−kx(x+us)=D
n

i=1
[1−kx(x+uis)]
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(where ui is the vector obtained by projecting u on the ith coordinate). It can be
shown (Dzhafarov, in press) that in view of (2) this model translates into the (local)
Minkowski power function metric

F(x, u)m=C
n

i=1
F(x, ui)m.

By contrast, with the general representation (1) the probability summation model
does not lead to any discernible regularities in the metric function.

One argument in favor of the power function version of Fechnerian scaling is
that the class of functions asymptotically equal to a power function is fairly broad.
If, for example, the psychometric function kx(y) is differentiable at y=x a suffi-
cient number of times, and if m is the order of the first of these derivatives that does
not vanish (m then is necessarily an even integer, as the derivative is taken at the
minimum), then the Taylor expansion of the psychometric differential assumes the
form

kx(x+us)−kx(x)=sm 5
1
m!

C
n

i1=1
... C

n

im=1

“
m kx(x)

“x i1 · · ·“x im
u i1 · · · u im6+o{sm},

which is a special case of (2). The power function version, therefore, with m being
an arbitrary positive real, can be considered a generalization of this ‘‘sufficient
smoothness at the minimum’’ assumption (that many would, erroneously, consider
rather innocuous for applied purposes).

There is, however, a deeper argument in favor of the power function version.
Consider the ratio of two psychometric differentials, taken at two line elements
(x1, u1) and (x0, u0). In the power function version, as follows from (2),

kx1 (x1+u1s)−kx1 (x1)
kx0 (x0+u0s)−kx0 (x0)

’
F(x1, u1)m

F(x0, u0)m
(as sQ 0+). (3)

Any two psychometric differentials, therefore, are comeasurable in the small, and,
moreover, they are not asymptotically equal to each other unless F(x1, u1)=F(x0, u0).
In view of (1), one might expect this intuitively plausible property to hold in
general, but this is not the case. Consider, for example the following three models
(formulated as equalities that hold in small right-hand vicinities of zero):

kx(x+us)−kx(x)=−
1

log[F(x, u) s]
, (4)

kx(x+us)−kx(x)=exp 5− 1
F(x, u) s
6 , (5)

kx(x+us)−kx(x)=s 31+
1

2p+1
sin[2p log(F(x, u) s)]4 . (6)
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One can verify that in all three models the psychometric differentials continu-
ously increase with small values of s > 0, because of which they satisfy (1), with F
appropriately chosen for each of the models. At the same time, in the first model

lim
sQ 0+

kx1 (x1+u1s)−kx1 (x1)
kx0 (x0+u0s)−kx0 (x0)

=1, for any (x1, u1), (x0, u0);

in the second model

lim
sQ 0+

kx1 (x1+u1s)−kx1 (x1)
kx0 (x0+u0s)−kx0 (x0)

=˛
0 if F(x1, u1) < F(x0, u0)
1 if F(x1, u1)=F(x0, u0)
. if F(x1, u1) < F(x0, u0);

while in the third model the ratio of the two psychometric differentials tends to no
definite limit.

These asymptotic properties correspond to the shapes of psychometric functions
that one can safely consider empirically implausible. Consider the application of the
models (4), (5), and (6) to the situation when x1=x0=x, u1=ku0=ku (k > 0).
Denoting

kx(x+us)−kx(x)=Yx, u(s),

we have

kx[x+(ku) s]−kx(x)
kx[x+us]−kx(x)

=
kx[x+u(ks)]−kx(x)
kx[x+us]−kx(x)

=
Yx, u(ks)
Yx, u(s)

.

The ratio Yx, u(ks)/Yx, u(s), taken at different values of k > 0, characterizes the
manner in which the psychometric differential Yx, u(s) decreases to zero as sQ 0+.
If, as in model (4), Yx, u(ks)/Yx, u(s) always tends to 1, irrespective of k, then
Yx, u(s) is ‘‘infinitely sharp’’ in the vicinity of s=0+ (Fig. 3a). If, as in model (5),
Yx, u(ks)/Yx, u(s) tends to zero or infinity, for any k ] 1, then in the vicinity of
s=0+,Yx, u(s), is ‘‘infinitely flat’’ (Fig. 3b). Finally, if, as in model (6),
Yx, u(ks)/Yx, u(s) oscillates between different limits, the Yx, u(s) is ‘‘infinitely wavy’’
(Fig. 3c). Intuitively, these forms of asymptotic behavior can be thought of
as ‘‘ungraphable’’: whatever the plot scale and however fine the plotting line,
the ‘‘needle part’’ of Fig. 3a cannot be drawn as gradually diverging from the
vertical axis, the ‘‘flat base’’ of Fig. 3b cannot be drawn as gradually diverging
from the horizontal axis, and an infinite number of ‘‘waves’’ in Fig. 3c will
always merge with the point of origin. Clearly, if Yx, u(s) is a power function,
Yx, u(ks)/Yx, u(s)=km, and the asymptotic behavior of Yx, u(s) shows none of these
irregularities. (See Comment 1 in the Appendix.)

A function f(s), positive on some interval 0 < s < a, is referred to in this paper as
a function regularly varying at s=0+ if

lim
sQ 0+

f(ks)
f(s)

=c(k) – 1 (for any k > 0).
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FIG. 3. Three psychometric differentials (shown with their symmetrically opposite pairs) corresponding
to three models with irregular variation: (a) corresponds to Equation (4), (b) to (5), (c) to (6). The curves
are scaled to reach the level 0.01 at s=0.01.

(See Comment 2; here and in the remainder all references to numbered Comments
refer the reader to the Appendix.) The regular variation version of Fechnerian
scaling is obtained by adding to the underlying assumptions of the general theory
the requirement that at least one psychometric differential, kx0 (x0+u0s)−kx0 (x0), be
regularly varying at s=0+. I show in this paper that if this requirement is satisfied,
then

(a) all psychometric differentials kx(x+us)−kx(x) are regularly varying;

(b) the global psychometric transformation F is regularly varying;

(c) all psychometric differentials are comeasurable in the small, being
asymptotically equal to each other only if the corresponding values of the metric
function F(x, u) are equal.

FECHNERIAN SCALING 231



These three properties are satisfied in the power function version of Fechnerian
scaling. The regular variation version is, in a sense, the broadest possible general-
ization of the power function version that retains these properties, retaining thereby
the same transparency in the relationship between psychometric functions and
metric functions.

2. REGULAR VARIATION VERSION

2.0. Underlying Assumptions

Fechnerian scaling is based on three assumptions (Dzhafarov & Colonius, 2001),
that I describe here briefly.

The First Assumption is that the psychometric function kx(y) is continuous in
(x, y) and, for any given x, attains its single minimum at some point related to x
by a smooth one-to-one function; and that within some neighborhood of
this minimum the psychometric function increases in all directions. By a certain
‘‘recalibration’’ procedure (Dzhafarov & Colonius, 1999a, 2001) one can always
ensure that the minimum of kx(y) is attained at y=x, which makes all the psycho-
metric differentials

Yx, u(s)=kx(x+us)−kx(x)

continuously decreasing to zero with sQ 0+.
(The term ‘‘decreasing to zero with sQ 0+’’ is used hereafter to designate

‘‘vanishing at s=0 and increasing on some interval 0 < s < a’’.)
The stimulus differential s in

h=kx(x+us)−kx(x)

can be presented as a function of h,

s=Fx, u(h) (as hQ 0+).

The Second Assumption (already discussed in the Introduction) is that, for some
fixed (x0, u0) and for any (x, u), the limit ratio

lim
hQ 0+

Fx0, u0 (h)
Fx, u(h)

=F(x, u)

is finite, positive, and continuous in (x, u). It follows (Dzhafarov & Colonius, 2001)
that F(x, u) is positively Euler homogeneous:

F(x, ku)=kF(x, u) (for any k > 0).

The Third Assumption (that plays, however, no role in the present development)
is that

Fx, u(h) ’ Fx, −u(h) (as hQ 0+),
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which is equivalent to

F(x, −u)=F(x, u).

I now add to this list the Fourth Assumption of Fechnerian scaling: for some fixed
(x0, u0), the psychometric differential

Y0(s)=kx0 (x0+u0s)−kx0 (x0)

regularly varies at s=0+. This means that, for any k > 0,

c(k)= lim
sQ 0+

Y0(ks)
Y0(s)

is finite, positive, and varies with k. (Recall Comment 2.)
Note that the psychometric differential kx0 (x0+u0s)−kx0 (x0) in the formulation

of the Fourth Assumption is denoted by Y0(s) instead of the explicit Yx0, u0 (s). This
is done to simplify mathematical expressions in the subsequent development, where
this particular psychometric differential is used repeatedly.

The Fourth Assumption links Fechnerian scaling with a well-known mathemati-
cal apparatus, the Karamata theory of slow and regular variation (Bingham,
Goldie, & Teugels, 1987; Seneta, 1976). In the psychological literature this theory
was first utilized by Colonius (1995), in the context of extreme-value distributions,
where it plays a prominent role (Feller, 1971, pp. 275–284; Resnick, 1987). I show
that the application of the Karamata theory to the First, Second, and the Fourth
Assumptions of Fechnerian scaling leads one to the conclusion that psychometric
differentials are representable as (compare with (2))

kx(x+us)−kx(x) ’ F(x, u)m Rm(s) (as sQ 0+),

where m > 0 is determined uniquely (one may continue to refer to it as the psycho-
metric order of the stimulus space), and R(s) is a regularly varying function of a
special structure, determined asymptotically uniquely. The global psychometric
transformation F is then also a regularly varying function, an asymptotic inverse of
Rm(s).

In the mathematics of this paper I rely on the systematic treatises by Bingham,
Goldie, and Teugels (1987, primarily Chapter 1) and Seneta (1976), but with defi-
nitions and results modified to better suit our purposes (see Comment 3).

2.1. Immediate Consequences of the Fourth Assumption

The characterization of the psychometric differential Y0(s) satisfying the Fourth
Assumption of Fechnerian scaling is based on the notion of slow variation. A function
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a(s) is said to be slowly varying (at sQ 0+) if it is positive on some interval (0, a)
and satisfies the equation

lim
sQ 0+

a(ks)
a(s)
=1 (for any k > 0). (7)

In this paper we are primarily concerned with continuous slowly varying functions,
of which the following are simple examples (see Comment 4):

a(s) — c > 0, a(s)=log(1/s), a(s)=log−1(1/s), a(s)=es.

As sQ 0+, these functions tend, respectively, to c,., 0, and 1. A slowly varying
function need not, however, tend to any limit, finite or infinite.

Recall that by the First Assumption of Fechnerian scaling, psychometric differ-
entials are positive and continuous at s > 0, and they decrease to zero with sQ 0+.
The following lemma, therefore, applies to psychometric differentials.

Lemma 2.1.1. A positive function f(s) continuously decreasing to zero with
sQ 0+ satisfies the regular variation equation,

lim
sQ 0+

f(ks)
f(s)

=c(k) – 1 (for any k > 0), (8)

only if, for some m > 0,

c(k)=km, (9)

in which case

f(s)=[sa(s)]m, (10)

where a(s) is a slowly varying continuous function. Conversely, if f(s) is of the form
(10), then m > 0 , and f(s) satisfies (8) with c(k) given by (9).

(See Comment 5.)
A unit-regularly varying function is defined as

R(s)=sa(s),

where a(s) is slowly varying. Using this notion and Lemma 2.1.1, it follows from
the First and Fourth Assumptions of Fechnerian scaling states that, for a certain
line element (x0, u0), the psychometric differential

Y0(s)=kx0 (x0+u0s)−kx0 (x0)

can be presented as

Y0(s)=Rm(s), (11)
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where m is some positive constant and R(s)=sa(s) is a unit-regularly varying
function (continuously decreasing to zero with sQ 0+).

A function Ra(s), with a ] 0, is said to be regularly varying (at s=0+) with
exponent a. Thus the psychometric differential satisfying (11) is regularly varying
with exponent m > 0, while any unit-regularly varying function R(s) is regularly
varying with exponent 1 (see Comment 6).

The proof of the following two simple facts is given in Comment 7.

Lemma 2.1.2. (i) The representation f(s)=[sa(s)]a for a regularly varying func-
tion is unique. (ii) Any function f1(s) asymptotically equal to f(s) is regularly varying
with the same exponent and with the slowly varying component asymptotically equal
to a(s),

f1(s)=[sa1(s)]a, a1(s) ’ a(s) (as sQ 0+).

Observe in conclusion that a regularly varying function f(s) in (10) may, as a
special case, asymptotically equal a power function,

f(s) ’ csm (as sQ 0+).

Clearly, this happens if and only if the slowly varying component a(s) is a posi-
tive constant or converges to such a constant as sQ 0+ (e.g., a(s)=c+log−1(1/s)).

2.2. Characterization of the Global Psychometric Transformation

The identification of

Y0(s)=kx0 (x0+u0s)−kx0 (x0)

as a regularly varying function with a positive exponent only applies to a single line
element (x0, u0). In the next subsection I show that this characterization can be
extended to psychometric differentials in general. To achieve this extension,
however, one first must establish the relationship between Y0(s) and the global
psychometric transformation F.

We know from the Fundamental Theorem of Fechnerian scaling that F(h)
decreases to zero with hQ 0+, and, when applied to the line element (x0, u0) of the
Fourth Assumption,

F[Y0(s)]=F[kx0 (x0+u0s)−kx0 (x0)] Ã F(x0, u0) s (as sQ 0+).

Since the uniqueness of the metric function F(x, u) is only up to multiplication by a
positive constant, one can put F(x0, u0)=1 with no loss of generality, and rewrite
the expression above as

F[Y0(s)] Ã s (as sQ 0+). (12)

By definition, this characterizes F as an asymptotic inverse of Y0 (see Comment 8).
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Clearly, F(h) is determined by Y(s) asymptotically uniquely: since the latter is
continuously increasing in some neighborhood of s=0+, the asymptotic equality

F1[Y0(s)] Ã F2[Y0(s)] ’ s (as sQ 0+)

is equivalent to

lim
hQ 0+

F1(h)
F2(h)

= lim
sQ 0+

F1[Y0(s)]
F2[Y0(s)]

=
lim sQ 0+ {F1[Y0(s)]/s}
lim sQ 0+ {F2[Y0(s)]/s}

=1.

One can therefore use (12) to compute any one from the set of asymptotically
equal variants of F, and (as F is determined only asymptotically uniquely in the
general theory) identify F as any function asymptotically equal to this variant. The
obvious variant of F to consider is the precise inverse Y−10 of Y0. This inverse exists
on any vicinity of s=0+ that is sufficiently small for Y0(s) to be continuously
increasing.

A characterization of Y−10 can be achieved with the help of the following lemma
(also used in the next subsection; its proof is given in Comment 9).

Lemma 2.2.1. Let f(t) be a regularly varying (at t=0+) function continuously
decreasing to zero with tQ 0+. Let g(y) be continuously decreasing to zero with
yQ 0+. Then

f[g(y)] ’ f[g̃(y)] (as yQ 0+)

implies

g(y) ’ g̃(y) (as yQ 0+).

Now, Y0(s) continuously decreases to zero with sQ 0+ and regularly varies with
an exponent m > 0, while Y−10 (h) continuously decreases to zero with hQ 0+. Since

lim
hQ 0+

Y0[m`k Y
−1
0 (h)]

h
= lim
hQ 0+

Y0[m`k Y
−1
0 (h)]

Y0[Y
−1
0 (h)]

= lim
sQ 0+

Y0[m`k s)

Y0(s)
=k,

on using the identity

Y0[Y
−1
0 (kh)]
h

=k

we conclude that

Y0[m`k Y
−1
0 (h)] ’Y0[Y

−1
0 (kh)] (as hQ 0+).

From this and the lemma above,

m
`k Y−10 (h) ’Y

−1
0 (kh) (as hQ 0+),
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whence we conclude that Y−10 (h) is regularly varying with exponent 1/m. Replacing
now Y−10 (h) with an arbitrary variant of F(h) (continuously decreasing to zero with
hQ 0+), we have, in accordance with Lemma 2.1.2,

lim
hQ 0+

F(kh)
F(h)

=m
`k (for any k > 0).

Hence, by Lemma 2.1.1,

F(h)=m
`R*(h)=m

`ha*(h) , (13)

where R*(h) is some (continuously decreasing to zero with hQ 0+) unit-regularly
varying function with some slowly varying component a*(s). This completes the
proof of

Theorem 2.2.1. The global psychometric transformation F(h) is an asymptotic
inverse of the psychometric differential Y0(s) of the Fourth Assumption of Fechnerian
scaling, and F(h) is determined by Y0(s) asymptotically uniquely. As Y0(s) is
regularly varying (at s=0+) with exponent m, F(h) is regularly varying (at h=0+)
with exponent 1/m, thereby satisfying (13).

To characterize the relationship between the slowly varying components of
Y0(s)=[sa(s)]m and F(h)=m

`ha*(h) , it is convenient to rewrite these two func-
tions as

Y0(s)=
sm

L(s)m
, F(h)=

m
`h

L*(m`h )
, (14)

where, as one can easily check, the functions

L(s)=
1
a(s)
, L*(h)=

1
m
`a*(hm)

are both slowly varying at the origin. Substituting Y0(s) for h in the expression for
F(h),

F[Y0(s)]=

s
L(s)

L* 5 s
L(s)
6
=s

1

L(s) L* 5 s
L(s)
6
,

one concludes that (12) is satisfied if and only if

lim
sQ 0+

3L(s) L* 5 s
L(s)
64=1. (15)
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Slowly varying function L(s) and L*(s) related to each other in this way are
called de Bruijn conjugates of each other. As an example, if L(s)=log(1/s), then
one of its de Bruijn conjugates is L*(s)=log−1(1/s), because

log(1/s)
1

log 5log(1/s)
s
6
Q 1 (as sQ 0+).

We can now complement Theorem 2.2.1 by the following statement.

Theorem 2.2.2. In Theorem 2.2.1, Y0(s) and F(h) satisfy (14), with L(s) and
L*(s) being de Bruijn conjugates of each other.

It is known (Bingham et al., 1987, p. 29; Seneta, 1976, pp. 25–29), that a de
Bruijn conjugate L*(s) exists and is asymptotically unique for any slowly varying
function L(s), and that L**(s) ’ L(s). The latter means that, in addition to (15),

lim
sQ 0+

3L*(s) L 5 s
L*(s)
64=1. (16)

Techniques for computing de Bruijn conjugates for several classes of slowly
varying functions are presented in Bingham et al. (1987, pp. 433–435; recall
Comment 3).

2.3. Asymptotic Representation of Psychometric Differentials

Now we are ready to develop a characterization for arbitrary psychometric
differentials

Yx, u(s)=kx(x+us)−kx(x).

Without mentioning this every time, in all statements below Yx, u(s) is taken to
satisfy the First, Second, and the Fourth Assumptions of Fechnerian scaling.

The Fundamental Theorem of Fechnerian scaling tells us that

F[Yx, u(s)] ’ F(x, u) s (as sQ 0+),

whence

F{Yx, u[s/F(x, u)]} ’ s (as sQ 0+).

At the same time, referring to the line element (x0, u0) of the Fourth Assumption,

F[Y0(s)] ’ s (as sQ 0+),

and, by Lemma 2.2.1, Yx, u[s/F(x, u)] and Y0(s) must be asymptotically equal.
Equivalently,

Yx, u(s) ’Y0[F(x, u) s] (as sQ 0+),
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whence, on recalling (11),

Yx, u(s) ’ Rm[F(x, u) s] ’ F(x, u)m Rm(s) (as sQ 0+).

This completes the proof of

Theorem 2.3.4. All psychometric differentials are asymptotically representable as

kx(x+us)−kx(x) ’ F(x, u)m Rm(s) (as sQ 0+). (17)

with one and the same exponent m > 0, determined uniquely, and one and the same
unit-regularly varying function R(s)=sa(s), determined asymptotically uniquely.

Observe that being asymptotically equal to a regularly varying function, any
psychometric differential, by Lemma 2.1.2, is itself a regularly varying function
(with the same exponent),

kx(x+us)−kx(x)=F(x, u)m [sax, u(s)]m.

This does not, however, allow one to replace (17) with precise equalities, because
ax, u(s) is not one and the same for all line elements (x, u).

Observe also that as R(s) is the same in both (17) and (11), it continuously
decreases to zero with sQ 0+. At the same time, R(s) in (17) may, obviously, be
replaced with any of its asymptotically equal variants, R̄(s) ’ R(s), including those
that converge to zero without being continuous or strictly increasing in any vicinity
of zero (i.e., without being continuously decreasing to zero with sQ 0+). As all
asymptotic variants of R(s) would lead to the same F(x, u), such a replacement
cannot affect Fechnerian computations. This is the reason why the monotonic and
continuous decrease of R(s) is not mentioned in the formulation of Theorem 2.3.1.

As a corollary to Theorem 2.3.1, we have

Theorem 2.3.2. There is a unique constant m > 0 (called the psychometric order
of the stimulus space) and there is an asymptotically unique unit-regularly varying
function R(s), such that the metric function F(x, u) is representable as

F(x, u)= lim
sQ 0+

m
`Yx(x+us)−Yx(x)

R(s)
. (18)

This proposition provides an alternative to the use of the global psychometric
transformation in the Fechnerian theory. In the regular variation version of
Fechnerian scaling one can always use (18) instead of the equivalent representation

F(x, u)= lim
sQ 0+

F[Yx(x+us)−Yx(x)]
s

,

where F, as we know, is regularly varying with exponent 1/m.
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Another immediate consequence of Theorem 2.3.1 is the following proposition.

Theorem. Any two psychometric differentials are comeasurable in the small, with

kx1 (x1+u1s)−kx1 (x1)
kx0 (x0+u0s)−kx0 (x0)

’
F(x1, u1)m

F(x0, u0)m
(as sQ 0+). (19)

The importance of this fact is in that it is precisely the same as in the power
function version of Fechnerian scaling, (3).

3. CONCLUSION

Considerations of simplicity, computational or conceptual, have always been
powerful, if not philosophically noncontroversial, guides in constructing scientific
theories. When, however, one chooses a particular version of a general theory on
the grounds that this version affords a special degree of computational simplicity or
conceptual transparency, the question arises whether this particular version of the
theory is the only one or the most general one to have this property. When this
question is applied to the power function version of Fechnerian scaling, the answer,
as shown in this paper, turns out to be negative. The attractiveness of the power
function version stems from the fact that the ratio

kx1 (x1+u1s)−kx1 (x1)
kx0 (x0+u0s)−kx0 (x0)

in this version tends (as sQ 0+) to a finite nonzero limit whose value is not inde-
pendent of the two line elements involved. This property is intuitively plausible and
it greatly simplifies the Fechnerian analysis of psychometric differentials. This paper
demonstrates, however, that this property of the power function version does not
imply this version, being equivalent instead to a more general version, where
psychometric differentials are asymptotically described by functions regularly
varying at the origin with a positive exponent.

Remarkably, in virtually all conceivable computations the regularly varying
functions can be treated as if they were power functions. For instance, in the
example of the simple probability summation model given in the Introduction,

˛ kx(x)=0

1−kx(x+us)=D
n

i=1
[1−kx(x+uis)]

(where ui is the projection of u on the ith coordinate), the conclusion that the
ensuing Fechnerian metric is the (locally) Minkowski power function metric,

F(x, u)m=C
n

i=1
F(x, ui)m,
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is derived identically whether the psychometric differentials are described by (2) or
by (17). This conclusion is reached by equating

kx(x+us)=F(x, u)m Rm(s)+o{Rm(s)}

to

1−D
n

i=1
[1−kx(x+uis)]=1−D

n

i=1
[1−F(x, ui)m Rm(s)+o{Rm(s)}]

=Rm(s) C
n

i=1
F(x, ui)m+o{Rm(s)}.

An elaboration of this relationship leads to a productive theory of perceptual
separability of stimulus dimensions, presented elsewhere (Dzhafarov, in press). The
point made here is that the simple algebra involved in this derivation, being the
same as in the power function version of Fechnerian scaling, does not generalize
beyond its regular variation version.

APPENDIX: TECHNICAL COMMENTS

1. Counterintuitively, within the class of functions converging to zero as
sQ 0+, the ‘‘infinitely sharp’’ appearance belongs to functions traditionally
referred to as slowly varying (at s=0+), while the ‘‘infinitely flat’’ appearance
belongs to functions called rapidly varying (at s=0+). Slowly varying functions
(though not necessarily converging to zero) play a central role in the subsequent
development.

2. The definition of regular variation used in this paper is more narrow than
the traditional definition. The latter does not impose the restriction c(k) – 1, which
is, since c(1)=1, equivalent to the requirement that c(k) vary with k. The tradi-
tional definition incorporates thereby in the class of regularly varying functions all
slowly varying functions. This includes the ‘‘infinitely sharp’’ functions like the
function described by (4), as well as functions that do not converge to zero with
sQ 0+ (e.g., f(s) — 1, or f(s)=− log(s)). Such functions are not suitable for
describing psychometric differentials.

3. As in other mathematical texts known to me, the treatises by Seneta (1976)
and Bingham et al. (1987) deal with variation of functions at the infinity rather than
at the origin. To relate a statement made in this paper to a corresponding statement
in this literature, the reader should replace: (a) every occurrence of s (as sQ 0+)
with 1/x (as xQ.); (b) every occurrence of a(...), where a slowly varies at the
origin, with l(1/...), where l slowly varies at the infinity; (c) every mentioning of an
exponent a of regular variation with that of the exponent −a.
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4. According to the Karamata Representation Theorem (Bingham et al.,
1987, pp. 12–13; Seneta, 1976, pp. 2–3), a function a(s) considered on some interval
0 < s < a is slowly varying at the origin if and only if it is representable as

a(s)=exp 3c+g(s)+F
a

s

e(u)
u
du4 , 0 < s < a,

where g(s)Q 0 and e(s)Q 0 as sQ 0+, both functions being continuous for con-
tinuous a(s). For example, choosing e(s)=log−1(1/s), g(s) — 0, one gets a(s)=
const · log(1/s); changing e(s) to log−1(s) yields a(s)=const · log−1(1/s).

5. The proof of Lemma 2.1.1 is an adaptation of Bingham et al., 1987,
pp. 16–18. I outline it here briefly, emphasizing only those aspects that are specific
for positive functions continuously decreasing to zero as their positive argument
tends to zero.

Since, for any positive k1 and k2,

f(k1k2s)
f(s)

=
f(k1k2s)
f(k1s)

·
f(k1s)
f(s)

,

it follows from (8) that c(k1k2)=c(k1) c(k2). By putting g(x)=log c(ex), this
equation is transformed into the Cauchy functional equation, with c(k)=km as the
only possible solution. As km – 1, m ] 0. Presenting f(s) as smam(s) one deduces that
a(s) should be continuous and satisfy (7). Finally, with k > 1 one observes that,
since f(ks) > f(s) for sufficiently small s,

km= lim
sQ 0+

f(ks)
f(s)

\ 1,

whence it follows that m > 0. As this follows from (10) alone, to prove the converse
statement of the lemma it remains to check that

lim
sQ 0+

f(ks)
f(s)

= lim
sQ 0+

5(ks) a(ks)
sa(s)
6m=km 3 lim

sQ 0+

5a(ks)
a(s)
64m=km.

6. A traditional presentation of a function regularly varying at s=0+ with
exponent m (following the correspondence rules of Comment 3) is smL(s), where
L(s) slowly varies at s=0+. Clearly, L(s) corresponds to am(s) in (11). The dif-
ference between the two forms, however, becomes apparent as one makes m
decrease to zero. The traditional form then tends to a slowly varying function,
L(s), while (11) tends to 1. While the traditional form is superior for the general
theory of regular and slow variation, (11) is more appropriate in the present context
(see Comment 2).

7. If f(s)=[sa(s)]a=[sa1(s)]b, then, for any k > 0,

[sa(s)]a

[sa1(s)]b
=
[ksa(ks)]a

[ksa1(ks)]b
=1,
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and

[ksa(ks)]a

[sa(s)]a
=
[ksa1(ks)]b

[sa1(s)]b
,

whence a=b because the two ratios tend to, respectively, ka and kb (as sQ 0+).
The equality a(s)=a1(s) then follows.

For the second part of the lemma, if f1(s) ’ f(s), then f1(ks) ’ f(ks) (k > 0,
sQ 0+), and

1=3 lim
sQ 0+

f(ks)
f1(ks)
4 3 lim

sQ 0+

f1(s)
f(s)
4= lim

sQ 0+

3f(ks)
f(s)

÷
f1(ks)
f1(s)
4= ka

lim
sQ 0+

f1(ks)
f1(s)

from which the rightmost limit equals ka. By Lemma 2.1.1 then f1(s)=[sa1(s)]a,
with a1(s) ’ a(s) following trivially.

8. In Bingham et al. (1987, pp. 28–29) and Seneta (1976, pp. 27–29) the
characterization of asymptotic inverses for regularly varying functions is formulated
only for, in our notation, [sa(s)]a with a < 0, which is not our case. Therefore I
present the formal argument in extenso.

9. To prove Lemma 2.2.1, assume, to the contrary, that f[g(y)] ’ f[g̃(y)]
(as yQ 0+) but g̃(y)/g(y) does not tend to 1. Then there is a sequence yi Q 0+,
such that, for some e > 0, either g̃(yi)/g(yi) > 1+e for all its elements, or
g̃(yi)/g(yi) < 1− e for all its elements. Assuming the first of these possibilities (the
second is treated analogously), and using the fact that f is increasing, we have

f[g̃(yi)]=f 5g(yi)
g̃(yi)
g(yi)
6 > f[g(yi)(1+e)] (for all i=1, 2, ...).

But f is regularly varying with some exponent a > 0, because of which

lim
iQ.

f[g̃(yi)]
f[g(yi)]

\ lim
iQ.

f[g(yi)(1+e)]
f[g(yi)]

=(1+e)a > 1,

contrary to the assumption that f[g(y)] ’ f[g̃(y)].
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