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Let each of several (generally interdependent) random vectors, taken separately, be influenced by a
particular set of external factors. Under what kind of the joint dependence of these vectors on the union
of these factor sets can one say that each vector is selectively influenced by “its own” factor set? The
answer proposed and elaborated in this paper is: One can say this if and only if one can find a factor-
independent random vector given whose value the vectors in question are conditionally independent,
with their conditional distributions selectively influenced by the corresponding factor sets. Equivalently,
the random vectors should be representable as deterministic functions of “their” factor sets and of some
mutually independent and factor-independent random variables, some of which may be shared by several
of the functions.
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1. Problem

This paper presents a generalization and improvement for the definition proposed in
Dzhafarov (2001a) for selectiveness in the dependence of several random variables upon several
(sets of) external factors. This generalization links the notion of selective influence with that of
conditional independence, routinely used in psychometric theorizing.

The problem can be stated as follows (this formulation differs from the one adopted in
Dzhafarov, 2001a). Let X1, . . . ,Xn be random vectors (as a special case, random variables)
whose marginal distributions depend on, respectively, sets of external factors �1, . . . , �n , not
necessarily disjoint or nonempty. If X1, . . . ,Xn are mutually independent, one can say, quite
unambiguously, that Xi is being selectively influenced by factors belonging to �i (i = 1, . . . , n).
If, however, X1, . . . ,Xn are not necessarily mutually independent, one faces a conceptual prob-
lem: Considering the joint distribution of X1, . . . ,Xn as depending on the external factors � =
�1 ∪ . . . ∪ �n , what conditions should be imposed on this dependence to enable one to speak of
X1, . . . ,Xn as being selectively influenced by, respectively, �1, . . . , �n? (Since �1, . . . , �n are
not necessarily disjoint, the selectiveness should be taken to mean that Xi is not influenced by
factors outside �i , i = 1, . . . , n).

In the concluding section of this paper this problem and its solution are generalized to ran-
dom entities taking on their values in arbitrary measure spaces. Until then, however, X1, . . . ,Xn

are assumed to be random vectors with real-valued (though not necessarily continuous) compo-
nents. The dimensionality of these vectors is usually left unspecified (as a special case, a random
vector can be a random variable).

The three examples given in the next three sections should provide a motivation for and
clarify the meaning of the problem of selective influence.

First, however, the following conventions should be noted. Boldface capital Roman letters
X,Y, and so forth, always denote real-valued random vectors. A finite sequence of random
vectors, say, (X1, . . . ,Xn), is also viewed as a random vector. Realizations of random vectors
are always denoted by lowercase italics, x, y, (x1, . . . , xn), etcetera. The term “external factor”
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(or simply “factor”) refers to an observable experimental manipulation, condition, or covariate
upon which the distribution of a random vector of interest may or is known to depend. Factors
may be continuous or discrete, and they are always treated as deterministic quantities. Factors
and factor sets are always denoted by Greek letters.

2. Motivating Example: Multivariate Normal Distribution

Let (X1, . . . ,Xn) (generally interdependent random variables, say, performance scores in n
tests) be n-variate normally distributed, and let the mean-variance pair (µi , σ

2
i ) of Xi be known

to depend on an external factor γi (i = 1, . . . , n). Assume that γ1, . . . , γn (say, sex, age, blood
pressure, etc.) are all distinct. Considering now the dependence of the n-variate normal distri-
bution of (X1, . . . ,Xn) upon the set {γ1, . . . , γn}, we see that it is entirely characterized by the
dependence on these factors of the correlation coefficients ρi j (i, j = 1, . . . , n, i �= j). Generally
speaking, each ρi j may depend on all factors γ1, . . . , γn . The question arises: Under what pattern
of the dependence of the correlations ρi j upon γ1, . . . , γn can one speak of X1, . . . ,Xn being se-
lectively influenced by γ1, . . . , γn , respectively? Should, for example, the notion of selectiveness
imply that no ρi j may depend on any of these factors, or even that all ρi j must be zero?

The applicability of this example is not, of course, confined to performance scores. In par-
ticular, the two motivating examples below, dealing with response time decompositions and
Thurstonian-type modeling, may very well have the same mathematical structure. The depen-
dence of a multivariate normal distribution on external factors is used in Dzhafarov (1999, 2001a)
as a “testing ground” for possible meanings of selective influence. It plays a similar role in the
present paper.

Note that the situation where each Xi in the n-variate normally distributed (X1, . . . ,Xn)

is selectively influenced by a one-element factor set �i = {γi } is not the only one of interest.
For example, with mutually independent X1,X2,X3 (i.e., with ρ12 = ρ23 = ρ13 = 0) it is
perfectly reasonable to speak of X1 being selectively influenced by, say, �1 = {γ1, γ2}, X2 being
selectively influenced by �2 = {γ2, γ3}, and X3 by �3 = {γ3}. The selectiveness here means
that X1 is not being influenced by {γ3}, X2 not being influenced by {γ1}, and X3 by {γ1, γ2}. It
is natural, therefore, to ask whether and how the same pattern of selectiveness can be established
when ρ12, ρ23, ρ13 are non-zero and may depend on γ1, γ2, γ3.

3. Motivating Example: Processing Architectures

In the analysis of information processing architectures it is common to think of response
times to stimuli as being composed of several time components, each defined by an attribute
of stimulus or observation mode that influences this component selectively (Dzhafarov, 1997).
Thus, simple reaction time to stimulus varying in intensity γ can be thought of as the sum of a
signal-dependent component X1 (selectively influenced by �1 = {γ }) and a signal-independent
component X2 (selectively influenced by �2 = ∅). In addition to stochastically independent
X1,X2, with which the meaning of this selectiveness is trivial, Dzhafarov (1992) and Dzhafarov
and Rouder (1996) argue in favor of considering positively correlated X1,X2. This leads to a
special case of the problem posed in section 1: Under what dependence of (X1, X2) on �1∪�2 =
{γ } would one say that (X1, X2) are selectively influenced by, respectively ({γ },∅)?

Choice response times too are often presented as compositions H (X1, . . . ,Xn) of dura-
tions selectively influenced by certain factor sets. In Sternberg’s classical paradigm, for example
(Roberts & Sternberg, 1993; Sternberg, 1969), X1 may be defined as the time of a process selec-
tively influenced by memory set, while X2 may be defined as the time of a process selectively
influenced by stimulus contrast. The focus of interest here is to determine the relationship be-
tween these two component processes in the “mental architecture”: for example, do these pro-
cesses develop in parallel or does one of them have to terminate before the other begins? Again,
the problem of section 1 arises when X1,X2 are not assumed to be stochastically independent
(Cortese & Dzhafarov, 1996; Dzhafarov & Cortese, 1996; Dzhafarov & Schweickert, 1995).
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In relation to the previous section, note that some transformations h1(X1), . . . , hn(Xn)

(e.g., logarithms) of the hypothetical response time components may very well be assumed to be
multivariate normally distributed.

Historically, the problem of developing a viable definition of selective influence under
stochastic interdependence was first posed in the context of response time decompositions
(Townsend, 1984; Townsend & Thomas, 1994). The solution proposed by Townsend (“indirect
nonselectivity”) is briefly discussed in section 7.

4. Motivating Example: Thurstonian-type Modeling

Pairwise comparisons (in terms of “greater-less” or “same-different”) are often modeled by
assuming that the two stimuli being compared, α, β, are mapped into random vectors (“images”
of these stimuli) X, Y, respectively, and that the decision in a given trial is uniquely determined
by their realizations x, y. If X, Y are stochastically independent, with densities f (x;α) and
g(y;β), then the probability of a specified response (“α > β” or “α �= β”) is given by

P(α, β) =
∫
(x,y)∈G

f (x;α)g(y;β) dx dy, (1)

where G is the class of all (x, y) that are mapped into the answer in question. Thus, in the
classical Thurstonian theory (Thurstone, 1927a, 1927b) P(α, β) is the probability of “α > β”
(with respect to some semantically unidimensional attribute, say, “brightness”), X, Y take on their
values in Re (the axis presumably representing this attribute in one’s perception), f , g are normal
densities, and G consists of all (x, y) such that x > y. In Luce and Galanter’s (1963) modification
of Thurstone’s modeling scheme P(α, β) is the probability of “α �= β”, the functions f, g are
again normal densities in Re, and G consists of all (x, y) such that x − y > ε1 or y − x > ε2”
(where ε1, ε2 are some positive constants).

When X, Y are not assumed to be stochastically independent, denoting their joint density
by h(x, y;α, β), we have

P(α, β) =
∫
(x,y)∈G

h(x, y;α, β) dx dy. (2)

At the same time, we still wish to treat X as an image of α, and Y as an image of β. This leads
one to the conceptual problem posed in section 1: For what kind of densities h(x, y;α, β) the
selective correspondence between stimuli and “their” images can be established in a nonarbitrary
fashion? If (X,Y) are posited to be bivariate normally distributed, this question becomes a special
case of the problem posed in section 2. Thurstone (1927a, 1927b), apparently, considered the
selectiveness in the dependence of the marginal distributions of X and Y on, respectively, α and
β sufficient for the selective attribution of X to α and Y to β, irrespective of how the correlation
ρXY depends on (α, β). In this paper, however, the selectiveness on the level of marginals is only
considered necessary but not sufficient for speaking of selective influence.

The problem of selective correspondence between stimuli and images (equivalently, selec-
tive influence of stimuli upon their images) becomes especially apparent if X, Y are assumed
to take on their values in Rem , with an arbitrary dimensionality m, as it is done in Ashby and
Perrin (1988), Dzhafarov (2001b), Ennis (1992), Ennis, Palen, and Mullen (1988), Suppes and
Zinnes (1963), Zinnes and MacKey (1983), and Thomas (1996, 1999). When no semantically
unidimensional attributes are involved, there is no good reason to assume that images X, Y are
unidimensional. In this case, unless the problem of selective correspondence is given a satisfac-
tory solution, nothing prevents one from interpreting (2) as a model in which the stimulus pair
(α, β) is mapped into a single random vector Z = (X,Y), with no particular attribution of its
components to α and β taken separately.
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5. Definition of Selective Influence

Let � denote the set of all factors being considered, and � ⊆ �. The notation

X← �

means that the distribution of the random vector X does not depend on factors belonging to
�−� (so it may or may nor depend on factors belonging to�). The formulation of the selective
influence problem in section 1 presupposes that

X1 ←�1, . . . , Xn ←�n, (3)

a relation that Townsend and Schweickert (1989) call the marginal selectivity. The formulation
of the selective influence problem also presupposes that the set of all factors being considered is
confined to

� = �1 ∪ . . . ∪ �n.

In particular, the joint distribution of X1, . . . ,Xn is not related to any factors outside �, that is,

(X1, . . . ,Xn)←�. (4)

Note that this is not a logical necessity: The joint distribution of (X1, . . . ,Xn) may very well
depend on factors that do not influence any of the marginal distributions (think, e.g., of a bivariate
normal distribution with the means and variances that do not depend on some factor while the
correlation coefficient does). We simply agree to consider the dependence of (X1, . . . ,Xn) on �
only.

(The predication of selective influence upon (3) and (4) greatly simplifies the discussion, as
compared to Dzhafarov, 2001a. In particular, this makes superfluous the notion of factor effec-
tiveness, the distinction between selective influence and selective attributability, and the issue of
uniqueness, all prominently entering the theory developed in Dzhafarov, 2001a.) Let the notation

(X1, . . . ,Xn) � (�1, . . . , �n) (5)

stand for the proposition “X1, . . . ,Xn are selectively influenced by �1, . . . , �n , respectively”.

Definition 1. Given (X1, . . . ,Xn) and (�1, . . . , �n) satisfying

X1 ←�1, . . . , Xn ←�n,

(X1, . . . ,Xn)←�1 ∪ . . . ∪ �n,

the selective influence relation

(X1, . . . ,Xn) � (�1, . . . , �n)

means that one can find mutually stochastically independent random vectors C,S1, . . . ,Sn

whose distributions do not depend on �1 ∪ . . .∪�n , and some measurable functions f1, . . . , fn ,
such that

X1 = f1(C,S1, �1), . . . , Xn = fn(C,Sn, �n). (6)

The random vector C can be referred to as a common source of randomness for (X1, . . . ,Xn),
whereas the random vectors S1, . . . ,Sn can be called specific sources of randomness for
X1, . . . ,Xn , respectively. That the vector (C,S1, . . . ,Sn) does not depend on any factors from
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�1 ∪ . . . ∪ �n can be written as

(C,S1, . . . ,Sn)← ∅.

This independence property is critical for the logic of the definition.
It is worth mentioning that the definition imposes no restrictions on how the functions

f1, . . . , fn depend on C or on their specific sources of randomness S1, . . . ,Sn . In particular,
C is allowed to be a dummy argument for all f1, . . . , fn , in which case the random vectors
X1, . . . ,Xn will be stochastically independent,

X1 = f1(S1, �1), . . . , Xn = fn(Sn, �n).

The stochastic independence also results if C is decomposable into subvectors (C1, . . . ,Cn),
with fi depending on Ci (i = 1, . . . , n) but not on the rest of the subvectors. In this case the
pairs (Ci ,Si ) are de facto specific sources of randomness.

At the opposite extreme, when dealing with (unidimensional) random variables X1, . . . ,Xn ,
the specific sources of randomness S1, . . . ,Sn may all be dummy arguments for f1, . . . , fn ,

X1 = f1(C, �1), . . . , Xn = fn(C, �n),

and if C is a random variable upon which all the functions depend monotonically, then
X1, . . . ,Xn will all be monotonic functions of each other (for this form of stochastic relationship
see Dzhafarov, 1992; Dzhafarov & Rouder, 1996; Dzhafarov & Schweickert, 1995).

If the functions f1, . . . , fn are linear in their second argument, one can recognize in (6),
for any fixed value of � = �1 ∪ . . . ∪ �n , the familiar (“nonlinear”) factor-analytic structure
(McDonald, 1967, 1982),

Xi = ai (C, �i )+ bi (�i )Si , i = 1, . . . , n, (7)

where ai , bi are some functions. In the factor-analytic context the term “factors” (common and
specific) is traditionally used to designate the sources of randomness C,S1, . . . ,Sn . (In the
present paper the term “factor” is reserved for the elements of �, but the sources of random-
ness, if one so wishes, can also be referred to as “factors” provided the term is used with some
qualifying adjective, like “internal”, or “latent”.)

It is also worth mentioning that the definition formally applies to n = 1, in which case

X �� if and only if X←�.

The “only if” part being obvious, note that if X ←� then X can always be presented as X =
f (S, �), where S is a vector of stochastically independent random variables uniformly distributed
between 0 and 1 (see Comment 1 in the Appendix). In other words, if X←� then (6) is satisfied,
with C being a dummy argument.

It is easy to see that the definition of selective influence satisfies the following property,
called the nestedness of selective influence. (The term is introduced in Dzhafarov, 2001a, but
its meaning here is somewhat modified.) Let (1, . . . , n) be partitioned into two subvectors, pre-
sentable, after an appropriate permutation, as (1, . . . , k) and (k + 1, . . . , n), 0 < k < n. The
nestedness property means that (5) implies

(X1, . . . ,Xk) � (�1, . . . , �k),

(Xk+1, . . . ,Xn) � (�k+1, . . . , �n), (8)

((X1, . . . ,Xk), (Xk+1, . . . ,Xn)) � ((�1 ∪ . . . ∪ �k), (�k+1 ∪ . . . ∪ �n)).
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These relations follow from (6) trivially. Indeed,

X1 = f1(C,S1, �1), . . . , Xk = fk(C,Sk, �k),

Xk+1 = fk+1(C,Sk+1, �k+1), . . . , Xn = fn(C,Sn, �n),

which is equivalent to the first two lines of (8). Denoting T1 = (S1, . . . , Sk), T2 = (Sk+1, . . . ,Sn),
one also observes that there are (vectorial) measurable functions F1, F2 such that

(X1, . . . ,Xk) = F1(C,T1, �1 ∪ . . . ∪ �k), (Xk+1, . . . ,Xn) = F2(C,T2, �k+1 ∪ . . . ∪ �n),

which is equivalent to the third line of (8).
It immediately follows from (8), of course, that the marginal distribution of any subvector

(X1, . . . ,Xk) cannot depend on factors outside �1 ∪ . . . ∪ �k , that is,

(X1, . . . ,Xk)←�1 ∪ . . . ∪ �k . (9)

This property, which is understood as holding for all subvectors of (X1, . . . ,Xn), is referred
as the complete marginal selectivity in the dependence of (X1, . . . ,Xn) on �1 ∪ . . . ∪ �n . The
marginal selectivity (3) as defined by Townsend and Schweickert (1989) is then a special case
that can be called the simple marginal selectivity. In the present work, therefore, simple marginal
selectivity is a necessary condition for complete marginal selectivity, which is a necessary con-
dition for nestedness, which in turn is a necessary condition for selective influence,

selective influence, (5)

⇓
nestedness, (8)

⇓ (10)

compete marginal selectivity, (9)

⇓
simple marginal selectivity. (3)

It is easy to see that simple marginal selectivity does not imply complete marginal selectivity
(unless n = 2, in which case the two concepts coincide). Think, for example, of a trivariate
normally distributed (X1, X2, X3), with their marginal mean-variance pairs being functions of
γ1, γ2, γ3, respectively, but with ρ12 = ρ12(γ1, γ2, γ3). Clearly, the subvector (X1, X2) is not
influenced by {γ1, γ2} only. This is one reason why simple marginal selectivity cannot be taken
as a competing definition for the concept of selective influence.

The complete marginal selectivity is a significantly more powerful concept, but, as shown
in section 10, it is weaker than the notion of selective influence. To use complete marginal se-
lectivity as a competing definition for selective influence would be intellectually unsatisfactory:
A good definition of selective influence should provide some form of “explanation” of why the
random vectors under consideration are stochastically interdependent and why they are never-
theless selectively influenced by different factor sets. Definition 1 provides such an explana-
tion: X1, . . . ,Xn are generally interdependent because f1, . . . , fn depend on a common random
vector C, and X1, . . . ,Xn are selectively influenced by �1, . . . , �n , respectively, because each
function only depends on “its own” factor set. It is natural to interpret C as reflecting certain
factor-independent processes or characteristics affecting all variables under consideration. One
can think, for example, of the general arousal, or attention level in the case of response times
(section 3), or of individual aptitudes when X1, . . . ,Xn are measured across a population of
subjects, as in the case of interdependent performance scores (section 2).
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Note that one can always add to (6) the dummy equality

C = C

to obtain

(C,X1, . . . ,Xn) � (∅, �1, . . . , �n),

with the nestedness property applicable now to all combinations of Xi ’s and C. It follows, in
particular, that the joint distribution of (C,Xi ) may only depend on �i , and, more generally, the
joint distribution of (C,X1, . . . ,Xk) may only depend on �1 ∪ . . . ∪ �k .

6. Two Illustrations

Although Definition 1 of selective influence has not been previously proposed in the litera-
ture (see the history of the issue in the next section), constructions conforming to this definition
have been used. The two illustrations given below relate to the motivating examples given in
sections 3 and 4.

The first illustration is taken from Schweickert (1982). Presented in a modified notation, the
durations (X1, X2) of two processes in a certain network of processes are posited in this paper to
be influenced by two factors, γ1, γ2, both varying on two levels, 0 and 1. The relationship can be
written as

X1 = X10 + γ1X11, X2 = X20 + γ2X21,

where X10, X11, X20, X21 are nonnegative random variables whose joint distribution does not
depend on γ1 or γ2. The “baseline durations” X10, X20 are allowed to be stochastically interde-
pendent, and so are the “prolongations” X11, X21, the two pairs being stochastically independent.

It is easy to see then that (X1, X2) are stochastically interdependent while being selectively
influenced by ({γ1}, {γ2}), in the sense of Definition 1. The formal compliance is achieved by
modeling X10, X11, X20, X21 by functions g10(C0, S10), g11(C1, S11), g20(C0, S20), g21(C1,
S21), respectively, with mutually independent C’s and S’s, and by putting in Definition 1 (C0,
C1) = C, (S10, S11) = S1, and (S20, S21) = S2:

X1 = g10(C0,S10)+ γ1g11(C1,S11) = f1(C,S1, {γ1}),
X2 = g20(C0,S20)+ γ2g21(C1,S21) = f2(C,S2, {γ2}).

The second illustration is taken from Bloxom (1972), dealing with a version of the classical
Thurstonian theory for modeling “greater-less” discrimination probabilities (section 4). Again,
the notation is modified to better suit our purposes. Let stimuli α and β take on their values in
a finite set {1, . . . ,m}. Bloxom assumes that following some permutation of these indices (and
renumbering them as 1, . . . ,m again), there are some (unidimensional) mutually independent
random variables (C1, . . . ,Cm ,G1 . . . ,Gm) such that, denoting by X, Y the random images of
α and β, respectively,

X =
α∑

i=1

Ci +Gα, α = 1, . . . ,m,

Y =
β∑

i=1

Ci +Gβ, β = 1, . . . ,m.

(In Bloxom’s paper, which focuses on the Thurstonian Case II, the random variability in C j and
G j , j = 1, . . . ,m, is taken to reflect individual differences within a population of subjects.)
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One way of demonstrating the compliance of this model with Definition 1 is to denote by
G(s, j) the quantile of rank s (0 ≤ s ≤ 1) of the random variable G j ( j = 1, . . . ,m), and
to introduce two random variables S1,S2, uniformly distributed between 0 and 1 and such that
C1, . . . ,Cm ,S1,S2 are mutually independent. Then G(S1, j) and G(S2, j) are both distributed
as G j , and the model can be presented as

X =
m∑

i=1

h(α − i)Ci + G(S1, α) = f1(C,S1, {α}), α = 1, . . . ,m,

Y =
m∑

i=1

h(β − i)Ci + G(S2, β) = f2(C,S2, {β}), β = 1, . . . ,m,

where h( j − i) is the Heaviside function,

h( j − i) =
{

1 if j ≥ i

0 if j < i,

and C denotes (C1, . . . ,Cm).

7. Comparison With Previous Solutions

The historically first attempt to systematically explain how the selectiveness of influence can
coexist with the stochastic interdependence of the influenced variables was made by Townsend
and his colleagues (Townsend, 1984; Townsend & Thomas, 1994). Townsend’s solution, termed
the indirect nonselectivity, consists in treating the relation (5) as indicating that the conditional
distribution of Xi , given

(X1, . . . ,Xi−1,Xi+1, . . . ,Xn) = (x1, . . . , xi−1, xi+1, . . . , xn),

depends on �i only, for any i = 1, . . . , n and any possible values (x1, . . . , xi−1, xi+1, . . . , xn).
Somewhat generalized and renamed into the conditional selectivity (a term more convenient

in the context of discussing different approaches to the selectiveness of influence), this property
is completely characterized in Dzhafarov (1999). One of the simplest consequences of this char-
acterization is that the conditional selectivity is not generally compatible even with the simple
marginal selectivity, (3), in a contrast with the implication chain (10). Moreover, some of the
constraints the conditional selectivity imposes on the marginal distributions are outright unac-
ceptable for application purposes. Thus, in relation to section 2, the dependence of a bivariate
normally distributed (X1, X2) (with nonzero ρ12) on two distinct factors γ1, γ2 is conditionally
selective with respect to ({γ1}, {γ2}) only if, first,

σ 2
1 = σ 2

1 (γ1, γ2), σ
2
2 = σ 2

2 (γ1, γ2),

and, second, µ1, µ2 do not depend on either of the two factors (see Dzhafarov, 1999, 2001a for
details). This dependence seems too odd to be interesting, in addition to lacking the marginal
selectivity X1 ← {γ1},X2 ← {γ2}. This example shows that conditional selectivity (indirect
nonselectivity), although it may play a role in modeling information processing architectures,
cannot be viewed as a viable definition of selectiveness under stochastic interdependence.

A different solution, called the unconditional selectivity, is proposed in Dzhafarov (2001a),
based on Dzhafarov (1997) and Dzhafarov and Schweickert (1995). In this solution the relation
(5) is treated as indicating that (X1, . . . ,Xn) can be presented in the form

X1 = f1(R, �1), . . . , Xn = fn(R, �n), (11)
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where ( f1, . . . , fn) are some measurable (generally vectorial) functions and R is a random vec-
tor whose distribution does not depend on any of the factors from � = �1 ∪ . . . ∪ �n . This
vector is interpreted as an “internal source of randomness” for (X1, . . . ,Xn). Since it generally
consists of several components, and each of the functions f1, . . . , fn may very well be indepen-
dent of some of these components, (11) can be viewed as being less explicit than but equivalent
to (6). Unfortunately, in order to derive necessary and sufficient conditions for the representa-
tion (11), Dzhafarov (2001a) imposes on the functions ( f1, . . . , fn) and on the joint distribution
of (X1, . . . ,Xn) constraints that appear to be both excessively strong and somewhat ad hoc. In
addition, the theory only applies to factor sets �1, . . . , �n that are pairwise disjoint. The neces-
sary and sufficient conditions themselves, given in Dzhafarov (2001a) in terms of the first-order
conditional distributions of (X1, . . . ,Xn), are rather nontransparent and do not seem to be easily
applicable. In particular, they are not useful in dealing with the problem described in section 4.

By contrast, Definition 1 is predicated on no restrictions on the joint distribution of
(X1, . . . ,Xn), and it imposes no restrictions on the functions f1, . . . , fn (except for measurabil-
ity) or sets of external factors �1, . . . , �n . We will see also that this definition has a considerably
greater working power.

8. Conditional Independence

The most basic and focal for the present development fact about (X1, . . . ,Xn) selectively
influenced by (�1, . . . , �n) in the sense of Definition 1 is this: For any given (generally vectorial)
value of the common source of randomness C, the random vectors X1, . . . ,Xn are conditionally
independent, with their distributions depending on �1, . . . , �n , respectively. Indeed,

X1|C=c = f1(c,S1, �1), . . . , Xn|C=c = fn(c,Sn, �n), (12)

with stochastically independent S1, . . . ,Sn . Thus, in the example with factor analysis, (7), fixing
a value of C makes X1|C=c, . . . ,Xn|C=c stochastically independent variables with means (but
not variances) depending on this value,

Xi |C=c = ai (c, �i )+ bi (�i )Si , i = 1, . . . , n.

Conversely, the representation (6) holds if there is a random vector C whose distribution
does not depend on �1 ∪ . . .∪�n and such that for any value c, X1|C=c, . . . ,Xn|C=c are stochas-
tically independent vectors whose distributions depend on �1, . . . , �n , respectively. To see why,
recall that any p-component random vector Z (p ≥ 1) can be presented as Z = ϕ(S), where S
is a p-component vector of stochastically independent variables uniformly distributed between 0
and 1 (see Comment 1 in the Appendix). Putting

X1|C=c = ϕ1,c,�1(S1), . . . , Xn|C=c = ϕn,c,�n (Sn),

where ϕi,c,�i is a function that may be different depending on both c and �i , whereas Si is one
and the same for all c and �i (i = 1, . . . , n), we can rename ϕi,c,�i (Si ) into fi (c,Si , �i ) and
obtain thence the representation (6).

This simple argument is summarized in the following formal statement.

Proposition 1. Given (X1, . . . ,Xn) and (�1, . . . , �n) satisfying

X1 ←�1, . . . , Xn ←�n,

(X1, . . . ,Xn)←�1 ∪ . . . ∪ �n,

the selective influence relation

(X1, . . . ,Xn) � (�1, . . . , �n)
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holds if and only if one can find a random vector C (whose distribution does not depend on
�1 ∪ . . . ∪ �n) such that X1, . . . ,Xn are conditionally independent given any value of C, with
their conditional distributions depending on �1, . . . , �n , respectively.

This proposition is central for the present development, and it can be viewed as an alternative
(and equivalent) definition of selective influence.

Conditional independence is, of course, one of the most basic concepts in constructing
psychometric and statistical models, being routinely used in item-response theories, analysis of
distribution mixtures, and other constructs involving latent variables (see, e.g., Lazarsfeld, 1965;
Lindsay, 1995). Suppes and Zanotti (1981) associate this concept with a general philosophical
principle, called by them the common cause criterion:

The primary criterion of adequacy of probabilistic causal analysis is that the causal
variable should render the simultaneous phenomenological data conditionally inde-
pendent. (p. 191)

My preference is to distinguish, at least epistemologically, between “external (observable)
causes” of variation and “internal (unobservable) causes” of (necessarily random) variation, and
further distinguishing “common internal causes” from “specific” ones. What makes the present
use of conditional independence different from the previous ones is that the (hypothetical or ob-
servable) “effects” X1, . . . ,Xn , when rendered conditionally independent by finding their “com-
mon internal causes” C, are selectively linked to their respective “external causes” �1, . . . , �n .

To explicate the precise meaning of the conditional independence in Proposition 1, let Ai

be a Lebesgue measurable set within the domain of Xi (i = 1, . . . , n), and let ω denote the
probability measure associated with the conditioning vector C. Then Proposition 1 says that the
meaning of (5) is this: For any A1, . . . , An ,

Pr[X1 ∈ A1, . . . ,Xn ∈ An;�] =
∫

Dom(C)

[
n∏

i=1

Pr(Xi ∈ Ai |C = c;�i )

]
dω(c), (13)

where � = �1 ∪ . . . ∪ �n and the integration (in the Lebesgue sense) is over the domain of C.
The nestedness property (8) can be derived from this representation directly, without referring to
(6). Thus, choosing Ai = Dom(Xi ) for all i > k, and observing that

Pr(Xi ∈ Dom(Xi )|C = c;�i ) = 1 a.s. [ω]
(a.s. [ω] standing for “almost surely with respect to measure ω”), one obtains

Pr[X1 ∈ A1, . . . ,Xk ∈ Ak;�1 ∪ . . . ∪ �k] =
∫

Dom(C)

[
k∏

i=1

Pr(Xi ∈ Ai |C = c;�i )

]
dω(c),

which, by (13), is equivalent to

(X1, . . . ,Xk) � (�1, . . . , �k).

The conformity with the third line of (8) follows equally easily, on using basic measure-theoretic
constructs (see Comment 2 in the Appendix).

If the conditional distributions of X1, . . . ,Xn (given a value of C) have conventional prob-
ability density (or probability mass) functions ψ1|C, . . . , ψn|C, then (13) can also be written as

ψ1...n(x1, . . . , xn;�) =
∫

Dom(C)

[
n∏

i=1

ψi |C(xi |c;�i )

]
dω(c), (14)
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where ψ1...n is the joint probability density (mass) function for (X1, . . . ,Xn). Obviously, if the
conditioning vector C has a density (mass) function ψ(c), then dω(c) in this equation can be
replaced with ψ(c)dc.

9. Applications

For stochastically independent X1, . . . ,Xn , (13) and (14) acquire the forms

Pr[X1 ∈ A1, . . . ,Xk ∈ Ak;�1 ∪ . . . ∪ �k] =
k∏

i=1

Pr(Xi ∈ Ai ;�i ) (15)

and

ψ1...n(x1, . . . , xn;�) =
n∏

i=1

ψi (xi ;�i ). (16)

These equations have precisely the same structure as the integrands in (13) and (14) taken at a
given C = c, and it is to this fact that the new definition of selective influence owes its working
power. One can reasonably expect that any property derived from (15) and (16) for stochastically
independent X1, . . . ,Xn will also be shared by the integrands in (13) and (14), for any given
C = c. Integration over the domain of C will often preserve this property of the integrand,
yielding thereby an easy and natural generalization from stochastically independent X1, . . . ,Xn

to stochastically interdependent X1, . . . ,Xn with the same pattern of selective influence. Even
when this is not the case, the multiplicative decomposability of the integrands in (13) and (14)
greatly facilitates theoretical analysis of the joint distributions.

To illustrate, consider a problem taken from Schweickert, Giorgini, and Dzhafarov (2000).
This problem falls within the scope of the motivating example given in section 3. Let there be
two binary (0-1) factors γ1, γ2 known to influence a response time T. Denote its distribution
function by G(t; γ1, γ2). Let T be modeled as

T = H (T1, . . . ,Tn; γ1, γ2),

where T1, . . . ,Tn (n ≥ 2) are durations of hypothetical processes constituting a “parallel-serial
network with AND gates”. This means that H can be written entirely in terms of operations
. . .+ . . . and max{. . . , . . .}, with each argument T1, . . . ,Tn entering in the expression once and
only once. (If max in this definition is replaced with min, the parallel-serial network is said to
have OR gates.) Different levels of γ1, γ2 do not change the function H (i.e., the processing
architecture remains fixed), but they are assumed to selectively influence two of the durations
T1, . . . ,Tn (say, T1,T2, respectively). Suppose T1 and T2 are in parallel (this means that in the
expression for H no term containing T1 is connected by + with a term containing T2). We have

(T1,T2,
︷ ︸︸ ︷
T3, . . . ,Tn) � ({γ1}, {γ2},

︷ ︸︸ ︷
∅, . . . ,∅). (17)

Denoting the marginal distributions of T1,T2 by F1(t; γ1) and F2(t; γ2), respectively, assume
also that F1(t; 0) ≥ F1(t; 1) and F2(t; 0) ≥ F2(t; 1), for all t ≥ 0 (the stochastic domi-
nance assumption, meaning that switching from level 0 to level 1 results in a prolongation of
the processes). Under these conditions, as proved in Schweickert, Giorgini, Dzhafarov, (2000),
if T1, . . . ,Tn are mutually stochastically independent, then, for all t ≥ 0,

G(t; 1, 1)− G(t; 0, 1)− G(t; 1, 0)+ G(t; 0, 0) ≥ 0.

(The inequality reverses in the case of the “parallel-serial network with OR gates”.)
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The question is whether this result also holds for stochastically interdependent (T1, . . . ,Tn).
Due to (17) one can invoke Proposition 1: There is a random vector C such that given any its
value, T1,T2,T3, . . . ,Tn are conditionally independent, with their conditional distributions
depending on, respectively, {γ1}, {γ2},∅, . . . ,∅. Assume that the stochastic dominance as-
sumption holds now for every value of C, that is, F1(t |C = c; 0) ≥ F1(t |C = c; 1) and
F2(t |C = c; 0) ≥ F2(t |C = c; 1), for all t ≥ 0 and all c. Then, by the cited result from
Schweickert et al. (2000),

G(t |C = c; 1, 1)− G(t |C = c; 0, 1)− G(t |C = c; 1, 0)+ G(t |C = c; 0, 0) ≥ 0

for all t ≥ 0 and all c. Denoting, as in 13, the distribution function for C by ω, it is easy to see
that

G(t; 1, 1)− G(t; 0, 1)− G(t; 1, 0)+ G(t; 0, 0)

=
∫

Dom(C)

[G(t |C = c; 1, 1)− G(t |C = c; 0, 1)− G(t |C = c; 1, 0)+ G(t |C = c; 0, 0)] dω(c),

and the integral is nonnegative because so is the integrand. The generalizability of the inequal-
ity for OR gates is proved analogously. A comprehensive analysis of a broad class of “directed
acyclic networks” with stochastically interdependent but selectively influenced constituent dura-
tions is given elsewhere (Dzhafarov, Schweickert, Sung, submitted).

To illustrate other applications of Definition 1 and Proposition 1, consider the problem out-
lined in section 4, in relation to Thurstone’s (1927a, 1927b) and Luce and Galanter’s (1963)
models. Assuming (X,Y) is bivariate normally distributed and the marginal selectivity with re-
spect to (α, β) holds, what dependence of ρXY on α and β would allow one to speak of

(X,Y) � ({α}, {β}),
that is, to consider X as selectively corresponding to α and Y as selectively corresponding to
β? In accordance with Proposition 1, the question is whether one can find a random vector C
(independent of α, β) such that given C = c the X and Y are conditionally independent, with
their conditional distributions depending on α and β, respectively.

Let us consider this problem under the additional constraint that the joint distribution of
(X,Y,C) be multivariate normal. If C is a vector of random variables (C1, . . . ,Cp), then
(X,Y,C1, . . . ,Cp) has p+2 real-valued components. It is easy to see that in the absence of any
restrictions imposed on ( f1, . . . , fn) in (6), C1, . . . ,Cp can be taken to be independent standard
normally distributed variables. In view of the observation made in the last paragraph of section 5,

(X,Y,C1, . . . ,Cp) � ({α}, {β},∅, . . . ,∅),
whence the correlation coefficients ρXi and ρYi between, respectively, X and Ci and Y and Ci

(i = 1, . . . , p) may only depend on, respectively, α and β. It follows now by straightforward al-
gebra (see, e.g., Theorems 3.3.4 and 3.4.3 in Tong, 1990) that X, Y are conditionally independent
given C if and only if

ρXY(α, β) =
p∑

i=1

ρXi (α)ρYi (β). (18)

Put differently, a bivariate normally distributed (X,Y) with the marginal selectivity with
respect to (α, β) is selectively influenced by (α, β) if, for some p = 1, 2, . . . , one can find
functions

−1 ≤ ρXi (α), ρYi (β) ≤ 1, i = 1, . . . , p,
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such that ρXY(α, β) satisfies (18). Note that “if” in this statement cannot be complemented by
“only if” because it is not generally necessary that (X,Y,C) be multivariate normally distributed.

Not surprisingly, there are functions ρXY(α, β) that cannot be decomposed in accordance
with (18), for any p. An example of one such function is ρXY(α, β) = |α − β|, where we
assume that α and β continuously vary within [0, 1] (see Comment 3 in the Appendix). By
choosing p sufficiently large, however, we know from the classical Weierstrass theorem and
related results that any well-behaved (e.g., continuous, or absolutely integrable) ρXY(α, β) taken
on any compact region of (α, β) (generally a subset of Rek × Rek , k ≥ 1) can be approximated
by (18) to any degree of precision. One consequence of this fact is that if p is not restricted, the
hypothesis of selective influence (X,Y) � (α, β) cannot be rejected on a sample level, with
only estimated ρXY available. This issue is discussed in the concluding section of this paper.

The analysis just presented can be trivially generalized to incorporate the problem posed
in section 2. An n-variate normally distributed (X1, . . . ,Xn) possessing the simple marginal
selectivity with respect to (�1, . . . , �n) is selectively influenced by (�1, . . . , �n) if, for some
p = 1, 2, . . . , one can find functions

−1 ≤ ρiλ(�i ) ≤ 1, i = 1, . . . , n, λ = 1, . . . , p

such that

ρi j (�i , � j ) =
p∑
λ=1

ρiλ(�i )ρ jλ(� j ), i, j = 1, . . . , n, i �= j. (19)

If these equalities hold, (X1, . . . ,Xn) can be embedded into a (p+n)-variate normally distributed
(X1, . . . ,Xn,C1, . . . ,Cp), with the common sources of randomness C1, . . . ,Cp being mutually
independent standard normally distributed.

10. Selective Influence and Complete Marginal Selectivity

Refer to the chain of implications (10). As explained in the paragraph following it, simple
marginal selectivity, (3), does not imply selective influence, (5), because it does not imply com-
plete marginal selectivity, (9). This leaves open the possibility, however, that selective influence
could be implied by complete marginal selectivity. If this were the case, then, as a special case,
the selective influence relation

(X1,X2) � (�1, �2), (20)

understood in the sense of Definition 1-Proposition 1, would have to follow from the marginal
selectivity, in this case both simple and complete,

X1 ←�1,X2 ←�2. (21)

It can be proved by counter-example that this is not the case.

Proposition 2. The marginal selectivity (21) may hold while the selective influence (20)
does not. Hence selective influence, (5), is not implied by complete marginal selectivity, (9).

Proof. Consider binary (zero-one) random variables X1,X2 whose joint distribution de-
pends on two continuous factors, γ1 ∈ [0, 1] and γ2 ∈ [0, 1]. Let

P(γ1, γ2) = Pr(X1 = 0,X2 = 0; γ1, γ2) = min(γ1, γ2)

1+ |γ1 − γ2| ,
P1(γ1) = Pr(X1 = 0; γ1) = γ1, P2(γ2) = Pr(X2 = 0; γ2) = γ2. (22)
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The marginal selectivity X1 ← {γ1},X2 ← {γ2} clearly holds. The selective influence rela-
tion (X1, X2)�({γ1}, {γ2}) would mean here that for some random vector C associated with a
probability measure ω,

P(γ1, γ2) =
∫

c∈Dom(C)
Q1(c, γ1)Q2(c, γ2) dω(c),

P1(γ1) =
∫

c∈Dom(C)
Q1(c, γ1) dω(c),

P2(γ2) =
∫

c∈Dom(C)
Q2(c, γ2) dω(c),

where

Q1(c, γ1) = Pr(X1 = 0|C = c; γ1), Q2(c, γ2) = Pr(X2 = 0|C = c; γ2).

Let such a representation for P, P1, P2 exist. For every γ ∈ [0, 1] let Dom(C) be partitioned into

C00(γ ) = {c : Q1(c, γ ) = 0, Q2(c, γ ) = 0},C++(γ ) = {c : Q1(c, γ ) > 0, Q2(c, γ ) > 0},
C0+(γ ) = {c : Q1(c, γ ) = 0, Q2(c, γ ) > 0},C+0(γ ) = {c : Q1(c, γ ) > 0, Q2(c, γ ) = 0}.

From (22),

P(γ, γ ) =
∫

c∈C++(γ )
Q1(c, γ )Q2(c, γ ) dω(c) = γ. (23)

Comparing this with

P1(γ ) =
∫

c∈C+0(γ )

Q1(c, γ ) dω(c)+
∫

c∈C++(γ )
Q1(c, γ ) dω(c) = γ,

P2(γ ) =
∫

c∈C0+(γ )
Q2(c, γ ) dω(c)+

∫
c∈C++(γ )

Q2(c, γ ) dω(c) = γ,

and noting that Qi (c, γ ) ≥ Q1(c, γ )Q2(c, γ ), i = 1, 2, we conclude that

ω[C+0(γ )] = 0, ω[C0+(γ )] = 0,

c ∈ C++(γ )⇒ Q1(c, γ ) = Q2(c, γ ) = 1 a.s. [ω].
Then, from (23), ω[C++(γ )] = γ . In particular, ω[C++(1)] = 1, whence

Q1(c, 1) = Q2(c, 1) = 1 a.s. [ω].
But then, for any γ ∈ (0, 1),

P(γ, 1) =
∫

c∈C++(γ )
Q1(c, γ )Q2(c, 1) dω(c) = γ,

which contradicts the definition of P in (22).

There is, however, a degenerate case when even simple marginal selectivity implies selective
influence. This is the case �1 = . . . = �n = �. Formally, the statements

X1 ←�, . . . , Xn ←� (24)
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and

(X1, . . . ,Xn) � (�, . . . , �) (25)

fall within the scope of Definition 1-Proposition 1, even though one would not normally associate
any sense of “selectiveness” with this case.

Proposition 3. The (degenerate) simple marginal selectivity (24) implies the (degenerate)
selective influence (25).

Proof. For any fixed �, applying Comment 1 from the Appendix to Z = (X1, . . . ,Xn), we
have

X1 = ϕ1,�(V1),X2 = ϕ2,�(V1,V2), . . . , Xn = ϕn,�(V1,V2, . . . ,Vn),

where Vi (i = 1, . . . , n) is a vector of stochastically independent variables uniformly dis-
tributed between 0 and 1, and V1, . . . ,Vn are mutually stochastically independent. Putting C =
(V1, . . . ,Vn), the functions ϕi,�(V1, . . . ,Vi ) can be written as fi (C, �), whence

X1 = f1(C, �), . . . , Xn = fn(C, �), (26)

a special case of (6).

Note that fixing C = c in (26) makes (X1, . . . ,Xn) a vector of deterministic functions of �
(see, however, Comment 4 in the Appendix). Formally, deterministic quantities are stochastically
independent, in agreement with Proposition 1. With this in mind, for �1 = . . . = �n = ∅
Proposition 3 implies that any set of random vectors (with a fixed joint distribution) can be made
conditionally independent. This generalizes the sufficiency part of the Theorem on Common
Causes by Suppes and Zanotti (1981), proved there by a very different argument for the case
when X1, . . . ,Xn are binary variables (but correctly claimed to hold generally).

11. Concluding Remarks

To summarize, if (X1, . . . ,Xn) is selectively influenced by (�1, . . . , �n) (where the fac-
tor sets �1, . . . , �n may be overlapping or empty), then (X1, . . . ,Xn) exhibits the complete
marginal selectivity with respect to (�1, . . . , �n): Any subvector of (X1, . . . ,Xn) depends only
on the union of the corresponding factor sets. The complete marginal selectivity, however, is
not equivalent to the selective influence relation. The latter holds if and only if one can embed
(X1, . . . ,Xn) in a vector (X1, . . . ,Xn,C) with the marginal distribution of C being independent
of �1∪ . . .∪�n , such that X1, . . . ,Xn are conditionally independent given any value C = c, with
the conditional distributions of X1, . . . ,Xn depending on �1, . . . , �n , respectively. Equivalently,
one can find mutually independent C,S1, . . . ,Sn such that Xi = fi (C,Si , �i ) for i = 1, . . . , n,
with f1, . . . , fn being arbitrary measurable functions. This approach to the notion of selective
influence generalizes the one proposed in Dzhafarov (2001a), and it is better suited for applied
purposes, such as described in sections 2, 3, and 4. It includes as a special, or degenerate case
most of the “theory of common causes” proposed by Suppes and Zanotti (1981).

What can be considered the main weakness of the theory presented in this paper is that
given the joint distribution of (X1, . . . ,Xn) as a function of �1 ∪ . . . ∪ �n , and assuming that
the complete marginal selectivity is satisfied, neither Definition 1 nor Proposition 1 provide an
algorithm for finding the conditioning random vector C or determining that no such C can be
found. Proposition 2 tells us that situations in which C cannot be found do exist, but we do
not have a characterization (necessary and sufficient conditions) for these situations. Thus, for
n-variate normally distributed (X1, . . . ,Xn) with
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µi = µi (�i ), σ
2
i = σ 2

i (�i ), ρi j = ρi j (�i , � j ), i, j = 1, . . . , n, i �= j,

the complete marginal selectivity with respect to (�1, . . . , �n) is satisfied, and we know that if all
ρi j (�i , � j ) can be presented in accordance with (19), then one can embed (X1, . . . ,Xn) into an
(n+ p)-variate normally distributed (X1, . . . ,Xn,C), with C playing the role of the conditioning
vector of Proposition 1. We do not know, however, whether or how a conditioning vector C can
be found if (19) is not satisfied for some or all of the correlations ρi j (�i , � j ).

It is worth emphasizing that the distributions of C,S1, . . . ,Sn can be chosen essentially
arbitrarily. As follows from the argument presented in Comment 1 (Appendix), they all can be
rendered uniformly distributed in standard unit (hyper)cubes. As a result, the problem of finding
a conditioning vector C is never the problem of finding its separate distribution, but rather that
of finding the joint distribution of (X1, . . . ,Xn,C).

Another notable aspect of the theory is that the hypothesis (X1, . . . ,Xn) � (�1, . . . , �n)

may be difficult if not impossible to reject when (X1, . . . ,Xn) is known on a sample level only.
Depending on one’s purposes, one might consider this a weakness or an advantage. It is men-
tioned in section 9, for example, that by choosing p sufficiently large, (19) can approximate any
well-behaved ρi j (�i , � j ) on any compact area of the factor values to any degree of precision.
As a result, any set of data that can be modeled by n-variate normally distributed (X1, . . . ,Xn)

possessing the complete marginal selectivity with respect to (�1, . . . , �n), can also be modelled
by n-variate normally distributed (X1, . . . ,Xn) selectively influenced by (�1, . . . , �n). One may
ask oneself, however, whether it might be reasonable, in this context as well as generally, in Def-
inition 1, to require that the dimensionality of C be smaller than the combined dimensionality
of (X1, . . . ,Xn). This constraint is natural in the context of nonlinear factor analysis and other
latent variable constructs, but whether it can be justified in the general definition of selective
influence remains unclear.

All random entities throughout this paper have been treated as random vectors with real-
valued components. This is sufficient for most but not all applied purposes. Thus, Regenwetter
and Marley (2001) consider “random relations” and “random functions” as conceptual alterna-
tives to real-valued “random utilities”. In the context of Thurstonian-type modeling described in
section 4, it is natural to consider the possibility that the random images into which stimuli map
may be more complex than being representable by vectors with real-valued components. One
might think of perceptual images as pictorial templates or processes developing in time, in which
case they should be represented by functions or relations rather than real-component vectors. In
view of these theoretical possibilities, it seems useful to observe that the approach to the notion
of selective influence presented in this paper can be easily generalized to random entities taking
on their values in arbitrary measure spaces.

It is more convenient to construct this generalization for Proposition 1 rather than for Def-
inition 1. (To follow the remainder the reader should be familiar with basic notions of abstract
measure theory.) Let R1, . . . , Rn be arbitrary sets with sigma-algebras �1, . . . , �n , respectively.
Let � be the minimal sigma-algebra on R1 × . . .× Rn that contains the product �1 × . . .×�n .
Given sets of external factors �1, . . . , �n , let π(A;�1 ∪ . . . ∪ �n) be a sigma-finite measure
defined for all sets (events)A ∈ �.

Consider now a set C with a sigma-algebra �C and a measure ω defined on �C . Suppose
that for [ω]-almost all c ∈ C there exist probability measures π1(A1|c;�1), . . . , πn(An |c;�n)

defined for all A1 ∈ �1, . . . , An ∈ �n , respectively. These measures (that depend on c and on
the factors) are interpreted as conditional probability measures on these sigma-algebras given c.
Suppose that for all A1 ∈ �1, . . . , An ∈ �n ,

π(A1 × . . .× An;�1 ∪ . . . ∪ �n) =
∫

c∈C
[π1(A1|c;�1) . . . π1(An|c;�n)] dω(c)
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(where the integrand may be undefined on a factor-independent set of [ω]-measure zero). By a
standard measure-theoretic construction, this implies the more general equality

π(A;�1 ∪ . . . ∪ �n) =
∫

c∈C

∫
(r1,...,rn)∈A

[dπ1(r1|c;�1) . . . dπ1(rn |c;�n)] dω(c),

for any A ∈ �.
If such a measure space (C, �C , ω) exists, we say that the random entities (R1, . . . ,Rn) are

selectively influenced by (�1, . . . , �n), respectively, and write

(R1, . . . ,Rn) � (�1, . . . , �n).

A “random entity” Ri here is simply a variable taking on its values on the set Ri (i = 1, . . . , n).
This completes the generalization.

Appendix: Technical Comments

1. The explanation is given in Dzhafarov (1999, p. 125) and is recounted here for reader’s con-
venience. If Z is a random variable with a distribution function F(z), its quantile function
Q(u), 0 < u < 1 is defined as min{z : F(z) > u}. Plainly, Z = Q(U), where U is
standard uniformly distributed. If Z is a vector with components (Z1, . . . ,Zp), p > 1, let
Qi (u; z1, . . . , zi−1) be the quantile function corresponding to the conditional distribution

Fi (z; z1, . . . , zi−1) = Pr[Zi ≤ z|(Z1, . . . ,Zi−1) = (z1, . . . , zi−1)].
(If this conditional distribution is not defined on a zero-measure set of (z1, . . . , zi−1), it can
be additionally defined on this set arbitrarily.) Then Zi = Qi (U;Z1, . . . ,Zi−1), where U is
standard uniformly distributed and independent of Z1, . . . ,Zi−1. Choosing now U1, . . . ,Up

to be independent standard uniformly distributed variables,

Z1 = Q1(U1),Z2 = Q2(U2;Z1) = Q2(U2; Q1(U1)), etc.,

so Z is a vectorial function ϕ of S = (U1, . . . ,Up).
2. Denoting Y1 = (X1, . . . ,Xk), Y2 = (Xk+1, . . . ,Xn), �1 = �1 ∪ . . . ∪ �k , �2 = �k+1 ∪
. . . ∪ �n , the equation

Pr[Y1 ∈ B1,Y2 ∈ B2;�] =
∫

Dom(C)
Pr(Y1 ∈ B1|C = c;�1) Pr(Y2 ∈ B2|C = c;�2) dω(c)

follows from (13) trivially if B1, B2 are (hyper)rectangular in shape,

B1 = A1 × . . .× Ak , B2 = Ak+1 × . . .× An .

Since measures for arbitrary Borel sets are constructed by approximating them by unions
of (hyper)rectangular sets, the equation above also holds for arbitrary Lebesque measurable
B1, B2.

3. The logic of this proof, in a different context, is suggested by A. Eremenko (personal com-
munication, 2000). Let p ≥ 1 be the smallest number for which one can find some functions
{ai (α)}i=p

i=1 , {bi (β)}i=p
i=1 (with no restrictions on the range) such that

|α − β| =
p∑

i=1

ai (α)bi (β).
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Then the matrix [bi (β j )] (i, j = 1, . . . , p) must be nonsingular for some (β1, . . . , βp) (see
Lemma 1.1 in Gauchman & Rubel, 1989). As a result, {ai (α)}i=p

i=1 can be presented as linear

combinations of {|α − βi |}i=p
i=1 , whence we conclude that {ai (α)}i=p

i=1 are differentiable at any
α /∈ {β1, . . . , βp}. But then |α − β| must be differentiable at any such α irrespective of β,
which is wrong for β = α. This argument applies to all functions of (α, β) that possess some
regularity feature in α (continuity, differentiability, etc.) at all (α, β) except when α = h(β),
for some function h.

4. We could also define C = (V1, . . . ,Vn−1), and rewrite ϕi,�(V1, . . . ,Vi ) as fi (C;�) when
i < n and as fn(C,Vn;�) for i = n. Then fixing C = c would render all but one of
(X, . . . ,Xn) deterministic quantities.

References

Ashby, F.G., & Perrin, N.A. (1988). Towards a unified theory of similarity and recognition. Psychological Review, 95,
124–130.

Bloxom, B. (1972). The simplex in pair comparisons. Psychometrika, 37, 119–136.
Cortese, J.M., & Dzhafarov, E.N. (1996). Empirical recovery of response time decomposition rules II: Discriminability

of serial and parallel architectures. Journal of Mathematical Psychology, 40, 203–218.
Dzhafarov, E.N. (1992). The structure of simple reaction time to step-function signals. Journal of Mathematical Psychol-

ogy, 36, 235–268.
Dzhafarov, E.N. (1997). Process representations and decompositions of response times. In A.A.J. Marley (Ed.), Choice,

Decision and measurement: Essays in honor of R. Duncan Luce (pp. 255–278). Mahwah, NJ: Erlbaum.
Dzhafarov, E.N. (1999). Conditionally selective dependence of random variables on external factors. Journal of Mathe-

matical Psychology, 43, 123–157.
Dzhafarov, E.N. (2001a). Unconditionally selective dependence of random variables on external factors. Journal of Math-

ematical Psychology, 45, 421–451.
Dzhafarov, E.N. (2001b). Fechnerian scaling and Thurstonian modeling. In E. Sommerfeld, R. Kompass, & T. Lachmann

(Eds.), Fechner Day 2001 (pp. 42–47). Lengerich: Pabst Science Publishers.
Dzhafarov, E.N., & Cortese, J.M. (1996). Empirical recovery of response time decomposition rules I: Sample-level

Decomposition tests. Journal of Mathematical Psychology, 40, 185–202.
Dzhafarov, E.N., & Rouder, J.N. (1996). Empirical discriminability of two models for stochastic relationship between

additive components of response time. Journal of Mathematical Psychology, 40, 48–63.
Dzhafarov, E.N., & Schweickert, R. (1995). Decompositions of response times: An almost general theory. Journal of

Mathematical Psychology, 39, 285–314.
Dzhafarov, E.N., Schweickert, R., & Sung, K. (submitted). Mental architectures with selectively influenced but stochas-

tically interdependent components.
Ennis, D.M. (1992). Modeling similarity and identification when there momentary fluctuations in psychological mag-

nitudes. In F.G. Ashby (Ed.), Multidimensional models of perception and cognition (pp. 279–298). Hillsdale, NJ:
Erlbaum.

Ennis, D.M., Palen, J.J., & Mullen, K. (1988). A multidimensional stochastic theory of similarity. Journal of Mathemat-
ical Psychology, 32, 449–465.

Gauchman, H., & Rubel, L. (1989). Sums of products of functions of x times functions of y. Linear Algebra and its
Applications, 125, 19–63.

Lazarsfeld, P.F. (1965). Latent structure analysis. In S. Sternberg, V. Capecchi, T. Kloek, & C.T. Leenders (Eds.), Math-
ematics and Social Sciences, (Vol. 1, pp. 37–54). Paris: Mouton.

Lindsay, B.G. (1995). Mixture models: Theory, geometry, and applications. Hayward, CA: Institute of Mathematical
Statistics Press.

Luce, R.D., & Galanter, E. (1963). Discrimination. In R.D. Luce, R.R. Bush, & E. Galanter (Eds.), Handbook of mathe-
matical psychology (Vol. 1, pp. 103–189). New York, NY: Wiley.

McDonald, R. P. (1967). Nonlinear factor analysis. Psychometrika Monographs, No. 15.
McDonald, R. P. (1982). Linear versus nonlinear models in item response theory. Applied Psychological Measurement,

6, 379–396.
Regenwetter, M., & A.A.J. Marley (2001). Random relations, random utilities, and random functions. Journal of Mathe-

matical Psychology, 45, 864–912.
Roberts, S., & Sternberg, S. (1993). The meaning of additive reaction-time effects: Tests of three alternatives. In D.E.

Meyer & S. Kornblum (Eds.), Attention and performance XIV: Synergies in experimental psychology, artificial
intelligence, and cognitive neuroscience (pp. 611–654). Cambridge, MA: MIT Press.

Schweickert, R. (1982). The bias of an estimate of coupled slack in stochastic PERT networks. Journal of Mathematical
Psychology, 26, 1–12.

Schweickert, R., Giorgini, M., & Dzhafarov, E.N. (2000). Selective influence and response time cumulative distribution
functions in serial-parallel networks. Journal of Mathematical Psychology, 44, 504–535.

Sternberg, S. (1969). The discovery of processing stages: Extensions of Donders’ method. In W.G. Koster (Ed.), Attention
and Performance II. Acta Psychologica, 30, 276–315.

Suppes, P., & Zanotti, M. (1981). When are probabilistic explanations possible? Synthese, 48, 191–199.



Integre Tech. Pub. Co., Inc. Psychometrika April 14, 2003 1:06 p.m. dzhafarov Page 25

EHTIBAR N. DZHAFAROV 25

Suppes, P., & Zinnes, J.L. (1963). Basic measurement theory. In R.D. Luce, R.R. Bush, & E. Galanter (Eds.), Handbook
of Mathematical Psychology (Vol. 1, pp. 3–76). New York, NY: Wiley.

Thomas, R.D. (1996). Separability and independence of dimensions within the same-different judgment task. Journal of
Mathematical Psychology, 40, 318–341.

Thomas, R.D. (1999). Assessing sensitivity in a multidimensional space: Some problems and a definition of a general d ′.
Psychonomic Bulletin and Review, 6, 224–238.

Thurstone, L.L. (1927a). Psychophysical analysis. American Journal of Psychology, 38, 368–389.
Thurstone, L.L. (1927b). A law of comparative judgments. Psychological Review, 34, 273–286.
Tong, Y.L. (1990). The multivariate normal distribution. New York, NY: Springer-Verlag.
Townsend, J.T. (1984). Uncovering mental processes with factorial experiments. Journal of Mathematical Psychology,

28, 363–400.
Townsend, J.T., & Schweickert, R. (1989). Toward the trichotomy method of reaction times: Laying the foundation of

stochastic mental networks. Journal of Mathematical Psychology, 33, 309–327.
Townsend, J.T., & Thomas, R.D. (1994). Stochastic dependencies in parallel and serial models: Effects on systems

factorial interactions. Journal of Mathematical Psychology, 38, 1–34.
Zinnes, J.L., & MacKay, D.B. (1983). Probabilistic multidimensional scaling: Complete and incomplete data. Psycho-

metrika, 48, 27–48.

Manuscript received 28 NOV 2001
Final version received 29 JUN 2002




