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A new definition of the perceptual separability of stimulus dimensions is
given in terms of discrimination probabilities. Omitting technical details,
stimulus dimensions are considered separable if the following two conditions
are met: (a) the probability of discriminating two sufficiently close stimuli is
computable from the probabilities with which one discriminates the projec-
tions of these stimuli on the coordinate axes; (b) the psychometric differential
for discriminating two sufficiently close stimuli that differ in one coordinate
only does not depend on the value of their matched coordinates (the psycho-
metric differential is the difference between the probability of discriminating
a comparison stimulus from a reference stimulus and the probability with
which the reference is discriminated from itself). Thus defined perceptual
separability is analyzed within the framework of the regular variation version
of multidimensional Fechnerian scaling. The result of this analysis is that the
Fechnerian metric of a stimulus space with perceptually separable dimensions
has the structure of aMinkowski powermetric with respect to these dimensions.
The exponent of this metric equals the psychometric order of the stimulus
space, or 1, whichever is greater. © 2002 Elsevier Science (USA)

1. INTRODUCTION

In this paper I apply the general theory of multidimensional Fechnerian scaling
(MDFS) to one of the classical problems of cognitive psychology, that of distin-
guishing the situations when two or more physical dimensions of a stimulus are
processed separately from the ones in which they are processed integrally.
To understand the intuition underlying the problem, consider a two-dimensional
continuous stimulus space, say, the space of rectangular visual stimuli continuously
varying in the lengths of their sides, a and b, all other stimulus parameters being
held fixed. Each stimulus here can be described by two coordinates, (x1, x2), taking



on their values within a region of Re2 (see Comment 1 in the Appendix). Although
the number of stimulus dimensions, in this case 2, is a topological invariant (i.e., it
is constant under all one-to-one transformations of the stimulus space continuous
together with their inverses), the choice of the dimensions Ox1P and Ox2P can be
made in an infinity of ways. One can put x1=a, x2=b (lengths of the two sides), or
x1=a

b , x
2=ab (aspect ratio and area), or one can even choose dimensions for

which one has no conventional geometric terms, say, x1=exp (a+b), x2=log (ab).
If one imposes a certain subjective (computed from perceptual judgments) metric
upon this stimulus space, the metric must be invariant with respect to the choice of
stimulus dimensions. Put differently, a distance between two stimuli computed from
perceptual judgments should not depend on one’s choice of the physical parameters
by which these stimuli are identified. In MDFS this invariance is achieved auto-
matically, by the procedure of computing Fechnerian distances, provided that the
admissible transformations of stimulus dimensions,

x11=x11(x1, x2), x12=x12(x1, x2),

are diffeomorphic (i.e., one-to-one and smooth together with their inverses).
One’s specific choice of the dimensions describing rectangular visual stimuli,
however, may interest one from another point of view. One might hypothesize that
with some choice of Ox1, x2P, say, x1=a

b (aspect ratio), x
2=ab (area), the two

dimensions are processed ‘‘separately,’’ so that all perceptual distinctions between
two rectangles can be, in some sense, ‘‘computed’’ from the perceptual distinctions
between their aspect ratios (irrespective of area) and their areas (irrespective of
aspect ratio), whereas, one might hypothesize, such a reduction to individual
dimensions cannot be achieved with other choices, say, x1=a, x2=b, in which case
the dimensions have to be viewed as processed ‘‘integrally.’’
Ashby and Townsend (1986) analyze several theoretical concepts (separability,
orthogonality, independence, performance parity) proposed in the literature in an
attempt to capture this intuitive distinction. They propose to interpret these concepts
within the framework of the General Recognition Theory (Ashby & Perrin, 1988),
as different aspects of the mapping of stimuli into hypothetical random variables
taking on their values in some perceptual space. If one can define in this space two
coordinate axes, Op1, p2P (or two subspaces spanning two distinct sets of axes), such
that the p1-component and p2-component of the random variable representing a
stimulus (x1, x2) depend only on x1 and x2, respectively, then one can say that the
dimensions Ox1P and Ox2P are perceptually separable (see Comment 2 in the
Appendix). With this definition, the stochastic relationship between the p1- and
p2-components of the random variable representing (x1, x2) may depend on the
(x1, x2) in an arbitrary fashion, provided the selective correspondence

x1Q p1, x2Q p2

is satisfied on the level of marginal distributions. Thomas (1996) adapts this
approach to the situation in which pairs of stimuli are judged on the same-different
scale, which is especially relevant to the Fechnerian analysis to be presented.
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A different attempt to rigorously define perceptual separability (or separability
of perceptual dimensions, which is a better term in this case) is made by Shepard
(1987), within the framework of multidimensional scaling. Shepard assumes that
stimuli are represented in a perceptual space by points separated by distances
negative-exponentially related to some stimulus generalization measure that, for
our purposes, can be thought of as the probability of confusing one stimulus with
another. It is traditionally postulated in multidimensional scaling, or derived from
equivalent premises (Beals, Krantz, & Tversky, 1968; Tversky & Krantz, 1970),
that one can define in this perceptual space coordinate axes p1, ..., pk, with respect
to which the interstimulus distances D in the space form a Minkowski power
metric:

D r[(p1, ..., pk), (q1, ..., qk)]=C
k

i=1
|p i−q i| r, r \ 1.

Based on multidimensional scaling of several stimulus spaces, Shepard (1987)
suggests that the exponent r of this power metric equals 1 (‘‘city-block’’ metric) if
the stimuli are represented by separable dimensions, and it equals 2 (Euclidean
metric) if they are not. Although the relationship between subjective distances and
stimulus confusion probabilities is central to Shepard’s theory, he does not define
the perceptual separability in terms of these confusion probabilities, relying instead
on operational criteria external to his theory (such as those described in Garner,
1974).
In thiswork Ipresent anewapproach to the issueofperceptual separabilityof stimulus
dimensions, based on the theory of MDFS (Dzhafarov, 2002, in press; Dzhafarov &
Colonius, 1999, 2001). In MDFS, subjective (Fechnerian) distances among stimuli are
computed from the probabilities with which stimuli are discriminated from their close
neighbors in a continuous stimulus space. Accordingly, the concepts explicating the
intuitive idea of perceptual separability are formulated in this work solely in terms of
discrimination probabilities. Specifically, I propose to treat dimensions Ox1P and Ox2P
as perceptually separable if the following two conditions are met:

(a) the probability with which a stimulus x=(x1, x2) is discriminated from
nearby stimuli y=(y1, y2) can be computed from the probabilities with which x is
discriminated from y1=(y1, x2) (differing from x along the first dimension only)
and from y2=(x1, y2) (differing from x along the second dimension only);

(b) the difference between the probabilities with which x=(x1, x2) is discri-
minated from nearby y1=(y1, x2) and with which x is discriminated from itself
does not depend on x2; and analogously for x=(x1, x2) and nearby y2=(x1, y2).

If the probabilities with which each stimulus is discriminated from nearby stimuli
are known, then MDFS allows one to uniquely compute the Fechnerian distances
among all stimuli comprising the stimulus space. The main result obtained in this
work (when specialized to two-dimensional spaces) is as follows: given that Ox1P and
Ox2P are separable, the Fechnerian distance between any two (not necessarily close)
stimuli a=(a1, a2) and b=(b1, b2) is related to the corresponding coordinatewise
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Fechnerian distances, between a and b1=(b1, a2), and between a and b2=(a1, b2),
is a Minkowski power metric,

G(a, b) r=G(a, b1) r+G(a, b2) r, r \ 1,

where G denotes the Fechnerian metric. Put more concisely, the Fechnerian metric
in a stimulus space with perceptually separable dimensions is a Minkowski power
metric with respect to these dimensions.
This result may appear similar to Shepard’s (1987) theory. The resemblance,
however, is superficial. First, in MDFS the metric is imposed directly on the
stimulus space, rather than on a hypothetical perceptual space (that may even have
a different dimensionality). Second, it is the power function form per se of the
Fechnerian metric that is indicative of perceptual separability, rather than a specific
value of the exponent r. I show in this paper that the value of r is determined
by the value of the fundamental characteristic of MDFS, the psychometric order of
stimulus space, m. Specifically, r=m if m \ 1, and r=1 otherwise. Roughly, the
psychometric order m determines the degree of flatness/cuspidality of discrimina-
tion probability functions at their minima, and this characteristic has nothing to do
with perceptual separability.
The theory presented below is formulated for the mutual perceptual separability
of all n dimensions Ox1P, ..., OxnP of an n-dimensional stimulus space. If one is
interested in the mutual perceptual separability of some specified k < n dimensions
in an n-dimensional stimulus space, the premises and the results of the theory
should be understood as applying to this k-dimensional stimulus subspace at some
fixed values of the remaining n−k coordinates (or, as a special case, at all possible
values of these coordinates). With obvious notational changes the theory also
applies to the perceptual separability of several stimulus subspaces spanning several
dimensions each,

Ox1P, ..., Oxn1Pz
Ox1P

, Oxn1+1P, ..., Oxn2Pz
Ox2P

..., Oxnk−1+1P, ..., OxnkPz
OxkP

.

With this generalization, however, one loses the direct interpretability of the results
in terms of the horizontal and vertical cross-sections of psychometric functions (as
described below), which is the main reason why the discussion in this paper is
confined to individual stimulus dimensions.
Some familiarity with the general theory ofMDFS is desirable (especially, Dzhafarov,
2002; Dzhafarov & Colonius, 2001), but an effort has been made to keep the pre-
sentation as self-contained as possible.
Throughout the paper I use the following notational conventions. Given an
n-dimensional space of vectors (stimuli or directions of stimulus change), the unit
coordinate vectors 1i (i=1, ..., n) are defined as

r11=(1, 0, ..., 0)12=(0, 1, ..., 0)
· · ·

1n=(0, 0, ..., 1)

s .
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For any vector v=(v1, ..., vn) in this space, the coordinate projections vi (i=1, ..., n)
of v are defined as

rv1=(v
1, 0, ..., 0)=v111

v2=(0, v2, ..., 0)=v212
· · ·

vn=(0, 0, ..., vn)=vn1n

s .
Clearly,

v=C
n

i=1
vi=C

n

i=1
v i1i.

2. PERCEPTUAL SEPARABILITY AND DISCRIMINATION PROBABILITIES

Consider an n-dimensional stimulus space M, an open connected region of Ren,
and let Ox1, ..., xnP be a coordinate system imposed on this space. The stimulus
space is assumed to be endowed with psychometric (discrimination probability)
functions

kx(y)=Pr [stimulus y is distinguished from stimulus x],

where x=(x1, ..., xn) ¥M, y=(y1, ..., , yn) ¥M. The stimulus space together with
the psychometric functions defined on it is referred to as the discrimination system
OM, kP.
Given a stimulus x=(x1, ..., xn) and a direction-of-change vector u=(u1, ..., un) ] 0,
the quantity

Yx(x+us)=kx(x+us)−kx(x), s \ 0 (1)

is referred to as the psychometric differential (at x, u), and it plays a central role in
Fechnerian computations. The underlying assumptions of MDFS ensure (if neces-
sary, following a certain procedure of ‘‘renaming’’ reference stimuli, described in
Dzhafarov & Colonius, 1999, 2001) that the psychometric differentials are positive
(for s > 0) and they continuously decrease to zero with sQ 0+ (see Comment 3 in
the Appendix).

Definition 2.1. (Refer to Fig. 1.) The dimensions Ox1P, ..., OxnP are weakly
perceptually separable in the discrimination system OM, kP if for any stimulus x one
can find an open neighborhood Nx ı M of x, such that whenever x+us ¥Nx,

Yx(x+us)=Hx[Yx(x+u1s), ..., Yx(x+uns)], (2)

where Hx(a1, ..., an) is some function continuously differentiable in a vicinity of
a1=·· ·=an=0.

Recall that ui (i=1, ..., n) are coordinate projections of u, and observe that the
neighborhood Nx can always be chosen so that all x+uis are stimuli within Nx.
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FIG. 1. A diagram for Definition 2.1 (weak separability, n=2).

Observe also that the functions Hx(a1, ..., an) are allowed to be different for
different x. One consequence of this is that Definition 2.1 can be equivalently
reformulated in terms of psychometric functions per se, rather than psychometric
differentials. Since kx(x) is a constant for a given Nx, (2) holds if and only if

kx(x+us)=hx[kx(x+u1s), ..., kx(x+uns)], (3)

where, obviously, hx(a1, ..., an)=Hx[(a1−kx(x)), ..., (an−kx(x))]+kx(x). The
use of (2) in the formal definition, however, is more convenient, as this simplifies
computations and makes Definition 2.1 more directly linkable to Definition 2.2
below.
We need the following preliminary result. (Symbol ’ in the proof indicates that
the two expressions it connects are asymptotically equal; i.e., their ratio tends to 1.)

Lemma 2.1. The function Hx(a1 , ..., an) in Definition 2.1 has the following
properties:

(i) Hx(0)=0;

(ii) Hx[1iYx(x+uis)]=Yx(x+uis), i=1, ..., n;

(iii) “

“ai
Hx(a1, ..., an) |a1=· · ·=an=0=1, i=1, ..., n.

Proof. Property (i) is obtained from (2) by putting s=0 and observing that
Yx(x) — 0; (ii) is obtained by putting in (2) u=ui. From (i) and (ii) it follows that

Yx(x+uis)=Hx[1iYx(x+uis)]−Hx(0)

=Hx[0, ..., Yx(x+uis), ..., 0]−Hx(0, ..., 0)

’
“

“ai
Hx(a1, ..., an) |a1=· · ·=an=0 Yx(x+uis), sQ 0+

from which it follows that the partial derivative is 1. L
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As a simple example of Hx, consider the discrimination system in which

Yx(x+us)=1−D
n

i=1
[1−Yx(x+uis)]. (4)

The function Hx here is the same for all values of x:

Hx(a1, ..., an)=H(a1, ..., an)=1−D
n

i=1
(1−ai).

If, in addition, kx(x) — 0, one can substitute k for Y, and the equation can be
interpreted as saying that the discriminations along individual dimensions are
stochastically independent and that two stimuli are discriminated whenever they are
discriminated along one of these dimensions (the simplest ‘‘probability summation’’
model).
A wealth of special cases for Hx can be obtained by choosing an arbitrary strictly
monotone and differentiable function Tx(a), 0 [ a [ 1, vanishing at a=0, and by
putting

Yx(x+us)=T−1x [Tx(Yx(x+u1s))+· · ·+Tx(Yx(x+uns))]. (5)

In particular, this equation reduces to (4) if

Tx(a)=T(a)=log (1−a).

The following lemma is fundamental for the Fechnerian analysis of perceptual
separability. (The term in the small means at the limit, asymptotically.)

Lemma 2.2 (Additivity in the small). If Ox1P, ..., OxnP are weakly perceptually
separable in OM, kP, then

Yx(x+us) ’ C
n

i=1
Yx(x+uis), sQ 0+. (6)

Proof. From (2) and Lemma 2.1 (i and ii), using the continuous differentiability
of Hx,

Yx(x+us)=Hx[Yx(x+u1s), ..., Yx(x+uns)]−Hx(0, ..., 0)

’ C
n

i=1

“

“ai
Hx(a1, ..., an) |a1=· · ·=an=0Yx(x+uis), sQ 0+,

and the statement of the lemma follows from (iii) of Lemma 2.1. L

Since

u=C
n

i=1
ui,

one recognizes in (6) an asymptotic version of the conventional factorial additivity
(of the main effects of changes along the individual dimensions upon Y).
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FIG. 2. A diagram for Definition 2.2 (detachability, shown for the horizontal axis only, n=2).

Plainly, if Ox1P, ..., OxnP are weakly perceptually separable in the discrimination
system OM, kP, then for any open connected subregion R ıM, Ox1P, ..., OxnP are
weakly perceptually separable in the discrimination system OR, kP. Our next defi-
nition requires that we confine the consideration to some open (hyper-) rectangular
area

R=D
n

i=1
(x iinf, x

i
sup) ıM, (7)

where some or all of the endpoints x iinf, x
i
sup may stand for −. and ., respectively.

Definition 2.2 (Refer to Fig. 2.). The dimension Ox iP, i ¥ {1, ..., n}, is detach-
able from the discrimination system OR, kP, if for any value of x i one can find an
open vicinity nxi ı (x

i
inf, x

i
sup), such that whenever x

i+u is ¥ nxi, Yx(x+uis) does not
depend on any components of x except for x i. In other words, whenever x ¥R and
x i+u is ¥ nxi,

Yx(x+uis)=Yxi(x i+u is). (8)

If this equation holds for all dimensions Ox1P, ..., OxnP, we say that these dimen-
sions are mutually detachable in OR, kP. (See Comment 4 in the Appendix.)

The reason for confining the definition of detachability to a rectangular area R is
straightforward. Discrimination probabilities are not defined outside the stimulus
space M. The requirement that Yx(x+uis) be independent of all components of x
other than x i implies that if Yx(x+uis) is defined for

x+uis=(x1, ..., x i−1, x i+u is, x i+1, ..., xn), 0 [ s < ssup,

then it should also be defined for any

xa+uis=(a1, ..., a i−1, x i+u is, a i+1, ..., an), 0 [ s < ssup.
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This is equivalent to saying that if the straight line segment x+uis (0 [ s < ssup) lies
within M, then any segment xa+uis (0 [ s < ssup) also lies within M. This is only
possible, however, if M is a rectangular region (finite or infinite), and if it is not,
then the consideration should be confined to some rectangular subregion ofM.
With this restriction to a rectangular area, the definition of perceptual separa-
bility proposed in this paper is simply the conjunction of Definitions 2.1 and 2.2.

Definition 2.3. The dimensions Ox1P, ..., OxnP are perceptually separable in the
discrimination system OR, kP if they are weakly perceptually separable and mutually
detachable in OR, kP.

The following two immediate consequences of this definition are significant for
the subsequent development.

Lemma 2.3. If Ox1P, ..., OxnP are perceptually separable in OR, kP, then any dif-
feomorphic transformations (‘‘recalibrations’’) of these axes,

Ox11=x11(x1)P, ..., Ox1n=x1n(xn)P,

are perceptually separable in the corresponding OR1 , k1P

Proof. On observing that with x1 i=x1 i(x i) (i=1, ..., n) the coordinate projec-
tions of direction vectors transform as

ûi=
“x1 i

“x i
ui, i=1, ..., n

(which follows from the contravariant transformation formula for direction vectors,
see Dzhafarov & Colonius, 2001), and that the rectangular area R remains rectan-
gular in new coordinates, it is obvious that Definitions 2.1 and 2.2 are satisfied for
Y1 x̂(x̂+ûis)=Yx(x+uis). L

Lemma 2.4 (Detachable additivity in the small). If Ox1P, ..., OxnP are percep-
tually separable in OR, kP, then, within R,

Yx(x+us) ’ C
n

i=1
Yxi(x i+u is), sQ 0+. (9)

Proof. Follows from Definition 2.2 and Lemma 2.2. L

In the next section I show that these two properties imply that the Fechnerian
metric in a stimulus space with perceptually separable dimensions is a Minkowski
power metric with respect to these dimensions.

3. FECHNERIAN ANALYSIS OF PERCEPTUAL SEPARABILITY

The general theory of MDFS is based on four assumptions about the shapes of
the psychometric functions kx(y) (Dzhafarov, 2002; Dzhafarov & Colonius, 2001).
Rather than recapitulating them here, I briefly and rather informally mention
the aspects and consequences of these assumptions that are directly relevant for the
present analysis.

572 EHTIBAR N. DZHAFAROV



First of all, the assumptions of MDFS ensure that the psychometric functions
kx(y) look more or less as shown in Fig. 3 (ignore for now the values of m): for any
x, kx(y) is continuous, attains its global minimum at some point, and increases as
one moves a small distance away from this point in any direction. Note that kx(y)
is generally allowed to be different from ky(x) (lack of symmetry), and kx(x) is
allowed to vary with x (nonconstant self-similarity). As mentioned in the previous
section (and Comment 3 in the Appendix), by means of a certain construction one
can always make the minimum of kx(y) to be attained at y=x, making thereby all
psychometric differentials Yx(x+us) positive at s > 0 and continuously decreasing
to zero with sQ 0+.
The assumptions underlying MDFS also ensure that all psychometric differen-
tials can be asymptotically decomposed as

Yx(x+us) ’ [F(x, u) R(s)]m, sQ 0+ (10)

with the following meaning of the right-hand terms. The constant m > 0, referred to
as the psychometric order of the stimulus space, is one and the same for all reference
stimuli x and directions of transition u, and it is determined by psychometric

FIG. 3. Possible appearances of psychometric functions (n=2).
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differentials uniquely. R(s) is some function regularly varying at the origin (i.e., as
sQ 0+) with the unit exponent (Dzhafarov, 2002). The structure of this function is
irrelevant for the present discussion, except that the function is positive at s > 0 and
converging to zero with sQ 0+ (see Comment 5 in the Appendix). The critical fact
is that this function, too, is one and the same for all psychometric differentials, and
it is determined by them asymptotically uniquely. The latter means that R(s) in (10)
can only be replaced by Rg(s) ’ R(s) (as sQ 0+). Finally, F(x, u) in (10) is the
(Fechner–Finsler) metric function, also determined uniquely (see Comment 6 in the
Appendix). F(x, u) is positive (for u ] 0), continuous, and Euler homogeneous,
the latter meaning that, for any k,

F(x, ku)=|k| F(x, u). (11)

The metric function is all one needs to compute Fechnerian distances. Briefly, the
logic of this computation is as follows. Connecting any two points (stimuli) a and b
by a piecewise smooth path x(t): [a, b]QM, x(a)=a, x(b)=b, the psychometric
length of this path is defined as

L [x(t)]=F
b

a
F [x(t), ẋ(t)] dt. (12)

The Fechnerian distance G(a, b) is defined as the infimum of L[x(t)] across all
piecewise smooth paths connecting a and b. Thus defined G(a, b) is a continuous
distance function, invariant with respect to all possible diffeomorphic transforma-
tions of coordinates (Dzhafarov & Colonius, 1999, 2001).
The metric function F(x, u) can be given a simple geometric interpretation in
terms of the shapes of psychometric functions. This is achieved through the impor-
tant concept of a Fechnerian indicatrix (Dzhafarov & Colonius, 2001). For a given
stimulus x, the Fechnerian indicatrix centered at x is the contour formed by the
direction vectors u satisfying the equality F(x, u)=1. The set of the indicatrices
centered at all possible stimuli and the metric function determine each other
uniquely. It turns out (Dzhafarov & Colonius, 2001) that the Fechnerian indicatri-
ces are asymptotically similar to the contours formed by horizontally cross-section-
ing the psychometric functions kx(y) at a small elevation h from their minima; the
smaller h, the better the geometric similarity (see Fig. 4).
Figure 4 and the top panel of Fig. 3 illustrate the geometric meaning of the
psychometric order m. As shown in Dzhafarov and Colonius (2001), if one cross-
sections different psychometric functions by vertical planes passing through their
minima in various directions, then the cross-sections confined between the minima
and some small elevation h are asymptotic replicas of each other, except for the
possible difference in scaling coefficient along the horizontal direction. At the very
minima of the psychometric functions these cross-sections have a certain degree of
flatness/cuspidality, and this degree is determined by the value of m, from very flat
(if m is large) to pencil-sharp (m=1) to needle-sharp (if m is close to zero). The fact
that m is one and the same for all psychometric differentials means that a specific
degree of flatness/cuspidality is shared by all psychometric functions.
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FIG. 4. A horizontal and two vertical cross-sections of a psychometric function at its minimum
(n=2).

We are prepared now to derive the main result of this work. Let the dimensions
Ox1P, ..., OxnP be perceptually separable in the discrimination system OR, kP. On
applying (10) to the coordinate projections ui of u, one gets, for i=1, ..., n,

Yx(x+uis) ’ [F(x, ui) R(s)]m, sQ 0+. (13)

If, for some i, ui=0, (13) still holds, for by continuity the value of F(x, u) has to be
set equal to zero at u=0.
It follows from Definition 2.2 that F(x, ui) cannot depend on any components of

x other than x i. One has therefore

F(x, ui)=F(x, 1iu i)=|u i| F(x, 1i)=Fi(x i) |u i|, i=1, ..., n,

where we make use of the Euler homogeneity, (11). Equation (13) then can be
rewritten as

Yx(x+uis)=Yxi(x i+u is) ’ [Fi(x i) |u i| R(s)]m sQ 0+,

for i=1, ..., n. Applying this to the right-hand side of (9) in Lemma 2.4, and using
(10) for its left-hand side, one gets

[F(x, u)]m Rm(s) ’ C
n

i=1
[Fi(x i) |u i|]m Rm(s), sQ 0+,
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which can only be true if

[F(x, u)]m=C
n

i=1
[Fi(x i) |u i|]m. (14)

To see that this structure of the metric function induces the Fechnerian metric
with a Minkowski power metric structure, choose an arbitrary point o=(o1, ..., on)
and componentwise recalibrate Ox1, ..., xnP into

x1 i(x i)=F
xi

oi
Fi(x) dx, i=1, ..., n. (15)

According to Lemma 2.3, the axes Ox11P, ..., Ox1nP are perceptually separable.
Replacing x=(x1, , ..., xn) in (14) with x̂=(x11, ..., x1n), in new coordinates, the
direction u=(u1, ..., un) attached to x also acquires new coordinates, û=
(u11, ..., u1n). From (15), these new coordinates are

u1 i=Fi(x i) u i, i=1, ..., n

(see the proof of Lemma 2.3). It follows that F(x, u) in (14), when written in new
coordinates as F1(x̂, û)=F(x, u), has the structure

F1(x̂, û)=F1(û)=m
`|u11|m+·· ·+|u1n|m . (16)

The Fechnerian indicatrices corresponding to this metric function

C
n

i=1
|u1i|m=1 (17)

are Minkowskian; that is, they have the same shape for all stimuli x at which they
are centered (see Comment 7 in the Appendix). This shape is completely determined
by the psychometric order m, as shown in the lower panel of Fig. 5 (filled contours).
Recall from the discussion of indicatrices above that these shapes describe the
horizontal cross-sections of the psychometric functions (Fig. 5, upper panel) made
at a small elevation above their minima. Recall also that m has another geometric
interpretation: it determines the shape (flatness/cuspidality) of the vertical cross-
sections of the psychometric functions in the vicinity of their minima (Fig. 5, middle
panel). We see, therefore, that in the case of perceptually separable dimensions the
shapes of the horizontal and vertical cross-sections (generally completely independent
of each other) are interrelated, being determined by one and the same parameter, m.
Figure 5 demonstrates the simple fact that the indicatrices for m \ 1 are convex in
all directions (non-strictly convex when m=1). A general theory of Fechnerian
indicatrices is presented in Dzhafarov and Colonius (2001). Without recapitulating
it here, I simply state the fact that if a Minkowskian indicatrix corresponding to
F1(û) is convex, then the Fechnerian metric it induces is computed as

G(x̂, ŷ)=F1(x̂− ŷ).
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FIG. 5. Psychometric functions in the vicinity of their minima for different values of m and corre-
sponding r (upper row), their vertical cross-sections (middle row), and horizontal cross-sections (bottom
row). The coordinate axes are calibrated in Fechnerian distances along these axes (n=1).

Applying this to (16), with m \ 1, one gets

G(x̂, ŷ)=F1(x̂− ŷ)=m
`|x11−y11|m+·· ·+|x1n−y1n|m . (18)

That is, the Fechnerian metric induced by (16) is a Minkowski power metric, with
the exponent equal to m, provided the latter is not less than 1.
One can also see in Fig. 5 that the Fechnerian indicatrix is not convex when m < 1
(in fact, it is then concave in all directions, except for the coordinate ones). The
general theory (Dzhafarov & Colonius, 2001) tells us that the metric induced by a
nonconvex indicatrix is the same as the one induced by its convex closure, which is
the minimal convex contour containing it. In our case it is obvious (see the enclosing
contour in Fig. 5 for m=1

2) that the convex closure of an indicatrix corresponding
to any value of m < 1 is the rhombus described by

C
n

i=1
|u1i|=1.

As a result, when m < 1, the Fechnerian metric induced by (16) is

G(x̂, ŷ)=F1(x̂− ŷ)=|x11−y11|+ · · ·+|x1n−y1n|, (19)

the ‘‘city-block’’ metric well known to psychophysicists.
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This equation can be combined with (18) in the following statement.

Theorem 3.1. If Ox1P, ..., OxnP imposed on a stimulus space M are perceptually
separable in the discrimination system OR, kP, then they can be recalibrated (diffeo-
morphically transformed) into Ox11P, ..., Ox1nP in such a way that

G(x̂, ŷ)=r
`|x11−y11| r+·· ·+|x1n−y1n| r , (20)

with the exponent r=max {m, 1}, m being the psychometric order of the space.

In essence, this statement fulfills the goal of the present analysis, except that it is
desirable to formulate the main result of this work without mentioning the recali-
bration procedure (or any specific calibration at all) for the dimensions
Ox1P, ..., OxnP. This can be readily achieved. Recall that the definition of perceptual
separability is restricted to some rectangular area R ıM. One consequence of this
restriction is that if one chooses a point of origin o=(o1, ..., on) ¥R, then for any
x=(x1, ..., xn) ¥R and y=(y1, ..., yn) ¥R their coordinate projections {xi, yi}

i=n
i=1

on the axes drawn through o,

xi=(o1, ..., o i−1, x i, o i+1, ..., on), yi=(o1, ..., o i−1, y i, o i+1, ..., on),

are themselves stimuli belonging to R. When transformed according to (15), these
stimuli acquire new coordinates x̂i=x1 i1i, ŷi=y1 i1i, and it follows that

|x1 i−y1 i|=G(xi, yi), i=1, ..., n.

Using this equality in (20), the development presented in this work can be summa-
rized in the following proposition (refer to Fig. 6).

Theorem 3.2 (Minkowski power metric structure of Fechnerian metric). Let the
dimensions Ox1P, ..., OxnP imposed on the stimulus space M be perceptually separable

x1

x2

x

x1

x2

G(x
, y

)

x

y

x1

x2

y1

y2

G(x1, y1)

G
(x

2,
y 2

)

FIG. 6. A diagram for Theorem 3.2 (n=2).
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in the discrimination system OR, kP. Then the Fechnerian metric G on this space is a
Minkowski power metric with respect to the dimensions Ox1P, ..., OxnP,

G(x, y) r=G(x1, y1) r+·· ·+G(xn, yn) r, (21)

where r=max {m, 1}, m being the psychometric order of the space.

Note that the choice of the origin o=(o1, ..., on) used to define the coordinate
projections of x and y need not be mentioned, because the Fechnerian distances
G(xi, yi) are invariant with respect to this choice.

4. CONCLUDING COMMENTS

The definition of perceptual separability proposed in this work is mathematically
rigorous, based on potentially observable or computable measures of discrimina-
tion, and leads to an interesting result within the framework of MDFS: the power-
function Minkowskianness of the Fechnerian metric, with the exponent determined
by the psychometric order of the stimulus space. The theory predicts definite and
non-trivial relationships between the horizontal and vertical cross-sections of the
psychometric functions, opening thereby new areas of empirical applicability for the
notion of perceptual separability. The question of how these predictions can be
experimentally tested, however, is quite complex: the observables of the theory (and
MDFS as a whole) are statistical estimates of discrimination probabilities, while its
empirical constraints are confined to arbitrarily small areas of the true probabilities.
For a general discussion of the empirical status of MDFS and its experimental
testability the reader should refer to Dzhafarov (in press) and Dzhafarov and
Colonius (1999, 2001).
I conclude this paper with two observations.

4.1. Probability Summation and Probability-Distance Hypothesis

Theorem 3.2 implies an interesting relationship between the notion of perceptual
separability, the simple probability summation model described by (4), and the
probability-distance hypothesis, according to which the discrimination probability
kx(y) is an increasing function of some subjective distance between x and y. It is
shown in Dzhafarov (in press a) that if this probability-distance hypothesis holds,
then the subjective distance determining kx(y) (under some constraints, not to be
discussed here) coincides with the Fechnerian distance G(x, y),

kx(y)=f[G(x, y)]. (22)

In view of (21), it is easy to show that the probability-distance hypothesis and the
probability summation model with perceptually separable stimulus dimensions
Ox1P, ..., OxnP hold together if and only if

kx(y)=1− exp [−kG(x, y) r]=1− C
n

i=1
exp [−kG(xi, yi) r] (23)

PERPETUAL SEPARABILITY 579



(see Comment 8 in the Appendix). This can be viewed as a generalized form of
Quick’s (1974) vector magnitude model for probability summation.

4.2. Weak Perceptual Separability

One might argue that the essence of perceptual separability is captured by Defi-
nition 2.1 alone, while the detachability requirement can be relaxed or dropped
altogether. The Fechnerian metric under the weak separability does not have the
Minkowski power metric structure. However, by applying (10) and (13) to Lemma
2.2, one can demonstrate the truth of the following statement.

Theorem 4.1. (Local Minkowski power metric structure of Fechnerian metric).
Let the dimensions Ox1P, ..., OxnP imposed on the stimulus spaceM be weakly perceptually
separable in the discrimination system OM, kP. Then the (Fechner–Finsler) metric
function F on this space has the structure

F(x, u)m=C
n

i=1
F(x, ui)m,

where m is the psychometric order of the space. This, in turn, implies that the Fech-
nerian metric G is locally (in the small) a Minkowski power metric with respect to the
dimensions Ox1P, ..., OxnP,

G(x, x+us) r ’ C
n

i=1
G(x, x+uis) r, sQ 0+,

where r=max {m, 1}.

This result is stronger than it might appear. The shapes of and the relationship
between the vertical and horizontal cross-sections of the psychometric functions in
the vicinity of their minima remain in the case of weak separability precisely the
same as illustrated in Fig. 5, except that the calibration of the axes mentioned in the
legend should now be understood as being local and different for different
psychometric functions. The notion of weak perceptual separability, therefore, is
sufficiently rich in consequences to be of interest by itself.

APPENDIX: TECHNICAL COMMENTS

1. Following the traditional differential-geometric notation adopted in
Dzhafarov and Colonius (1999, 2001), I use superscripts rather than subscripts to
refer to stimulus coordinates and (later) coordinates of direction vectors. The nota-
tion Ox1, ..., xnP, Ox1P, Ox2P, etc. refers to frames of reference and axes; whereas
(x1, ..., xn), (x1), (y1, y2), (yn), etc. denote coordinates of different stimuli with
respect to specified frames of reference.

2. It should be noted that the notion of separability is often applied to per-
ceptual dimensions rather than stimulus dimensions. In the General Recognition
Theory, due to the one-to-one correspondence between them, this application may
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be more linguistic than conceptual. In Shepard’s (1987) theory, considered below,
the separability is expressly a characterization of perceptual dimensions (as recon-
structed by multidimensional scaling). In this paper I strictly adhere to the usage
‘‘perceptual separability of stimulus dimensions,’’ by analogy with speaking, say, of
the ‘‘perceptual discriminability of stimuli’’ rather than ‘‘discriminability of percep-
tual images.’’

3. These properties follow from the first assumption of MDFS, according to
which kx(y), for a fixed x, reaches its minimum at some point y=h(x) diffeo-
morphically related to x; and that, for any direction u, kx(y+us) strictly decreases
as s decreases from a sufficiently small value to s=0, at which value it vanishes.
The renaming procedure mentioned in the text consists in putting kx(y)= kg

h(x)(y),
which ensures that kg

x(y) reaches its minimum at y=x. Throughout this paper it is
assumed that k has already been put in this form.

4. Strictly speaking, the functions in (8) should be denoted by symbols other
than Y, say, Y ixi(x

i+u is). The use of Y, however, does not create confusion if one
considers the subscripts at Y as part of the function names.

5. The regular variation of R(s) with the unit exponent means that R(ks)R(s) Q k
as sQ 0+ (for any k > 0). For example, R(s) — s is such a function, and in many
respects any unit-regularly varying R(s) is indistinguishable from s (Dzhafarov,
2002). The reader who is willing to overlook technical details may, with no serious
consequences for understanding this work, assume that R(s) — s, and thence (10)
has the form

Yx(x+us) ’ [F(x, u) s]m, sQ 0+.

This is the so-called power function version of MDFS (Dzhafarov & Colonius,
1999). The more general theory adopted in the present work is called the regular
variation version of MDFS (Dzhafarov, 2002).

6. Clearly, F(x, u) and R(s) in (10) can be multiplied by reciprocal positive
constants without changing the asymptotic equality. The necessity of mentioning
this trivial qualification for uniqueness is avoided by putting F(x0, u0)=1 for some
arbitrarily chosen (x0, u0).

7. Indicatrices and the corresponding metric function are called Minkowskian
whenever the metric function does not depend on the stimulus, F(x, u)=F(u). The
power metric structure arrived at in (16) is just a special case.

8. Putting g(−x r)=1−f(x), where f is defined in (22) and assumed to be
increasing, whence g is increasing too, (4) can be written as

g[−G(x, y) r]=D
n

i=1
g[−G(xi, yi) r]

which is the multiplicative form of the Cauchy functional equation (also known as
the Hammel equation). Its only increasing solution is known to be g(a)=exp(ka),
k > 0.
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