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Abstract

A discrimination probability function cðx; yÞ obtained in the ‘‘same-different’’ paradigm assigns to every ordered pair of stimuli

ðx; yÞ the probability with which they are judged to be different. This function is said to possess the regular minimality property if,

for any stimulus pair ða; bÞ;
arg min

y
cða; yÞ ¼ b 3 arg min

x
cðx; bÞ ¼ a:

That is, b is the point of subjective equality for a if and only if a is the point of subjective equality for b: If the value of cða; bÞ across
all such pairs ða; bÞ is not constant, the function is said to possess the nonconstant self-similarity property. A Thurstonian-type

representation for cðx; yÞ (with independent images and deterministic decisions) is a model in which the two stimuli are mapped into
two independent random variables PðxÞ and QðyÞ taking on their values in some ‘‘perceptual’’ space; and the decision whether the

two stimuli are different is determined by the realizations of the two random variables in a given trial. Thurstonian-type

representations can also be called ‘‘random utility’’ ones, provided one imposes no a priori restrictions on the structure of the

perceptual space, the distributions of PðxÞ and QðyÞ; or the decision rules used. It is shown that (A) any cðx; yÞ has a Thurstonian-
type representation; but (B) if cðx; yÞ possesses the regular minimality and nonconstant self-similarity properties, it cannot have a

‘‘well-behaved’’ Thurstonian-type representation, in which the probability with which PðxÞ; or QðyÞ; falls within a given subset of

the perceptual space has appropriately defined bounded directional derivatives with respect to x (respectively, y). This regularity

feature is likely to be found in most conceivable Thurstonian-type models constructed to fit empirical data.

r 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

When two stimuli are presented to an observer for a
comparison judgment, one of the most common ways of
conceptualizing this situation consists in positing that
these stimuli are mapped into two random variables
(‘‘images’’) taking on their values in some hypothetical
internal (‘‘perceptual’’) space, and that the judgment
produced by the observer in a given trial is determined
(uniquely or probabilistically) by the realizations of
these two random images in this trial. The classical and
best-known example of this approach is Thurstone’s
(1927a, b) seminal theory of preference judgments. This
theory deals with the situation where stimuli, generally
varying along many physical dimensions, are presented
in pairs, ðx; yÞ; and the observer is asked to compare

them in terms of ‘‘greater-less’’ with respect to some
semantically unidimensional subjective attribute P (say,
‘‘loudness’’, or ‘‘brightness’’). Thurstone assumes that
stimuli x and y are mapped into two random variables,
PðxÞ and QðyÞ; with their values belonging to the set of
reals (the unidimensional perceptual space representing
the attribute P); and x is judged to be greater than y in
attribute P if and only if the realization p of PðxÞ
exceeds the realization q of QðyÞ: Thurstone assumes
that PðxÞ and QðyÞ are normally distributed, but this
constraint is inessential, alternative distributions
having been considered by many, in a variety of
contexts (see, e.g., Luce & Suppes, 1965; Robertson &
Strauss, 1981; Yellott, 1997). Depending on the version
(‘‘case’’) of the theory, PðxÞ and QðyÞ in it can be
stochastically independent or stochastically interdepen-
dent (the latter possibility giving rise to an important
conceptual issue, mentioned later). The observables thatE-mail address: ehtibar@purdue.edu.
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Thurstone’s theory is aimed at predicting are the
preference probabilities

gðx; yÞ ¼Pr½y is judged to be greater

than x in attribute P�:
Fig. 1 illustrates a possible appearance of such a
function when the stimuli are unidimensional (and
denoted by x; y; in accordance with the notation
conventions adopted in this paper).
Historically, the paradigm of preference judgments

(with respect to a designated unidimensional attribute)
has been so dominant in studying perceptual discrimi-
nations that the two notions are often treated as being
interchangeable. The present paper, however, focuses on
another type of perceptual discriminations, the ‘‘same-

different’’ comparison paradigm. Stimuli in this para-
digm are also presented pairwise, but observers are
asked to judge whether x and y are the same or different
from each other, with no explicitly designated attributes
along which the comparisons should be made. The
discrimination probability function to be accounted for
in this paradigm is

cðx; yÞ ¼ Pr½y is judged to be different from x�:
This function, whose possible appearance is shown in
Fig. 2 (for unidimensional stimuli), is very different from
the ‘‘greater-less’’ probability function gðx; yÞ; both in its
mathematical properties (which should be obvious from
comparing Fig. 2 with Fig. 1) and in the theoretical
analysis it affords (which is shown in Section 3).
Luce and Galanter (1963), who call the ‘‘same-

different’’ paradigm ‘‘unordered discriminations’’, show
how it can be handled by a very minor modification of
the original Thurstone’s theory. They adopt Thurstone’s
stimulus-to-image mapping scheme: x and y are mapped
into random variables PðxÞ and QðyÞ; taking on their
values in the set of reals. But the decision rule now is
posited to be different: y is judged to be different from x

if and only if PðxÞ �QðyÞ4e1 or QðyÞ � PðxÞ4e2’’
(where e1; e2 are some positive constants). When
complemented by specific assumptions regarding the
distributions of PðxÞ and QðyÞ (Luce & Galanter follow
Thurstone in assuming their normality), the stochastic
relationship between them (Luce & Galanter assume
independence), and the dependence of their parameters
(in this case, means and variances) on, respectively, x
and y; this model generates a specific function cðx; yÞ;
testable vis-a-vis empirical observations.
Aside from simplicity considerations, the assumption

that the hypothetical images PðxÞ and QðyÞ are
unidimensional (real-valued) is significantly less compel-
ling in the context of ‘‘same-different’’ discriminations
than it is in the context of ‘‘greater-less’’ ones. In the
latter case the unidimensionality of the perceptual space
reflects the sematic unidimensionality of the attribute P
along which the comparisons are being made. In the
case of ‘‘same-different’’ comparisons, even if stimuli are
physically unidimensional, this justification is absent,
and it seems more plausible to think of the perceptual
representations as being multiattribute, if analyzable
into attributes at all. In many models for ‘‘same-
different’’ comparisons, therefore, PðxÞ and QðyÞ are
assumed to be distributed (usually, multivariate-nor-
mally) in Rem; the m-dimensional space of real-
component vectors (Ennis, 1992; Ennis, Palen, &
Mullen, 1988; Suppes & Zinnes, 1963; Zinnes &
MacKey, 1983; Thomas, 1996, 1999). This general-
ization immediately broadens the class of possible
decision rules: one can posit, for example, that y is
judged to be different from x if and only if an
appropriately defined distance between PðxÞ and QðyÞ
exceeds a critical value; or one can assume that the space
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Fig. 1. Possible appearance of a ‘‘greater-less’’ discrimination prob-

ability function gðx; yÞ for unidimensional continuous stimuli. As

discussed in Section 3, the intersection of the surface with the plane

g ¼ 1
2
forms the PSE (point of subjective equality) line y ¼ hðxÞ (in this

case, straight).
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Fig. 2. Possible appearance of a ‘‘same-different’’ discrimination

probability function cðx; yÞ for unidimensional continuous stimuli.

As discussed in Section 3, the PSE (point of subjective equality) line

y ¼ hðxÞ is formed by the points ðx; yÞ at which the functions

y-cðx; yÞ and x-cðx; yÞ reach their minima. Note that the level of

the minima is different at different points taken on y ¼ hðxÞ: (The
function cðx; yÞ shown represents a special case of an alternative

to Thurstonian-type models described in the companion paper,

Dzhafarov, 2003.)
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is partitioned into many subregions (‘‘categories’’), and
y is judged to be different from x if and only if PðxÞ and
QðyÞ fall into two different subregions.
Once on this road, however, it seems natural to

entertain the possibility that the random images PðxÞ
and QðyÞ may be more complex than being represen-
table by points in Rem: Thus, if one thinks of perceptual
images as, say, pictorial templates or processes devel-
oping in time, they should be represented by functions
or relations rather than real-component vectors. These
and similar possibilities lead one to a sweeping general-
izations of Luce and Galanter’s (1963) modification of
Thurstone’s modeling scheme, the one in which x and y

are mapped into random images PðxÞ and QðyÞ whose
possible values belong to a space R of arbitrary nature,
constrained only by the requirement that it support the
probability measures associated with PðxÞ and QðyÞ:
The choice of the response in a given trial, ‘‘same’’ or
‘‘different’’, depends on the realizations p of PðxÞ and q

of QðyÞ:
If a discrimination probability function cðx; yÞ is

generated by such a model, with some choice of the
space R; random images PðxÞ;QðyÞ; and a decision rule
mapping their realizations ðp; qÞ into responses, then this
function cðx; yÞ is said to have a Thurstonian-type

representation (defined in detail in Section 4). It should
be clear from this description that the notion of a
Thurstonian-type representation generally does not
imply any restrictions on possible distributions of PðxÞ
and QðyÞ or on possible decision rules.

Remark 1.1. Probabilities and their modeling in this
paper are always treated on a population rather than
sample level. Thus, a discrimination probability func-
tion cðx; yÞ is considered having (or not having) a
Thurstonian-type representation if a Thurstonian-type
model exists (respectively, does not exist) that generates
this cðx; yÞ precisely.

Using traditional terminology, a Thurstonian-type
representation for cðx; yÞ can be called a random utility

model, provided the term is taken in its broadest
meaning. In random utility models the internal space
R is usually assumed to be an interval of reals (see, e.g.,
Luce & Suppes, 1965; Regenwetter & Marley, 2001),
while in the present paper the notion of a random image
includes as special cases such entities as the ‘‘random
relations’’ and ‘‘random functions’’ analyzed in Regen-
wetter and Marley (2001) as conceptual alternatives to
real-valued ‘‘random utilities’’. Niederée and Heyer
(1997) use the term ‘‘generalized random utility models’’
to incorporate such constructs. (The legitimacy of the
notion of a random variable with values in an arbitrary
measure space is discussed in Section 4.)
Overall, the terminology used in the literature in

relation to random utilities and modifications of

Thurstone’s theory is diverse if not confusing. Thus,
the term ‘‘Thurstone model’’ is used by Strauss (1979) to
designate the classical Thurstone’s model for preference
judgments under the constraint that PðxÞ;QðyÞ are
independent and their distributions (not necessarily
normal) differ in the shift parameter only; if
PðxÞ;QðyÞ are distributed differently (in the set of reals),
the model is called ‘‘a generalized Thurstone model’’. To
prevent confusions, the term ‘‘Thurstonian-type’’ as
used in this paper should be taken strictly as defined
(here and, more rigorously, in Section 4): any model (for
preference or ‘‘same-different’’ judgments) in which x; y
are mapped into random images PðxÞ;QðyÞ in an

arbitrary space R; with the subsequent mapping (deter-
ministic or probabilistic) of their realizations into one of

the two responses. (Certain caveats, however, apply to
the joint distribution of PðxÞ;QðyÞ; as mentioned
below.)

Remark 1.2. A.A.J. Marley (pers. comm., July 13, 2002)
suggested that the term ‘‘random-image representation’’
might be preferable to the term ‘‘Thurstonian-type
representation’’. While he is not entirely happy with
either terminology, he prefers using a term that does not
refer to Thurstone’s original model, as he thinks the
latter is too narrow compared to the constructs
considered in this paper.

The present paper only deals with Thurstonian-type
representations in which the random images PðxÞ;QðyÞ
are stochastically independent, while the decision rule is
deterministic: a given pair of realizations ðp; qÞ of the
random images PðxÞ;QðyÞ leads to one and only one of
the two responses, ‘‘same’’ or ‘‘different’’. All models for
‘‘same-different’’ discriminations referenced above are
Thurstonian-type models with stochastically indepen-
dent random images and deterministic decision rules. In
a companion paper (Dzhafarov, 2003) the analysis and
its conclusions are extended to Thurstonian-type models
in which the decision rules may be probabilistic (i.e.,
every realization of the two random images may lead to
each of the two responses, with some probabilities),
while the images PðxÞ and QðyÞ may be stochastically

interdependent (but selectively attributed to, respectively
x and y; in a well-defined sense).

Remark 1.3. The selective attribution of images to
stimuli is viewed as an inherent feature of Thursto-
nian-type representations: x is mapped into its image
PðxÞ; while y is mapped into its image QðyÞ: The models
in which ðx; yÞ as a pair is mapped into a single image
Rðx; yÞ are not included in the class of Thurstonian-type
models. In particular, I do not include in this class the
models in which every pair of stimuli being presented
evokes a single-random variable taking on its values on
an axis of ‘‘subjective pairwise differences’’ (as, e.g., in
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the model by Takane & Sergent, 1983). When PðxÞ and
QðyÞ are stochastically independent, the meaning of
their selective attribution to, respectively, x and y is
plain, but in the case of stochastically interdependent
images one faces a formidable conceptual problem (see
Dzhafarov, 1999, 2001a, in press). Even if the perceptual
image caused by ðx; yÞ can be decomposed into P and Q

such that the marginal distribution of P depends on x

only while the marginal distribution of Q depends on y

only, what constraints should be imposed on the
dependence of the joint distribution of ðP;QÞ upon
ðx; yÞ to enable one to speak of P being the image of x
alone and of Q as the image of y alone? A satisfactory
answer to this question is less obvious than it might
seem. In relation to Thurstonian-type models this
problem is dealt with in Dzhafarov (2003), based on
the general theory of selective influence developed in
Dzhafarov (in press).

The focus of this paper is on the applicability of
Thurstonian-type modeling (with independent images
and deterministic decisions) to the ‘‘same-different’’
comparison paradigm with stimuli belonging to a
continuous stimulus space. In other words, stimuli x; y
vary along one or several continuous physical dimen-
sions, such as length, intensity, or color coordinates.
Discrimination probability functions cðx; yÞ with con-
tinuously varying stimuli ðx; yÞ are analyzed in Dzhafar-
ov (in press c), where it is argued that these functions
possess two basic properties, called regular minimality

and nonconstant self-similarity. The main thesis of the
present paper is that although one can find a Thurstonian-
type representation for any discrimination probability

function cðx; yÞ; a function cðx; yÞ that possesses the two
basic properties just mentioned cannot have a Thursto-

nian-type representation that is ‘‘well-behaved’’. The well-
behavedness of a Thurstonian-type representation is a
constraint imposed on the dependence of the random
images PðxÞ;QðyÞ upon, respectively, x and y: The well-
behavedness means that the probabilities with which
either of PðxÞ;QðyÞ falls within an area of the perceptual
space R have appropriately defined and bounded
directional derivatives with respect to, respectively, x

or y: The class of well-behaved Thurstonian-type models
is likely to include most realistically conceivable
Thurstonian-type models constructed to fit empirical
data.

2. Notation conventions and plan of the paper

The reader may find it helpful to occasionally consult
this section to keep track of the presentation logic and
notational issues.
Boldface lowercase letters ðx; y; u;yÞ always denote

real-valued vectors (usually points and directions in a

stimulus space); their components, if shown, are super-
scripted, e.g., x ¼ ðx1;y; xnÞ; u ¼ ðu1;y; unÞ:
Uppercase Gothic letters (R;U;B; etc.) denote sets,

lowercase Gothic letters ðp; q; a;yÞ denote subsets of
the ‘‘perceptual space’’ R:
Uppercase Greek letters S and O denote sets of

subsets of R:
Lowercase and uppercase italics designate real-valued

quantities, except for letters p; q (and P;QÞ that are
reserved to denote elements of R (respectively, random
variables with values inR). In one place, however (in the
proof of Theorem 5.1), where RDRem; its elements are
denoted by p ¼ ðp1;y; pmÞ and q ¼ ðq1;y; qmÞ:
The development presented in this paper can be

summarized as follows.

1. Section 3 compares the ‘‘greater-less’’ and ‘‘same-
different’’ discrimination probability functions gðx; yÞ
and cðx; yÞ; for continuous unidimensional stimuli. It
provides a simple demonstration for the failure of
well-behaved Thurstonian-type models to account for
the two basic properties of cðx; yÞ; regular minimality
and nonconstant self-similarity. This failure is con-
trasted with the fact that well-behaved Thurstonian-
type models easily account for the analogous basic
property of gðx; yÞ (called ‘‘regular mediality’’).

2. The class of Thurstonian-type models with stochas-
tically independent images and deterministic decision
rules is formally defined in Section 4, and it is proved
subsequently (Theorem 5.1) that any discrimination
probability function cðx; yÞ has a Thurstonian-type
representation of this kind, provided no a priori
restrictions are imposed on the possible distributions
of random images or on the decision rule.

3. Following some technical preparation in Section 6,
the intuition underlying the general notion of a well-
behaved Thurstonian-type model is outlined in
Section 7, followed by a rigorous definition.

4. It is proved then (Theorem 8.1) that the discrimina-
tion probability functions cðx; yÞ predicted by well-
behaved Thurstonian-type models possess a certain
smoothness property, called ‘‘near-smoothness’’ (es-
sentially, a weak form of continuous differentiabil-
ity).

5. A general definition of the regular minimality and
nonconstant self-similarity properties of cðx; yÞ is
given in Section 9. It is proved then (Theorem 10.1)
that together these two properties exclude the
possibility that cðx; yÞ possesses the near-smoothness
property.

6. The obvious conclusion follows: cðx; yÞ subject to
regular minimality and nonconstant self-similarity
cannot have a well-behaved Thurstonian-type repre-
sentation.

7. This conclusion is then shown to extend to a broader
class of well-behaved Thurstonian models, obtained

E.N. Dzhafarov / Journal of Mathematical Psychology 47 (2003) 184–204 187



by relaxing some of the constraints imposed in
Section 7.

8. The development is aided by an appendix containing
lemmas labeled A.1, A.2, etc.

To follow the mathematical derivations the reader
should be familiar with basic concepts of abstract
measure theory. With the help provided in the paper,
however, knowledge of standard multivariate calculus
should be sufficient to understand the general logic and
the results.

3. Comparing two discrimination paradigms

To simplify the discussion, let the stimuli presented
for a comparison judgment (‘‘greater-less’’, with respect
to some attribute P; or ‘‘same-different’’) be physically
unidimensional. In accordance with the general defini-
tion of a continuous stimulus space given in the next
section, the stimulus values x; y in this case belong to an
open interval of reals M (finite or infinite).
As emphasized in Dzhafarov (2002d), the key fact

about pairwise presentations ðx; yÞ is that stimuli x and
y belong to two distinct observation areas (spatial and/or
temporal intervals): thus, x may be presented first,
followed by y; or x may be presented to the left and y to
the right of a fixation point. As a result, ðx; yÞ and ðy; xÞ
are distinct pairs, and ðx; xÞ is a pair of stimuli rather
than a single stimulus. In the following the observation
area to which a stimulus belongs is encoded by its
ordinal position within a pair ðx; yÞ; and the respective
observation areas are referred to as the ‘‘first’’ and the
‘‘second’’ areas. One consequence of treating ðx; yÞ as an
ordered pair is that cðx; yÞ and cðy; xÞ in the ‘‘same-
different’’ paradigm are generally different, and so are
gðx; yÞ and 1� gðy; xÞ in the ‘‘greater-less’’ paradigm.
(For a detailed discussion of distinct observation areas
see Dzhafarov, 2002d)
A central notion in the analysis of perceptual

discriminations is that of a point of subjective equality

(PSE). The intuitive meaning of this notion is as follows.
For a given stimulus x (belonging to the first observa-
tions area), a stimulus y (in the second observation area)
is the PSE for x if the ‘‘subjective dissimilarity’’ between
this y and x is smaller than the dissimilarity between x

and any other stimulus belonging to the second
observation area (generally, this point y need not be
equal to x). Analogously, the PSE for y (belonging to
the second observation area) is the stimulus x (in the
first observation area) whose dissimilarity to y is smaller
than that of any other stimulus taken in the first
observation area. It seems natural to expect that a
reasonable operationalization of this notion should
ensure that a PSE for a given stimulus (in either

observation area) is uniquely defined, and that the
relation of ‘‘being a PSE of’’ is symmetric:

y is the PSE for x 3 x is the PSE for y;

with x and y in both cases belonging to the first and
second observation areas, respectively. Dzhafarov
(2002d) proposes to treat this regularity property (the
existence, uniqueness, and symmetry of PSE) as a
fundamental law for perceptual discriminations.
To discuss first the ‘‘greater-less’’ comparison para-

digm, refer to Figs. 1 and 3. In accordance with the
traditional psychophysical focus on ‘‘correlated’’ physi-
cal and subjective continua, let the attributeP be chosen
so that gðx; yÞ is strictly increasing in y and strictly
decreasing in x (recall that g is the probability that y; in
the second observation area, is judged to be greater than
x; in the first observation area). As an example, x; y may
represent physical intensity of successively presented
tones, and P their loudness. Let gðx; yÞ be continuous in
ðx; yÞ: Clearly, the PSE for x with respect to P should be
defined as the value of y for which gðx; yÞ ¼ 1

2
; and the

same equality determines the PSE (with respect toP) for
y: the value of x for which gðx; yÞ ¼ 1

2
: Denoting the PSE
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Fig. 3. Illustration of the regular mediality property. Shown are cross-

sections y-gðx; yÞ and x-gðx; yÞ of a ‘‘greater-less’’ discrimination

probability function gðx; yÞ for unidimensional continuous stimuli (see
Fig. 1). The cross-sections y-gðx; yÞ shown in the upper panel are

made at arbitrarily chosen x ¼ x1;x2;x3: The cross-sections x-gðx; yÞ
shown in the lower panel are made at y ¼ y1; y2; y3 which are the

medians of the three curves in the upper panel. The regular mediality

property is illustrated by the fact that then x1; x2;x3 are the medians of

the three curves in the lower panel. In other words, yi is the median of

gðxi; yÞ if and only if xi is the median of gðx; yiÞ; i ¼ 1; 2; 3:
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for x by hðxÞ; the PSE for y by gðyÞ; and assuming that
both these functions are defined on the entire intervalM
(i.e., a PSE exists for every stimulus, in either observa-
tion area), a moment’s reflection reveals that both hðxÞ
and gðyÞ are one-to-one, onto, and continuous trans-
formations M-M; and that g � h�1: By analogy with
the regular minimality property introduced below, this
fundamental regularity condition can be termed regular

mediality.
Since regular mediality holds for any continuous

gðx; yÞ such that the equation gðx; yÞ ¼ 1
2
can always be

solved for both x and y; this property is predicted by any
reasonable Thurstonian-type model, including Thursto-
ne’s original theory. Let the perceptual space R be the
set of reals, and let the random images PðxÞ;QðyÞ be
independent and normally distributed. Let their respec-
tive means mPðxÞ; mQðyÞ be two arbitrarily smooth (e.g,
infinitely differentiable) increasing functions M �!onto Reþ:
Then one can always choose standard deviation func-
tions sPðxÞ; sQðyÞ; also arbitrarily smooth, so that the
discrimination probability function

gðx; yÞ ¼ F
mQðyÞ � mPðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2PðxÞ þ s2QðyÞ

q
0
B@

1
CA;

where F is the standard normal integral, is increasing in
y; decreasing in x; and continuous (in fact, arbitrarily
smooth) in ðx; yÞ: This is achieved, for example, if one
chooses sPðxÞ � sP; sQðyÞ � sQ (constants), or sPðxÞ ¼
k
ffiffiffiffiffiffiffiffiffiffiffiffi
mPðxÞ

p
; sQðyÞ ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffi
mQðyÞ

q
; k40: Since mPðxÞ and

mQðyÞ have identical ranges ðReþÞ; the equation
gðx; yÞ ¼ 1

2
can be solved for y and x at, respectively,

any x and y; resulting in

hðxÞ ¼ m�1Q ½mPðxÞ�; gðyÞ ¼ m�1P ½mQðyÞ�:
These functions satisfy the regular mediality condition
because g � h�1: Anticipating the subsequent develop-
ment, the point to be emphasized here is that the regular
mediality property for gðx; yÞ is predicted by Thursto-
nian-type models that are arbitrarily ‘‘well-behaved’’
(intuitively, PðxÞ;QðyÞ have ‘‘nice’’ distributions whose
parameters smoothly depend on stimuli).
The situation changes dramatically as we turn to

‘‘same-different’’ comparisons. Refer to Figs. 2 and 4. In
accordance with the so-called ‘‘First Assumption of
multidimensional Fechnerian scaling’’ (discussed in
greater generality in Section 9), cðx; yÞ is continuous
in ðx; yÞ; y-cðx; yÞ reaches a global minimum at some
point hðxÞ; continuously changing with x; and
x-cðx; yÞ reaches a global minimum at some point
gðyÞ; continuously changing with y: Clearly, hðxÞ should
be taken as the PSE for x; and gðyÞ as the PSE for y: The
symmetry of the PSE relation in this case, g � h�1; is
called the property of regular minimality. Unlike the
regular mediality above, this property is not a mathe-

matical necessity, but it is both intuitively plausible and
corroborated by available empirical evidence (see
Dzhafarov, 2002d). It is also known (Dzhafarov,
2002d) that the minimum level cðx; hðxÞÞ of the function
y-cðx; yÞ is generally different for different values of x;
and, analogously, the minimum level cðgðyÞ; yÞ of the
function x-cðx; yÞ is generally different for different
values of y: This well-documented property is called
nonconstant self-similarity. It has no analogue in the
‘‘greater-less’’ discrimination probability functions,
where the level of gðx; yÞ at which the PSE are taken is
1
2
by definition.

Remark 3.1. The term ‘‘self-similarity’’ (or ‘‘self-dissim-
ilarity’’) is due to the fact that ‘‘ideally’’ the minima of
the functions y-cðx; yÞ and x-cðx; yÞ are reached at
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 (x, y1)
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(x, y2)

 (x, y3)

Fig. 4. Illustration of the regular minimality and nonconstant self-

similarity properties. Shown are cross-sections y-cðx; yÞ and

x-cðx; yÞ of a ‘‘same-different’’ discrimination probability function

cðx; yÞ for unidimensional continuous stimuli (see Fig. 2). The cross-
sections y-cðx; yÞ shown in the upper panel are made at arbitrarily

chosen x ¼ x1;x2; x3: The cross-sections x-cðx; yÞ shown in the lower
panel are made at y ¼ y1; y2; y3 which are the points at which the three

curves in the upper panel reach their minima. The regular minimality

property is illustrated by the fact that then x1;x2;x3 are the points at

which the three curves in the lower panel reach their minima. In other

words, arg minycðxi; yÞ ¼ yi if and only if arg minxcðx; yiÞ ¼ xi; i ¼
1; 2; 3: The nonconstant self-similarity property is illustrated by the

fact that the minimum level cðxi ; yiÞ is different for different PSE pairs

ðxi ; yiÞ; i ¼ 1; 2; 3:
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y ¼ x; in which case it is said that there is no constant

error.

Can these two properties, regular minimality and
nonconstant self-similarity, be predicted by a Thursto-
nian-type model with ‘‘nicely’’ distributed and ‘‘nicely’’
dependent on stimuli images, like the ones used
above to model gðx; yÞ? It turns out that any attempt
to come up with such a model will fail. Take, for
example, the same PðxÞ;QðyÞ as used above, indepen-
dent and normally distributed on the set of reals,
with their means mPðxÞ; mQðyÞ being smooth increasing

functions M �!onto Reþ and their standard deviations

being chosen as either sPðxÞ � sP; sQðyÞ � sQ (con-

stants) or sPðxÞ ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffi
mPðxÞ

p
; sQðxÞ ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffi
mQðxÞ

q
: Let

the decision rule be the symmetric version of the
one proposed by Luce and Galanter (1963): ‘‘say that
y is different from x if and only if jPðxÞ �QðyÞj4e’’.
Then

cðx; yÞ ¼ 1� F
e� ½mQðyÞ � mPðxÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2PðxÞ þ s2QðyÞ
q

0
B@

1
CA

þ F
�e� ½mQðyÞ � mPðxÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2PðxÞ þ s2QðyÞ
q

0
B@

1
CA:

Choosing first sPðxÞ � sP; sQðyÞ � sQ; one can easily
show that y-cðx; yÞ and x-cðx; yÞ reach their minima
at, respectively,

y ¼ m�1Q ½mPðxÞ� ¼ hðxÞ; x ¼ m�1P ½mQðyÞ� ¼ gðyÞ;

which are the same functions as obtained above for

gðx; yÞ; satisfying thereby the requirement g � h�1: With
constant standard deviations, however, the minimum
level of y-cðx; yÞ and x-cðx; yÞ is constant,

cðx; hðxÞÞ ¼ cðgðyÞ; yÞ ¼ 2F
�effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2P þ s2Q
q

0
B@

1
CA:

The cðx; yÞ generated by this model, therefore, while
satisfying the regular minimality condition, also has the
property of constant self-similarity.
Choosing sPðxÞ ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffi
mPðxÞ

p
; sQðxÞ ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffi
mQðxÞ

q
does

make the minimum levels of y-cðx; yÞ and x-cðx; yÞ
vary with, respectively, x and y; satisfying thereby the
nonconstant self-similarity requirement. By a simple
though cumbersome derivation, however, one can show
that in this case one loses the regular minimality
property: in fact, one cannot find a single pair ðx; yÞ at
which the functions y-cðx; yÞ and x-cðx; yÞ reach

their minima simultaneously. Indeed, denoting

Aðx; y; eÞ ¼ exp �ðeþ mQðyÞ � mPðxÞÞ2
2k2ðmQðyÞ þ mPðxÞÞ

" #
;

Bðx; y; eÞ ¼ exp �ðe� mQðyÞ þ mPðxÞÞ2
2k2ðmQðyÞ þ mPðxÞÞ

" #
;

the conditions @cðx;yÞ
@y ¼ 0 and @cðx;yÞ

@x ¼ 0 can be shown to
be equivalent to, respectively,

½mQðyÞ þ 3mPðxÞ � e�Aðx; y; eÞ
� ½mQðyÞ þ 3mPðxÞ þ e�Bðx; y; eÞ ¼ 0

and

½3mQðyÞ þ mPðxÞ þ e�Aðx; y; eÞ
� ½3mQðyÞ þ mPðxÞ � e�Bðx; y; eÞ ¼ 0:

Their addition yields

½mQðyÞ þ mPðxÞ�½Aðx; y; eÞ � Bðx; y; eÞ� ¼ 0;

which can easily be proved impossible for positive mPðxÞ;
mQðyÞ; and e:
The subsequent development shows that these Thur-

stonian-type models cannot be repaired by any mod-
ifications of the perceptual space R; decision rules, or
distributions of PðxÞ and QðyÞ; insofar as the depen-
dence of these distributions on stimuli x; y remains
sufficiently ‘‘well-behaved’’. For the ‘‘same-different’’
discrimination probabilities cðx; yÞ the conjunction of
the properties of regular minimality and nonconstant
self-similarity is incompatible with well-behaved Thur-
stonian-type representations. In a sense, the only reason
such representations are possible for the ‘‘greater-less’’
discrimination probabilities gðx; yÞ is that there is no
analog of nonconstant self-similarity for these functions:
by definition, the regular mediality property is asso-
ciated with the fixed probability level 1

2
:

A rigorous and general definition for the notion of
‘‘well-behavedness’’ is given in Section 7 (further
generalized in Section 11). Put semi-formally, in the
case of unidimensional continuous stimuli the ‘‘well-
behavedness’’ of, say, the distribution of PðxÞ at a point
x ¼ x0 means that in a sufficiently small neighborhood
½x0 � a; x0 þ a� the probabilities Pr½PðxÞAp� for all
possible events p have bounded right- and left-hand
derivatives with respect to x:

4. Thurstonian-type representations

A Thurstonian-type representation (with independent
random images and a deterministic decision rule) for a
discrimination probability function cðx; yÞ is defined by
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the construct

fR;Ax;By;Sg; ð1Þ
with the following meaning of the terms.

(i) x and y are stimuli whose values belong to an n-
dimensional continuous stimulus space

MDRen ðnX1Þ; an open connected area with its
dimensions representing physical attributes varying
in the experiment. As discussed in the previous
section, x and y belong to distinct observation areas
(spatial and/or temporal intervals), encoded by their
positions within the pair ðx; yÞ: The representation
M for a given set of physical stimuli is not unique:
any homeomorphic (one-to-one, onto, continuous
together with its inverse) mapping M-M0DRen

creates an equivalent representation for the stimulus
space. This means, in particular, that Ren in the
inclusion MDRen can always be replaced by any
subset of Ren homeomorphically related to Ren

(e.g., an open n-dimensional unit cube).

Remark 4.1. It is allowed, if convenient, to apply
different homeomorphic transformations to stimuli
in the first and second observation areas, including
the possibility that they map onto different sets,M0;M00:
It may have been better, therefore, to speak of
two generally different stimulus spaces for x and for y

in ðx; yÞ: The notion of a single stimulus space is
retained in the present paper for expository simplicity
only.

(ii) R is a hypothetical perceptual space, whose points
p; q;y are referred to as (perceptual) images. No
restrictions are imposed on its possible structure: it
can be a finite set of states, an area of Rem; a space
of continuous processes, a space of compact areas
belonging to Rem; etc. The term ‘‘space’’ (rather
than ‘‘set’’) is used here due to the structure
imposed on R by the probability measures con-
sidered next.

(iii) AxðpÞ and ByðqÞ; p; qDR; are probability measures

defined on respective sigma-algebras SA; SB; the
same for all values of x; y: (A sigma-algebra is a set
of subsets of R that includes R and is closed under
countable applications of standard set-theoretic
operations.) AxðpÞ and ByðqÞ are associated with
random images PðxÞ and QðyÞ of stimuli x and y;

AxðpÞ ¼ Pr½PðxÞAp�; pASA;

ByðqÞ ¼ Pr½QðyÞAq�; qASB:

The measures Ax and By; as well as their domains
SA and SB; are generally different, to reflect the
fact that x and y belong to distinct observation
areas.

Remark 4.2. In the simplest case, when R is a finite set
of states f1;y; kg; the distributions of PðxÞ and QðyÞ
are defined by aði; xÞ ¼ Pr½PðxÞ ¼ i� and bði; yÞ ¼
Pr½QðyÞ ¼ i�; i ¼ 1;y; k: In this case, AxðpÞ ¼P

iAp aði; xÞ; ByðqÞ ¼
P

iAq bði; yÞ; and SA ¼ SB is the
set of all 2k subsets of f1;y; kg: The reader who wishes
to overlook measure-theoretic technicalities may think
of this example throughout the paper, ignoring all
references to sigma-algebras and measurability.

(iv) SDR�R is the area that determines (and is
determined by) a decision rule: x and y are judged
to be different in a given trial if and only if
ðp; qÞAS; where p and q are the values of,
respectively, PðxÞ and QðyÞ in this trial. For brevity,
I refer to S as the decision area, instead of the more
explicit ‘‘area corresponding to the decision that x
and y are different’’. (Nothing would have changed
in the treatment to follow if we considered instead
the complementary area, mapped into the response
‘‘same’’.) The measures Ax and By induce on R�R
the probabilistic product measure ABxy ¼ Ax � By;
defined on the sigma-algebra SAB generated by
SA � SB;

ABxyðsÞ ¼ Pr½ðPðxÞ;QðyÞÞAs�; sASAB:

The decision area S is assumed to be AB-measur-
able (i.e., ASAB).

Remark 4.3. One can say ‘‘AB-measurable’’ rather
than ‘‘ABxy-measurable’’ because the sigma-algebra
SAB is the same for all ðx; yÞ: Analogously, the
terms ‘‘A -measurable’’ and ‘‘B-measurable’’ are used
below instead of ‘‘Ax-measurable’’ and ‘‘By-measur-
able’’.

Remark 4.4. For R ¼ f1;y; kg introduced in Remark
4.2, SAB is the set of all 2

k2 subsets of the set f1;y; kg �
f1;y; kg; and ABxyðsÞ ¼

P
ði;jÞAs aði; xÞbð j; yÞ:

(v) The general relation between the unobservables
fR;Ax;By;Sg of the model and the observable
cðx; yÞ is given by

cðx; yÞ ¼ Pr½ðPðxÞ;QðyÞÞAS� ¼ ABxyðSÞ:
We have (see, e.g., Hewitt & Stromberg, 1965, p.
384)

ABxyðSÞ ¼
Z
qAR

Ax½aðqÞ� dByðqÞ

¼
Z
pAR

By½bð pÞ� dAxð pÞ; ð2Þ
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where

aðqÞ ¼ fpAR: ðp; qÞASg;
bð pÞ ¼ fqAR: ðp; qÞASg ð3Þ
are, respectively, q- and p-sections of the area S:
We know (e.g., Hewitt & Stromberg, 1965, p. 380)
that all q-sections of S are A-measurable (i.e., ASA)
and all p-sections ofS are B-measurable ðASBÞ:We
also know (Hewitt & Stromberg, 1965, p. 381) that
the functions q-Ax½aðqÞ� and p-By½bð pÞ� are,
respectively, B-measurable and A-measurable. (The
B-measurability of q-Ax½aðqÞ� means that the set
of all q for which Ax½aðqÞ�pa is B-measurable for
any a; the A-measurability of q-Ax½aðqÞ� is under-
stood analogously.)

Remark 4.5. For R ¼ f1;y; kg considered in Remarks
4.2 and 4.4, we have dAxðiÞ ¼ aði; xÞ; dByðiÞ ¼ bði; yÞ;
and (2) has the form

ABxyðSÞ ¼
Xk
i¼1

X
jAaðqÞ

að j; xÞbði; yÞ

¼
Xk
i¼1

X
jAbð pÞ

bð j; yÞaði; xÞ:

In particular, if the decision rule is ‘‘x and y are different
if and only if PðxÞaQðyÞ’’, then the meaning of both
jAaðqÞ in the middle expression and jAbð pÞ in the right-
hand expression is jai:

As a simple example of the decision area S when the
perceptual space R is a subset of Rem; let Dðp; qÞ be
some continuous metric imposed on Rem; and assume
that y is judged to be different from x if and only if

D½PðxÞ;QðyÞ�4e;

where e is a fixed positive constant. Then

S ¼ fðp; qÞAR2: Dðp; qÞ4eg:
Another simple example, for an arbitrary perceptual

space R; is provided by the ‘‘category-based’’ discrimi-
nations. Let R be partitioned into several measurable
areas, fr1;y; rkg; representing different categories, and
let y be judged to be different from x if and only if their
random images PðxÞ and QðyÞ fall within two different
category areas. Then

S ¼ fðp; qÞAR2: ðp; qÞer21,?,r2kg:
The Thurstonian-type models with this decision rule are
in most respects indistinguishable from the finite-space
models, with R ¼ f1;y; kg and the decision rule
mentioned in Remark 4.5.
One may consider much more complex decision rules,

but as long as they remain deterministic (i.e., a given

pair ðp; qÞ always evokes a given response) they can
always be presented as areas SDR2: In particular, the
formulation (algorithm, logic) of a rule may very well
change from one pair of ðp; qÞ-values to another
(‘‘image-dependent’’ decision rules). The analysis to
follow applies to all such situations.

Remark 4.6. The random images PðxÞ; QðyÞ in this
paper are also referred to as ‘‘random variables’’. It is
difficult to avoid using this term in a probabilistic
context. The standard ‘‘Kolmogorovian’’ definition of a
random variable, however, is a real-valued measurable
function on a sample space. Clearly our meaning is
much broader: the sample space we deal with is R; and
the values of, say, PðxÞ are simply elements of R: The
term ‘‘distribution of PðxÞ’’ is understood as synon-
ymous with the measure function AxðpÞ; pASA:
Formally, one can define PðxÞ as the identity function
from R onto R; associated with the probability measure
Ax: Strictly speaking, however, the notion of a random
image PðxÞ is redundant, and is used here only because
Pr½PðxÞAp� (the probability of PðxÞ falling within p) is
more intuitive than AxðpÞ (the probability of p
‘‘occurring’’). Clearly, if R is a subset of Rem; PðxÞ is
a random m-vector in the conventional sense.

5. The universal Thurstonian-type representability

The theorem given in this section says that in the
absence of additional restrictions the idea of the
Thurstonian-type representability for cðx; yÞ (with
stochastically independent perceptual images and deter-
ministic decisions) is not a falsifiable assumption.
Rather it is a theoretical language providing an
alternative description for cðx; yÞ: any function c
mapping M�M into probabilities can be generated
by some Thurstonian-type model. The proof is con-
structive: it provides a simple procedure by which, given
a function cðx; yÞ; one can construct a space R;
probability measures Ax;By on it, and a decision area
S; such that the model fR;Ax;By;Sg generates cðx; yÞ
precisely.
It is worthwhile to precede the general proof by

demonstrating and discussing this procedure on the
following example. Let M ¼ ð0; 1Þ; that is, stimuli x; y
vary between 0 and 1, and let cðx; yÞ be an arbitrary
discrimination probability function. Assume that the
random image PðxÞ of stimulus x is ðp1; p2Þ; where p1 ¼
x while p2 is uniformly distributed between 0 and 1.
Analogously, assume that the random image QðyÞ is
ðq1; q2Þ; where q1 ¼ y and q2 is uniformly distributed
between 0 and 1 (independently of p2). The perceptual
space R here is the unit square ð0; 1Þ2: Consider
the following decision rule: y is judged to be different

E.N. Dzhafarov / Journal of Mathematical Psychology 47 (2003) 184–204192



from x if and only if

0op2o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðp1; q1Þ

q
and 0oq2o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðp1; q1Þ

q
: ð4Þ

A moment’s contemplation will reveal that the prob-
ability of this happening is cðx; yÞ:
Some readers may feel uncomfortable about the fact

that the first component of the image PðxÞ ¼ ðp1; p2Þ in
this construction is a deterministic quantity ðp1 ¼ xÞ:
Clearly, the perceiver could achieve perfect discrimin-
ability by simply ignoring the second component of
PðxÞ: It would be a mistake, however, to dismiss the
model above on the grounds that its decision rule is
‘‘irrational’’ or ‘‘suboptimal’’. We expressly lack any
basis for applying these concepts, as they only make
sense with respect to a particular set of operations that
the perceiver is posited to have the option of applying to
the elements of R: Thus, it does not follow from the fact
that ðp1; p2Þ uniquely determines the value of expðp1Þ þ
expðp2Þ that the perceiver is able to use this number for
making a judgment. By the same logic, it does not follow
from the fact that a perceptual image can be represented
by a numerical vector that the perceiver is able to use
this vector’s components in all conceivable computa-
tions or judgments involving them. In general, given a
Thurstonian-type representation, the only operation
that the perceiver can and should be posited to perform
is the computation, for every pair of images ðp; qÞ; of
whether this pair belongs or does not belong to one
specific decision area S: In the construction above, for
example, the observer is assumed to compute the truth
value of the statement (4), but this does not imply that
this observer can extract and utilize p2; q2; or cðp1; q1Þ in
any other computation.
Note that one can easily modify this construction to

make both components of the random images stochas-
tic. Assume, for example, that PðxÞ ¼ ðp1; p2Þ and
QðyÞ ¼ ðq1; q2Þ are defined by

p1 ¼ v� x

2
; p2 ¼ vþ x

2
;

q1 ¼ w� y

2
; q2 ¼ wþ y

2
;

where v;w are independent random variables uniformly
distributed between 0 and 1. Modify the decision rule
accordingly: y is judged to be different from x if and
only if

0op1 þ p2o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðp2 � p1; q2 � q1Þ

q
;

0oq1 þ q2o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðp2 � p1; q2 � q1Þ

q
:

It is easy to see that this model is equivalent to the
previous one, because of which it too generates cðx; yÞ
precisely.

Theorem 5.1. Any function c : ðx; yÞ-½0; 1� has a

Thurstonian-type representation fR;Ax;By;Sg (with

stochastically independent images and a deterministic

decision rule).

Proof. With no loss of generality, let x; yAMDð0; 1Þn
(this can always be achieved by a suitable home-
omorphic transformation of M). Define the perceptual
space R as

R ¼ M� ð0; 1ÞDð0; 1Þnþ1;

with the conventional Lebesgue sigma-algebra S on it.
Denote the elements of R by p ¼ ðp0; pnþ1Þ; with p0 ¼
ðp1;y; pnÞ: Note that p0 may or may not belong to the
set MDð0; 1Þn:
For any p0AM; q0AM; define sðp0; q0Þ as the square

region

sðp0; q0Þ ¼ ð0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðp0; q0Þ

p
Þ � ð0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðp0; q0Þ

p
Þ;

and choose the decision area SDR2Dð0; 1Þ2nþ2 to be

S ¼ fðp; qÞ: p0AM; q0AM; ðpnþ1; qnþ1ÞAsðp0; q0Þg:

(In this construction sðp0; q0Þ could be replaced with any
other subset of ð0; 1Þ2 whose Lebesgue measure is
cðp0; q0Þ:)
Put SA ¼ SB ¼ S; the set of all Lebesgue-measurable

subsets. For rAS; define

AxðrÞ ¼
Z
pAr

aðp; xÞ dp; ByðrÞ ¼
Z
qAr

aðq; yÞ dq;

with the (generalized) density functions a and b defined
as

aðp; xÞ ¼ dðp0 � xÞ; bðq; yÞ ¼ dðq0 � yÞ;

where d is the (multivariate) Dirac delta function. AxðrÞ
is a legitimate probability measure on S; because
aðp; xÞX0; and

Z
pAR

aðp; xÞ dp

¼
Z
p0AM

Z 1

0

dðp0 � xÞ dpnþ1 dp0

¼
Z
p0AM

dðp0 � xÞ
Z 1

0

dpnþ1
� �

dp0 ¼ 1;
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analogously for ByðrÞ: Then
ABxyðSÞ

¼
Z
ðp;qÞAS

aðp; xÞbðq; yÞ dp dq

¼
Z
p0AM

Z
q0AM

Z
ðpnþ1;qnþ1ÞAsðp0;q0Þ

dðp0 � xÞ

� dðq0 � yÞ dqnþ1 dpnþ1 dq0 dp0

¼
Z
p0AM

Z
q0AM

dðp0 � xÞdðq0 � yÞ

�
Z
ðpnþ1;qnþ1ÞAsðp0;q0Þ

dqnþ1 dpnþ1
 !

dq0 dp0

¼
Z
p0AM

Z
q0AM

dðp0 � xÞdðq0 � yÞcðp0; q0Þ dq0 dp0

¼ cðx; yÞ:
This completes the construction of a Thurstonian-type
representation for cðx; yÞ: &

Remark 5.1. To generalize the concluding part of the
discussion that precedes the theorem, once a Thursto-
nian-type representation for cðx; yÞ is constructed, one
can construct another representation by (a) replacing R
with R� ¼ FðRÞ; where F is any one-to-one transforma-
tion, (b) defining the sigma-algebra S� on R� by the rule
‘‘rAS� if and only if F�1ðrÞAS’’ (which makes F a
measurable mapping), (c) putting A�

xðrÞ ¼ Ax½F�1ðrÞ�;
B�
yðrÞ ¼ By½F�1ðrÞ�; and (d) defining S�DR� �R� by

the rule ‘‘ðp; qÞAS� if and only if ðF�1ð pÞ;F�1ðqÞÞAS’’.
Then, obviously, A�B�

xyðS�Þ ¼ ABxyðSÞ ¼ cðx; yÞ:

It must be emphasized that the sole purpose of this
theorem is to show that some Thurstonian-type repre-
sentation exists for every imaginable discrimination
probability function. It is hardly worth mentioning that
the construction described in the theorem (or any of its
modifications mentioned in Remark 5.1) is of no interest
to a model-builder: the probability measures Ax and By

used in the proof are singular, concentrated on sets of
measure zero, and the decision rule is void of any
interpretability. An adherent of the idea that stimuli are
mapped into random variables is likely to think of more
regular, ‘‘better behaved’’ random variables, like multi-
variate or univariate normal distributions, combined
with some easily interpretable decision rule, such as the
distance-based or category-based rules mentioned at the
end of Section 4 (Dai, Versfeld, & Green, 1996; Ennis,
1992; Ennis et al., 1988; Luce & Galanter, 1963; Sorkin,
1962; Suppes & Zinnes, 1963; Thomas, 1996, 1999;
Zinnes & MacKey, 1983).
Unfortunately for this line of modeling, it is doomed

to fail. As shown in this paper, even if decision rules are
not constrained to be reasonable or interpretable, no
realistic discrimination probability function can be

accounted for by sufficiently ‘‘nice’’ distributions with
parameters sufficiently ‘‘nicely’’ dependent on stimuli.

Remark 5.2. In relation to the notion of well-behaved
Thurstonian-type representations (to be defined in
Section 7), it is useful to observe just in what respect
the distribution constructed in Theorem 5.1 fails to be
‘‘nice’’. For every random variable in R one can choose
a measurable subset r of R and ask with what
probability AxðrÞ the random variable falls in this
subset. With R and AxðrÞ defined as in Theorem 5.1,
choose

r0 ¼ fp ¼ ðp0; pnþ1Þ: p0 ¼ ðp10;y; pn0Þ; pnþ1Að0; 1Þg:
Then Axðr0Þ ¼ 0 for any xaðp10;y; pn0Þ; but the value of
AxðrÞ ‘‘jumps’’ to 1 as soon as x ¼ ðp10;y; pn0Þ: This
violates the main intuition behind the notion of well-
behavedness, which is that for any r the value of AxðrÞ
must change with x continuously.

6. Patches of discrimination probabilities

Here, I introduce a local parametrization of stimuli
that greatly simplifies the development by replacing in
all subsequent arguments the n-component stimuli x ¼
ðx1;y; xnÞ; y ¼ ðy1;y; ynÞ with certain unidimensional
representations thereof, denoted x; y:
This local parametrization is achieved by choosing a

particular stimulus sAMDRen; a nonzero direction of
change uARen (a stimulus–direction combination ðs; uÞ
is traditionally called a line element), and considering
values of x varying within an arbitrarily small vicinity of
s along the direction u;

x ¼ sþ ux; xA½�a; a�; a40:

Recall that M is open, because of which one can always
find a sufficiently small a (generally depending on s; u)
such that x ¼ sþ ux belongs to M for all xA½�a; a�:
Clearly, for a fixed line element ðs; uÞ the value of x is
uniquely encoded by x: Since we are interested in an
arbitrarily small vicinity of s; the precise value of a is
never the issue: it can be made as small as one wishes.
Let now h be a fixed homeomorphism M-M: Then,

for any yA½�a; a�; the value y ¼ hðsþ uyÞ is uniquely
encoded by y: As y varies within ½�a; a�; the values of y
form a segment of a continuous curve lying within M:
The set

fðx; yÞ: x ¼ sþ ux; y ¼ hðsþ uyÞ; ðx; yÞA½�a; a�2g
then belongs to M2; that is, consists of stimulus pairs.
Once the line element ðs; uÞ and the homeomorphism h

are fixed, all stimulus pairs within this set are uniquely
parametrized by ðx; yÞA½�a; a�2: In particular, any two
corresponding stimuli x and y ¼ hðxÞ are encoded by
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equal local coordinates �apx ¼ ypa; and the ‘‘cen-
tral’’ pair ðs; hðsÞÞ is represented by x ¼ y ¼ 0:

Remark 6.1. Anticipating the material of Section 9
(although sufficiently prompted by the discussion in
Section 3), the homeomorphism h that we are interested
in is the one that relates x to its PSE y ¼ hðxÞ: At such
pairs of stimuli the functions x-cðx; yÞ and y-cðx; yÞ
reach their minima,

hðxÞ ¼ arg min
y

cðx; yÞ; h�1ðyÞ ¼ arg min
x

cðx; yÞ:

The local parametrization being constructed, therefore,
focuses one’s attention on the stimulus values varying in
arbitrarily small vicinities of the minima of cðx; yÞ: For
now, however (until Section 10), this interpretation of h
is not essential, and h can be taken as an arbitrary fixed
homeomorphism.

The function

cðs;uÞðx; yÞ ¼ cðsþ ux; hðsþ uyÞÞ ð5Þ
defined on ðx; yÞA½�a; a�2 is called a patch of the
discrimination probability function cðx; yÞ at the line
element ðs; uÞ: For a fixed ðs; uÞ; it is convenient to drop
the index in (5) and to simply speak of a patch cðx; yÞ;
omitting or mentioning ðs; uÞ and the patch domain
½�a; a�2 as needed. The homeomorphism h is assumed to
be fixed throughout and need not be mentioned at all.
For any patch cðx; yÞ of cðx; yÞ taken at some line

element ðs; uÞ; one can rewrite Ax; By; ABxy as Axð pÞ;
ByðqÞ; ABxy; to present the basic relationship (2) as

cðx; yÞ ¼ ABxyðSÞ ¼
Z
qAR

Ax½aðqÞ� dByðqÞ

¼
Z
pAR

By½bð pÞ� dAxð pÞ; ð6Þ

where ðp; qÞAR2; ðx; yÞA½�a; a�2: Recall, from Section 4,
that the functions q-Ax½aðqÞ� and p-By½bð pÞ� are,
respectively, B-measurable and A-measurable.
It is important to observe that representation (2) may

fail to hold for cðx; yÞ even if (6) holds for all possible
patches cðx; yÞ: For one thing, the stimulus spaceM and
the homeomorphism h may very well be such that some
stimulus pairs ðx; yÞ will not be covered by any of the
patches. Also, it is possible that the perceptual space R;
probability measures Axð pÞ; ByðqÞ; and a decision area
S satisfying (6) can be found for any patch cðx; yÞ;
taken separately, but cannot be combined into a single
Thurstonian-type representation across all the patches
(this will happen whenever, say, Axð pÞ is different on the
common part of two overlapping patches). This is the
reason why Theorem 5.1, asserting the existence of a
Thurstonian-type representation, has to be proved for
the entire discrimination probability function cðx; yÞ
rather than for its arbitrary patch cðx; yÞ:

At the same time, representation (2) holds only if (6)
holds for all possible patches cðx; yÞ of cðx; yÞ:
Equivalently put, if (6) does not hold for a single patch
cðx; yÞ; then (2) does not hold for cðx; yÞ: Therefore to
prove that cðx; yÞ subject to the regular minimality and
nonconstant self-similarity constraints (discussed in
Section 3 and defined in Section 9) cannot have a
‘‘well-behaved’’ Thurstonian-type representation (de-
fined in the next section), it is sufficient to show that
there is at least one patch cðx; yÞ of this cðx; yÞ that
does not have a ‘‘well-behaved’’ Thurstonian-type
representation. In fact, the development to follow shows
this to be true for any ‘‘typical’’ patch cðx; yÞ (as defined
in Section 9).

7. Well-behavedness

Having fixed a line element ðs; uÞ; consider a
probabilistic measure

AxðpÞ ¼ Pr½PðxÞAp�;

with x varying, in accordance with the ‘‘patch-wise’’
view just introduced, within an interval ½�a; a� that can
be made arbitrarily small.
A natural intuition for the ‘‘well-behavedness’’ of

AxðpÞ is that, for any fixed event ð¼ measurable setÞ p;
its probability AxðpÞ must change ‘‘sufficiently
smoothly’’ in response to transitions x-xþ dx within
a very small ½�a; a�: In the definition below this intuition
is translated into the existence of unilateral derivatives
@

@xþAxðpÞ and @
@x�AxðpÞ: In practice, we almost always

translate the idea of ‘‘sufficient smoothness’’ into
piecewise continuous differentiability (i.e., continuous
differentiability with a countable number of isolated
exceptions). Thus, a freehand drawing of a continuous
curve, however ‘‘jittery’’, is always parametrically
representable by a pair of piecewise continuously
differentiable functions. It seems that all continuous
functions of applied mathematics are piecewise con-
tinuously differentiable. The requirement of unilateral
differentiability adopted in this paper is even less
stringent. In accordance with Lemma A.1, for any
given p; the set of points xA½�a; a� where @

@xþAxðpÞa
@

@x�AxðpÞ is at most denumerable (i.e., empty, finite, or
countably infinite), but it need not be a set of isolated
points. Outside this countable set, AxðpÞ is differentiable
on ½�a; a� in the conventional sense, but its derivative is
not required to be continuous.
The unilateral differentiability of AxðpÞ prevents the

latter from ‘‘jumping’’ in response to x-xþ dx: One’s
intuition of well-behavedness, however, requires, in
addition, that AxðpÞ may not come arbitrarily close to
‘‘jumping’’: AxðpÞ is not well-behaved if, for any
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½�a; a�; however small,
AxðpÞ � Ax0 ðpÞ

x� x0

����
����

can be made arbitrarily large by an appropriate choice
of p and of two distinct x; x0 within ½�a; a�: This means
that a well-behaved AxðpÞ should satisfy the Lipschitz

condition:

Ax0 ðpÞ � AxðpÞ
x0 � x

����
����oconst

for some choice of a and all x; x0A½�a; a�; pASA: By a
standard calculus argument, if AxðpÞ is unilaterally
differentiable, the Lipschitz condition is equivalent to
the boundedness of the unilateral derivatives:

@

@x7
AxðpÞ

����
����oconst

for all xA½�a; a� and pASA:
It is important to note that, by Lemma A.2, the

Lipschitz condition implies that the unilateral deriva-
tives @

@x7AxðpÞ exist (and are then necessarily bounded)
at all points of ½�a; a�; except, perhaps, on a set of
measure zero. The intuition of ‘‘sufficient smoothness’’
therefore can also be presented as an additional
regularization of the Lipschitz condition, the require-
ment that the exceptional sets of measure zero be empty
for all pASA:

Definition 7.1. A probabilistic measure AxðpÞ; pASA;
xA½�a; a�; is well-behaved if the left- and right-hand
derivatives

D7
A ðp; xÞ ¼ @AxðpÞ

@x7

exist and are bounded on SA � ½�a; a�; that is,
jD7

A ðp; xÞjpcoN:

The well-behavedness of ByðqÞ; qASB; yA½�a; a�; is
defined analogously, with the derivatives denoted as
D7

B ðq; yÞ:
A Thurstonian-type representation fR;Ax;By;Sg for

a patch cðx; yÞ; ðx; yÞA½�a; a�2; is well-behaved if AxðpÞ
and ByðqÞ are well-behaved.

Remark 7.1. As shown in Section 11, this definition can
be significantly relaxed without affecting the results. In
view of this generalization, the notion just defined can
be called the ‘‘well-behavedness in the narrow (or
absolute) sense’’.

Remark 7.2. The existence of left-hand (right-hand)
derivatives at �a (respectively, a) is not a problem, as a
can always be made smaller than any previously chosen
value.

Remark 7.3. Clearly, AxðpÞ and ByðqÞ are continuous in
x and y (in fact, uniformly continuous, since ½�a; a� is
closed).

Remark 7.4. The local parametrization ðx; yÞ as intro-
duced in Section 6 depends, for any given correspon-
dence function h; on the global parametrization M of
the stimulus space. As the well-behavedness involves
differentiation, it will not be preserved under all
allowable (homeomorphic) transformation of M: The
requirement that a Thurstonian-type representation be
well-behaved, therefore, should be taken as applying to
some parametrization M rather than to all of them.
Clearly, if a Thurstonian-type model fails to account for
a single patch cðx; yÞ within a particular choice of M; it
fails to account for the discrimination probability
function cðx; yÞ defined on any allowable choice of M:

Most ‘‘textbook’’ distributions (normal, Weibull,
gamma, etc.), univariate or multivariate, with their
parameters depending on x in a piecewise continuously
differentiable fashion (most likely candidates for Thur-
stonian-type models designed to fit empirical data) can
be shown to be well-behaved in the sense of Definition
7.1. In most such cases (including the simple examples
given in Section 3) one can show that the density of the
random variable in question is right- and left-differenti-
able with respect to x at any point ofRDRem ðmX1Þ: It
is easy to prove (see Lemma A.4) that if a measure AxðpÞ
has a density aðp; xÞ with respect to some sigma-finite
measure MðpÞ; and if @

@x7 aðp; xÞ exist and are domi-
nated by a function integrable on the entire space R;
then AxðpÞ is well-behaved in the sense of Definition 7.1.
(In view of the results arrived at below, this explains the
failure of the examples given in Section 3.) The
definition, however, also covers distributions whose
densities generally are not unilaterally differentiable in
x; due to having discontinuities of the first kind (finite
‘‘jumps’’) whose positions on R change with x (as, e.g.,
in a uniform distribution with stimulus-dependent
endpoints, or a shifted exponential distribution with
stimulus-dependent shift).
Plainly, if parameters of an otherwise ‘‘nice’’ distribu-

tion change as a function of x discontinuously, then the
value of AxðpÞ within some set p may ‘‘jump’’, which
would put it outside the class of well-behaved prob-
ability measures. Singular distributions whose support
changes with x (like the ones used in the proof of
Theorem 5.1) are, of course, outside the class of well-
behaved ones (see Remark 5.2).
As pointed out to me by A. Eremenko (personal

communication, 2001), there exist absolutely continuous
probability measures whose parameters change
smoothly but that are not well-behaved in the sense of
Definition 7.1. These can be found among distributions
whose densities have discontinuities of the second kind
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(infinite ‘‘jumps’’) and the position of these singularities
in the space R changes as a function of x: As an
example, taking R ¼ Re; the density

aðp; xÞ ¼
1

2
ffiffiffiffiffiffiffi
p�x

p if xoppxþ 1;

0 if otherwise;

(
xA½�a; a�

has a second-kind discontinuity at p ¼ x: Choosing, say,
p ¼ ð�a

2
; a
2
Þ; one observes that

@

@x�Aðp; xÞ
����
x¼�a

2

¼ N;
@

@x�Aðp; xÞ
����
x¼a

2

¼ �N;

which contradicts Definition 7.1.

8. Near-smoothness theorem

The theorem presented in this section shows that a
patch cðx; yÞ generated by a well-behaved Thurstonian-
type model possesses a certain smoothness property, a
weak analog of componentwise continuous differentia-
bility. For the lack of a better term, I call this property
near-smoothness.

Definition 8.1. A patch cðx; yÞ; �apx; ypa; is called
near-smooth if it is both right- and left-differentiable in
both x and y; with @

@x7cðx; yÞ being continuous in y and
@

@y7 cðx; yÞ being continuous in x:

All smooth (continuously differentiable) functions are
near-smooth. Simple examples of non-smooth but near-
smooth functions are jxj þ jyj; jxyj; 1� exp½�ðjxj �
jyjÞ2�; etc. ð�apx; ypaÞ: A simple example of a
unilaterally differentiable but not near-smooth function
is jx� yj: Clearly, a near-smooth cðx; yÞ is component-
wise continuous.

Theorem 8.1. A patch cðx; yÞ that has a well-behaved

Thurstonian-type representation is near-smooth.

Proof. We prove that the derivatives @
@y7cðx; yÞ exist

and are continuous in x: The proof that @
@x7cðx; yÞ exist

and are continuous in y is obtained by symmetrical
argument.

Existence: By (6),

cðx; yÞ ¼ ABxyðSÞ ¼
Z
pAR

By½bð pÞ� dAxð pÞ:

To prove that @
@y7 cðx; yÞ exist, observe that bð pÞASB;

and, by Definition 7.1, @
@y7ByðbÞ ¼ D7

B ðb; yÞ are domi-
nated on SB � ½�a; a� by a constant c: Hence

jD7
B ½bð pÞ; y�jpc

on R� ½�a; a�: SinceZ
pAR

c dAxð pÞ ¼ coN;

we apply Lemma A.3 to obtain

@

@y7
cðx; yÞ ¼

Z
pAR

D7
B ½bð pÞ; y� dAxð pÞ:

Continuity: To prove that these derivatives are
continuous in x; observe first that being the limits of
the A-measurable functions

Bðbð pÞ; y7eÞ � Bðbð pÞ; yÞ
e

; e-0þ;

the functions p-D7
B ½bð pÞ; y� are A-measurable. Fix y;

and rewrite, for simplicity, D7
B ½bð pÞ; y� as bð pÞ: Since

bð pÞ is A-measurable and bounded, there is (see, e.g.,
Hewitt & Stromberg, 1965, pp. 172–173) a sequence of
A-measurable simple functions

jið pÞ ¼
Xni
j¼1

bijwpij ð pÞ;

with wpij being characteristic functions of pairwise
disjoint A-measurable sets pij; such that jið pÞ converges
to bð pÞ uniformly. This means that there is a function
nðeÞ such that

bð pÞ � epjið pÞpbð pÞ þ e

for all i4nðeÞ: But then, for any xA½�a; a�;Z
pAR

½bð pÞ � e� dAxð pÞp
Z
pAR

jið pÞ dAxð pÞ

p
Z
pAR

½bð pÞ � e� dAxð pÞ;

which is equivalent toZ
pAR

bð pÞ dAxð pÞ � ep
Z
pAR

jið pÞ dAxð pÞ

p
Z
pAR

bð pÞ dAxð pÞ þ e:

By the construction logic of Lebesgue integrals,Z
pAR

bð pÞ dAxð pÞ ¼ lim
i-N

Z
pAR

jið pÞ dAxð pÞ;

and the inequalities above indicate that this convergence
is uniform on xA½�a; a�: Now,Z
pAR

jið pÞ dAxð pÞ ¼
Xni
j¼1

Z
pAR

bijwpij ð pÞ dAxð pÞ

¼
Xni
j¼1

bijAxðpijÞ;

which is continuous in x; because so is AxðpÞ for any A-
measurable p: The limit of uniformly converging
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continuous functions being continuous, we have proved
that @

@y7 cðx; yÞ are continuous in x: &

Remark 8.1. The significance of this theorem is in its
obvious consequence: if a patch cðx; yÞ of a discrimina-
tion probability function cðx; yÞ at some ðs; uÞ is found
not to be near-smooth, then one knows that cðx; yÞ
cannot be represented by any well-behaved Thursto-
nian-type model.

As shown below, there are compelling reasons to
believe that ‘‘typical’’ patches of discrimination prob-
ability functions cannot be near-smooth.

9. Regular minimality and nonconstant self-similarity

In relation to unidimensional stimulus continua the
two concepts in the title of this section are discussed in
Section 3. In a general form they have been studied in
Dzhafarov (2002d; for a brief summary see also
Dzhafarov, 2001b) in the context of multidimensional
Fechnerian scaling (Dzhafarov, 2002a,b,c; Dzhafarov &
Colonius, 1999, 2001). This theory is not invoked in the
present paper, except for some basic considerations
related to (a weakened version of) the so-called First

Assumption of multidimensional Fechnerian scaling.
The reader is referred to Dzhafarov (2002d) for details
of the theory and for a review of empirical evidence.
Here, I will merely assert that the properties of regular
minimality and nonconstant self-similarity seem to be
corroborated by all available empirical data on ‘‘same-
different’’ discrimination probabilities (Dzhafarov,
2002d; Indow, 1998; Indow, Robertson, von Grunau,
& Fielder, 1992; Krumhansl, 1978; Rothkopf, 1957;
Tversky, 1977; Zimmer & Colonius, 2000).

9.1. Regular minimality

Recall that stimuli x; y in cðx; yÞ are assumed to
belong to two distinct observation areas (spatial and/or
temporal intervals), and the values of x; y vary within an
open connected area MDRen ðnX1Þ:
It is part of the first assumption of multidimensional

Fechnerian scaling that:

(i) for every x; the function y-cðx; yÞ achieves its
global minimum at some value y ¼ hðxÞ; h being
continuous;

(ii) for every y; the function x-cðx; yÞ achieves its
global minimum at some value x ¼ gðyÞ; g being
continuous;

(iii) g � h�1:

We say that cðx; yÞ possesses the regular minimality

property (or has regular minima) if this tripartite

assumption is satisfied. Due to the identity g � h�1;
both g and h are homeomorphisms M-M: In the
simplest case, of course, h and g are identity mappings
(i.e., cðx; yÞ achieves its minima at x ¼ y).

Remark 9.1.1. In multidimensional Fechnerian scaling
the functions h; g are assumed to be continuously
differentiable (hence diffeomorphisms). We do not need
this constraint in the present context.

As in the case of unidimensional stimuli, y ¼ hðxÞ in
(i) can be called the PSE (in the second observation area)
for x (belonging to the first observations area);
analogously, x ¼ gðyÞ is the PSE (in the first observation
area) for y (belonging to the second observations area).
The symmetry of this relationship can also be presented
as

arg min
y

cðx; yÞ ¼ hðxÞ
3 arg min

x
cðx; yÞ ¼ h�1ðyÞ; ð7Þ

for all x; y in M:
Recall now the construction of local coordinates ðx; yÞ

at a line element ðs; uÞ introduced in Section 6, and take
the correspondence homeomorphism h in that section to
coincide with the PSE function h in (7). Since PSE pairs
ðx; hðxÞÞ are encoded by equal local coordinates, x ¼ y;
relationship (7) implies that at any line element ðs; uÞ;
arg min

y
cðx; yÞ ¼ x; arg min

x
cðx; yÞ ¼ y;

or, equivalently,

cðx; xÞo cðx; yÞ
cðy; xÞ

(
; ð8Þ

for all �apxaypa: This can be called the regular
minimality condition for patches cðx; yÞ:

9.2. Nonconstant self-similarity

One says that cðx; yÞ possesses the constant self-

similarity property if cðx; hðxÞÞ does not depend on x;

cðx; hðxÞÞ � const:

It is a well-documented fact that ‘‘same-different’’
discrimination probabilities do not generally have this
property (Dzhafarov, 2002d; Indow, 1998; Indow et al.,
1992; Krumhansl, 1978; Rothkopf, 1957; Zimmer &
Colonius, 2000). Our second assumption about cðx; yÞ
is therefore that it is subject to nonconstant self-

similarity:

cðx; hðxÞÞcconst: ð9Þ
The nonconstancy of cðx; hðxÞÞ implies that at least at

some line element ðs; uÞ the value of cðsþ ux; hðsþ uxÞÞ
changes with x in the vicinity of x ¼ 0: Switching to the
patch-wise view, this means that at least at some line
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elements ðs; uÞ;
cðx; xÞcconst ð10Þ

on any interval �apxpa: A moment’s reflection shows
that if this was not true, that is, if for any ðs; uÞ one
could find an interval �apxpa on which cðx; xÞ was
constant, then cðx; hðxÞÞ would be forced to be constant
throughout.
I refer to patches cðx; yÞ for which (10) holds true as

typical patches and to the line elements ðs; uÞ at which
the patches are typical as typical line elements. Note that
(8) holds for all patches and at all line elements,
including the typical ones. Thus, a typical patch is
subject to both regular minimality and nonconstant self-
similarity.

10. ‘‘Non-near-smoothness’’ theorem

Recall Definition 8.1 of a near-smooth patch cðx; yÞ
and the obvious fact that near-smoothness implies
componentwise continuity. For the theorem below we
also need the (perhaps slightly less obvious) fact that if
cðx; yÞ is near-smooth, then the function cðx; xÞ is
continuous in x (Lemma A.5).

Theorem 10.1. Let a discrimination probability function

cðx; yÞ be subject to both the regular minimality and

nonconstant self-similarity constraints. Then a typical

patch cðx; yÞ of this function cannot be near-smooth.

Remark 10.1. What the theorem says is that if cðx; yÞ
satisfies both (8) and (10), then it cannot be right- and
left-differentiable in x and y; with @

@x7 cðx; yÞ contin-
uous in y and @

@y7 cðx; yÞ continuous in x:

Remark 10.2. Following standard conventions,
@

@x7 cðu; yÞ in the proof below stands for @=@x7
cðx; yÞjx¼u;

@
@x7 cðu; uÞ for @=@x7cðx; uÞjx¼u; etc.

Proof. Assume the contrary, and let a patch cðx; yÞ be
both typical and near-smooth on some ½�a; a�: Let

U ¼ uAð�a; aÞ: @

@xþ cðu; uÞa @

@x� cðu; uÞ
� �

:

We show first that this set is at most denumerable (i.e.,
empty, finite, or countably infinite). Since
@

@xþ cðu; yÞ; @
@x� cðu; yÞ are continuous in y; for any

uAU there is an interval Iu ¼ ðu� du; uþ duÞDð�a; aÞ
such that @

@xþ cðu; yÞa @
@x� cðu; yÞ for all yAIu: Consider

the set Q of all rationals in ð�a; aÞ: For every rAQ; let

Br ¼ fuAU: rAIug:

Then

U ¼
[
rAQ

Br;

because every Br is a subset of U; and every uAU
belongs to some Br; for one can find a rational point
within any interval Iu ¼ ðu� du; uþ duÞ: Since Br is a
subset of all x such that @

@xþ cðx; rÞa @
@x� cðx; rÞ; we

know from Lemma A.1 that Br is at most denumerable.
Then, Q being denumerable, U ¼ SrAQ Br is also at
most denumerable. Analogously we show that the set

U0 ¼ uAð�a; aÞ: @

@yþ cðu; uÞa @

@y� cðu; uÞ
� �

is at most denumerable.
Choose now any ueU,U0: Since cðx; yÞ is differenti-

able in both x and y at x ¼ y ¼ u; and since, due to the
near-smoothness of cðx; yÞ; @

@y cðx; uÞ is continuous in x

on xA½�a; a�; we invoke Lemma A.6 to obtain

d

du
cðu; uÞ ¼ @

@x
cðu; uÞ þ @

@y
cðu; uÞ:

But, in view of (8), the two partials equal zero as they
are the derivatives of functions x-cðx; uÞ and
y-cðu; yÞ taken at their minima. Hence

d

du
cðu; uÞ ¼ 0:

By Lemma A.5 cðu; uÞ is continuous, and as its
derivative is zero everywhere except on an at most
denumerable set, cðu; uÞ � const by Lemma A.7. This
contradicts the assumption that cðx; yÞ; being a typical
patch, satisfies (10). &

The obvious consequence of this theorem is that if one
views regular minimality and nonconstant self-similarity
as basic properties of discrimination probability func-
tions, any model predicting that these functions have
near-smooth patches should be rejected. On recalling
Theorem 8.1 and the subsequent Remark 8.1, we come
to the following conclusion (recall the definitions of a
typical patch and a typical line element given at the end
of Section 9).

Main conclusion. A typical patch cðx; yÞ; satisfying the

regular minimality and nonconstant self-similarity condi-

tions (8) and (10), does not have a well-behaved

Thurstonian-type representation. As a result, no discrimi-

nation probability function cðx; yÞ with regular minima

and nonconstant self-similarity allows for a Thurstonian-

type representation well-behaved at any of the typical line

elements ðs; uÞ:
To rephrase, assume that a discrimination probability

function cðx; yÞ is generated by a well-behaved Thur-
stonian-type model. Then
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(a) if the minima of x-cðx; yÞ or y-cðx; yÞ are
generally different for different x (respectively, y),
then cðx; yÞ cannot satisfy the regular minimality
principle: there will have to exist pairs ðx0; y0Þ such
that even though x0-cðx0; yÞ achieves its mini-
mum at y0; the function y0-cðx0; yÞ does not
achieve its minimum at x0 (or vice versa);

(b) if cðx; yÞ satisfies the regular minimality principle,
then the minima of all x-cðx; yÞ and y-cðx; yÞ
will all have to be on one and the same level.

11. ‘‘Relativization’’ of well-behavedness

Definition 7.1 is both intuitive and sufficiently broad
to incorporate realistically conceivable Thurstonian-
type models. As it turns out, however, its scope can be
significantly broadened while preserving the essential
logic of the proof of Theorem 8.1.
The well-behavedness in Definition 7.1 can be called

‘‘absolute’’, in the following sense.

1. The well-behavedness of the two measures AxðpÞ and
ByðqÞ in Definition 7.1 does not depend on the
structure of the decision area S: If AxðpÞ and ByðqÞ
are well-behaved, then they are well-behaved for any
AB-measurable area S:

2. The well-behavedness of either of the two measures
AxðpÞ and ByðqÞ in Definition 7.1 does not depend on
the other. If AxðpÞ is well-behaved, then it is well-
behaved in combination with any probability mea-
sure ByðqÞ; and vice versa.

Consider the issue of the decision area first. For a
well-behaved measure AxðpÞ in Definition 7.1, the
right- and left-hand derivatives D7

A ðp; xÞ exist on
any A-measurable set p; and they are dominated
by a constant c across all such sets (constituting SA).
In view of the proof of Theorem 8.1, however,
this requirement is excessively stringent. A sigma-
algebra SA is typically a very large set of subsets of R;
some of which may have complex and peculiar
structures. In the proof of Theorem 8.1, however,
the existence and boundedness of the derivatives
D7

A ðp; xÞ is only applied to those subsets p that are q-
sections of the decision area S (as defined in (3), Section
4). For most reasonably constructed decision rules these
sections have a relatively simple, often very simple,
structure.
Thus, assuming for simplicity R ¼ Re; the sigma-

algebra of Lebesgue-measurable subsets of Re is a huge
class whose cardinality equals that of all subsets of Re:
It includes subsets of complex structure, those that
cannot be presented as unions of denumerably many
intervals. At the same time, in a distance-based decision

rule,

S ¼ fð p; qÞARe2: j p� qj4eg;
all q-sections have the simple structure

p ¼ ð�N; q� eÞ,ðqþ e;NÞ:
As a result, if a probability measure AxðpÞ is such that
its derivatives D7

A ðp; xÞ exist and are bounded on
intervals of this type, the proof of Theorem 8.1 will be
valid, even if outside the class of such intervals the
derivatives fail to exist or be bounded. With a category-
based decision rule,

S ¼ Re2 � fð p; qÞARe2: aipp; qpaiþ1; i ¼ 0;y; kg
(with the ai-points partitioning Re into successive
adjacent intervals, a0 ¼ �N; akþ1 ¼ N), the situation
is even simpler. The q-sections here consist of only k þ 1
distinct unions ð�N; aiÞ,ðaiþ1;NÞ; and the properties
of D7

A ðp; xÞ need not be posited outside this finite class
of subsets.
These considerations lead us to the following general-

ization of Definition 7.1.

Definition 11.1. Let OA ¼ faðqÞgqAR; OB ¼ fbð pÞgpAR
be the sets of, respectively, q-sections and p-sections of a
decision area S: A probabilistic measure AxðpÞ; pASA;
xA½�a; a�; is well-behaved with respect to S if the left-
and right-hand derivatives

D7
A ðp; xÞ ¼ @AxðpÞ

@x7

exist and are bounded on OA � ½�a; a�:
Well-behavedness of ByðqÞ; qASB; yA½�a; a�; with

respect to S is defined analogously, with its unilateral
derivatives existing and being bounded on OB � ½�a; a�:
A Thurstonian-type representation fR;Ax;By;Sg for

a patch cðx; yÞ; ðx; yÞA½�a; a�2; is well-behaved with

respect to S if AxðpÞ and ByðqÞ are well-behaved with
respect to S:

Consider now the issue of relating the measures Ax

and By to each other. Inspection of the proof of
Theorem 8.1 shows that the boundedness of, say,
D7

B ðq; yÞ is utilized twice: the first time to conclude that

@

@y7
cðx; yÞ ¼

Z
pAR

D7
B ½bð pÞ; y� dAxð pÞ;

and the second time to be able to form a sequence of
simple functions jið pÞ uniformly converging to
p-D7

B ½bð pÞ; y�; at a fixed value of y: The latter step,
however, only requires that p-D7

B ðb; yÞ be bounded on
OA for every given value of yA½�a; a�; which is a weaker
requirement than being bounded on OA � ½�a; a�: The
validity of the first step, on the other hand, does not
require any boundedness at all, provided D7

B ½bð pÞ; y� is
dominated by some functions gð pÞ integrable with
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respect to measure Ax: These considerations lead us to a
further generalization.

Definition 11.2. Given a Thurstonian-type representa-
tion fR;Ax;By;Sg for a patch cðx; yÞ; ðx; yÞA½�a; a�2;
let OA;OB be as in Definition 11.1. The probability
measure AxðpÞ; pASA; xA½�a; a�; is well-behaved with

respect to ðS;ByÞ if

(i) for all ðp; xÞAOA � ½�a; a�; there exist
D7

A ðp; xÞ ¼ @AxðpÞ
@x7

;

(ii) for some function cðxÞX0 and for all pAOA;

jD7
A ðp; xÞjpcðxÞ;

(iii) for some function gðpÞ; pAOA; and for all
ðp; xÞAOA � ½�a; a�
jD7

A ðp; xÞjpgðpÞ;
Z
qAR

gðaðqÞÞ dByðqÞoN;

The well-behavedness of ByðqÞ; qASB; yA½�a; a�;
with respect to ðS;AxÞ is defined in a symmetrical
fashion.
A Thurstonian-type representation fR;Ax;By;Sg for

a patch cðx; yÞ; ðx; yÞA½�a; a�2; is well-behaved in the

relative (or broad) sense if AxðpÞ is well-behaved with
respect to ðS;ByÞ and ByðqÞ is well-behaved with respect
to ðS;AxÞ:

Plainly, absolute well-behavedness implies well-be-
havedness with respect to a decision area, which in turn
implies well-behavedness in the relative sense.
The analysis of Theorem 8.1 makes it clear that the

main conclusion of this paper, formulated at the end of
Section 10, holds good if the well-behavedness in it is
understood in the relative sense.

12. Conclusion

This is what we know about ‘‘same-different’’
discrimination probabilities and their Thurstonian-type
representations.

1. Discrimination probability functions cðx; yÞ possess
two fundamental properties: regular minimality and
nonconstant self-similarity. As argued in Dzhafarov
(2002d), regular minimality is a fundamental con-
straint whose violation seems quite implausible and
which is corroborated by available empirical evi-
dence; nonconstant self-similarity is a well-documen-
ted empirical fact.

2. If one imposes no constraints on the random
variables representing stimuli, admitting, in particu-
lar, singular probability measures (concentrated on
sets of measure zero), any discrimination probability
function cðx; yÞ has a Thurstonian-type representa-
tion with independent perceptual images and a
deterministic decision rule. This applies, of course,
to cðx; yÞ with regular minima and nonconstant self-
similarity.

3. All existing and, one could claim, realistically
conceivable Thurstonian-type models designed to fit
empirical data utilize random images whose change
in response to changing stimuli exhibits certain
regularity features. One such feature, used in this
paper to construct the definition of well-behavedness,
is that the probabilities with which a random image
falls in various areas of the perceptual space have
right-hand and left-hand bounded derivatives with
respect to (a certain parametric representation of)
stimuli.

4. It turns out that cðx; yÞ with regular minima and
nonconstant self-similarity cannot be generated by
Thurstonian-type representations that are well-be-
haved in this sense.

One might wonder whether the latter result might be
due to the use of stochastically independent images, or
deterministic decision rules (or both) rather than due to
the well-behavedness of the probability measures as
such. This issue is taken up in the companion paper
(Dzhafarov, 2003), and it turns out that the introduction
of stochastic decisions and interdependent (but selec-
tively attributed to stimuli) random images does not
alter the result in question.
It appears that insofar as one wishes to apply

Thurstonian-type representations to ‘‘same-different’’
probabilities defined on continuous stimulus spaces, one
will have to abandon the time-honored modeling practices
of psychophysics (involving normal or other ‘‘nice’’
distributions) in favor of working with singular distribu-
tions, or distributions whose densities have prominent
singularities (see the end of Section 7). Alternatively, one
can abandon the idea of stochastic images representing
individual stimuli altogether, assuming instead that every
pair of stimuli presented for a comparison is mapped into
a single random variable (or process) interpretable as a
subjective image of the (dis)similarity between the two
stimuli (as, e.g., in the model by Takane & Sergent, 1983).
Finally, one can look for an appropriate rendering of the
idea of a deterministic dissimilarity function, imposed
directly on a stimulus space, such that the dissimilarity of
y from x is mapped into cðx; yÞ by a fixed monotonic
transformation (see Dzhafarov, 2002b). An example
demonstrating the latter approach is constructed in the
companion paper (Dzhafarov, 2003).
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Strictly speaking, all these conclusions and comments
apply to the ‘‘same-different’’ comparison para-
digm only. As shown in Section 3, well-behaved
Thurstonian-type models seem adequate for dealing
with ‘‘greater-less’’, preference judgments. In a
psychophysical context, however, where one is likely
to view random entities PðxÞ;QðyÞ as theoretical
descriptors of perceptual images, one may be
concerned with the fact that for one and the same
stimulus space these descriptors are adequate in
conjunction with one but not with another judgment
scheme.
Of the mathematical problems left open by the

development presented in this paper one can note
two. The first one relates to Theorem 5.1. The theorem
says that every conceivable discrimination probability
function cðx; yÞ admits a Thurstonian-type representa-
tion, and it proves this statement by using singular
distributions in a Euclidean unit cube. It remains
unknown whether this statement can also be proved
by using nonsingular distributions, whose supports
are sets of positive measure (not necessarily in a
Euclidean space with Lebesgue measure). At present
we only know that the class of Thurstonian-type
representations from which one can always choose
one for every conceivable cðx; yÞ cannot be confined
to well-behaved representations. This leads us to the
second problem. The main conclusion of this paper is
that well-behaved Thurstonian-type representations
cannot account for discrimination probability functions
subject to regular minimality and nonconstant self-
similarity. Well-behavedness, however (even in the
broadest, relative sense defined in Section 11), is only
a sufficient condition for this failure. A complete
characterization of the class of Thurstonian-type repre-
sentations that are incompatible with the conjunction of
regular minimality and nonconstant self-similarity
remains unknown.
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Appendix A. Auxiliary derivations and facts

Lemma A.1. If FðxÞ is both right- and left-differentiable

on ½a; b�; then it is differentiable on ½a; b�; except on at

most a denumerable set of points.

Proof. See, e.g., Hewitt & Stromberg (1965, p. 262), or
Bruckner (1978, p. 63). &

Lemma A.2. If

FðxÞ � Fðx0Þ
x� x0

����
����pc

for x; x0A½�a; a�; then d
dxþ FðxÞ and d

dx� FðxÞ exist almost

everywhere on ð�a; aÞ (and are bounded by c).

Proof. See Bruckner (1978, pp. 53, 65). &

Lemma A.3. Let

FðyÞ ¼
Z
pAR

f ðp; yÞ dMð pÞ; yA½�a; a�;

where M is a sigma-finite measure. Let y-f ðp; yÞ be both
right- and left-differentiable on ½�a; a�; with

@

@y7
f ðp; yÞ

����
����pgð pÞ;

Z
pAR

gð pÞ dMð pÞoN:

Then FðyÞ is both right- and left-differentiable (hence
continuous) on ½�a; a�; with
@

@y7
FðyÞ ¼

Z
pAR

d

dx7
f ðp; yÞ dMð pÞ:

Remark A.1. This is a standard theorem of abstract
analysis, given here only because it is usually formulated
for common rather than unilateral derivatives.

Proof. In the case of right-differentiability, for ½ y; yþ
d�C½�a; a�;
f ðp; yþ dÞ � f ðp; yÞ

d

����
����p sup

uA½�a;a�

@

@yþ f ðp; uÞ
� �

pgð pÞ

whence the proof obtains by applying the Lebesgue
Dominated Convergence theorem (e.g., Hewitt &
Stromberg, 1965, pp. 172–173) to

f ðp; yþ dÞ � f ðp; yÞ
d

-
@

@xþ f ðp; yÞ; as d-0þ :

The proof for left-differentiability is analogous. &

Lemma A.4. Let

AxðpÞ ¼
Z
pAp

aðp; xÞ dMð pÞ; pAS; xA½�a; a�;

where M is a sigma-finite measure on S: Let @
@x7 aðp;xÞ

exist at every pAR; and let, for some gð pÞ;
@

@x7
aðp; xÞ

����
����pgð pÞ;

Z
pAR

gð pÞ dMð pÞ ¼ coN:

Then @
@x7AxðpÞ exist and are bounded on S� ½�a; a�:
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Proof. Apply Lemma A.3 to obtain

@

@x7
AxðpÞ ¼

Z
pAp

@

@x7
aðp; xÞ dMð pÞ;

and observe thatZ
pAp

@

@x7
aðp; xÞ dMð pÞ

p
Z
pAp

@

@x7
aðp; xÞ

����
���� dMð pÞ

p
Z
pAR

@

@x7
aðp; xÞ

����
���� dMð pÞ

p
Z
pAR

gð pÞ dMð pÞ ¼ coN: &

Lemma A.5. If cðx; yÞ is near-smooth on ½�a; a�2; then
x-cðx; xÞ is continuous on ½�a; a�:

Proof. For d-0þ;

cðuþ d; uþ dÞ � cðu; uÞ
¼ ½cðuþ d; uþ dÞ � cðuþ d; uÞ�
þ ½cðuþ d; uÞ � cðu; uÞ�

¼ @

@yþ cðuþ d; uÞdþ @

@xþ cðu; uÞdþ ofdg-0;

because @
@yþ cðuþ d; uÞ- @

@yþ cðu; uÞ: Analogously for
d-0� : &

Lemma A.6. If cðx; yÞ is differentiable in both x and y at

some x ¼ y ¼ u; and if @
@y cðx; uÞ is continuous in x; then

d

du
cðu; uÞ ¼ @

@x
cðu; uÞ þ @

@y
cðu; uÞ:

Remark A.2. This is essentially a theorem of elementary
calculus, except that it is usually given under the
assumption of continuous differentiability in ðx; yÞ:

Proof. For d-0;

cðuþ d; uþ dÞ � cðu; uÞ
d

¼cðuþ d; uþ dÞ � cðuþ d; uÞ
d

þ cðuþ d; uÞ � cðu; uÞ
d

¼ @

@y
cðuþ d; uÞ

þ @

@x
cðu; uÞ þ of1g;

and @
@y cðuþ d; uÞ- @

@y cðu; uÞ: &

Lemma A.7. If FðxÞ is continuous and d
dx
FðxÞ ¼ 0

everywhere except on an at most denumerable set of

points, then FðxÞ � const:

Proof. See, e.g., Saks (1937, p. 275), or, for a more
general treatment, Bruckner (1978, p. 203). &
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