
Journal of Mathematical Psychology 47 (2003) 205–219

Thurstonian-type representations for ‘‘same-different’’
discriminations: Probabilistic decisions and interdependent images

Ehtibar N. Dzhafarov*

Department of Psychological Sciences, Purdue University, 703 Third Street, West Lafayette, IN 47907-2004, USA

Received 13 February 2002; revised 30 October 2002

Abstract

A general Thurstonian-type representation (with stochastically interdependent images and probabilistic decisions) for a ‘‘same-

different’’ discrimination probability function cðx; yÞ is a model in which the two stimuli x; y are mapped into two generally

interdependent random images PðxÞ and QðyÞ taking on their values in some ‘‘perceptual’’ space; and the realizations of these two

random images in a given trial determine the probability with which x and y in this trial are judged to be different. While

stochastically interdependent, PðxÞ and QðyÞ are selectively attributed to (influenced by), respectively, x and y; which is understood

as the possibility of conditioning PðxÞ and QðyÞ on some random variable R that renders them stochastically independent, with their

conditional distributions selectively depending on, respectively, x and y: A general Thurstonian-type representation is considered

‘‘well-behaved’’ if the conditional probability with which PðxÞ and QðyÞ; given a value of the conditioning random variable R; fall

within two given subsets of the perceptual space, possess appropriately defined bounded directional derivatives with respect to x and

y: It is shown that no such well-behaved Thurstonian-type representation can account for cðx; yÞ possessing two basic properties:

regular minimality and nonconstant self-similarity. At the same time, an alternative to Thurstonian-type modeling (a model

employing ‘‘uncertainty blobs’’ in stimulus spaces instead of random variables in perceptual spaces) is readily available that predicts

these two properties ‘‘automatically’’.

r 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

This paper deals with ‘‘same-different’’ discrimination
probabilities

cðx; yÞ ¼ Pr½y is discriminated from x�

and their Thurstonian-type representations (models), in
which stimuli x; y are mapped into random images
PðxÞ;QðyÞ taking on their values in a hypothetical
‘‘perceptual’’ space R: In a companion paper (Dzhafar-
ov, 2003) it is shown that if a discrimination
probability function cðx; yÞ possesses two basic
properties, regular minimality and nonconstant self-
similarity, then it cannot be accounted for by a well-
behaved Thurstonian-type model with deterministic
decisions and stochastically independent images. The
practical significance of this result lies in the fact that
the ‘‘well-behavedness’’ is a weak constraint unlikely

to be violated in any conceivable Thurstonian-type
representation constructed to fit empirical data.
In the present paper the notion of well-behavedness
and the main conclusion arrived at in Dzhafarov
(2003) are extended to Thurstonian-type models
with (generally) probabilistic decisions and (generally)
stochastically interdependent images.

For the convenience of reference, and to some extent
imitating Thurstone’s famous ‘‘cases’’ (Thurstone,
1927a,b), I introduce four ‘‘varieties’’ of Thurstonian-
type representations for discrimination probabilities, as
shown in the table below:

Thurstonian-type
representations

Independent
Images

Interdependent
Images

Deterministic de-
cisions

Deterministic-In-
dependent

Deterministic-In-
terdependent

Probabilistic de-
cisions

Probabilistic-In-
dependent

Probabilistic-In-
terdependent
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The four varieties are not mutually exclusive, rather we
have

with C informally standing for ‘‘is a special case of’’.
In the deterministic-decision varieties (Deterministic-

Independent and Deterministic-Interdependent) of
Thurstonian-type models, the response ‘‘x and y are
different’’ is chosen in a given trial if and only if the
realizations p; q of PðxÞ and QðyÞ in this trial fall within
a certain area SDR�R; called the ‘‘decision area’’.
This means that the ðp; qÞ-pairs within the area S evoke
the response ‘‘different’’ with probability 1, whereas the
ðp; qÞ-pairs outside this area evoke this response with
probability 0. In the probabilistic-decision varieties
(Probabilistic-Independent and Probabilistic-Interde-
pendent) this decision scheme is generalized: every
ðp; qÞ-pair is associated with a certain probability
sðp; qÞ of evoking the response ‘‘different’’.

In the independent-images varieties (Deterministic-
Independent and Probabilistic-Independent) of Thur-
stonian-type models, the images PðxÞ and QðyÞ of
stimuli x; y are stochastically independent and selectively

influenced by (or selectively attributed to) their respective
stimuli: that is, the distribution of PðxÞ does not depend
on y; while the distribution of QðyÞ does not depend on
x: In the interdependent-images varieties (Deterministic-
Interdependent and Probabilistic-Interdependent), PðxÞ
and QðyÞ are generally stochastically interdependent,
but the selective attribution of these random variables
to, respectively, x and y should still be preserved.

As pointed out in Dzhafarov (2003), this selective
attribution is taken as an inherent feature of any
Thurstonian-type model. Without it one would have
no justification for writing P ¼ PðxÞ and calling it an
image of x (rather than a response to the pair x; y). This
position leads to a non-trivial conceptual problem: how
should one understand the selectiveness in the influence of

x and y upon, respectively, PðxÞ and QðyÞ when the latter

are not stochastically independent? This problem is
considered in Dzhafarov (1999, 2001), but the approach
adopted in the present paper is based on the general
solution proposed in Dzhafarov (in press). The essence
of this solution, when applied to PðxÞ and QðyÞ; is that
one can find a random variable R (whose distribution
does not depend on x or y) such that the two random
variables PðxÞ and QðyÞ are conditionally independent
given any value of R; and the conditional distribution of
PðxÞ does not depend on y; while the conditional
distribution of QðyÞ does not depend on x:

Remark 1.1. As mentioned in Dzhafarov (2003), A.A.J.
Marley (pers. comm., 2002) pointed out that the term

‘‘Thurstonian-type representations’’ may have too nar-
row connotations to be appropriate for constructs as

general as those considered in the present work. His
tentative suggestion was to replace it with the term
‘‘random-image representations’’.

2. Plan of the paper and notation conventions

The development presented in this paper can be
summarized as follows:

1. Section 3 provides a recapitulation of the basic
notions introduced in Dzhafarov (2002c, 2003): the
properties of regular minimality and nonconstant
self-similarity, the notion of a patch of a discrimina-
tion probability function, the near-smoothness prop-
erty, and the well-behavedness of a Thurstonian-type
representation (of the Deterministic-Independent
variety). The section also presents the two main
results obtained in Dzhafarov (2003): that a patch
possessing the regular minimality and nonconstant
self-similarity properties cannot be near-smooth,
while the well-behavedness of a Thurstonian-type
representation for a patch implies its near-smooth-
ness.

2. In Section 4 the notion of well-behavedness (defined
in the same way as for the Deterministic-Independent
variety) is applied to Thurstonian-type models of the
Probabilistic-Independent variety, and it is shown
(Theorem 5.1) that these models imply the near-
smoothness property, because of which they cannot
account for ‘‘same-different’’ discrimination prob-
ability functions subject to the regular minimality and
nonconstant self-similarity constraints.

3. Section 6 describes the general approach to the
problem of selective influence under stochastic inter-
dependence adopted in this paper.

4. In Section 7 this approach is applied to Thurstonian-
type representations of the most general (Probabil-
istic-Interdependent) variety, allowing one to natu-
rally extend the notion of well-behavedness to such
models. It is shown then (Theorem 8.1) that even in
this, most general version, a well-behaved Thursto-
nian-type model predicts the near-smoothness prop-
erty, because of which it cannot account for a
discrimination probability function possessing the
properties of regular minimality and nonconstant
self-similarity.

Deterministic-Independent C
Deterministic-Interdependent

Probabilistic-Independent

(
CProbabilistic-Interdependent;

E.N. Dzhafarov / Journal of Mathematical Psychology 47 (2003) 205–219206



5. In Section 9 it is shown that the definition of well-
behavedness for Thurstonian-type representations of
the Probabilistic-Interdependent variety can be sig-
nificantly relaxed without affecting any of the results
obtained in this paper.

6. In the Conclusion, I briefly discuss the implications of
the inadequacy of the well-behaved Thurstonian-type
models for discrimination probabilities and outline a
certain alternative to such models (‘‘uncertainty
blobs’’ of stimuli).

7. The development is aided by an appendix containing
two lemmas labeled A.1 and A.2.

The notation conventions are the same as in the
companion paper.

Boldface lowercase letters ðx; y; u;yÞ denote real-
valued vectors; their components, if shown, are super-
scripted, e.g., x ¼ ðx1;y; xnÞ; u ¼ ðu1;y; unÞ:

Uppercase Gothic letters (R;C;U;B; etc.) denote sets,
lowercase Gothic letters (p; q; r;y) denote subsets of
the ‘‘perceptual space’’ R or the ‘‘conditioning space’’ C:

Uppercase Greek letters S and O denote sets of
subsets.

Lowercase and uppercase italics designate real-valued
quantities, except for letters P;Q; p; q that are reserved
to denote random images ðP;QÞ and their values ðp; qÞ;
and letters R; r reserved for, respectively, the condition-
ing random variable and its values.

3. Basic definitions and facts

Although this paper extends the results obtained in
Dzhafarov (2003), the development to follow is self-
contained, with all requisite definitions and facts stated
explicitly if not in detail.

3.1. Two basic properties of discrimination probabilities

Stimuli x and y in cðx; yÞ belong to an open connected

subset M of RenðnX1Þ: The pair ðx; yÞ is ordered, due to
the fact that x and y belong to two distinct observation
areas (spatial and/or temporal intervals).

It is assumed that for a certain homeomorphic
mapping h : M-M (one-to-one, onto, continuous
together with its inverse),

arg min
y

cðx; yÞ ¼ hðxÞ; arg min
x

cðx; yÞ ¼ h�1ðyÞ: ð1Þ

This is called the regular minimality property of cðx; yÞ:
One also says in this case that cðx; yÞ possesses regular

minima. This property is a weakened version of the so-
called First Assumption of multidimensional Fechnerian
scaling (see Dzhafarov, 2002a, c; Dzhafarov & Colonius,
2001). Stimuli x; hðxÞ are points of subjective equality

with respect to each other. If h is the identity M-M; the

regular minimality property acquires its simplest form

arg min
y

cðx; yÞ ¼ x; arg min
x

cðx; yÞ ¼ y:

If the minimum value cðx; hðxÞÞ of cðx; yÞ is generally
different for different x; then cðx; yÞ is said to have the
property of nonconstant self-similarity.

The two properties of cðx; yÞ are corroborated by
available empirical data (Dzhafarov, 2002c; Indow,
1998; Indow, Robertson, von Grunau, & Fielder,
1992; Krumhansl, 1978; Rothkopf, 1957; Tversky,
1977; Zimmer & Colonius, 2000), and I consider them
fundamental for ‘‘same-different’’ discriminations. For
a detailed analysis of these properties the reader should
consult Dzhafarov (2002c).

3.2. Patches of discrimination probabilities

A stimulus–direction pair ðs; uÞ; sAMDRen;
0auARen; is called a line element. Having chosen
ðs; uÞ and a sufficiently small a40; all
ðx; yÞ¼ðsþ ux; hðsþ uyÞÞ with ðx; yÞA½�a; a�2 belong to
M�M; and the restriction of cðx; yÞ to this square area
of stimulus pairs, viewed as a function of ðx; yÞ; is called
a patch of cðx; yÞ at the line element ðs; uÞ: This patch is
denoted as cðs;uÞðx; yÞ; or, when ðs; uÞ is fixed or
arbitrary, simply as cðx; yÞ: (The precise value of a is
never important: it can always be taken as small as one
wishes.) With this local parametrization, the segment of
corresponding stimuli x and y ¼ hðxÞ is encoded by
�apx ¼ ypa; and the ‘‘central’’ pair ðs; hðsÞÞ is
represented by x ¼ y ¼ 0:

The set of all patches cðx; yÞ of cðx; yÞ may not cover
the entire function cðx; yÞ; but it will cover cðx; yÞ in a
sufficiently small vicinity of its minima cðx; hðxÞÞ; which
is all that the subsequent development requires. By
abuse of language, x and y are conveniently referred to
as stimuli (rather than parametric representations of
stimuli sþ ux and hðsþ uyÞ). The following two
statements are almost obvious (see Dzhafarov, 2003).

If cðx; yÞ possesses regular minima, then so does any
of its patches cðx; yÞ; but in the simplest form

arg min
y

cðx; yÞ ¼ x; arg min
x

cðx; yÞ ¼ y;

or, equivalently,

cðx; xÞo cðx; yÞ;
cðy; xÞ;

(
xA½�a; a�; yA½�a; a�: ð2Þ

If cðx; yÞ possesses the nonconstant self-similarity
property, then, at least at some line elements ðs; uÞ;
cðx; xÞcconst; xA½�a; a� ð3Þ
for all a40: Such patches are called typical, and the line
elements ðs; uÞ at which the patches are typical are called
typical line elements.
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3.3. Near-smoothness

A patch cðx; yÞ is called near-smooth if it is both right-
and left-differentiable in both x and y; with the
unilateral derivatives @

@x7cðx; yÞ being continuous in y

and @
@y7 cðx; yÞ being continuous in x: All smooth

(continuously differentiable) functions are near-
smooth. Simple examples of nonsmooth but near-
smooth functions are jxj þ jyj; jxyj; 1 � exp ½�ðjxj �
jyjÞ2�; etc. (�apx; ypa). A simple example of a
unilaterally differentiable but not near-smooth function
is jx� yj:

The following theorem is proved in Dzhafarov (2003).

Theorem 3.1. Let a discrimination probability function

cðx; yÞ be subject to both the regular minimality and

nonconstant self-similarity constraints. Then a typical

patch cðx; yÞ of this function cannot be near-smooth.

3.4. Thurstonian-type representations of the

Deterministic-Independent variety

A Thurstonian-type representation of the Determi-
nistic-Independent variety for a patch cðx; yÞ is defined
by the construct

fR;Ax;By;Sg; ð4Þ
where R is a perceptual space (an arbitrary set);
AxðpÞ; pASA; is a probability measure defined on a
sigma-algebra SA of subsets of R and associated with
the random image PðxÞ of x;

AxðpÞ ¼ Pr½PðxÞAp�;
the probabilistic measure ByðqÞ; qASB is defined analo-
gously, with

ByðqÞ ¼ Pr½QðyÞAq�;
and SD R�R (called the decision area) is defined by

cðx; yÞ ¼ Pr½ðPðxÞ;QðyÞÞAS� ¼
Z
ðp;qÞAS

dAxðpÞ dByðqÞ:

ð5Þ

3.5. Well-behavedness

Definition 3.1. The probability measure AxðpÞ is called
well-behaved (in the absolute, or narrow sense) if
@

@xþAxðpÞ and @
@x�AxðpÞ exist and are bounded for all

ðp; xÞASA � ½�a; a�; that is,

@

@x7
AxðpÞ

����
����oconst:

The well-behavedness of ByðqÞ is defined analogously,
and a Thurstonian-type representation of the Determi-
nistic-Independent variety for a patch cðx; yÞ;

ðx; yÞA½�a; a�2; is called well-behaved (in the absolute,
or narrow sense) if both AxðpÞ and ByðqÞ in it are well-
behaved.

As argued in Dzhafarov (2003), the well-behavedness
is a weak regularity feature. Most of the existing models
for ‘‘same-different’’ discriminations use multivariate or
univariate normal distributions for Ax;By (Dai, Vers-
feld, & Green, 1996; Ennis, 1992; Ennis, Palen, &
Mullen, 1988; Luce & Galanter, 1963; Sorkin, 1962;
Suppes & Zinnes, 1963; Thomas, 1996, 1999; Zinnes &
MacKay, 1983), and any such a model is well-behaved
provided the relationship between stimuli and the means
and covariances of the normal distributions is assumed
to be sufficiently smooth.

3.6. Main result for the Deterministic-Independent

variety

The following theorem is proved in Dzhafarov (2003).

Theorem 3.2. A patch cðx; yÞ that has a well-behaved

Thurstonian-type representation of Deterministic-Inde-

pendent variety is near-smooth.

Relating this result to Theorem 3.1, one arrives at the

Main Conclusion (For the Deterministic-Independent

variety). A typical patch cðx; yÞ (satisfying the regular
minimality and nonconstant self-similarity conditions
(2) and (3)) does not have a well-behaved Thurstonian-
type representation of the Deterministic-Independent
variety. As a result, no discrimination probability
function cðx; yÞ with regular minima and nonconstant
self-similarity allows for a Thurstonian-type representa-
tion of the Deterministic-Independent variety that is
well-behaved at any of the typical line elements ðs; uÞ:

Remark 3.6.1. This conclusion and Theorem 3.2 from
which it follows are valid under a more general
definition of well-behavedness than Definition 3.1 (the
‘‘well-behavedness in the relative, or broad sense’’). For
the general, Probabilistic-Interdependent variety of
Thurstonian-type representations this generalized no-
tion is defined in Section 9. Due to its greater simplicity
and intuitiveness, however, all the results in this paper
are first established for the absolute, or narrow meaning
of well-behavedness.

4. Thurstonian-type representations of Probabilistic-

Independent variety

A Thurstonian-type representation of the Probabil-
istic-Independent variety for a patch cðx; yÞ;
ðx; yÞA½�a; a�2; of a discrimination probability function
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cðx; yÞ is defined by the construct

fR;Ax;By; sg; ð6Þ
where the perceptual space R and the probability
measures AxðpÞðpASAÞ and ByðqÞðqASBÞ are under-
stood in the same way as in (4), but the decision area S
in (4) and (5) is replaced by a decision probability

function

s : R�R-½0; 1�;
such that for any pair of values PðxÞ ¼ p;QðyÞ ¼ q;
the probability with which ðp; qÞ evokes the
response ‘‘different’’ is sðp; qÞ: No restrictions are
imposed on sðp; qÞ; except for its measurability (with
respect to the product measure ABxy ¼ Ax � By; defined
on the sigma-algebra SAB generated by SA � SB). We
have, therefore,

cðx; yÞ ¼ sðPðxÞ;QðyÞÞ ¼
Z
ðp;qÞAR2

sðp; qÞ dAxðpÞ dByðqÞ:

ð7Þ

Remark 4.1. The Deterministic-Independent variety of
Thurstonian-type representations is obtained as a
special case, by putting

sðp; qÞ ¼ wS ðp; qÞ ¼ 1 if ðp; qÞAS;

0 if ðp; qÞeS:

(

By Fubini’s theorem (see, e.g., Hewitt & Stromberg,
1965, pp. 384–385),

cðx; yÞ ¼
Z
pAR

Bnðp; yÞdAxðpÞ ¼
Z
qAR

Anðq; xÞ dByðqÞ;

ð8Þ
where

Bnðp; yÞ ¼
Z
qAR

sðp; qÞ dByðqÞ;

Anðq; xÞ ¼
Z
pAR

sðp; qÞ dAxðpÞ;

and p-Bnðp; yÞ and q-Anðq; xÞ are, respectively, A-
measurable and B-measurable functions.

The well-behavedness (in the absolute, or narrow
sense) for the Probabilistic-Independent variety is
defined in precisely the same way as for the Determi-
nistic-Independent Variety (Definition 3.1): the unilat-
eral derivatives @

@x7AxðpÞ and @
@y7ByðqÞ exist and are

bounded by a constant c;

@

@x7
AxðpÞ

����
����pc;

@

@y7
ByðqÞ

����
����pc; ð9Þ

for all pASA; qASB; and ðx; yÞA½�a; a�2:

Remark 4.2. As in Dzhafarov (2003), the reader who
wishes to overlook measure-theoretic technicalities may

think of Thurstonian-type representations in terms of
the following simple example, ignoring all references to
sigma-algebras and measurability. Consider R which is
a finite set of states f1;y; kg: The distributions of PðxÞ
and QðyÞ in this case are defined by

dAxðiÞ ¼ aði; xÞ ¼ Pr½PðxÞ ¼ i�;
dByðiÞ ¼ bði; yÞ ¼ Pr½QðyÞ ¼ i�;

(
i ¼ 1;y; k;

so that AxðpÞ ¼
P

iAp aði; xÞ; ByðqÞ ¼
P

iAq bði; yÞ;
where p and q belong to SA ¼ SB; which is simply the
set of all 2k subsets of f1;y; kg: The decision
probability function s may be any function mapping
the pairs ði; jÞði; j ¼ 1;y; kÞ into the interval ½0; 1�:
Relation (7) acquires the form

cðx; yÞ ¼
Xk
i¼1

Xk
j¼1

sði; jÞaði; xÞbðj; yÞ:

The well-behavedness here means that @
@x7aði; xÞ and

@
@y7bði; yÞ exist and are bounded for all i ¼ 1;y; k and
all ðx; yÞA½�a; a�2:

Thurstonian-type representations of the Probabilistic-
Independent variety can also be defined for the entire
discrimination probability function cðx; yÞ rather than
for its patches. This is done by replacing AxðpÞ (pASA;
xA½�a; a�) and ByðqÞ ðqASB; yA½�a; a�) with AxðpÞ
ðpASA; xAMÞ and ByðqÞðqASB; yAM). Relationship (7)
then transforms into

cðx; yÞ ¼ sðPðxÞ;QðyÞÞ ¼
Z
ðp;qÞAR2

sðp; qÞdByðqÞdAxðpÞ:

Clearly, this relationship cannot hold true if (7) fails to
hold for even a single patch cðx; yÞ: This explains the
significance of the result presented in the next section,
that no typical patch cðx; yÞ can have a well-behaved
Thurstonian-type representation of the Probabilistic-
Independent variety.

5. Near-Smoothness Theorem for Probabilistic-

Independent variety

Theorem 5.1. A patch cðx; yÞ that has a well-behaved

Thurstonian-type representation of the Probabilistic-

Independent variety is near-smooth.

Proof. We prove that the derivatives @
@y7 cðx; yÞ exist

and are continuous in x: The proof that @
@x7 cðx; yÞ exist

and are continuous in y is obtained by symmetrical
argument.

Part 1: Existence: In accordance with (8),

cðx; yÞ ¼
Z
pAR

Bnðp; yÞ dAxðpÞ;

E.N. Dzhafarov / Journal of Mathematical Psychology 47 (2003) 205–219 209



where

Bnðp; yÞ ¼
Z
qAR

sðp; qÞ dByðqÞ:

We first prove that y-Bnðp0; yÞ possesses unilateral
derivatives bounded on ½�a; a�; for any fixed p ¼ p0:

Choose an arbitrary 0oeo1; and construct a
sequence of functions fjiðqÞgNi¼1 as follows (by induc-
tion).

Induction base: Since q-sðp0; qÞ is B-measurable and
bounded, 0psðp0; qÞp1; one can find (see, e.g., Hewitt
& Stromberg, 1965, pp. 172–173) a B-measurable (so-
called ‘‘simple’’) function

j1ðqÞ ¼
Xn1

j¼1

b1jwq1j
ðqÞ;

with wq1j
being characteristic functions of pairwise

disjoint B-measurable sets q1j (j ¼ 1;y; n1), such that,
for all qAR;

0psðp0; qÞ � j1ðqÞpe:

Clearly, 0pj1ðqÞp1; or, equivalently, f0pb1jp1gn1

j¼1:
Induction step: Assuming fjiðpÞgk�1

i¼1 have been con-
structed ðk41Þ; and that

0psðp0; qÞ �
Xk�1

i¼1

jiðqÞpek�1;

one can use the same argument as in the induction base
above to find a B-measurable simple function

jkðqÞ ¼
Xnk
j¼1

bkjwqkj ðqÞ;

with wqkj being characteristic functions of pairwise
disjoint B-measurable sets qkj ðj ¼ 1;y; nkÞ; such that,
for all qAR;

0p sðp0; qÞ �
Xk�1

i¼1

jiðqÞ
" #

� jkðqÞpek:

Clearly, 0pjkðqÞpek�1; or, equivalently, f0pbkjp
ek�1gnkj¼1:

This completes the inductive definition of fjiðqÞgNi¼1:
By construction,XN
i¼1

jiðqÞ ¼ sðp0; qÞ:

Form now the sequence of functions ffiðyÞgNi¼1 defined
by

fiðyÞ ¼
Z
qAR

jiðqÞ dByðqÞ:

Using the construction logic of Lebesgue integrals and
the measurability of q-jiðqÞ;
Bnðp0; yÞ ¼

Z
qAR

sðp0; qÞ dByðqÞ

¼
Z
qAR

XN
i¼1

jiðqÞ dByðqÞ ¼
XN
i¼1

fiðyÞ:

Now,

fiðyÞ ¼
Z
qAR

jiðqÞ dByðqÞ ¼
Xni
j¼1

Z
qAR

bijwqij ðqÞdByðqÞ

¼
Xni
j¼1

bijByðqijÞ;

whence

@

@y7
fiðyÞ ¼

Xni
j¼1

bij
@

@y7
ByðqijÞ:

Let the indexation by j be so arranged that @
@y7ByðqijÞX0

for j ¼ 1;y; ki; and @
@y7ByðqijÞo0 for the remainder.

Rewriting the last equation as

@

@y7
fiðyÞ ¼

Xki
j¼1

bij
@

@y7
ByðqijÞ þ

Xni
j¼kiþ1

bij
@

@y7
ByðqijÞ;

and recalling that 0pbijpei�1 for all j ¼ 1;y; ni; we
have

@

@y7
fiðyÞ

����
����pmax

Xki
j¼1

ei�1 @

@y7
ByðqijÞ;

(

�
Xni

j¼kiþ1

ei�1 @

@y7
ByðqijÞ

)

¼ ei�1max
@

@y7
By

[ki
j¼1

qij

 !
;� @

@y7
By

[ni
j¼kiþ1

qij

 !( )
:

Since ByðqÞ is well-behaved,

@

@y7
ByðqÞ

����
����pc; qASB;

and applying this to the previous inequality we get

@

@y7
fiðyÞ

����
����pcei�1:

Since the sequence fcei�1gNi¼1 is summable, we invoke
Lemma A.1 (with M being the counting measure on
r ¼ 1; 2;y) to obtain

@

@y7
Bnðp0; yÞ ¼ @

@y7

XN
i¼1

fiðyÞ ¼
XN
i¼1

@

@y7
fiðyÞ

with

@

@y7
Bnðp0; yÞ

����
����pc

XN
i¼1

ei�1 ¼ c

1 � e
:

Since e is an arbitrary number between in ð0; 1Þ; the last
inequality should hold for any such number, whence it
follows that

@

@y7
Bnðp0; yÞ

����
����pc:
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Repeating this derivation for all pAR; we will have
established that @

@y7B
nðp; yÞ exist and are bounded by c

on R� ½�a; a�:
Part 2: Continuity: This part is essentially identical to

the continuity part of the proof of Theorem 8.1 in
Dzhafarov (2003). Returning to the opening equation of
the present proof, we can invoke Lemma A.1 once again
(this time with M being Ax) to obtain

@

@y7
cðx; yÞ ¼

Z
pAR

@

@y7
Bnðp; yÞdAxðpÞ:

Being the limits of A-measurable functions

Bnðp; y7dÞ � Bnðp; yÞ
d

; d-0þ;

@
@y7B

nðp; yÞ are A-measurable. Fix y; and rewrite, for
simplicity, @

@y7B
nðp; yÞ as bðpÞ: Since bðpÞ is A-measur-

able and bounded, there is (see, e.g., Hewitt &
Stromberg, 1965, pp. 172–173) a sequence of A-
measurable simple functions

ZiðpÞ ¼
Xni
j¼1

aijwpij ðpÞ;

with wpij being characteristic functions of pairwise
disjoint A-measurable sets pij ; such that jiðpÞ converges
to bðpÞ uniformly. This means that, for some function
nðeÞ;
bðpÞ � epZiðpÞpbðpÞ þ e

for all i4nðeÞ: But then, for any xA½�a; a�;Z
pAR

½bðpÞ � e�dAxðpÞp
Z
pAR

ZiðpÞdAxðpÞ

p
Z
pAR

½bðpÞ þ e�dAxðpÞ;

which is equivalent toZ
pAR

bðpÞdAxðpÞ � ep
Z
pAR

ZiðpÞdAxðpÞ

p
Z
pAR

bðpÞdAxðpÞ þ e:

By the construction logic of Lebesgue integrals,Z
pAR

bðpÞdAxðpÞ ¼ lim
i-N

Z
pAR

ZiðpÞdAxðpÞ;

and the inequalities above indicate that this convergence
is uniform on xA½�a; a�: Now,Z
pAR

ZiðpÞdAxðpÞ ¼
Xni
j¼1

Z
pAR

aijwpij ðpÞdAxðpÞ

¼
Xni
j¼1

aijAxðpijÞ;

which is continuous in x; because so is AxðpÞ for any A-
measurable p: The limit of uniformly converging

continuous functions being continuous, we have proved
that @

@y7 cðx; yÞ are continuous in x: &

The following immediate consequence of this theorem
(extracted from the existence part of its proof) is made
use of later, in the context of Thurstonian-type
representations of the Probabilistic-Interdependent vari-
ety.

Corollary 5.1. @
@x7 cðx; yÞ
��� ���pc; @

@y7cðx; yÞ
��� ���pc:

Proof. From

@

@y7
cðx; yÞ ¼

Z
pAR

@

@y7
Bnðp; yÞdAxðpÞ

and

@

@y7
Bnðp0; yÞ

����
����pc;

it follows that

@

@y7
cðx; yÞ

����
����p

Z
pAR

cdAxðpÞ ¼ c:

This completes the proof. &

Relating Theorem 5.1 to Theorem 3.1, we arrive at the
following generalization of the main conclusion for-
mulated at the end of Section 3.

Main Conclusion (For the Probabilistic-Independent

variety). A typical patch cðx; yÞ (satisfying the regular
minimality and nonconstant self-similarity conditions
(2) and (3)) does not have a well-behaved Thurstonian-
type representation of the Probabilistic-Independent
variety. As a result, no discrimination probability
function cðx; yÞ with regular minima and nonconstant
self-similarity allows for a Thurstonian-type representa-
tion of the Probabilistic-Independent variety that is well-
behaved at any of the typical line elements ðs; uÞ:

6. Notion of selective influence

We turn now to the analysis of the possibility that the
random images PðxÞ and QðyÞ of the stimuli x and y are
not stochastically independent. As pointed out in the
Introduction, it is considered an inherent property of
any Thurstonian-type model that PðxÞ and QðyÞ can be
selectively attributed to (or, are selectively influenced by)
the respective stimuli x and y: This selectiveness
provides a justification for writing P ¼ PðxÞ and calling
it an image of x: The models in which ðx; yÞ as a pair is
mapped into a single image Rðx; yÞ; even if this image
itself can be presented as a pair, Rðx; yÞ ¼
ðPðx; yÞ;Qðx; yÞÞ; are not included in the class of
Thurstonian-type models. In particular, I do not include
in this class the models like that of Takane and Sergent
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(1983), in which every pair of stimuli being presented
evokes a single random variable interpretable as the
‘‘subjective difference’’ between the two stimuli.

The question, posed in the Introduction, of how one
should understand the selectiveness in the influence of
x and y upon, respectively, random variables PðxÞ and
QðyÞ when the latter are stochastically interdependent,
has been primarily discussed in the literature in the
context of information processing architectures and
response time decompositions (Dzhafarov, 1992, 1997;
Dzhafarov & Rouder, 1996; Dzhafarov & Schweickert,
1995; Townsend, 1984; Townsend & Schweickert, 1989;
Townsend & Thomas, 1994). PðxÞ and QðyÞ in this
context would typically represent durations of two
processes believed to be selectively influenced by two
distinct ‘‘factors’’, x and y:

Historically, the first general solution for the problem
of selective influence under stochastic interdependence is
proposed in Townsend (1984). Its mathematical theory
is given in Dzhafarov (1999). This solution, however, is
not suitable in the present context, as it is generally
incompatible with the following marginal selectivity

condition (Townsend & Schweickert, 1989) in the
dependence of ðP;QÞ on ðx; yÞ: the marginal distribution
of P depends on x but not on y; while the marginal
distribution of Q depends on y but not on x: As argued
in Dzhafarov (2001, in press), this condition should be
viewed as necessary but not sufficient for ðP;QÞ being
selectively influenced by ðx; yÞ; respectively.

The understanding of Thurstonian-type representa-
tions with interdependent images adopted in this paper
is based on the theory of selective influence proposed in
Dzhafarov (in press). According to this theory, random
variables ðP;QÞ are selectively influenced by stimuli
ðx; yÞ; respectively (equivalently, P and Q are
random images of x and y; respectively) if they can be
presented as

P ¼ f ðR;RP; xÞ; Q ¼ gðR;RQ; yÞ; ð10Þ
where ðR;RP;RQÞ are mutually independent random
variables whose distributions do not depend on x or y;
and f ; g are arbitrary measurable functions. This
representation provides an ‘‘explanation’’ for why the
P and Q are stochastically interdependent (both f and g

depend on a common variable R), and why they are
nevertheless selectively attributed to x and y (f does not
depend on y; and g does not depend on x).

All applicable restrictions on possible distributions of
R;RP;RQ are immaterial for the present discussion. Let
the random variable R (called the ‘‘common source of
randomness’’ for P and Q) take on its values in some
space C and be associated with (represented by) a
probability measure C defined on some sigma-algebra
SC of subsets of C;

CðrÞ ¼ Pr½RAr�; rASC :

Remark 6.1. It should be noted at this point that the
term ‘‘random image’’ (or, more general, ‘‘random
variable’’) in this paper, as well as in Dzhafarov
(2003), is not used in the standard ‘‘Kolmogorovian’’
sense, as a real-valued measurable function on a sample
space. Rather a random variable is taken to be the
identity function (trivially measurable) from a sample
space onto itself. Thus understood it is a logically
redundant notion, used only because it is more intuitive
to speak of a random variable taking on some value or
falling within some subset than to speak of this value or
subset as ‘‘occurring’’. In particular, the random
variable R just introduced is the identity function from
some set C onto C; associated with a probability
measure C defined on a sigma-algebra SC : The values
of R; therefore, are simply elements of C; and the term
‘‘distribution of R’’ is understood as synonymous with
the measure function CðrÞ; rASC : The random images
PðxÞ and QðyÞ are understood analogously, the argu-
ments x and y indicating that the distributions ð¼
measuresÞ AxðpÞ and ByðqÞ depend on, respectively, x
and y:

Representation (10) is not explicitly used in the
subsequent development. Rather the development is
based on the following obvious consequence of (10):
conditional upon any value r of the ‘‘common source
of randomness’’ R; the random variables P;Q are
mutually independent, with their distributions
depending on x and y; respectively. As shown in
Dzhafarov (in press), this consequence is in fact
equivalent to the representability of P;Q by (10). In
other words, one can selectively attribute P;Q to,
respectively, x; y and write

P ¼ PðxÞ; Q ¼ QðyÞ
if and only if one can find a random variable R

conditioned upon whose values P;Q are mutually
independent, with their distributions depending on x

and y; respectively. In this case one can define
conditional probability measures Ax;rðpÞ; with pASA;
and By;rðqÞ; with qASB; such that

Pr½PAp;QAq� ¼
Z
rAC

Ax;rðpÞBy;rðqÞdCðrÞ; ð11Þ

and (as a consequence)

AxðpÞ ¼ Pr½PAp� ¼
Z
rAC

Ax;rðpÞdCðrÞ;

ByðqÞ ¼ Pr½QAq� ¼
Z
rAC

By;rðqÞdCðrÞ:

These three equations lay the foundation for the
construction below.

Remark 6.2. As shown in Dzhafarov (in press),
the notion of selective influence (attribution) is
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restrictive: not every joint distribution Pr½PAp;QAq�
with marginal selectivity allows for representa-
tion (11).

7. Thurstonian-type representations of Probabilistic-

Interdependent variety

A Thurstonian-type representation of the Probabil-
istic-Interdependent variety (or general Thurstonian-
type representation) for a patch cðx; yÞ; ðx; yÞA½�a; a�2;
of a discrimination probability function cðx; yÞ is
defined by the construct

fR;C;Ax;r;By;r;C; sg; ð12Þ
with the following meaning of the terms:

(i) The perceptual space R and the decision prob-
ability function sðp; qÞ are understood in the same
way as for the Probabilistic-Independent variety
(Section 4).

(ii) C is a probability measure associated with a
conditioning random variable R taking on its values
in some space C;

CðrÞ ¼ Pr½RAr�; rASC ;

where SC is some sigma-algebra of subsets of C:
(iii) Ax;rðpÞ;By;rðqÞ are probability measures conditional

upon values r of R and defined on respective sigma-
algebras SA;SB (independent of r and of x; y),

Ax;rðpÞ ¼Pr½PðxÞApjR ¼ r�; pASA;

rAC; xA½�a; a�;
By;rðqÞ ¼Pr½QðyÞAqjR ¼ r�; qASB;

rAC; yA½�a; a�:

Remark 7.1. The conditional measures Ax;rðpÞ;By;rðqÞ
may be allowed to be undefined on, respectively, subsets
cAðxÞ and cBðyÞ of C such that the C-measure ofS

xA½�a;a� cAðxÞ,
S

yA½�a;a� cBðyÞ is zero. This excep-
tional set, however, need not be mentioned because it
is always possible to additionally define the conditional
measures on this set in an arbitrary fashion, making
them, in particular, to comply with the definition of
well-behavedness given below (e.g., by making them
independent of x and y on this set).

(iv) the relationship between cðx; yÞ and
fR;C;Ax;r;By;r;C; sg is given by

cðx; yÞ ¼
Z
rAC

Z
ðp;qÞAR2

sðp; qÞ dAx;r ðpÞdBy;r ðqÞ
" #

dCðrÞ:

ð13Þ

Remark 7.2. The Probabilistic-Independent variety of
Thurstonian-type representations is obtained as a
special case, by putting

Ax;r � Ax; By;r � By;

in which case, irrespective of C; (13) reduces to (7).

Remark 7.3. The Deterministic-Interdependent variety
of Thurstonian-type representations is obtained as a
special case, by putting

sðp; qÞ ¼ wSðp; qÞ ¼
1 if ðp; qÞAS;

0 if ðp; qÞeS:

(

This case is not considered separately, because its
treatment is not any simpler than that of the general
Probabilistic-Interdependent case.

Unlike for the Probabilistic-Independent variety,
Definition 3.1 of well-behavedness can no longer be
adopted verbatim, but its modification suggests itself
trivially.

Definition 7.1. The conditional probability measure
Ax;rðpÞ is called well-behaved (in the absolute, or
narrow sense) if @

@xþAx;rðpÞ and @
@x�Ax;rðpÞ exist and are

bounded by a constant c for all ðp; x; rÞASA � ½�a; a� �
C; that is,

@

@x7
Ax;rðpÞ

����
����oc:

The well-behavedness of By;rðqÞ is defined analogously,
and a Thurstonian-type representation of the Probabil-
istic-Interdependent variety for a patch cðx; yÞ;
ðx; yÞA½�a; a�2; is called well-behaved (in the absolute,
or narrow sense) if both Ax;rðpÞ and By;rðqÞ in it are well-
behaved.

In the same way as for the Probabilistic-Independent
or Deterministic-Independent varieties, Thurstonian-
type representations of the Probabilistic-Interdependent
variety can also be defined for the entire discrimination
probability function cðx; yÞ rather than for its
patches, by replacing Ax;rðpÞ and By;rðqÞ with, respec-
tively, Ax;rðpÞ (pASA; rAC; xAM) and By;rðqÞ
(qASB; rAC; yAM). Relationship (13) then transforms
into

cðx; yÞ ¼
Z
rAC

Z
ðp;qÞAR2

sð p; qÞ dAx;rð pÞ dBy;rðqÞ dCðrÞ:

Again, this relationship cannot hold true if (13) fails to
hold for some of the patches cðx; yÞ; and this justifies
our focusing on (13): it is shown in the next section that
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this representation cannot hold for any typical patch
cðx; yÞ:

Remark 7.4. For the discrete finite example R ¼
f1;y; kg considered in Remark 4.2, we have

dAx;rðpÞ ¼ aðijr; xÞ ¼ Pr½PðxÞ ¼ ijR ¼ r�;
dBy;rðqÞ ¼ bðijr; yÞ ¼ Pr½QðyÞ ¼ ijR ¼ r�;

(
i ¼ 1;y; k;

relation (13) acquires the form

cðx; yÞ ¼
Z
rAC

Xk
i¼1

Xk
j¼1

sði; jÞaðijr; xÞbðjjr; yÞdCðrÞ;

and the well-behavedness means that @
@x7aðijr; xÞ and

@
@y7bðijr; yÞ exist and are bounded for all i ¼ 1;y; k; all
rAC; and all ðx; yÞA½�a; a�2: Note that even in this
simple case, with R ¼ f1;y; kg; the random variable R

may take on its values in an arbitrary space C:

8. General Near-Smoothness theorem

The proof of the theorem below is remarkably short
and simple. This is explained by the fact that all of its
complexity has been absorbed by the notion of selective
influence and Theorem 5.1 with its corollary for the
Probabilistic-Independent variety.

Theorem 8.1. A patch cðx; yÞ that has a well-behaved

general Thurstonian-type representation is near-smooth.

Proof. Denote

crðx; yÞ ¼
Z
ðp;qÞAR2

sðp; qÞdAx;rðpÞdBy;rðqÞ:

By Theorem 5.1, @
@y7 crðx; yÞ exist, are continuous in x;

and (by Corollary 5.1) dominated by a constant c:
Applying Lemmas A.1 and A.2 to

cðx; yÞ ¼
Z
rAC

crðx; yÞdCðrÞ;

we get

@

@y7
cðx; yÞ ¼

Z
rAC

@

@y7
crðx; yÞdMðrÞ

and @
@y7cðx; yÞ are continuous in x: That @

@x7 cðx; yÞ
exist and are continuous in y is proved analogously. &

Relating this result to Theorem 3.1, we arrive at our
final conclusion.

Main Conclusion ðgeneralÞ: A typical patch cðx; yÞ
(satisfying the regular minimality and nonconstant
self-similarity conditions (2) and (3)) does not have a
well-behaved Thurstonian-type representation (of any
variety). As a result, no discrimination probability
function cðx; yÞ with regular minima and nonconstant

self-similarity allows for a Thurstonian-type representa-
tion (of any variety) that is well-behaved at any of the
typical line elements ðs; uÞ:

9. ‘‘Relativization’’ of well-behavedness

The logic by which the definition of well-behavedness
can be relaxed without affecting the validity of
Theorems 5.1 and 8.1 is the same as for the Determi-
nistic-Independent variety of Thurstonian-type repre-
sentations (see Dzhafarov, 2003). Due to this fact the
generalized definitions below are presented without
much elaboration. Also, they are only presented for
the most general, Probabilistic-Interdependent variety
of Thurstonian-type representations. Their specializa-
tion to the Probabilistic-Independent variety is obtained
by ‘‘crossing out’’ all references to the conditioning
measure C and its space C:

Recall that the proof of Theorem 8.1 is based on
the proof of Theorem 5.1. On inspecting these
proofs one observes that the requirement that
@

@x7Ax;rðpÞ and @
@y7By;rðqÞ exist and be bounded on,

respectively, ðp; x; rÞASA � ½�a; a� � C and
ðq; y; rÞASB � ½�a; a� � C; is only needed to the extent
it implies a significantly weaker requirement, the
existence and boundedness of

D7
A ðq; x; rÞ ¼ @

@x7

Z
pAR

sðp; qÞ dAx;rðpÞ;

ðq; x; rÞAR� ½�a; a� � C;

D7
B ðp; y; rÞ ¼ @

@y7

Z
qAR

sðp; qÞ dBy;rðqÞ;

ðp; y; rÞAR� ½�a; a� � C:

This requirement is weaker because these integrals
contain a specific function sðp; qÞ rather than the
characteristic functions wpðpÞ and wqðqÞ for all possible
pASA and qASB: This observation leads to the
following relaxation of Definition 7.1.

Definition 9.1. The conditional probability measure
Ax;rðpÞ is well-behaved with respect to sðp; qÞ (a decision
probability function) if the left- and right-hand deriva-
tives

D7
A ðq; x; rÞ ¼ @

@x7

Z
pAR

sðp; qÞ dAx;rðpÞ

exist and are bounded on ðq; x; rÞAR� ½�a; a� � C:
The well-behavedness of By;rðqÞ with respect to sðp; qÞ

is defined analogously.
A Thurstonian-type representation of the Probabil-

istic-Interdependent variety is called well-behaved with

respect to sðp; qÞ if both Ax;rðpÞ and By;rðqÞ in it are well-
behaved with respect to sðp; qÞ:
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The most general definition of well-behavedness
obtainable by analyzing the proofs is also the least
intuitive. It is stated here for completeness only and
without any details of the argument leading to it. The
interested reader can reconstruct this argument by
appropriately adapting the analogous argument pre-
sented in Dzhafarov (2003) when constructing the
notion of well-behavedness in the relative sense for
Thurstonian-type representations of the Deterministic-
Independent variety.

Definition 9.2. Given a Thurstonian-type representa-
tion fR;C;Ax;r;By;r;C; sg for a patch cðx; yÞ; ðx; yÞA
½�a; a�2; the conditional probability measure Ax;rðpÞ is
well-behaved with respect to ðs;By;r;CÞ if

(i) for all ðq; x; rÞAR� ½�a; a� � C; there exist

D7
A ðq; x; rÞ ¼ @

@x7

Z
pAR

sðp; qÞ dAx;rðpÞ;

(ii) for some function cðx; rÞX0 and for all qAR;

jD7
A ðq; x; rÞjpcðx; rÞ;

(iii) for some function gðq; rÞ; and for all ðq; x; rÞAR�
½�a; a� � C;

jD7
A ðq; x; rÞjpgðq; rÞ;Z
rAC

Z
qAR

gðq; rÞdBy;rðqÞoN:

The well-behavedness of By;rðqÞ with respect to
ðs;Ax;r;CÞ is defined in a symmetrical fashion.

A Thurstonian-type representation fR;C;Ax;r;By;r;
C; sg for a patch cðx; yÞ; ðx; yÞA½�a; a�2; is well-behaved
in the relative (or broad) sense if Ax;rðpÞ is well-behaved
with respect to ðs;By;r;CÞ and By;rðqÞ is well-behaved
with respect to ðs;Ax;r;CÞ:

Definitions intermediate between the two given in this
section are possible but need not be discussed. The point
being made is that even though the definition of well-
behavedness in the absolute sense seems innocuous as it
is (see Dzhafarov, 2003, for a comprehensive justifica-
tion), the near-smoothness theorems and the ensuing
inadequacy of well-behaved Thurstonian-type represen-
tations remain valid under even weaker assumptions.
Moreover, since the definition of well-behavedness in
the relative sense has been derived by inspecting specific
proofs, its assumptions are still merely sufficient for the
validity of our main conclusion, rather than both
sufficient and necessary.

10. Conclusion

10.1. Summary and general remarks

This is what we know about discrimination probabil-
ities and their Thurstonian-type representations.

1. As shown in Dzhafarov (2003), if the probability
measures associated with random images of stimuli
are not constrained in any way (in particular, allowed
to be singular), a Thurstonian-type representation
can be found for any discrimination probability
function cðx; yÞ: Moreover, this representation can
be found within the most restrictive, Deterministic-
Independent variety of Thurstonian-type models.
Thus the general idea of the Thurstonian-type
representability for cðx; yÞ (even if one confines
oneself to stochastically independent perceptual
images and deterministic decisions) is not a falsifiable
assumption, but rather a theoretical language provid-
ing an alternative description for cðx; yÞ:

2. If, however, the probability measures in question are
constrained to be ‘‘well-behaved’’ (Definitions 3.1,
7.1, 9.1, 9.2), then even the most general, Probabil-
istic-Interdependent variety of Thurstonian-type
models cannot represent a discrimination probability
function cðx; yÞ subject to regular minimality and
nonconstant self-similarity (Sections 3.1 and 3.2).

3. These two properties are considered fundamental for
discrimination probability functions (Dzhafarov,
2002c, 2003), while the well-behavedness is a rela-
tively weak constraint that is unlikely to be violated
in realistically conceivable Thurstonian-type models
designed to fit empirical data. The Thurstonian-type
modeling, therefore, is a theoretical language that is
not particularly well suited for dealing with ‘‘same-
different’’ discriminations.

As argued in Dzhafarov (1993), different theoretical
languages, although no empirical evidence can reject one
of them in favor of another, are not necessarily equally
‘‘good’’: one of them may, for example, be conceptually
more economic or transparent than another, or the
formulation of a problem in one of them may be more
suggestive of its possible solutions than its formulation
in another. It seems natural to expect from a good
theoretical language that if the empirical entities it is
designed to describe have some robust inbuilt proper-
ties, the language should be able to depict these property
easily, without much ingenuity involved and convoluted
constructions used. As an example from a different area,
any receiver operating characteristic (ROC) curve for
detection probabilities (probability of hits versus prob-
ability of false alarms) can be generated by a standard
signal detectability scheme, with two distributions on a
real axis and a variable cut-off point. This scheme,
therefore, is not a falsifiable model but a theoretical
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language providing an alternative description for an
ROC curve. The list of robust inbuilt features of an
ROC curve includes its being increasing, lying above the
identity line, and having a nonincreasing slope. The
signal detectability models would hardly enjoy their
present wide acceptance if it was not easy to choose
pairs of distribution functions that would generate ROC
curves with these properties (quite aside from the
question of how well these theoretical curves fit
empirical data). By contrast, Thurstonian-type
modeling of discrimination probabilities definitely fails
this ‘‘easiness of capturing basic properties’’ test. With
all due caveats, therefore, I suggest that the inadequacy
of well-behaved Thurstonian-type models for discrimi-
nation probabilities should lead one to critically weigh
up the soundness of the entire enterprise of Thursto-
nian-type modeling, with stimuli mapped into random
variables.

10.2. ‘‘Uncertainty Blobs’’: an alternative to

Thurstonian-type representations

In Dzhafarov (2003) I mention two alternatives to
Thurstonian-type modeling. One consists in abandoning
the idea of stochastic images representing individual
stimuli, and in assuming instead that every pair of
stimuli ðx; yÞ presented for a comparison is mapped
into a single random variable (or process) Rðx; yÞ
interpretable as a measure of subjective difference
between the two stimuli (as it is done in the
model by Takane & Sergent, 1983). The other alter-
native consists in abandoning random representations
altogether, and considering instead a deterministic

dissimilarity function, imposed directly on a stimulus
space, such that the dissimilarity of y from x is
mapped into cðx; yÞ by a fixed monotonic transforma-
tion. I conclude this paper by constructing a model
illustrating the latter approach. This model simulta-
neously predicts the regular minimality property in its
simplest form,

arg min
y

cðx; yÞ ¼ x; arg min
x

cðx; yÞ ¼ y; ð14Þ

and the nonconstant self-similarity property,

cðx; xÞc const:

A general form of regular minimality is obtained
from this model by a trivial modification, mentioned
later.

According to the so-called ‘‘probability-distance
hypothesis’’, whose analysis is given in Dzhafarov
(2002b), cðx; yÞ is an increasing function f of Dðx; yÞ;
a certain (‘‘subjective’’) metric imposed on the
stimulus space MDRen: To avoid technicalities and
simplify the discussion, let M form a G-space (space
with geodesics) with respect to the metric D (Aleksan-

drov & Berestovskii, 1995; Busemann, 1955). This
means that

(i) the notion of a length L½zðtÞ� is defined for any
piecewise continuously differentiable path
zðtÞð0ptp1Þ in M that connects any x ¼ zð0Þ with
any y ¼ zð1Þ (for details see Dzhafarov & Colonius,
1999, 2001);

(ii) for any distinct points x; y there is a path xy (called
a geodesic) whose length among all paths connect-
ing x with y is minimal, and this length L½xy� equals
Dðx; yÞ;

(iii) for every point there is a geodesic path passing
through it;

(iv) any geodesic xy can be uniquely extended beyond
these two points.

The probability-distance hypothesis,

cðx; yÞ ¼ f ½Dðx; yÞ�; ð15Þ
does not fare any better than the well-behaved
Thurstonian-type representations: although it predicts
the regular minimality property (14), it also predicts

cðx; xÞ ¼ f ½Dðx; xÞ� ¼ f ð0Þ ¼ const:

Consider, however, the following modification of this
hypothesis. Its essence consists in replacing Dðx; yÞ in
(15) with appropriately defined dissimilarity between
two ‘‘blobs’’, some neighborhoods of x and y whose size
slowly changes with changing x and y: Specifically, let
each stimulus x be associated with an ‘‘uncertainty
distance’’ RiðxÞ; where i ¼ 1 or 2 depending on whether
x belongs to the first or second observation areas.
Intuitively, stimulus x belonging to the first observation
area is represented by (or mapped into) the ‘‘uncertainty
blob’’ of stimuli

B1ðxÞ ¼ fx0AM: Dðx; x0ÞpR1ðxÞg;
which plays a role analogous to the random image of x
in a Thurstonian-type model. The stimulus blob

B2ðxÞ ¼ fx0AM: Dðx; x0ÞpR2ðxÞg
represents x belonging to the second observation area.
The distance Dðx; yÞ here is assumed to be symmetrical,
Dðx; yÞ ¼ Dðy; xÞ (this is not assumed in Dzhafarov
(2002b) where D in (15) is treated as an oriented distance).

We assume that R1ðxÞ and R2ðxÞ change with x

relatively slowly, in the following sense: for all x; y;

jR1ðxÞ � R1ðyÞj
jR2ðxÞ � R2ðyÞj

(
oDðx; yÞ: ð16Þ

This is, essentially, a form of the Lipschitz condition for
R1ðxÞ and R2ðxÞ:

The dissimilarity DnðX;YÞ between two stimulus
subsets X;Y of M is defined as

DnðX;YÞ ¼ sup
aAX;bAY

Dða; bÞ:
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Then (refer to Fig. 1) the dissimilarity between B1ðxÞ
and B2ðyÞ can easily be shown to equal

Dn½B1ðxÞ;B2ðyÞ� ¼ R1ðxÞ þDðx; yÞ þ R2ðyÞ: ð17Þ
Indeed, for any aAB1ðxÞ; bAB2ðyÞ;
Dða; bÞpDða; xÞ þDðx; yÞ þDðy; bÞ;
and the maximum value for the latter expression is
R1ðxÞ þDðx; yÞ þ R2ðyÞ: To show that a geodesic of this
maximum length exists for some aAB1ðxÞ; bAB2ðyÞ;
connect x and y by a geodesic and extend it beyond x

and y until it reaches the boundaries of B1ðxÞ (at a point
a) and B2ðyÞ (at a point b).

The modification of the probability-distance
hypothesis being proposed is this: cðx; yÞ is an increas-
ing function f of the dissimilarity between B1ðxÞ and
B2ðyÞ;
cðx; yÞ ¼ f ½Dn½B1ðxÞ;B2ðyÞ��

¼ f ½R1ðxÞ þDðx; yÞ þ R2ðyÞ�: ð18Þ
For example, using a version of the well-known
Shepard’s (1987) idea, one could put

cðx; yÞ ¼ 1 � exp ½�R1ðxÞ �Dðx; yÞ � R2ðyÞ�:
Whatever the choice of f ; as an immediate consequence
of (16) and (18) we have (refer to Fig. 2)

cðx; xÞ ¼ f ½R1ðxÞ þ R2ðxÞ�

o cðx; yÞ ¼ f ½R1ðxÞ þDðx; yÞ þ R2ðyÞ�;
cðy; xÞ ¼ f ½R2ðxÞ þDðx; yÞ þ R1ðyÞ�;

(

which is the property of regular minimality (14). At the
same time,

cðx; xÞ ¼ f ½R1ðxÞ þ R2ðxÞ�
is a quantity that generally varies with x (nonconstant
self-similarity).

To obtain the general form of regular minimality, (1),
one simply has to substitute cðx; hðyÞÞ for cðx; yÞ in
(18), with h being some homeomorphism M-M:

x = y

b

a

Fig. 2. The ‘‘uncertainty blobs’’ B1ðxÞ and B2ðyÞ when stimulus x (in

the first observation area) coincides with stimulus y (in the second

observation area). The dissimilarity between the two ‘‘blobs’’ is the

length R1ðxÞ þ R2ðyÞ of any geodesic passing through x ¼ y until it

intersects with the boundaries of the two ‘‘blobs’’.

y

b

a

x

Fig. 1. The two shaded areas are ‘‘uncertainty blobs’’ B1ðxÞ and B2ðyÞ for, respectively, stimulus x (in the first observation area) and stimulus y (in

the second observation area). The interrupted lines are the geodesics connecting the centers of the ‘‘blobs’’ with their boundary points: the length of

any of these geodesic radii in B1ðxÞ is R1ðxÞ; in B2ðyÞ it is R2ðyÞ: The solid line xy (connecting x with y) is a geodesic of length Dðx; yÞ: The geodesic

radii xa and yb are continuations of xy (in a G-space every geodesic has a unique continuation at both ends). The length of the geodesic axyb is

R1ðxÞ þDðxyÞ þ R2ðyÞ; and it is taken to measure the dissimilarity between B1ðxÞ and B2ðyÞ:
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No claim is being made here that the approach using
the ‘‘uncertainty blobs’’ is empirically valid. My only
point is to demonstrate that one can easily construct a
class of models which employ no random images and no
notion of a perceptual space, that are therefore
conceptually more economic than Thurstonian-type
representations, and that, in a sharp contrast with the
latter, capture the fundamental properties of regular
minimality and nonconstant self-similarity ‘‘automati-
cally’’. In the least, the development of such models
constitutes a viable alternative to searching for non-well-
behaved Thurstonian-type representations capable of
describing ‘‘same-different’’ discriminations.
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Appendix A. Auxiliary facts

Lemma A.1. Let

FðyÞ ¼
Z
rAR

f ðr; yÞdMðrÞ; yA½�a; a�;

where M is a sigma-finite measure. Let y-f ðr; yÞ be both
right-and left-differentiable on ½�a; a�; with

@

@y7
f ðr; yÞ

����
����pgðrÞ;

Z
rAR

gðrÞdMðrÞ ¼ coN:

Then FðyÞ is both right- and left-differentiable (hence
continuous) on ½�a; a�; with
@

@y7
FðyÞ ¼

Z
rAR

d

dx7
f ðr; yÞdMðrÞpc:

Proof. See Lemmas A.3 and A.4 in Dzhafarov
(2003). &

Lemma A.2. Let

FðxÞ ¼
Z
pAR

f ðp; xÞ dMðpÞ; xA½�a; a�;
where M is a sigma-finite measure. Let x-f ðp; xÞ be

continuous, and

jf ðp; xÞjpgðpÞ;
Z
pAR

gðpÞdMðpÞoN:

Then FðxÞ is continuous.

Proof. An immediate consequence of the Lebesgue
Dominated Convergence Theorem (e.g., Hewitt &
Stromberg, 1965, pp. 172–173) applied to f ðp; xþ
dÞ-f ðp; xÞ as d-0: &
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