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Abstract

A general Thurstonian-type representation (with stochastically interdependent images and probabilistic decisions) for a “‘same-
different” discrimination probability function (x,y) is a model in which the two stimuli x,y are mapped into two generally
interdependent random images P(x) and Q(y) taking on their values in some “perceptual” space; and the realizations of these two
random images in a given trial determine the probability with which x and y in this trial are judged to be different. While
stochastically interdependent, P(x) and Q(y) are selectively attributed to (influenced by), respectively, x and y, which is understood
as the possibility of conditioning P(x) and Q(y) on some random variable R that renders them stochastically independent, with their
conditional distributions selectively depending on, respectively, x and y. A general Thurstonian-type representation is considered
“well-behaved” if the conditional probability with which P(x) and Q(y), given a value of the conditioning random variable R, fall
within two given subsets of the perceptual space, possess appropriately defined bounded directional derivatives with respect to x and
y. It is shown that no such well-behaved Thurstonian-type representation can account for ¥(x,y) possessing two basic properties:
regular minimality and nonconstant self-similarity. At the same time, an alternative to Thurstonian-type modeling (a model
employing “‘uncertainty blobs” in stimulus spaces instead of random variables in perceptual spaces) is readily available that predicts
these two properties “‘automatically’.
© 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

This paper deals with “same-different” discrimination
probabilities

Y(x,y) = Pr[y is discriminated from x]

and their Thurstonian-type representations (models), in
which stimuli x,y are mapped into random images
P(x),Q(y) taking on their values in a hypothetical
“perceptual” space R. In a companion paper (Dzhafar-
ov, 2003) it is shown that if a discrimination
probability function (x,y) possesses two basic
properties, regular minimality and nonconstant self-
similarity, then it cannot be accounted for by a well-
behaved Thurstonian-type model with deterministic
decisions and stochastically independent images. The
practical significance of this result lies in the fact that
the “well-behavedness” is a weak constraint unlikely
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to be violated in any conceivable Thurstonian-type
representation constructed to fit empirical data.
In the present paper the notion of well-behavedness
and the main conclusion arrived at in Dzhafarov
(2003) are extended to Thurstonian-type models
with (generally) probabilistic decisions and (generally)
stochastically interdependent images.

For the convenience of reference, and to some extent
imitating Thurstone’s famous “cases’ (Thurstone,
1927a,b), I introduce four ‘““varieties” of Thurstonian-
type representations for discrimination probabilities, as
shown in the table below:

Thurstonian-type | Independent

! Interdependent
representations Images

Images

Deterministic de- | Deterministic-In- | Deterministic-In-

cisions dependent terdependent

Probabilistic de- | Probabilistic-In- | probabilistic-In-
cisions dependent

terdependent
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The four varieties are not mutually exclusive, rather we
have

Deterministic-Independent C{

with < informally standing for ““is a special case of”.

In the deterministic-decision varieties (Deterministic-
Independent and Deterministic-Interdependent) of
Thurstonian-type models, the response “x and y are
different” is chosen in a given trial if and only if the
realizations p, g of P(x) and Q(y) in this trial fall within
a certain area S<=R x R, called the “decision area’.
This means that the (p, ¢)-pairs within the area € evoke
the response “‘different” with probability 1, whereas the
(p, q)-pairs outside this area evoke this response with
probability 0. In the probabilistic-decision varieties
(Probabilistic-Independent and Probabilistic-Interde-
pendent) this decision scheme is generalized: every
(p,q)-pair is associated with a certain probability
a(p,q) of evoking the response “different”.

In the independent-images varieties (Deterministic-
Independent and Probabilistic-Independent) of Thur-
stonian-type models, the images P(x) and Q(y) of
stimuli X, y are stochastically independent and selectively
influenced by (or selectively attributed to) their respective
stimuli: that is, the distribution of P(x) does not depend
on y, while the distribution of Q(y) does not depend on
x. In the interdependent-images varieties (Deterministic-
Interdependent and Probabilistic-Interdependent), P(x)
and Q(y) are generally stochastically interdependent,
but the selective attribution of these random variables
to, respectively, x and y should still be preserved.

As pointed out in Dzhafarov (2003), this selective
attribution is taken as an inherent feature of any
Thurstonian-type model. Without it one would have
no justification for writing P = P(x) and calling it an
image of x (rather than a response to the pair x,y). This
position leads to a non-trivial conceptual problem: how
should one understand the selectiveness in the influence of
X and 'y upon, respectively, P(x) and Q(y) when the latter
are not stochastically independent? This problem is
considered in Dzhafarov (1999, 2001), but the approach
adopted in the present paper is based on the general
solution proposed in Dzhafarov (in press). The essence
of this solution, when applied to P(x) and Q(y), is that
one can find a random variable R (whose distribution
does not depend on x or y) such that the two random
variables P(x) and Q(y) are conditionally independent
given any value of R, and the conditional distribution of
P(x) does not depend on y, while the conditional
distribution of Q(y) does not depend on x.

Remark 1.1. As mentioned in Dzhafarov (2003), A.A.J.
Marley (pers. comm., 2002) pointed out that the term

Probabilistic-Independent

“Thurstonian-type representations’” may have too nar-
row connotations to be appropriate for constructs as

Deterministic-Interdependent

< Probabilistic-Interdependent,

general as those considered in the present work. His
tentative suggestion was to replace it with the term
“random-image representations”.

2. Plan of the paper and notation conventions

The development presented in this paper can be
summarized as follows:

1. Section 3 provides a recapitulation of the basic
notions introduced in Dzhafarov (2002c, 2003): the
properties of regular minimality and nonconstant
self-similarity, the notion of a patch of a discrimina-
tion probability function, the near-smoothness prop-
erty, and the well-behavedness of a Thurstonian-type
representation (of the Deterministic-Independent
variety). The section also presents the two main
results obtained in Dzhafarov (2003): that a patch
possessing the regular minimality and nonconstant
self-similarity properties cannot be near-smooth,
while the well-behavedness of a Thurstonian-type
representation for a patch implies its near-smooth-
ness.

2. In Section 4 the notion of well-behavedness (defined
in the same way as for the Deterministic-Independent
variety) is applied to Thurstonian-type models of the
Probabilistic-Independent variety, and it is shown
(Theorem 5.1) that these models imply the near-
smoothness property, because of which they cannot
account for ‘‘same-different” discrimination prob-
ability functions subject to the regular minimality and
nonconstant self-similarity constraints.

3. Section 6 describes the general approach to the
problem of selective influence under stochastic inter-
dependence adopted in this paper.

4. In Section 7 this approach is applied to Thurstonian-
type representations of the most general (Probabil-
istic-Interdependent) variety, allowing one to natu-
rally extend the notion of well-behavedness to such
models. It is shown then (Theorem 8.1) that even in
this, most general version, a well-behaved Thursto-
nian-type model predicts the near-smoothness prop-
erty, because of which it cannot account for a
discrimination probability function possessing the
properties of regular minimality and nonconstant
self-similarity.
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5. In Section 9 it is shown that the definition of well-
behavedness for Thurstonian-type representations of
the Probabilistic-Interdependent variety can be sig-
nificantly relaxed without affecting any of the results
obtained in this paper.

6. In the Conclusion, I briefly discuss the implications of
the inadequacy of the well-behaved Thurstonian-type
models for discrimination probabilities and outline a
certain alternative to such models (“‘uncertainty
blobs” of stimuli).

7. The development is aided by an appendix containing
two lemmas labeled A.1 and A.2.

The notation conventions are the same as in the
companion paper.

Boldface lowercase letters (x,y,u,...) denote real-
valued vectors; their components, if shown, are super-
scripted, e.g., x = (x!, ..., x"), u= (u', ..., u").

Uppercase Gothic letters (R, €, [, B, etc.) denote sets,
lowercase Gothic letters (p,q,r,...) denote subsets of
the “perceptual space” R or the “conditioning space” €.

Uppercase Greek letters X and Q denote sets of
subsets.

Lowercase and uppercase italics designate real-valued
quantities, except for letters P, Q, p, ¢ that are reserved
to denote random images (P, Q) and their values (p, q),
and letters R, r reserved for, respectively, the condition-
ing random variable and its values.

3. Basic definitions and facts

Although this paper extends the results obtained in
Dzhafarov (2003), the development to follow is self-
contained, with all requisite definitions and facts stated
explicitly if not in detail.

3.1. Two basic properties of discrimination probabilities

Stimuli x and y in ¥(x,y) belong to an open connected
subset M of Re"(n>1). The pair (x,y) is ordered, due to
the fact that x and y belong to two distinct observation
areas (spatial and/or temporal intervals).

It is assumed that for a certain homeomorphic
mapping h: M-I (one-to-one, onto, continuous
together with its inverse),

arg min y(x,y) = h(x), arg min y(x,y) =h~'(y). (1)

This is called the regular minimality property of (X, y).
One also says in this case that y(x,y) possesses regular
minima. This property is a weakened version of the so-
called First Assumption of multidimensional Fechnerian
scaling (see Dzhafarov, 2002a, ¢; Dzhafarov & Colonius,
2001). Stimuli x,h(x) are points of subjective equality
with respect to each other. If h is the identity 9t — 9, the

regular minimality property acquires its simplest form

arg min (x,y) = x,arg min ¥(x,y) = y.
y X

If the minimum value ¥(x, h(x)) of Y(x,y) is generally
different for different x, then ¥(x,y) is said to have the
property of nonconstant self-similarity.

The two properties of Y(x,y) are corroborated by
available empirical data (Dzhafarov, 2002c; Indow,
1998; Indow, Robertson, von Grunau, & Fielder,
1992; Krumhansl, 1978; Rothkopf, 1957; Tversky,
1977; Zimmer & Colonius, 2000), and I consider them
fundamental for “same-different” discriminations. For
a detailed analysis of these properties the reader should
consult Dzhafarov (2002c).

3.2. Patches of discrimination probabilities

A stimulus—direction pair (s,u), sedicRe",
0#uecRe”, is called a line element. Having chosen
(s,u) and a sufficiently small >0, all
(x,¥)=(s + ux, h(s + uy)) with (x,y)e[—a,a]* belong to
M x M, and the restriction of ¥(x,y) to this square area
of stimulus pairs, viewed as a function of (x, y), is called
a patch of Y(x,y) at the line element (s, u). This patch is
denoted as Y, (x,»), or, when (s,u) is fixed or
arbitrary, simply as ¥(x,y). (The precise value of a is
never important: it can always be taken as small as one
wishes.) With this local parametrization, the segment of
corresponding stimuli x and y =h(x) is encoded by
—a<x=y<a, and the “central” pair (s,h(s)) is
represented by x =y = 0.

The set of all patches y/(x,y) of Y(x,y) may not cover
the entire function ¥(x,y), but it will cover ¥(x,y) in a
sufficiently small vicinity of its minima (x, h(x)), which
is all that the subsequent development requires. By
abuse of language, x and y are conveniently referred to
as stimuli (rather than parametric representations of
stimuli s+ ux and h(s+uy)). The following two
statements are almost obvious (see Dzhafarov, 2003).

If Y(x,y) possesses regular minima, then so does any
of its patches ¥/(x,y), but in the simplest form

arg min (x,y) = x,arg min y(x,») =y,
y X

or, equivalently,

Y(x,»),
Yy, x),

If ¥(x,y) possesses the nonconstant self-similarity
property, then, at least at some line elements (s, u),

xe€[—a,a (3)

x€l—a,a], yel—a,al. (2)

l//(x,x)<{

W(x, x) #const,

for all a>0. Such patches are called typical, and the line
elements (s, u) at which the patches are typical are called
typical line elements.
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3.3. Near-smoothness

A patch y(x, p) is called near-smooth if it is both right-
and left-differentiable in both x and y, with the
unilateral derivatives a,? —V¥(x,y) being continuous in y
and ay%lp(x, y) being continuous in x. All smooth
(continuously differentiable) functions are near-
smooth. Simple examples of nonsmooth but near-
smooth functions are |x|+ |y|, |xy|, 1 —exp[—(|x|] —
)], etc. (—a<x,y<a). A simple example of a
unilaterally differentiable but not near-smooth function
is |x — y).

The following theorem is proved in Dzhafarov (2003).

Theorem 3.1. Let a discrimination probability function
V(x,y) be subject to both the regular minimality and
nonconstant self-similarity constraints. Then a typical
patch y(x,y) of this function cannot be near-smooth.

3.4. Thurstonian-type representations of the
Deterministic-Independent variety

A Thurstonian-type representation of the Determi-
nistic-Independent variety for a patch y(x, y) is defined
by the construct

{R, 4\, B,, S}, 4)

where R is a perceptual space (an arbitrary set);
Ax(p),peXy, is a probability measure defined on a
sigma-algebra X4 of subsets of R and associated with
the random image P(x) of x,

Ay(p) = Pr[P(x)ep],

the probabilistic measure B, (q), qe 25 is defined analo-
gously, with

B,(q) = Pr[Q(y)€eq],
and S< R x N (called the decision area) is defined by

W) = Pri(P). 000 = [ daup) s (o)
4)eS
5)

3.5. Well-behavedness

Definition 3.1. The probability measure A, (p) is called
well-behaved (in the absolute, or narrow sense) if
52-A.(p) and 32-A,(p) exist and are bounded for all
(p,x)€eZ4 X [—a,d], that is,

0
‘—Ax(p) <const.

ox+

The well-behavedness of B,(q) is defined analogously,
and a Thurstonian-type representation of the Determi-
nistic-Independent variety for a patch (x,y),

(x,y)€[—a, a]27 is called well-behaved (in the absolute,
or narrow sense) if both A,(p) and B,(q) in it are well-
behaved.

As argued in Dzhafarov (2003), the well-behavedness
is a weak regularity feature. Most of the existing models
for “‘same-different” discriminations use multivariate or
univariate normal distributions for 4., B, (Dai, Vers-
feld, & Green, 1996; Ennis, 1992; Ennis, Palen, &
Mullen, 1988; Luce & Galanter, 1963; Sorkin, 1962;
Suppes & Zinnes, 1963; Thomas, 1996, 1999; Zinnes &
MacKay, 1983), and any such a model is well-behaved
provided the relationship between stimuli and the means
and covariances of the normal distributions is assumed
to be sufficiently smooth.

3.6. Main result for the Deterministic-Independent
variety

The following theorem is proved in Dzhafarov (2003).

Theorem 3.2. A patch y(x,y) that has a well-behaved
Thurstonian-type representation of Deterministic-Inde-
pendent variety is near-smooth.

Relating this result to Theorem 3.1, one arrives at the

Main Conclusion (For the Deterministic-Independent
variety). A typical patch y¥(x,y) (satisfying the regular
minimality and nonconstant self-similarity conditions
(2) and (3)) does not have a well-behaved Thurstonian-
type representation of the Deterministic-Independent
variety. As a result, no discrimination probability
function ¥(x,y) with regular minima and nonconstant
self-similarity allows for a Thurstonian-type representa-
tion of the Deterministic-Independent variety that is
well-behaved at any of the typical line elements (s, u).

Remark 3.6.1. This conclusion and Theorem 3.2 from
which it follows are valid under a more general
definition of well-behavedness than Definition 3.1 (the
“well-behavedness in the relative, or broad sense’’). For
the general, Probabilistic-Interdependent variety of
Thurstonian-type representations this generalized no-
tion is defined in Section 9. Due to its greater simplicity
and intuitiveness, however, all the results in this paper
are first established for the absolute, or narrow meaning
of well-behavedness.

4. Thurstonian-type representations of Probabilistic-
Independent variety

A Thurstonian-type representation of the Probabil-
istic-Independent  variety for a patch (x,y),
(x,y)€[—a,al*, of a discrimination probability function
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W(x,y) is defined by the construct
{9{7 Ax,By,G}, (6)

where the perceptual space R and the probability
measures A.(p)(peXy) and B,(q)(qeXp) are under-
stood in the same way as in (4), but the decision area S
in (4) and (5) is replaced by a decision probability
Sfunction

g:RxR->[0,1],

such that for any pair of values P(x) =p,Q(y) = ¢,
the probability with which (p,q) evokes the
response “‘different” is o(p,q). No restrictions are
imposed on a(p,q), except for its measurability (with
respect to the product measure 4By, = 4, x B, defined
on the sigma-algebra X, generated by X, x 2). We
have, therefore,

waw:awuxqmw:/

(p.g)eR

(7)

Remark 4.1. The Deterministic-Independent variety of
Thurstonian-type representations is obtained as a
special case, by putting

O'(_p,q):xe(p,q):{l if (pa(I)€67

0 if (p,q)¢C.

By Fubini’s theorem (see, e.g., Hewitt & Stromberg,
1965, pp. 384-385),

wnw=éww@wwumzéwﬁwmmm@,
®)

where

Fo - [

qgeR

Aﬂm@=/m0m®¢®®,

G(p7 Q) dB}’(‘I)a

and p— B*(p,y) and ¢— A*(q,x) are, respectively, A4-
measurable and B-measurable functions.

The well-behavedness (in the absolute, or narrow
sense) for the Probabilistic-Independent variety is
defined in precisely the same way as for the Determi-
nistic-Independent Variety (Definition 3.1): the unilat-
eral derivatives %Ax(p) and a%_rBy(q) exist and are
bounded by a constant c,

9] 0
< - <
8xiAY(p)‘\ca ayiBy(q)‘\Cv (9)

for all pe2 4, qe2'p, and (x,y)e[—a,a]z.

Remark 4.2. As in Dzhafarov (2003), the reader who
wishes to overlook measure-theoretic technicalities may

a(p,q) dAx(p) dBy(q).

think of Thurstonian-type representations in terms of
the following simple example, ignoring all references to
sigma-algebras and measurability. Consider ‘R which is
a finite set of states {1, ..., k}. The distributions of P(x)
and Q(y) in this case are defined by

dAy (i) = a(i, x) = Pr[P(x) = ],
dBy (i) = B(i,y) = Pr[Q(y) = i,

so that Ax(p) = Ziep O((i, X), By(q) = Zieq ﬁ(ivy)v
where p and q belong to X4 = X5, which is simply the
set of all 25 subsets of {I,...,k}. The decision
probability function ¢ may be any function mapping
the pairs (i,j)(i,j=1,...,k) into the interval [0,1].
Relation (7) acquires the form

i=1,...k,

k

k
ey =2 Y olif)ali, X)BG,y).

i=1 j=I1

The well-behavedness here means that 52-(i, x) and
w%ﬁ(i,y) exist and are bounded for all i =1, ...,k and

all (x,y)e[—a,a]’.

Thurstonian-type representations of the Probabilistic-
Independent variety can also be defined for the entire
discrimination probability function (x,y) rather than
for its patches. This is done by replacing 4.(p) (peZ4,
x€[—a,a]) and B,(q) (qeXp, ye[—a,a]) with Ay(p)
(peXy, xeM) and By(q)(qe Xp, yeM). Relationship (7)
then transforms into

Y(x,y) = a(P(x), Q(y)) :/<,, o a(p,q)dBy(q)dAx(p)-

Clearly, this relationship cannot hold true if (7) fails to
hold for even a single patch (x,y). This explains the
significance of the result presented in the next section,
that no typical patch ¥(x,y) can have a well-behaved
Thurstonian-type representation of the Probabilistic-
Independent variety.

5. Near-Smoothness Theorem for Probabilistic-
Independent variety

Theorem 5.1. A patch y(x,y) that has a well-behaved

Thurstonian-type representation of the Probabilistic-
Independent variety is near-smooth.

Proof. We prove that the derivatives E)}%l//(x, y) exist

and are continuous in x. The proof that 52 (x, y) exist
and are continuous in y is obtained by symmetrical
argument.

Part 1: Existence: In accordance with (8),
Y(x,p)= [ B*(p.y)dA(p),

PENR
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where
B (p,y) = /em a(p,q) dBy(q).

We first prove that y— B*(pg,y) possesses unilateral
derivatives bounded on [—a,d], for any fixed p = po.

Choose an arbitrary 0O<e<1, and construct a
sequence of functions {¢;(¢)};2, as follows (by induc-
tion).

Induction base: Since q— a(p, q) is B-measurable and
bounded, 0<o(po, ¢) <1, one can find (see, e.g., Hewitt
& Stromberg, 1965, pp. 172-173) a B-measurable (so-
called “‘simple”) function

n

(/J1((]) = Z bUXqU(q)a

j=1
with Yy, being characteristic functions of pairwise
disjoint B-measurable sets q;; G =1,...,m), such that,
for all geR,

0<a(po,q) — @i(q)<e.

Clearly, 0<¢,(9)<1, or, equlvalently, {0<by; <1},
Induction step: Assuming {¢; (p)}f{ | have been con-
structed (k> 1) and that

va Z

one can use the same argument as in the induction base
above to find a B-measurable simple function
n

Pe(9) =D bigita, (4);

J=1

with Yoy, being characteristic functions of pairwise
disjoint B-measurable sets Gy (=1,...,n), such that,
for all ge R,

k=1
0< [6@07 Z (pl ] - on ) k'

i=1

Clearly, 0<¢,(q)<e!, or, equivalently, {0< bi; <
k l}m

This completes the inductive definition of {¢;(¢)}~;.
By construction,

S 01(4) = 000, 9)
i=1

Form now the sequence of functions {f;(y)}7~, defined
by

fily) = / YQDi(fI) dBy(q).
qey

Using the construction logic of Lebesgue integrals and
the measurability of ¢— ¢,(g),

wwwz/ o(po. 4) dB,(q)

qeR

Zw: fi(y)

= / i @,(q) dBy(q) =
geR =] i—1

Now,
ni

0 =[ o / byt (6)dB,(q)

qe 9: = R

ni

= ZbijBy(q[/)v
J=1

whence

a n; a
Mfz()’) = 12:1: bjj ﬂBy(qg‘j)

Let the indexation by j be so arranged that 5 3 s By(a;) =0

for j=1,....k;, and 55B,(q;)<0 for the remamder
Rewriting the last equatlon as

n; 9
8y+ Zb’fa n v (q;) + Z Ty + By(ay),

Jj=ki+1

and recalling that 0<b;j<s"l for all j=1,...
have

8 ki .
8y+ ' <max {Zs '——B,(q;),

i ; 0
i—1
— A E & —By(qij)}

: d i d
= ¢ 'max {By ( q,~> ,——>58, ( q,~~> }
oy+ L:J] 7)oyt .:&{1 /

Since B, (q) is well-behaved,

i, WE

<Ca qGZB,

‘0y+ b

and applying this to the previous inequality we get
<ce L

0
ayf__}_fi(J’) <

Since the sequence {ce'~'} %, is summable, we invoke
Lemma A.1 (with M being the counting measure on

r=1,2,...) to obtain

’F a J—
ay+ (pOa ) + ; _;
with

B )| <e) o =
i=1

Since ¢ is an arbitrary number between in (0, 1), the last

inequality should hold for any such number, whence it

follows that

8y+ B (po,y )‘
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Repeating this derivation for all peR, we will have
established that ayLJ_rB*(p, ») exist and are bounded by ¢
on R x [—a,dal.

Part 2: Continuity: This part is essentially identical to
the continuity part of the proof of Theorem 8.1 in
Dzhafarov (2003). Returning to the opening equation of
the present proof, we can invoke Lemma A.l once again
(this time with M being 4,) to obtain

e
w(xvy) = en 8}/—1_3 (va)dA‘c(p)

Being the limits of 4-measurable functions

B*(pvyié) _B*(Pay)
0

a}%B*(p, y) are A-measurable. Fix y, and rewrite, for
simplicity, z2-B*(p,y) as b(p). Since b(p) is A-measur-
able and g(?unded, there is (see, e.g., Hewitt &
Stromberg, 1965, pp. 172-173) a sequence of A-

measurable simple functions

’71(P) = Z aUXpU(p)a
)

oy +

;o 020+,

with X, being characteristic functions of pairwise
disjoint A-measurable sets p;;, such that ¢,(p) converges
to b(p) uniformly. This means that, for some function

n(e),
b(p) —e<ni(p)<b(p) +¢

for all i>n(¢). But then, for any xe[—a,d],

/ wm—wmws/ ni(p)dAL(p)
PeER PEN

< [ o)+l
PENR
which is equivalent to

/’bwwx@—e</ ni(p)dAL(p)
pPENR pPeER

< / b(p)dA,(p) +¢.
PEN
By the construction logic of Lebesgue integrals,

|, b= fim [ npraa).

PEN

and the inequalities above indicate that this convergence
is uniform on x€[—a,a]. Now,

/pgm n,(p)dA(p) = ; /peiR a1y, (p)dA(p)

= Z aUAX(pzj)a
j=1

which is continuous in x, because so is A,(p) for any A4-
measurable p. The limit of uniformly converging

continuous functions being continuous, we have proved

that z2-(x, y) are continuous in x. [J

The following immediate consequence of this theorem
(extracted from the existence part of its proof) is made
use of later, in the context of Thurstonian-type
representations of the Probabilistic-Interdependent vari-
ety.

Corollary 5.1.

slp (x| <e |5
Proof. From

9 / a
—_— x’ = 73 9 dAx
oy V0= | B

and

0
__ B* <
ay i (p07y) ‘ c,
it follows that

9 ) </ cdA(p) = c.
PEN

Oy+

This completes the proof. [

Relating Theorem 5.1 to Theorem 3.1, we arrive at the
following generalization of the main conclusion for-
mulated at the end of Section 3.

Main Conclusion (For the Probabilistic-Independent
variety). A typical patch ¥(x,y) (satisfying the regular
minimality and nonconstant self-similarity conditions
(2) and (3)) does not have a well-behaved Thurstonian-
type representation of the Probabilistic-Independent
variety. As a result, no discrimination probability
function ¥(x,y) with regular minima and nonconstant
self-similarity allows for a Thurstonian-type representa-
tion of the Probabilistic-Independent variety that is well-
behaved at any of the typical line elements (s, u).

6. Notion of selective influence

We turn now to the analysis of the possibility that the
random images P(x) and Q(y) of the stimuli x and y are
not stochastically independent. As pointed out in the
Introduction, it is considered an inherent property of
any Thurstonian-type model that P(x) and Q(y) can be
selectively attributed to (or, are selectively influenced by)
the respective stimuli x and y. This selectiveness
provides a justification for writing P = P(x) and calling
it an image of x. The models in which (x, y) as a pair is
mapped into a single image R(x,y), even if this image
itself can be presented as a pair, R(x,y)=
(P(x,y),0(x,y)), are not included in the class of
Thurstonian-type models. In particular, I do not include
in this class the models like that of Takane and Sergent
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(1983), in which every pair of stimuli being presented
evokes a single random variable interpretable as the
“subjective difference” between the two stimuli.

The question, posed in the Introduction, of how one
should understand the selectiveness in the influence of
x and y upon, respectively, random variables P(x) and
QO(y) when the latter are stochastically interdependent,
has been primarily discussed in the literature in the
context of information processing architectures and
response time decompositions (Dzhafarov, 1992, 1997;
Dzhafarov & Rouder, 1996; Dzhafarov & Schweickert,
1995; Townsend, 1984; Townsend & Schweickert, 1989;
Townsend & Thomas, 1994). P(x) and Q(y) in this
context would typically represent durations of two
processes believed to be selectively influenced by two
distinct “factors™, x and y.

Historically, the first general solution for the problem
of selective influence under stochastic interdependence is
proposed in Townsend (1984). Its mathematical theory
is given in Dzhafarov (1999). This solution, however, is
not suitable in the present context, as it is generally
incompatible with the following marginal selectivity
condition (Townsend & Schweickert, 1989) in the
dependence of (P, Q) on (x, y): the marginal distribution
of P depends on x but not on y, while the marginal
distribution of Q depends on y but not on x. As argued
in Dzhafarov (2001, in press), this condition should be
viewed as necessary but not sufficient for (P, Q) being
selectively influenced by (x,y), respectively.

The understanding of Thurstonian-type representa-
tions with interdependent images adopted in this paper
is based on the theory of selective influence proposed in
Dzhafarov (in press). According to this theory, random
variables (P, Q) are selectively influenced by stimuli
(x,y), respectively (equivalently, P and @ are
random images of x and y, respectively) if they can be
presented as

P:f(R7Rp,X)7 Q:(}(R,RQ7J/), (10)

where (R, Rp,Rg) are mutually independent random
variables whose distributions do not depend on x or y,
and f,g are arbitrary measurable functions. This
representation provides an “‘explanation” for why the
P and Q are stochastically interdependent (both f and ¢
depend on a common variable R), and why they are
nevertheless selectively attributed to x and y (f does not
depend on y, and g does not depend on Xx).

All applicable restrictions on possible distributions of
R, Rp, Rp are immaterial for the present discussion. Let
the random variable R (called the “common source of
randomness” for P and Q) take on its values in some
space € and be associated with (represented by) a
probability measure C defined on some sigma-algebra
2 ¢ of subsets of €,

C(r) = Pr[Rex], relc.

Remark 6.1. It should be noted at this point that the
term ‘“‘random image” (or, more general, ‘“‘random
variable”) in this paper, as well as in Dzhafarov
(2003), is not used in the standard “Kolmogorovian”
sense, as a real-valued measurable function on a sample
space. Rather a random variable is taken to be the
identity function (trivially measurable) from a sample
space onto itself. Thus understood it is a logically
redundant notion, used only because it is more intuitive
to speak of a random variable taking on some value or
falling within some subset than to speak of this value or
subset as ‘“‘occurring”. In particular, the random
variable R just introduced is the identity function from
some set € onto €, associated with a probability
measure C defined on a sigma-algebra 2. The values
of R, therefore, are simply elements of €, and the term
“distribution of R” is understood as synonymous with
the measure function C(r), re X¢. The random images
P(x) and Q(y) are understood analogously, the argu-
ments x and y indicating that the distributions (=
measures) A.(p) and B, (q) depend on, respectively, x
and y.

Representation (10) is not explicitly used in the
subsequent development. Rather the development is
based on the following obvious consequence of (10):
conditional upon any value r of the “common source
of randomness” R, the random variables P,Q are
mutually independent, with their distributions
depending on x and y, respectively. As shown in
Dzhafarov (in press), this consequence is in fact
equivalent to the representability of P,Q by (10). In
other words, one can selectively attribute P,Q to,
respectively, x,y and write

P=P(x), 0=00)

if and only if one can find a random variable R
conditioned upon whose values P,Q are mutually
independent, with their distributions depending on x
and yp, respectively. In this case one can define
conditional probability measures Ay ,(p), with peX 4,
and B,,(q), with qe 2, such that

Prlpen.0cd = [ AL (), (a)aC() (1)
re
and (as a consequence)

A(p) = PrlPep] = /

re€

Ay, (p)dC(r),

By(a) = Pr[Qeq] = / By (a)dC(r).

re€
These three equations lay the foundation for the
construction below.

Remark 6.2. As shown in Dzhafarov (in press),
the notion of selective influence (attribution) is
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restrictive: not every joint distribution Pr[Pep, Qeq]
with marginal selectivity allows for representa-
tion (11).

7. Thurstonian-type representations of Probabilistic-
Interdependent variety

A Thurstonian-type representation of the Probabil-
istic-Interdependent variety (or general Thurstonian-
type representation) for a patch y(x,y), (x,»)€[—a, a}z,
of a discrimination probability function (x,y) is

defined by the construct
{my G«vAxAraByJ» C, 0}1 (12)

with the following meaning of the terms:

(1) The perceptual space R and the decision prob-
ability function ¢(p,q) are understood in the same
way as for the Probabilistic-Independent variety
(Section 4).

(i) C is a probability measure associated with a
conditioning random variable R taking on its values
in some space €,

C(r) =Pr[Rex], relc,

where X ¢ is some sigma-algebra of subsets of €.
(iii) Ay,(p), By,(q) are probability measures conditional

upon values r of R and defined on respective sigma-

algebras X4, X5 (independent of r and of x, ),

Axr(p) =Pr[P(x)ep|R=1], pely,
re€, xel—a,d),
B, ,(a) =Pr[Q(y)eqR=r], qeXp,

re€, yel—a,aq.

Remark 7.1. The conditional measures A.,(p), B, ,(q)
may be allowed to be undefined on, respectively, subsets
c4(x) and cp(y) of € such that the C-measure of
Uselcag €4(X)Y Uyejoagq e8(v) is zero. This excep-
tional set, however, need not be mentioned because it
is always possible to additionally define the conditional
measures on this set in an arbitrary fashion, making
them, in particular, to comply with the definition of
well-behavedness given below (e.g., by making them
independent of x and y on this set).

(iv) the relationship between
{9{7 (Sv QIx.ry By,m C, 0'} is given by

any»:/Lgljgwwﬁo@ﬁndAmmpwuar@>dcv»
(13)

Y(x,y)  and

Remark 7.2. The Probabilistic-Independent variety of
Thurstonian-type representations is obtained as a
special case, by putting

Ay, = Ay, By, =B,

in which case, irrespective of C, (13) reduces to (7).

Remark 7.3. The Deterministic-Interdependent variety
of Thurstonian-type representations is obtained as a
special case, by putting

o(p.4) = 1P, q) = {o if (p,q)¢C.

This case is not considered separately, because its
treatment is not any simpler than that of the general
Probabilistic-Interdependent case.

Unlike for the Probabilistic-Independent variety,
Definition 3.1 of well-behavedness can no longer be
adopted verbatim, but its modification suggests itself
trivially.

Definition 7.1. The conditional probability measure
Ay ,(p) is called well-behaved (in the absolute, or
narrow sense) if 524, ,(p) and 52-A.,(p) exist and are
bounded by a constant ¢ for all (p,x,r)eX 4 X [—a,a] x
¢, that is,

0

‘MAxr(p)‘ <c.

The well-behavedness of B, (q) is defined analogously,
and a Thurstonian-type representation of the Probabil-
istic-Interdependent  variety for a patch (x,y),
(x,y)€[—a, a]27 is called well-behaved (in the absolute,
or narrow sense) if both 4. ,(p) and B, ,(q) in it are well-
behaved.

In the same way as for the Probabilistic-Independent
or Deterministic-Independent varieties, Thurstonian-
type representations of the Probabilistic-Interdependent
variety can also be defined for the entire discrimination
probability function (x,y) rather than for its
patches, by replacing Ay ,(p) and B, ,(q) with, respec-
tively, Ax,(p) (peZy, re€, xeM) and By,(q)
(qe2p,reC, yeI). Relationship (13) then transforms
into

voon= [ [ elna) ddap s (@ ac)

Again, this relationship cannot hold true if (13) fails to
hold for some of the patches ¥(x,y), and this justifies
our focusing on (13): it is shown in the next section that
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this representation cannot hold for any typical patch

Y(x,p).

Remark 7.4. For the discrete finite example R =

{1, ...,k} considered in Remark 4.2, we have
dAyx,(p) = a(ilr,x) = Pr[P(x) = i|R=1r], | i
dBy(q) = B(ilr,y) = Pr[Q(y) = i[R = 1], B

relation (13) acquires the form

k k
b= [ 33 e

i=1 j=1

a(ilr, x)B(j|r, )dC(r),

and the well-behavedness means that —oc( |r,x) and
()y+ (i|r, y) exist and are bounded for all i = 1, ..., k, all
re€, and all (x,y)e[—a,a]*. Note that even in this
s1mple case, with R = {1, ..., k}, the random variable R
may take on its values in an arbitrary space €.

8. General Near-Smoothness theorem

The proof of the theorem below is remarkably short
and simple. This is explained by the fact that all of its
complexity has been absorbed by the notion of selective
influence and Theorem 5.1 with its corollary for the
Probabilistic-Independent variety.

Theorem 8.1. A patch y(x,y) that has a well-behaved
general Thurstonian-type representation is near-smooth.

Proof. Denote
bw) = [ olpa)das ()i (o)
(p.a)eR

By Theorem 5.1, 57 + ¥, (x, ) exist, are continuous in x,
and (by Corollary 5.1) dominated by a constant c.
Applying Lemmas A.1 and A.2 to

Wixy) = / (x)aC(),
we get

B)
(x,») = Oy +l// (x, y)dM(r)

and o‘+ 91 (x,y) are continuous in x. That 52~ + O (x,¥)
exist and are continuous in y is proved analogously. [

dy+

Relating this result to Theorem 3.1, we arrive at our
final conclusion.

Main Conclusion (general). A typical patch ¥ (x,y)
(satisfying the regular minimality and nonconstant
self-similarity conditions (2) and (3)) does not have a
well-behaved Thurstonian-type representation (of any
variety). As a result, no discrimination probability
function ¥(x,y) with regular minima and nonconstant

self-similarity allows for a Thurstonian-type representa-
tion (of any variety) that is well-behaved at any of the
typical line elements (s, u).

9. “Relativization” of well-behavedness

The logic by which the definition of well-behavedness
can be relaxed without affecting the validity of
Theorems 5.1 and 8.1 is the same as for the Determi-
nistic-Independent variety of Thurstonian-type repre-
sentations (see Dzhafarov, 2003). Due to this fact the
generalized definitions below are presented without
much elaboration. Also, they are only presented for
the most general, Probabilistic-Interdependent variety
of Thurstonian-type representations. Their specializa-
tion to the Probabilistic-Independent variety is obtained
by “crossing out” all references to the conditioning
measure C and its space €.

Recall that the proof of Theorem 8.1 is based on
the proof of Theorem 5.1. On inspecting these
proofs one observes that the requirement that
%Am(p) and aerB +(q) exist and be bounded on,
respectively, (p,x r)eXy X [—a,a] x € and
(9,y,1)€Zp X [—a,a] x €, is only needed to the extent
it implies a significantly weaker requirement, the
existence and boundedness of

0
+ _
Dy (g,x,r) oot Aem a(p,q) dAX,r(p)a
(g, x,r)eR X [—a,a] x €,
Dg (p,y r)——a / a(p,q) dB,.(q)
B P 6yi qefR 9 V,r I

(p,y,r)eR X [—a,a] x €.

This requirement is weaker because these integrals
contain a specific function o(p,q) rather than the
characteristic functions y,(p) and y,(¢) for all possible
peX,y and qeXp. This observation leads to the
following relaxation of Definition 7.1.

Definition 9.1. The conditional probability measure
A, ,(p) is well-behaved with respect to o(p, q) (a decision
probability function) if the left- and right-hand deriva-
tives

Ditg v =g [ otr.a)ddo

exist and are bounded on (¢, x,r)eR x [—a,q] x €.

The well-behavedness of By, ,(q) with respect to a(p, ¢)
is defined analogously.

A Thurstonian-type representation of the Probabil-
istic-Interdependent variety is called well-behaved with
respect to 6(p, q) if both A, ,(p) and B, ,(q) in it are well-
behaved with respect to a(p, q).
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The most general definition of well-behavedness
obtainable by analyzing the proofs is also the least
intuitive. It is stated here for completeness only and
without any details of the argument leading to it. The
interested reader can reconstruct this argument by
appropriately adapting the analogous argument pre-
sented in Dzhafarov (2003) when constructing the
notion of well-behavedness in the relative sense for
Thurstonian-type representations of the Deterministic-
Independent variety.

Definition 9.2. Given a Thurstonian-type representa-
tion {.R € Ay,,B,,,C,a} for a patch ¥(x,y), (x,»)€
[—a,a)’, the conditional probability measure A, (p) is
well-behaved with respect to (o, B,,, C) if

(i) for all (¢,x,r)eN x [—a,d] x €, there exist
D ( xr)—i/ o(p, q) dAr, (p);
FRUIED _8x4_r e ,q xr\P);

(ii) for some function ¢(x,r) >0 and for all ge R,

D (q,x,1)|<c(x,r);

(iii) for some function g(g,r), and for all (¢, x,r)eR x
[—a,a] x €,

D7 (g, x,1)|<g(q,r),

/. / o(q,7)dBy.(g) <
re€ JgeN

The well-behavedness of B,,(q) with respect to
(6,Ax,, C) is defined in a symmetrical fashion.

A Thurstonian-type representation {R,€, A.,, B, ,,
C, )} for a patch y(x, y), (x,y)€[~a,a]*, is well-behaved
in the relative (or broad) sense if Ay ,(p) is well-behaved
with respect to (o, B, ,, C) and B,,(q) is well-behaved
with respect to (o, Ay, C).

Definitions intermediate between the two given in this
section are possible but need not be discussed. The point
being made is that even though the definition of well-
behavedness in the absolute sense seems innocuous as it
is (see Dzhafarov, 2003, for a comprehensive justifica-
tion), the near-smoothness theorems and the ensuing
inadequacy of well-behaved Thurstonian-type represen-
tations remain valid under even weaker assumptions.
Moreover, since the definition of well-behavedness in
the relative sense has been derived by inspecting specific
proofs, its assumptions are still merely sufficient for the
validity of our main conclusion, rather than both
sufficient and necessary.

10. Conclusion
10.1. Summary and general remarks

This is what we know about discrimination probabil-
ities and their Thurstonian-type representations.

1. As shown in Dzhafarov (2003), if the probability
measures associated with random images of stimuli
are not constrained in any way (in particular, allowed
to be singular), a Thurstonian-type representation
can be found for any discrimination probability
function ¥(x,y). Moreover, this representation can
be found within the most restrictive, Deterministic-
Independent variety of Thurstonian-type models.
Thus the general idea of the Thurstonian-type
representability for (x,y) (even if one confines
oneself to stochastically independent perceptual
images and deterministic decisions) is not a falsifiable
assumption, but rather a theoretical language provid-
ing an alternative description for y(x,y).

2. If, however, the probability measures in question are
constrained to be “well-behaved” (Definitions 3.1,
7.1, 9.1, 9.2), then even the most general, Probabil-
istic-Interdependent variety of Thurstonian-type
models cannot represent a discrimination probability
function Y(x,y) subject to regular minimality and
nonconstant self-similarity (Sections 3.1 and 3.2).

3. These two properties are considered fundamental for
discrimination probability functions (Dzhafarov,
2002¢, 2003), while the well-behavedness is a rela-
tively weak constraint that is unlikely to be violated
in realistically conceivable Thurstonian-type models
designed to fit empirical data. The Thurstonian-type
modeling, therefore, is a theoretical language that is
not particularly well suited for dealing with ‘“‘same-
different” discriminations.

As argued in Dzhafarov (1993), different theoretical
languages, although no empirical evidence can reject one
of them in favor of another, are not necessarily equally
“good”’: one of them may, for example, be conceptually
more economic or transparent than another, or the
formulation of a problem in one of them may be more
suggestive of its possible solutions than its formulation
in another. It seems natural to expect from a good
theoretical language that if the empirical entities it is
designed to describe have some robust inbuilt proper-
ties, the language should be able to depict these property
easily, without much ingenuity involved and convoluted
constructions used. As an example from a different area,
any receiver operating characteristic (ROC) curve for
detection probabilities (probability of hits versus prob-
ability of false alarms) can be generated by a standard
signal detectability scheme, with two distributions on a
real axis and a variable cut-off point. This scheme,
therefore, is not a falsifiable model but a theoretical
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language providing an alternative description for an
ROC curve. The list of robust inbuilt features of an
ROC curve includes its being increasing, lying above the
identity line, and having a nonincreasing slope. The
signal detectability models would hardly enjoy their
present wide acceptance if it was not easy to choose
pairs of distribution functions that would generate ROC
curves with these properties (quite aside from the
question of how well these theoretical curves fit
empirical data). By contrast, Thurstonian-type
modeling of discrimination probabilities definitely fails
this “easiness of capturing basic properties” test. With
all due caveats, therefore, I suggest that the inadequacy
of well-behaved Thurstonian-type models for discrimi-
nation probabilities should lead one to critically weigh
up the soundness of the entire enterprise of Thursto-
nian-type modeling, with stimuli mapped into random
variables.

10.2. “Uncertainty Blobs’’: an alternative to
Thurstonian-type representations

In Dzhafarov (2003) I mention two alternatives to
Thurstonian-type modeling. One consists in abandoning
the idea of stochastic images representing individual
stimuli, and in assuming instead that every pair of
stimuli (x,y) presented for a comparison is mapped
into a single random variable (or process) R(X,y)
interpretable as a measure of subjective difference
between the two stimuli (as it is done in the
model by Takane & Sergent, 1983). The other alter-
native consists in abandoning random representations
altogether, and considering instead a deterministic
dissimilarity function, imposed directly on a stimulus
space, such that the dissimilarity of y from x is
mapped into ¥(x,y) by a fixed monotonic transforma-
tion. I conclude this paper by constructing a model
illustrating the latter approach. This model simulta-
neously predicts the regular minimality property in its
simplest form,

arg min y(X,y) = x,arg min y(x,y) =, (14)
y X

and the nonconstant self-similarity property,
Y(x,X) # const.

A general form of regular minimality is obtained
from this model by a trivial modification, mentioned
later.

According to the so-called “probability-distance
hypothesis”, whose analysis is given in Dzhafarov
(2002b), ¥(x,y) is an increasing function f of D(x,y),
a certain (“subjective’’) metric imposed on the
stimulus space Yt<Re"”. To avoid technicalities and
simplify the discussion, let 9t form a G-space (space
with geodesics) with respect to the metric D (Aleksan-

drov & Berestovskii, 1995; Busemann, 1955). This
means that

(i) the notion of a length L[z(¢)] is defined for any
piecewise  continuously  differentiable  path
z()(0<t<1) in 9 that connects any x = z(0) with
any y = z(1) (for details see Dzhafarov & Colonius,
1999, 2001);

(i1) for any distinct points X,y there is a path Xy (called
a geodesic) whose length among all paths connect-
ing x with y is minimal, and this length L[Xy] equals
D(x,y);

(ii1) for every point there is a geodesic path passing
through it;

(iv) any geodesic Xy can be uniquely extended beyond
these two points.

The probability-distance hypothesis,
Y(x,y) =f[D(x,y)]; (15)

does not fare any better than the well-behaved
Thurstonian-type representations: although it predicts
the regular minimality property (14), it also predicts

Y(x,x) = f[D(x,x)] = f(0) = const.

Consider, however, the following modification of this
hypothesis. Its essence consists in replacing D(x,y) in
(15) with appropriately defined dissimilarity between
two “blobs”, some neighborhoods of x and y whose size
slowly changes with changing x and y. Specifically, let
each stimulus x be associated with an “‘uncertainty
distance” R;(x), where i = 1 or 2 depending on whether
x belongs to the first or second observation areas.
Intuitively, stimulus x belonging to the first observation
area is represented by (or mapped into) the “uncertainty
blob” of stimuli

B (x) = {x'eM: D(x,x')<R(x)},

which plays a role analogous to the random image of x
in a Thurstonian-type model. The stimulus blob

By (x) = {x'eM: D(x,X')<Ry(x)}

represents x belonging to the second observation area.
The distance D(x,y) here is assumed to be symmetrical,
D(x,y) = D(y,x) (this is not assumed in Dzhafarov
(2002b) where D in (15) is treated as an oriented distance).
We assume that R;(x) and R,(x) change with x
relatively slowly, in the following sense: for all x,y,

|Ri(x) — Ri(y)]

|R>(x) — Ra(y)|
This is, essentially, a form of the Lipschitz condition for
Rl(x) and Rz(X).

The dissimilarity D*(¥X,9)) between two stimulus
subsets X, ) of 9t is defined as

D*(X,9) = sup D(a,b).
acXbe?d

<D(X,y). (16)
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Then (refer to Fig. 1) the dissimilarity between B;(x)
and B,(y) can easily be shown to equal
D*[B1(x), Bs(y)] = Ri(x) + D(x,y) + Ra(y). (17)
Indeed, for any aeB;(x),be B, (y),
D(a,b)<D(a,x) + D(x,y) + D(y,b),
and the maximum value for the latter expression is
Ri(x) + D(x,y) + R2(y). To show that a geodesic of this
maximum length exists for some aeB;(x),beB,(y),
connect x and y by a geodesic and extend it beyond x
and y until it reaches the boundaries of B, (x) (at a point
a) and B,(y) (at a point b).

The modification of the probability-distance
hypothesis being proposed is this: ¥(x,y) is an increas-

ing function f of the dissimilarity between B;(x) and
Ba(y),

V(x,y) =/[D¥[B(x), Ba(y)]]

=/TRi(x) + D(x,y) + Ra(y)]- (18)

For example, using a version of the well-known
Shepard’s (1987) idea, one could put

Y(x,y) =1 —exp [-Ri(x) — D(x,y) — Ra(y)]-

Whatever the choice of f, as an immediate consequence
of (16) and (18) we have (refer to Fig. 2)

W (x,x) =f[Ri(x) + Ry(x)]

_ Y(x,y) = f[Ri(x) + D(x,y) + Ra(y)],
Y(y,x) = f[Ra(x) + D(x,y) + Ri(y)],

which is the property of regular minimality (14). At the
same time,

W (x,x) = f[Ri(x) + Ry(x)]

is a quantity that generally varies with x (nonconstant
self-similarity).

To obtain the general form of regular minimality, (1),
one simply has to substitute ¥(x,h(y)) for ¥ (x,y) in
(18), with h being some homeomorphism 9t — k.

a

Fig. 2. The “uncertainty blobs” B (x) and B,(y) when stimulus x (in
the first observation area) coincides with stimulus y (in the second
observation area). The dissimilarity between the two “blobs” is the
length R;(x) + Rx(y) of any geodesic passing through x =y until it
intersects with the boundaries of the two “blobs™.

Fig. 1. The two shaded areas are “uncertainty blobs” 8B, (x) and B,(y) for, respectively, stimulus x (in the first observation area) and stimulus y (in
the second observation area). The interrupted lines are the geodesics connecting the centers of the “blobs” with their boundary points: the length of
any of these geodesic radii in B (x) is R;(x), in By (y) it is Ra(y). The solid line Xy (connecting x with y) is a geodesic of length D(x,y). The geodesic
radii Xa and yb are continuations of Xy (in a G-space every geodesic has a unique continuation at both ends). The length of the geodesic axyb is
Ri(x) + D(xy) + Rx(y), and it is taken to measure the dissimilarity between B;(x) and B, (y).
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No claim is being made here that the approach using
the ‘“‘uncertainty blobs” is empirically valid. My only
point is to demonstrate that one can easily construct a
class of models which employ no random images and no
notion of a perceptual space, that are therefore
conceptually more economic than Thurstonian-type
representations, and that, in a sharp contrast with the
latter, capture the fundamental properties of regular
minimality and nonconstant self-similarity “‘automati-
cally”. In the least, the development of such models
constitutes a viable alternative to searching for non-well-
behaved Thurstonian-type representations capable of
describing “‘same-different” discriminations.
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Appendix A. Auxiliary facts

Lemma A.1. Let

F(y) = S(r,y)dM(r),

reR

Y€ [_a7 a}a

where M is a sigma-finite measure. Let y—f(r,y) be both
right-and left-differentiable on [—a, al, with

ay%f(”aJ’) <g(r), /rem g(r)dM(r) = c< .

Then F(y) is both right- and left-differentiable (hence
continuous) on [—a, al, with

0 d
MF(J’) =/ Mf(V7Y)dM(V)<C~

Proof. See Lemmas A.3 and A.4 in Dzhafarov
(2003). O

Lemma A.2. Let

F(x) = / S0 dM(p), xel-ad,

where M is a sigma-finite measure. Let x—f(p,x) be
continuous, and

. 91<ow). [ aplaM)<wo.
Then F(x) is continuous.

Proof. An immediate consequence of the Lebesgue
Dominated Convergence Theorem (e.g., Hewitt &
Stromberg, 1965, pp. 172-173) applied to f(p,x+
0)—f(p,x) as 0—0. (]
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