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What is the meaning of saying that random variables {X,, .., X,,} (such as
aptitude scores or hypothetical response time components), not necessarily
stochastically independent, are selectively influenced respectively by subsets
{I'y, .., I',} of a factor set @ upon which the joint distribution of {Xj, ..., X,,}
is known to depend? One possible meaning of this statement, termed condi-
tionally selective influence, is completely characterized in Dzhafarov (1999,
Journal of Mathematical Psychology, 43, 123—-157). The present paper focuses
on another meaning, termed unconditionally selective influence. It occurs
when two requirements are met. First, for i=1, .., n, the factor subset I; is
the set of all factors that effectively change the marginal distribution of X;.
Second, if {Xi,.. X,} are transformed so that all marginal distributions
become the same (e.g., standard uniform or standard normal), the trans-
formed variables are representable as well-behaved functions of the corre-
sponding factor subsets {I'|, .., I',} and of some common set of sources of
randomness whose distribution does not depend on any factors. Under the
constraint that the factor subsets {I7, .., I',} are disjoint, this paper estab-
lishes the necessary and sufficient structure of the joint distribution of
{X{, ., X,,} under which they are unconditionally selectively influenced by
{I'y, .., I',}. The unconditionally selective influence has two desirable proper-
ties, uniqueness and nestedness: {Xi, ..., X,,} cannot be influenced selectively
by more than one partition {I7, .., I',} of the factor set &, and the com-
ponents of any subvector of {Xi, .. X,} are selectively influenced by the
components of the corresponding subpartition of {I', .., I',}.  © 2001 Academic
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1. INTRODUCTION

1.1. Two Meanings of Selective Influence

Consider the following seemingly very simple problem. Let {X,, X,} be two
observable random variables, say, performance scores in two tests, known to have
a bivariate normal distribution. Let y, and y, be two external factors (say, age and
sex of the examinee), and the hypothesis be that y, selectively influences X;, while
y, selectively influences X,. What is the meaning of this statement? If X, and X, are
stochastically independent, the answer is trivial: the mean and the variance, x,, o2,
of X, change with y; but not with y,, while x, and o2 of X, change with 7, but not
with y,. If, however, X; and X, are known to be stochastically interdependent
(which in this case means that the covariance between X; and X, is not always
zero), the meaning of the selectiveness becomes less apparent. Should one say that
the selectiveness in question takes place only when the correlation p does not
depend on either y, or y, (but what should one make of the fact that the covariance
then depends on both these factors)? Is it logically possible to speak of any form
of selective influence if u; and o are functions of y, only, u, and 3 are functions
of y, only, while p is a function of both y; and y,?

Consider another example, leading to the same mathematical problem (bivariate-
normal distribution that depends on two factors) but perhaps more appealing to
those interested in mental architectures and response time decompositions
(Dzhafarov, 1997). Let a simple response time T, known to depend on two
experimental factors y; and y, (say, stimulus intensity and response deadline), be
assumed to be decomposable into a sum of two log-normally distributed
components, '

T(y1, 72) =exp[ Xi(y1) ] +exp[ Xa(y2) ],

where {X,,X,} are bivariate-normally distributed and assumed to selectively
depend on y, and yp,, respectively. Again, the meaning of this statement is clear
when X, and X, are stochastically independent. It may be reasonable to assume,
however, that X, and X, vary as a function of some state or process (arousal level,
attention) that tends to prolong or shorten both of these variables simultaneously,
introducing thereby a positive correlation between them. What then becomes of the
hypothesis that {X,, X,} are selectively influenced by y, and y,, respectively?
Generalizing, what is the meaning in which one can say that stochastically inter-
dependent random variables {X,,..,X,} (such as hypothetical response time
components or observable aptitude scores) are selectively influenced by, respec-
tively, subsets {I', ..., I',} of a factor set @ upon which the joint distribution of
{Xy, . X,} is known to depend? Dzhafarov (1997, 1999) distinguishes two
different meanings in which such selectiveness of influence can be understood.

! Response time components in this case can be thought of as durations of two consecutive processes,
but this is only one possible interpretation. For a detailed discussion of response time components see
Dzhafarov (1997) and Dzhafarov and Schweickert (1995).
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One meaning, termed in Dzhafarov (1999) conditionally selective influence, is
derived from the idea of indirect nonselectivity proposed in Townsend (1984) and
studied in Townsend and Thomas (1994). Random variables {X,, .., X,} are
conditionally selectively influenced by, respectively, {I,.., I,} if, for any i, the
conditional distribution of X;, given any fixed values for the rest of the variables,
depends only on the factors comprising I';. Dzhafarov (1999) provides a complete
characterization (the necessary and sufficient structure of the joint density function)
for this form of selective influence. When applied to the problem posed earlier, this
characterization yields the following result. Bivariate normally distributed {X;, X,}
are conditionally selectively influenced by factors y,, y,, respectively, if and only if

(i) the correlation p can be presented as

p=key(y1) €2(2)s

where ¢; and ¢, are arbitrary functions and k is an arbitrary constant, except for
the constraint |p| < 1;

(i1) the two variances are
2 2
02:C1(V1) 02_52(3’1) .

1 1_p2’ 2_1_p

(i) if k=0 (ie., p=0 identically), the means u,, i, exclusively depend on
Y1, V2, respectively, but neither of them depends on either of the two factors if k£ #0
(see Dzhafarov, 1999, pp. 140-141, for details).

The second meaning, which I term unconditionally selective influence, is the focus
of the present study. This meaning, also discussed in Dzhafarov (1999), is derived
from Dzhafarov (1992, 1997) and Dzhafarov and Schweickert (1995). According to
the definition proposed in these papers, {Xi, .., X,,} are unconditionally selectively
influenced by, respectively, {1}, ..., I',} if these random variables can be presented as

i X, =Xi(Py, ..., P, Fl)_
X;=X;(Py, ..P ) |, (1)

X,=X,(P,,..P

n»

r,)]
where { X, .., X,,} are some functions, while {P,, .., P,} are sources of randomness
whose joint distribution does not depend on any factors (they can always be
thought of as stochastically independent variables uniformly distributed between 0
and 1). The concept is schematically illustrated in Fig. 1: all stochasticity in
{Xi, .., X,} is due to factor-unrelated sources; stochastic interdependence follows
from the fact that the same sources stochastically perturb different variables; and
the factor subsets, {I'}, ..., I',}, selectively modify the dependence of these variables
on the random sources.
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FIG. 1. lustration to (1): {X,, X, X3} selectively influenced by {I;, Iy, I';}. See text for details.

The unconditionally and conditionally selective forms of influence coincide when
{X,, .., X,} are stochastically independent, but otherwise they generally exclude
each other, if considered with respect to one and the same vector of factor subsets
{I', .., I',} (Dzhafarov, 1999).

The intuition underlying the representation (1) is clear and forms a departure
point for the present development. It turns out, however, that to serve as a useful
definition of unconditionally selective influence this representation should be
amended along the following lines.

First, it is shown below that for one and the same distribution of random
variables {Xi, .., X,} (varying with @) there can be more than a single vector of
factor subsets {I',..,I,} which satisfies (1). To make the determination of
{I', .., I',} unique, which is an obvious desideratum, one needs one additional
constraint, related to the notion of factor effectiveness (to be defined in the next
subsection): each factor in I; must effectively influence the marginal distribution of
X, i=1,..,n

Second, certain constraints have to be imposed on the joint distribution for the
random vector {X, .., X, }. In this paper I assume that the marginal distribution
functions {F(x,), .., F,(x,)} for this vector are continuous and that the random
vector {Uy, .., U,} ={F\(X,), .., F,(X,)} (the copular base of {Xj, .., X,}, intro-
duced in Subsection 1.2) possesses a continuous density on some n-dimensional
convex area.

Third, to achieve a workable notion of unconditionally selective influence one
has to assume that the functions { X}, .., X,,} in (1) are sufficiently well-behaved. In
the initial definition given in Section 2 the assumption is that {F, o X\, ..., F,, o X},
where F;o X,=F,[ X;(---)], form a homeomorphic transformation (i.e., a one-to-
one transformation continuous together with its inverse).

At the end of Section 2 some of these requirements are relaxed to investigate the
possibility that the number of the sources of randomness in (1) is greater or less
than that of the random variables. In general, however, I do not set for myself the
goal of making the technical regularity constraints, such as the continuity, con-
vexity, and smoothness (existence of continuous density) just mentioned, as weak
as possible. It appears that the numerous relaxations of these conditions which
readily suggest themselves, while causing considerable technical difficulties, are
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unlikely to significantly broaden the scope of the conceivable applications of the
theory.

There is one nontechnical aspect, however, in which the theory of unconditionally
selective influence presented below is less general than that for the conditionally
selective influence, as presented in Dzhafarov (1999): the theory below only applies
to pairwise disjoint factor subsets {1, ..., I',},

i#j=T,nI=0.

Since the union of all {I'y, .., I',} is @ (otherwise @ can always be appropriately
reduced), the vector {I7, .., I,} can be referred to as a partition of @, with the
understanding that some of the subsets in this partition may be empty.

1.2. Preliminary Notions

We speak of a random vector {X,, .., X,,} and its joint distribution function as
depending on @,

(X1, o0 X} ={X1, . X, } (D)
Prob[ X, <xy, .., X, <x, ] =F(x{, .., X,; D)

even though it would be more precise to speak of a family of random vectors and
their distribution functions indexed by all possible values of the factor set &. In all
functions, such as F(xq, ..., x,; @), the factors separated from the arguments by a
semicolon are treated as part of the functions’ names rather than as their arguments.
For example, instead of F(x;,.., x,;®), one could write Fg_pi(xq, ... X,),
Fgp_ p(xy, ..., X,), €tc.

Marginal distribution functions are denoted as

Prob[ X; < x]=F;(x; D), i=1,..,n (3)

It is assumed that F;(x; @) is continuous, for i=1, ..., n. I call the vector of random
variables

{Uy, ., U} (@)= {F\(X;; D), .., F,(X,; D)} 4)

the copular base of the random vector {Xj, .., X, }(®). Obviously, U; (i=1, .., n)
are standard uniformly distributed (i.e., uniformly distributed between 0 and 1): for
any 0<u<l,

Prob[U;<u] =u, i=1,..,n (5)
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The joint distribution function of {Uy, ..., U,}(®), however, generally depends on &:

Prob[ U, <uy, .., U, <u, ] =Cluy, ..., u,; ®).

This joint distribution function is traditionally termed the copula of the random
vector {Xi, .., X,}(®@) (see, e.g., Rischendorf, Schweizer, & Taylor, 1996, and
Nelsen, 1999; Colonius, 1990, was probably the first to use the notion of a copula
in a psychological context). This is the term from which the “copular base” is
derived. Obviously,

F(x{,.nx,;®)=C[F|(x; D), ..., F(x,; D)]. (6)

The notion of a copula has been introduced in the theory of probability and
statistics as a way of separating the pure stochastic interdependence of random
variables from their marginal distributions. This intuition plays a prominent role in
the present development. A random vector {Xi, .., X,,}(®) is always viewed as
being represented by (or decomposed into) its vectors of marginals {F(x,; @), ...,
F,(x,; ®)} and its copular base {Uy, .., U,}(®). Correspondingly, the uncondi-
tionally selective dependence of {Xj, ..., X,,}(®) on a partition {I, .., I',} of @ is
analyzed into two components: the selective dependence on {I'y,.., I',} of the
copular base {Uy, .., U,}(®), which constitutes the essence of the theory, and the
far more trivial effect of {I", ..., I',} on the marginal distributions {F, ..., F,}.

The copular base {U,,.., U,}(®) is assumed to possess a continuous joint
density on some n-dimensional convex region of the standard n-dimensional unit
cube, [0,1]”. Within this support, therefore, the joint distribution function
C(uy, ..., u,; @) is continuous and strictly increasing in all arguments. The first-
order conditional distribution functions for the copular base {Uj, .., U,}(®) are
defined as

Prob {U,- <u;

& lew]zCmewuﬁ¢L i=1,.,n (7)

jelliwmy—{5y 77

Within the support of {U,, .., U,}(®) any conditional distribution function is con-
tinuous in all arguments and strictly increasing in the variable being conditioned
(considered its main argument).

Each factor y € @ attains its values in some set of possible values V,, containing
at least two elements. A completely crossed factorial design is assumed, so that the
possible values of the factor set @ form the Cartesian product

Vo= X V,.
yeD
A factor ye I'c @ is called effective with respect to a function f{(...; I') if this factor
possesses at least two different values corresponding to two different values of f, at
some fixed values of its arguments and the remaining factors in I". It is tacitly
assumed throughout this paper that all factors in @ are effective with respect to the
joint distribution function F(x,, .., x,; @) (otherwise @ can always be rid of all
ineffective factors).
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1.3. Overview of the Paper

The aim of this paper is to develop a workable definition of the unconditionally
selective influence and to ascertain the structure of the joint distribution for
{Xy, .., X,,}(®) that is necessary and sufficient for this random vector to be
unconditionally selectively influenced by a given partition {I'y, ..., I',} of ®.

Subsection 1.1 contains a discussion of the intuition underlying the notion of the
unconditionally selective influence and the emendations that this intuition must
undergo to evolve into a rigorous mathematical theory, as well as one important
limitation (disjoint factor subsets) imposed on the generality of the theory.
Subsection 1.2 introduces the preliminary notions and assumptions utilized in the
theory to be presented: the decomposition of a random vector into its copular base
and its vector of marginals (with certain regularity constraints imposed on both),
and the notion of the factor effectiveness with respect to a function. I proceed now
to overview the subsequent development, presented in Section 2.

The adjective selective (as in selective influence or selective attribution) hereafter
means unconditionally selective, unless specified otherwise. I refer to vectors, such as
{Xy, . X} (@) or {I, .., I,}, in both plural and singular grammatical forms: for
example, the usage “{X, .., X,}(®) are selectively attributable to {I'y,.., I,}”
(meaning the random variables are) alternates with “{X,, .., X, } (®) is selectively
attributable to {I"y, .., I',}” (meaning the random vector is).

n

1.3.1. Basic Theory of Selective Attributability. The intuition underlying (1)
forms the basis for the notion of selective attributability whose introduction opens
Section 2. In essence, a random vector {Xi, ..., X,,}(®) is considered to be selec-
tively attributable to a partition {I"y, .., I',} of @ if a representation analogous to
(1) holds for the copular base {Uy, ..., U,}(®) of this random vector (Definition 1,
Subsection 2.1). The main results associated with this notion are as follows.

One can choose an arbitrary value @° of the factor set @ as its anchoring value
and take the random vector {Uj, .., U,}(®°) at this value to play the role of the
sources of randomness, {Py, .., P,} in (1), for the copular bases {Uy, .., U,}(®) at
all possible values of @ (Lemma 2, Subsection 2.1).2 Let the distribution of
{Uy, .., U,}(®° be known, as well as the distributions of the copular bases
{Uy, .., U, }(®?), i=1, .., n, taken at the values @? of the factor set @ that are
identical to the anchoring value ®° in all components except for I';. It turns out
that then the fact of the selective attributability of {X,, .., X,,}(®) to {I', ..., I',}
allows one to determine the distribution of any other copular base {Uy, ..., U,} (D)
essentially uniquely (leaving one a finite number of choices in the most general
case). The form of this determination completely characterizes the notion of selec-
tive attributability and is derived in Theorems 2 and 3 (Subsection 2.5), based on
Lemma 4 (Subsection 2.4). Recall that, given a vector of marginals { Fy, .., F,}, the
distribution of {X,, .., X,,}(®) is uniquely determined by that of its copular base,
{Uy, .. U, }(D).

2 The proof of all results stated in this paper, unless obvious, are given in the Appendix.
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FIG. 2. Constraints imposed on copular bases {U,, U,} by selective attribution of {X;, X,} (1"} U I,)
to {I'}, I',}. See text for explanations.
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Figure 2 provides an illustration for the case n=2, V, ={I'{,I'{,I'{}, V=
{r9,rk, r; r;} (ie, I, and I', have, respectively, 3 and 4 possible values). Any
particular pair of values, say, {I'{, I'5}, can be taken to serve as anchoring values
for the factor set, and the distributions of {U,, U,}(I"y uI’,) corresponding to
I'y=T9 or I'y=1TI9 (the shaded row and column in Fig. 2) are arbitrary (except for
regularity constraints imposed on all copular bases). Given these distributions,
however, the assumption that {X,,X,}(I"; uT’,) are selectively attributable to
{I'\, I',}, respectively, allows one to (essentially) uniquely determine the distribu-
tions corresponding to all other values of {I",, I',}. For example, the distribution
of {U,, U,}(I'; uT3) is determined by the distributions of {U,, U,} (L' uT'9),
{U,, U,}(I'Y v I'3), and the anchoring distribution {U,, U} (1" u I'9).

The notion of selective attributability satisfies the following important require-
ment, termed nestedness (Subsection 2.6): if {X,,..,X,}(®) is selectively
attributable to {I"y, ..., I',}, then any subvector of {X,, ..., X, } (@), say, {X,, X,}(®),
is selectively attributable to the corresponding subpartition of {I", .., I',}, in this
case {I'y, I} (Theorem 5).

1.3.2. Basic Theory of Selective Influence. Selective attributability is a straight-
forward development of the naive intuition underlying the notion of selective
influence, as proposed in Dzhafarov (1997, 1999). In particular, Lemma 1 (Subsection
2.1) establishes that selective attributability implies the representation (1), while
Lemma 3 (ibid) shows that the sources of randomness, {P,,..,P,} in (1), can
always be standardized as suggested in Dzhafarov (1997, 1999). (However, the
identification of the randomness sources with the copular base at an anchoring
value, mentioned above, turns out to be more useful than any such standardiza-
tion.) The reason the notion of selective attributability has to be complemented by
additional requirements has been mentioned in Subsection 1.1: one and the same
random vector {X|, .., X, }(®) can generally be selectively attributed to different
partitions of @. Example 1 (Subsection 2.2) shows that in some cases it can even
be attributed selectively to all possible partitions of @. The theory turns therefore
to another aspect of selectiveness in the dependence of {Xi,..,X,} on &, its
manifestation on the level of marginal distributions. It is required that when
{Xy, .. X,}(®) is selectively influenced by {I',.., I}, any factor within I,
i=1, .., n, must be effective with respect to the marginal distribution F;(x;). Selec-
tive dependence of {X, .., X,}(®) on {I',.. I} is defined by combining this
requirement with that of the selective attributability of {X, .., X,}(®D) to
{I'i, .., I',} (Definition 2, Subsection 2.3). Examples 1 and 2 (Subsections 2.2, 2.3)
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prove that these two requirements are logically independent, while Theorem 1
(Subsection 2.3) shows that with selective influence one does achieve the uniqueness
that selective attributability lacks. The characterization of selective influence, that
is, the necessary and sufficient structure that the joint distribution of {X{, ..., X,,} (D)
has to have to be selectively influenced by { Iy, ..., I',}, is trivially obtained from the
characterization of selective attributability (Theorems 2 and 3, Subsection 2.5) by
adding to it the requirement of the effectiveness of factors with respect to marginals
(Theorem 4, ibid). Analogously, the nestedness of selective attributability (Theorem 5,
Subsection 2.6) immediately implies the nestedness of selective influence (Theorem 6,
ibid): if {X,, .., X,,} (@) is selectively influenced by {I'y, .., I',}, then any subvector
of {Xi, .., X,}(®) is selectively influenced by the corresponding subpartition of
{Iy,..T,}.

1.3.3. Generalized Theory of Selective Attributability and Influence. The develop-
ment presented in Subsections 2.1-2.6 is confined to the case when the number of
the sources of randomness in (1) is the same as that of the random variables
{Xi, ... X,,} (®). In Subsection 2.7 I consider the case when the sources of random-
ness {P,, .., P,} are allowed to be more numerous than {Xi, .., X,,}. It turns out
(Theorem 7) that if the regularity (well-behavedness) constraints imposed on the
mapping of {P,,..,P,} onto {X,,..,X,}(®) in the case m=n are suitably
generalized to m > n, then the number of the sources of randomness can always be
reduced to m =n. The case m = n does not, therefore, lead to a more general theory.
If, however, the sources of randomness {P,,..,P,} are allowed to be less
numerous than {Xi, .., X,,} (Subsection 2.8), one obtains a genuine generalization
of the theory that has important substantive applications: it is often reasonable to
assume (or at least to consider the possibility) that some of the components of the
random vector {Xj, .., X,,} (@) are uniquely determined by its other components,
including the case when all these components are deterministic functions of each
other (which happens when there is only one source of randomness, m =1). The
analysis presented in Subsection 2.8 is based on the notion of a regular m-dimen-
sionality of the vector {Xi,.., X, }(®), that generalizes the regularity constraints
imposed on the joint distribution of this vector in the basic theory. With this
notion, all definitions and results of the basic theory are generalized in a rather
straightforward manner, including a complete characterization of selective
influence, with the uniqueness and nestedness properties preserved. To facilitate
comparisons, the formal statements presented in Subsection 2.8 (with the exception
of Lemma 6) are labeled in the same way as their counterparts in the basic theory but
with asterisks added to their numbers: thus Definition 1*, Lemma 4*, Theorem 3*,
etc., include Definition 1, Lemma 4, Theorem 3, etc., as their respective special cases.

2. THEORY

2.1. Selective Attribution

I begin with a definition that is very close to that proposed in Dzhafarov (1997,
1999) for selective influence but turns out to be weaker than the notion of selective
influence we arrive at in this paper.
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DErFINITION 1. A random vector {Xi,..,X,}(®@) is said to be selectively
attributable to a partition {1, .., I',} of @ if

{Fl(xl; ¢)’ ovey Fn(xna @)} = {Fl(xl’ Fl)’ () Fn(xn’ Fn)} (8)
and if there exist a random vector {Py, .., P,} (whose joint distribution does not
depend on @) and a homeomorphic transformation {&,, .., &,} 4, such that the

copular base {Uy, .., U,} (@) of {Xi, .., X,,} (@) is representable as

Ul :él(Pla () Pno Fl)

9)
Un = én(Pla ey Pna Fn)
The proof of the following lemma is obvious, on defining
F7Y(p; @) =max{x: F;(x; ®)<p}, i=1,..,n (10)

Lemma 1. If {Xy, .., X, } (@) is selectively attributable to {I'y, .., T}, then the
representation (1) holds, with

X, Py, ., P ) =F'[&(Py, .., P T)], i=1,..,n (11)
The transformation {X,, .., X,,} is homeomorphic if and only if the functions

{F\(xy; I, o Fo(x,5 T,)} are strictly increasing (on arbitrary interval domains).

The following simple observation plays a key role in the subsequent development.
Since a homeomorphic relationship is transitive, one has

{P,..P,} —— {U,, ., U} (D)

(U, o U (D) —

for an arbitrary value @° of the factor set @. It immediately follows that we have

Lemma 2. If {Xy,.., X, }(®) is selectively attributable to {I', .., I,}, then
{P,, .., P,} in the representation (9) can be chosen to be

(P, ..P)}={U,, ..U} (2, (12)

where ®° is an arbitrary (anchoring) value of the factor set ®.

To bring Definition 1 even closer to the notion discussed in Dzhafarov (1997,
1999), it is useful to observe (even though this observation is not utilized in the
subsequent development) that the sources of randomness {Py, .., P,} can always be
standardized, in the following sense.
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Lemma 3. If {Xy, .., X, } (D) is selectively attributable to {I', .., T}, then the
random vector {Py, .., P,} in (9) can be chosen to consist of independent identically
distributed random variables with any given distribution function strictly increasing on
a given interval domain (in particular, uniform between 0 and 1).

See the Appendix for the proof.

2.2. Factor Effectiveness with Respect to Marginals

Recall, from Subsection 1.2, that all factors in @ are assumed to be effective with
respect to the distribution function F(xq, ..., x,,; @). It does not follow from (8) in
Definition 1, however, that all factors in I'; are effective with respect to the marginal
distribution functions F;(x;; I;), i=1, .., n. The following example demonstrates
that it is even possible for {X,,.. X,}(®) to be selectively attributable to
{I'y, .., I',} without any of the factors being effective with respect to any of the

marginals.

ExamPLE 1. Let &= {y,,7,} (two independent factors), and let {X,, X,} be
defined as

[Py if =99
Xl - . 0
P, ity #97

X, — P, if y,=99
2= . 0
P, it y, #y;

) (13)

where {P,, P,} are independent random variables uniformly distributed between 0
and 1 and {y9, y9} are particular values of the two factors. The factors {y,, 7,} are
clearly effective with respect to the joint distribution of {X;, X,}. Indeed, on
observing that

Prob[X, = X,] = {1 it (= 7((1)) &y, = V%O) or (y # V%& V2 # y%)’

0 if (71 =77&7,#73) or (1 #71&y2=73)
if follows that the distribution of {X;, X,} changes whenever y, changes from y9 to
another value and whenever y, changes from 9 to another value. It is also clear
that {X,, X,} is selectively attributable to the partition {I';={y,}, IhL={y.}}.
Indeed, since both P, and P, are standard uniformly distributed,

{UlaUz}(VlaV2)={X1,Xz}(Vqu) (14)

and (13) holds for {U,, U,}. However, (14) also implies that neither of the two
marginal distributions depends on either of the two subsets {1y ={y,}, I, ={y,}}.

We see that selective attribution does not imply effectiveness with respect to the
marginals. An important related fact is that selective attribution generally is not
unique: one and the same random vector {Xji,.. X,}(®) can be selectively
attributed to different partitions of @. This nonuniqueness is the reason why the
notion of selective attribution (Definition 1) cannot by itself serve as a satisfactory
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depiction of one’s intuitive picture of external factors selectively affecting random
variables.

ExampLE 1 (Continued). The representation (13) selectively attributes the
random vector {X;, X,}(y,,7,) to the partition {I'y={y,}, I,={y,}}. It is easy
to verify, however, that the same random vector (i.e., with the same joint distribution
function for all values of the two factors) can be represented as

X, — P, it y,=7%
1= : 0
P, iy, #7;

X, — P, if y =70
2= : 0
P, if oy #0

or it can be represented as

X, =P,
(P =& =99 o (0 # &2 #0D) |
2P, if otherwise

or it can be represented as

X _{Pl it (1 =77&y2=79) or (71 #7)&y2#79)
1= . .
P, if otherwise

X,=P,

Indeed, from all these representations, including (13), one can derive one and the
same joint distribution function: for 0 <x,;, x, <1,

F(x15x2; {ylay2}) .
{xlxz if (pr=y0&y,#y3) or (1, #))&y2=79)
min{x,, x,} i (p=p0&pa=93) or (y #y) &2 #99)

Due to (14), the existence of these alternative representations means that
{X1, Xy} {71, 72} is selectively attributable to all four possible partitions of

¢:{y1’ V2}3

{F1={V1},F2={Vz}}, {F1={V2}aF2={V1}},
{F1:®>F2:{ylay2}}s {Flz{yl,yz},Fzzg}.

2.3. Selective Influence

One can conjecture that the nonuniqueness of the selective attribution in
Example 1 is a consequence of the fact that although both factors y,, y, are effective
with respect to the joint distribution of {X,, X,}, none of them is effective with
respect to the distributions of X; or X, taken separately. If so, then a satisfactory
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definition of selective influence should involve both selective attributability to a
partition of the factor set and the effectiveness of the factor subsets in the partition
with respect to the marginal distributions.?

DEFINITION 2. A random vector {Xj, .., X,,} (®) is said to be selectively influenced
by a partition {1, .., I',} of @ if

(i) {Xy, ... X,}(®) is selectively attributable to {I"y, ..., I',};

(i1) for any i=1, ..., n, any factor y e I' is effective with respect to the marginal
distribution F;(x,; I";) of X,.

With this definition one achieves the desired uniqueness.

THEOREM 1. If a random vector {Xi, .., X,}(®@) is selectively influenced by a
partition {I'y, ..., I',} of @, then it is not selectively influenced by any other partition
of @.

This uniqueness theorem follows from Definition 2 immediately upon observing
that a partition {I"y, .., I',} can only selectively influence {Xi, ..., X, }(®) if I is
precisely the set of factors that are effective with respect to the distribution function
of X;,i=1,..,n

The requirements (i) and (ii) in Definition 2 are logically independent. Example
1 above illustrates the fact that (i) can be satisfied without (ii). To demonstrate the
reverse, consider

ExampLE 2. Let {X,, X5} (7;, y,) be defined by

_ P, it yy=y,
Xy =y X . >
P, ity #y, (15)

X,=7,P,

{P,,P,} being, again, independent random variables uniformly distributed
between 0 and 1 and {y,, y,} being arbitrary real numbers. Clearly, both factors
are effective with respect to the joint distribution function. It is also clear that
I'y={y,} is the precise subset of factors effective with respect to (the marginal dis-
tribution of) X;, while I, ={y,} is the precise subset of factors effective with
respect to X,. The copular base of { X, X,} (1, y,) is

U :{Pl if y=7,
PP, i gy #s | (16)

U2:P2

3 Townsend and Schweickert (1989) introduce the notion of marginal selectivity that corresponds to
(8) in this paper. It is possible that they implicity assume that I; in F;(x;; I7;), i=1, ..., n, cannot contain
ineffective factors, in which case their marginal selectivity also includes the present notion of effectiveness
with respect to marginals.
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It is easy to realize that {U,, U,}(y,, 7,) cannot be selectively attributed to the
partition {{y,}, {7.}}. Indeed, otherwise the functions v,, v, in any representation

U, =v1(Ry, Ry; {Vl})
U, =0,(Ry, Ry; {Vz}) ’

where R;, R, are some random variables, would have to be different when y, =y,
but identical when y, # y,. This is impossible because v; cannot depend on y,, or
v, On yy.

2.4. Choice of Sources of Randomness

The main advantage gained by the assumption that the transformation
{&1, . &} o in (9) is @ homeomorphism consists in the applicability of Lemma 2:
the vector {P,,..,P,} of the sources of randomness can be identified with
{Uy, .., U,}(®) itself, taken at a particular, anchoring, value @° of the factor set
@. It is shown in the next subsection that with this choice of {Py, .., P,} the trans-
formation {&,, .., £,} & lends itself to a complete characterization in terms of the
conditional distribution functions for {Uj, .., U,}(®), taken at certain special
values of @. The following two properties of the functions {&, ..., &,} 4 help one in
achieving this goal.

LemMa 4. Let {Xy, .., X, } (@) be selectively attributable to {I', .., I}, and let
{P,, .., P,} be chosen according to (12),

(P, ..P,l =1{U,, ..U, (.
Let {I'y, ... I,} ={I'Y,..,I'% for the anchoring value ®°. Then, within the support
of {Py, .. P}, for any i=1, .., n and any value of T'; in (9),

(i) E(prsewps TN =ps

(1) &;(p1y e Py T;) Is strictly monotonic (increasing or decreasing) in p;.
See the Appendix for the proof.

2.5. Characterization of Selective Influence

The theorems below play a central role in this paper. They express the functions
{&1, . &u} o In (9) through the conditional distribution functions taken at special
values of @,

Ci|(pla s Pns (DO) and Ci|(p1: s Pns ¢?)9 i= 19 ey 1,
where @? is defined as follows: given a partition {77, .., I',} of @ and a choice of
anchoring values {I'Y, .., I'?}, @9 denotes the factor set with freely varying I'; but

with ;=179 for all j#i (the shaded cells in Fig. 2). Recall that, due to the
convexity of the support for the continuous density of the copular base, any of these
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special conditionals is continuously increasing in its main argument (on some
interval) and can therefore be inverted. Thus

u:CiI(pla ooy pi—la P; pi+1’ ey Pn; ¢?)<:>p: Ci|_1(p1’ ey pi—lau5 pi+17 [t prw @10)

I also make use of the structural symbol [ preceding a variable belonging to
[0, 1]. The meaning of [ a is “either a or 1 —a.”

THEOREM 2. If {X|, .., X, } (D) is selectively attributable to {I'y, ..., I',}, and if in
the representation

U, =&(Py, ... P,; T7)

u,=¢,(Py, .., P, 1)
the vector {P,, .., P,} is chosen according to (12),
{Py,..P,} ={U, ., U} (D%,
then, for i=1, .., n,

éi(pl’ s P Fz) = CiTl[pl’ s Pi—15 1 Ci|(pla s Pus ¢0)7 Piv1s > Pns dj?]a
(17)

where the specification of | C, (ie., the choice between C, or 1—C,) may only
depend on T';.

See the Appendix for the proof.
Stated directly in terms of random variables, Theorem 2 says that the only
possible representation (9) is

Ul = Cl_|l[ I Cl|(Pla () Pna ¢0)9 PZ’ ooy Pn’ ¢(l):|

U,= Ci|_1[P1> e Pi I Ci|(P1a T Q’O)s Pi+1a s P Q’?] s (18)

Un = CJI[PD e Pnfls 1 Cn|(P15 ooy Pna @0), ¢2]

Clearly, the representation (18) is not only necessary but is also sufficient for
selective attributability. It is also clear that once the functions {¢,,..,¢&,} 4 are
specified, the density function Y(uy, ..., u,; @) for {Uy, .., U,} (D), at arbitrary @,
can be found from the density function y(uy, ..., u,; @°) for {Uy, .., U,}(®°), taken
at the anchoring value of @. This leads one to the following characterization of
selective attribution.
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THEOREM 3. {Xi, .., X,,} (D) is selectively attributable to {Iy, ..., I',} if and only
if its copular base {Uy, .., U,}(®) is related to {Uy,.., U,}(D°) (taken at an
anchoring value ®° of @) by means of (18). In this case

WLEUP s s Ps T1)s oo Sal( D15 woes D3 ) @UNAE(P s ooy D3 1) A ( D1 ooy D3 1)
:lp(plsma prquO) |dp1""’ dpn|’ (19)

where { &4, ..., &,} o are defined by (17). In particular, if the density of {Uy, .., U,}(®)
is continuously differentiable, then {&,, ..,¢&,} 4 is a diffeomorphism (ie., it is
continuously differentiable with a nonvanishing Jacobian), and the criterion (19) can
be written as

l//[él(pl’ s Pns Fl)’ ety én(plr s Pns Fn): ¢]

dfl(pla o0y pna Fl)dén(pla () pn’ Fn)| -
dp,...dp, |

=Y(P1s s Pus D°) (20)

The proof of this statement is trivial: (19) merely asserts that probability elements
of {Uy, .., U,}(®) and {U,, .., U,}(®°) at corresponding points are the same, and
(20) restates this by making use of the existence of the nonzero Jacobian

dfl(plz s Pns Fl)"'dén(pla s Pns Fn)
dp,...dp,

To complete the analysis, it remains to observe that Definition 2 together with
Theorems 2 and 3 immediately lead to the following characterization of selective
influence.

THEOREM 4. {Xi, .., X, }(®) is selectively influenced by {I',..,I',} if and
only if

(1) foranyi=1, .., n, any factor ye I'; is effective with respect to the marginal
distribution F(x;; I';) of X;;

(i) the copular base {U,, .., U,}(®) is related to {U,, .., U,}(®°) (taken at
an anchoring value ®° of @) by means of (18).

2.6. Nestedness of Selective Influence

The uniqueness of the partition {77, .., I,} that may selectively influence a
random vector {Xj, .., X,}(®) (Theorem 1), though critical, is not by itself
sufficient to ensure that the notion of selective influence is well-constructed. The
second obvious desideratum for a well-constructed definition is that if { X, ..., X,,} (®)
is selectively influenced by {1y, ..., I',}, then any subvector of {X{, .., X,,} (&) must
be selectively influenced by the corresponding subpartition of {7, .., I',}. This is

indeed the case.
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THEOREM 5. If a random vector {X, .., X,}(®@) is selectively attributable to a
partition {I'y, .., I',} of @, then, for any subset {i,, .., i} of {1,..n} (1<k<n),
the subvector {X,l, v X,;k} only depends on @' =1, v --- U I, and it is selectively
attributable to the partition {I';, .., I'; } of @'.

1
1

See the Appendix for the proof.

Since the property of the effectiveness of I; with respect to the marginal distribution
F;(x;; I';) is unrelated to other factor subsets or other marginals, one immediately
obtains

THEOREM 6. If a random vector {X, .., X,}(®@) is selectively influenced by a
partition {I'y, .., I',} of @, then, for any subset {i,, .., i} of {1,..n} (1<k<n),
the subvector {Xiw v X,;k} only depends on @' =1"; U --- VI, , and it is selectively
influenced by the partition {I; , .., I',} of &'.

2.7. Excessive Sources of Randomness

The requirement that {&,, .., £,}, in Definition 1 be a homeomorphism implies
that the number of the sources of randomness {P,, .., P,} coincides with that of
the random vector {Xj, .., X,,}(®). One may wonder whether the notion of selec-
tive attributability can be generalized in an interesting way if one replaces (9) with

U, =&(Py, .., P 1)
: (21)
Un = én(Pl LIRS Pm; Fn)

where m in {P,, .., P,} is allowed to be greater than n or less than n (Fig. 3). The
answer to this question turns out to be different for the two possibilities, m > n and
m < n. Both these inequalities are made to be nonstrict in order to emphasize that
well-constructed generalizations in both cases should reduce to Definition 1 when
m=n. This implies, in particular, that the mapping {&,,..,&,}, should be
sufficiently well-behaved in the general case to become homeomorphic at m =n.

I consider the m >n version first. A natural well-behavedness constraint for the
mapping {<&,, ..., £,} ¢ in this situation consists in requiring that this mapping be
regularly continuous, in the following sense: it is to be continuous and there are to

FIG. 3. Excessive (left) and defective (right) sources of randomness. See text for details.
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be m—n components of {p,,.., p,} (with no loss of generality, let them be
{Pns1s - Pm}) such that, for any fixed values of {p,, 1, . P}

(i) the relationship between the remaining n components {p, .., p,} and
{uy ... u,} (@) is homeomorphic;

(ii) the random vector {Uy, ..., U, }(p, 41, - P> @) has a continuous density
function on a convex n-dimensional region (of the n-dimensional standard unit
cube).

The key to dealing with regularly continuous mappings is provided by the following
lemma, whose proof is obvious.

LeMMA 5. If the copular base {U,, .., U, }(®) of {Xi, .., X,} (@) is represent-
able according to (21) with m>=n and with regularly continuous {&,, ..., ¢,} o, then
the mapping

i Ul :él(Plﬂ () Pm’ Fl)_

Un Zén(Pl» () Pma Fn)

(22)
Un+1 =Pn+1

is a homeomorphism.

In other words, given a regularly continuous mapping from {P,,..,P,} to
{U,, ... U,}(®), one gets a homeomorphism between {P/, .., P, } and the extended
random vector {U, .., U,, U, 1, .., U, } (@), where the subvector {U,_ , .., U,}
is identical to {P, i, .., P,,} at any value of &. Using this lemma, one can simply
repeat the steps of the previous development to obtain the following results. First,
{P,, .., P,} can be chosen to coincide with {U,, .., U,, U, 1, .., U,}(®°), taken
at an anchoring value of &. Second, Lemma 4 holds for any of the functions
{&1, . &} o0 In particular, &,(py, . p,,; ;) is strictly monotonic in p;, i=1, ..., n
Finally, Theorems 2 and 4 also apply to these functions, and by considering
{U,, .., U,}(®) as a subvector of {Uy,..,U,,U,,q,..,U,}(®) one concludes
that (22) implies the representability

Ul ZCI(Plr (] Pn? Fl)

U,={(P,,..,P,; )

n>

where {(, ..., (,} 4 is @ homeomorphism. This proves

THEOREM 7. If the copular base {Uy, .., U} (D) of {Xi, ..., X, } (D) is represent-
able according to (21) with m=n and with regularly continuous {&, ..., &,} o, then
{Xy, o X, } (@) is selectively attributable to {I', .., I,} in the sense of Definition 1.
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If, in addition, any factor y e I'; is effective with respect to the marginal distribution
Fixy; Ty of Xy, i=1, ., n, then { Xy, ..., X, } (®) is selectively influenced by {I'y, ..., I}
in the sense of Definition 2.

In other words, the m>n version of (21) is immediately reducible to m=n:
excessive sources of randomness can always be eliminated.

2.8. Defective Sources of Randomness

It might appear that the m <n version of (21) too can be immediately reduced
to m =n, by adding to the list of the sources of randomness » —m dummy variables.
The theory as presented so far, however, will not be applicable then, because
{U,, .., U,}(®) representable by means of a homeomorphism (21) with m<n
cannot have a density on an n-dimensional region.

As an example of the situation in question, Dzhafarov and Schweickert (1995),
Cortese and Dzhafarov (1996), and Dzhafarov and Cortese (1996) analyzed the
possibility that the random variables {Xj, .., X,}(®) are perfectly positively
stochastically interdependent,

X, =X(P; I'))
, (24)
X, =X,(P; I,)

where all functions are increasing in the value of P, a single common source of
randomness. In terms of the present paper this means

Ul =P
, (25)
U,=P

that is, the copular base {Uy, .., U,}(®) is simply {P, .., P}, for any value of ®.
Obviously, the joint density of {P,.., P} is not a function on an n-dimensional
region.
Motivated by this example, let us say that a random vector {Xi, .., X, }(®) is

regularly m-dimensional (1 <m<n) if

(1) all its marginal distribution functions are continuous;

(i1) there is at least one m-component subvector of its copular base
{Uy, .., U,}(®) that possesses a continuous density;

(i11) the support for the density of any such a subvector is an m-dimensional
convex region (of the m-dimensional standard unit cube);

(iv) for any such a subvector, the remaining components of {Uj, .., U,}(®)
are continuously differentiable functions of this subvector (depending on the factor
set D).

A subvector just defined is called a regular copular subbase of {Xi, ..., X,}(®).
The copular base {U,, .., U,}(®) as defined in Subsection 1.2 is the only regular
copular subbase when {X{, .., X, } (@) is regularly n-dimensional (i.e., when m =n).
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In the general case, the random variables can always be so arranged that
{Uy, .., U, } (@) is a regular copular subbase, while

U=0,(U,,.,U,;®), i=m+1,.,n, (26)

are continuously differentiable functions. Clearly, the dimensionality m is deter-
mined uniquely, while the choice of a regular copular subbase need not be unique.
In particular, it is possible that any m-component subvector of {Uy, .., U,}(®) can
be chosen to serve as {Uy, .., U, }(®) above. Whatever the case, if a subvector of
{Uy, .., U,}(®) is a regular copular subbase at some value of the factor set @, then,
according to the definition, it has to be a regular copular subbase for all other
values of @. One is now naturally led to the following generalization of Definition 1.

DEFINITION 1*. A regularly m-dimensional (1 <m <n) random vector {X, .., X,;}
(@) is said to be selectively attributable to a partition {I', .., I',} of @ if
{Fl(xl; ¢)a eeey Fn(xn; ¢)} = {Fl(xl; Fl)s eees Fn(xn; Fn)}

and if there exist a random vector {P,, .., P,,} (whose joint distribution does not
depend on @) and a homeomorphism {&,, .., ¢,} 4, such that the copular base
{Uy, ., U, }(®) of {X{, ..., X,,} (D) is representable according to (21),

Ul = él(Pla (] Pm’ Fl)

U,=¢,(Py, ..., P,;T,)

Since any regular copular subbase of {Xj, .., X,}(®) is homeomorphically
related to the copular base {Uy, .., U,}(®), one obtains

LEMMA 6. Definition 1* implies that {P,, .., P,} is homeomorphically related to
any regular copular subbase of {X, .., X,,} (®).

Assuming, as above, that {U,,.., U,}(®) is a regular copular subbase, one
obtains the following obvious generalizations of Lemmas 2 and 3.

LEMMA 2*.  If a regularly m-dimensional {X, ..., X,,} (®) is selectively attributable
to{Iy,..,I,}, then {Py, .. P,} in the representation (21) can be chosen to be

(P,,..P,} ={U,,..,U,} (2", (27)

where ®@° is an arbitrary (anchoring) value of the factor set ®.

Lemma 3*. If a regularly m-dimensional {Xi, .., X,}(®) is selectively
attributable to {I'y,..,I',}, then the random vector {Py,..,P,} in (21) can be
chosen to consist of independent identically distributed random variables with any
given distribution function strictly increasing on a given interval domain (in particular,
uniform between 0 and 1).

With the generalized meaning for selective attributability, Definition 2 for selective
influence remains unchanged. It is easy to see that the same is true for Theorem 1
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asserting the uniqueness of the partition {I', ..., I',} that may selectively influence
a given (regularly m-dimensional) {Xi,.., X,}(®). The following generalized
versions of Lemma 4 and Theorem 2 are also obvious.

LEMMA 4*.  Let a regularly m-dimensional { X, ..., X,,} (®) be selectively attributable
to{Iy,..TI,}, and let {P,, .., P,} be chosen according to (27). Let {I'y, .., I',} =
{IY, .., "%} for the anchoring value ®@°. Then, within the support of {Py, .., P}, for
any i=1, .., m and any value of I'; in (21),

(i) & pys e P I;) is strictly monotonic (increasing or decreasing) in p;.

THEOREM 2*.  If a regularly m-dimensional { X, ..., X,,} (D) is selectively attributable
to {I'y,..,I,} and if in the representation (21) the vector {Py, .., P,} is chosen
according to (27),

{Py, .. P,} ={Uy, ., U, } (®°),
then, for i=1, ..., m,

éi(pl’ s Pms Fl) = CiTl[pla v Pic 15 I Ci|(p1a s Dms ®0)a pi+l’ s Dms CD?]’
(28)

where the specification | C, (ie., the choice between C; or 1—C,) may only
depend on I;.

Unlike its prototype, this theorem only establishes the form of the functions
{&1, - &} o It has, therefore, to be complemented by a description of the remaining
functions {&,,, 1, . &,} - As does (28), this description also refers to the distribu-
tions of the copular bases at special values of the factor set, @%, i=m+1, .., n.

THEOREM 2* (Continued). Fori=m+1, .., n,

éi(pla---a pm;Fi)zwi[plsma pm:¢?]: (29)

where the functions {®,,, 1, ... ©,} ¢ are defined by (26).

The proof of this statement is obvious. Stated directly in terms of random
variables, Theorem 2* says that if a regularly m-dimensional {Xj, .., X,}(®) is
selectively attributable to {1, .., I}, then it can be represented as

Ul = Cﬁl[ I C1|(P19 () Pms ¢0)9 P2a ooy Pms ¢(1):|
U,=C '[Py, s Pi_yy 1 Cy(Pyy s Ps @°), Py, o, P @01

Um: Cr;|l[P1’ e Pm—17 I CmI(Pla ey Pma ¢O)a ¢?n]
Um+l :wm+l[P19 ey Pmb ¢0 +1]

m

Un :wn[Pla seey Pm> ¢2]
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A complete characterization of selective attributability (and selective influence) is
given by the following straightforward generalization of Theorem 3.

THEOREM 3*. A regularly m-dimensional —{X,, .., X,}(®) is selectively
attributable to {I'y, .., I',} if and only if its copular base {U,, ..., U, }(®) is related
to {Uy, .., U, } (®°) (taken at an anchoring value ®° of @) by means of (30). In this
case (denoting density functions by ),

lpl:él(pla eeey pma Fl)n () fn(pla () pma Fn)ﬂ ¢]
X |dél(pls s Pms Fl)dém(pla s Pms Fm)'
=Y(P1s s Pons D) ldpy...dp, (31)
where {&, ..., &,} o are defined by (28) and (29). In particular, if the (m-dimensional )

density of {Uy, .., U,} (D) is continuously differentiable, then {&,,...&,} e is a
diffeomorphism, and the criterion (31) can be written as

VEE1(P1s s Py T1)s s (P 1s s Py 1) @]

dfl(pl’ s Dms Fl)"'dém(pl’ s Dms Fm) !
dp,...dp,,

=Y(P1s oor P> P°) (32)

If, in addition, any factor y e I'; is effective with respect to the marginal distribution
Fi(x; ) of X, i=1,.,n, then {Xy,.., X,}(®) is selectively influenced by
{I'y, .., T} in the sense of Definition 2 (based on Definition 1*).

Note that the value of (32) does not depend on {I',, 1, ..., I',}, but this subparti-
tion, together with {7, .., I',}, determines the point {u,..,u,} to which this
value is assigned. Note also that the representations (30) and (31)-(32) can be
constructed in as many different ways as there are regular copular subbases in
{Uy, .. U, }(®D).

To complete the analysis, it only remains to verify that the generalized notion of
selective attributability satisfies Theorem 5: a subvector of {X,, .., X, }(®) selec-
tively attributable to (or influenced by) a partition {I7,.. I} is selectively
attributable to (influenced by) the corresponding subpartition (a detailed formula-
tion coincides with that of Theorem 5 and is therefore omitted). The proof of this
statement (Theorem 5 under Definition 1*) is given in the Appendix.

2.9. Transformed Copular Bases and Distribution Functions

I conclude this section with a simple technical observation that proves to be use-
ful in applications. The extraction from a random vector {Xi, .., X, }(®) of its
copular base {U,, .., U,}(®) plays an important role in the present theory. It is
often more convenient, however, to use instead of {U,, .., U,}(®) a transformed
copular base {T(U,), ..., T(U,)} (®), with T being some strictly monotonic function.
Clearly, this substitution (an example of which is given in the next section) should
not change the theory in any nontrivial way. Returning, for simplicity, to the case
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of regularly n-dimensional random vectors and presenting the principal formula of
the theory, (17), as

Cil[pla v Pi— 15 éi(plﬂ s Dns Fi): Pivi1s s Pns Q?] = 1 Cil(plﬂ s Dns QDO)’
i=1,..,n, (33)
one can always rewrite it as

Gil[llz RN FREPIRS F1( P S (YRS FINP IR @D?] = 1 Gi|(tla ey s QDO):
i=1,..n, (34)

where

Gi|(t1> it tn; ¢) = Ci||:T_1(t1)’ Rt T_l(tn); ¢]>
Tt e 13 L) = EGLT 71, o TN 1],

It is also easy to see that the validity of (34) does not change if both its sides
are subjected to any strictly monotonic transformation, R, that may or may not
coincide with 7. It is especially convenient to choose R so that

R(1—u)= —R(u).

Examples are R(u)=2u—1 or R(u)=Z""(u), where Z is the standard normal
integral. Under such a transformation, (34) acquires a more conventional form

Hyl[ty, oo 1y Tty s 83 T3), by g s 13 DY ]

n» l

= iHi|(lla'"’ lna ¢0)7 i:la"') n, (35)

where H; stands for the composition R-G,;, and the choice of the sign only
depends on I;.

3. CONCLUSION

I forgo summarizing the theory, as this is adequately done in the abstract and in
Subsection 1.3. Instead, this concluding section provides an illustration of how the
theory applies to the problem with which this paper opens: What is the meaning
of saying that X, is selectively influenced b y, and X, is selectively influenced by y,,
when {X|, X,}(7;, 7,) is bivariate-normally distributed with parameters, u;, i, o3,
a3, p? Using the terminology of Section 2, the question is about {Xi, X,}(yy, 72)
being selectively influenced by the partition {I', = {y,}, I',={y,}} of the factor set
@ ={y,,y,}. Clearly, all the regularity conditions stipulated in this paper are
satisfied: the marginal distribution functions are continuous and the copular base of
{Xy, X5} {71, 7,) has a continuous density on a convex two-dimensional region (in
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this case, the entire standard unit square). According to Definition 2, we begin by
requiring that the marginal distributions of X; and X, be effectively influenced by
y; and y,, respectively. This means that y, is a nondummy argument in at least one
of the two equations

uy= (1), G%ZG%(Vl)a (36)

while y, is a nondummy argument in at least one of the two equations

o= ps(72), ‘732‘7%(72)' (37)

We proceed now to establishing the conditions under which {X,, X5} (7;, y,) is
selectively attributable to {I';={y,}, I, =/{y,}}. Obviously, these conditions
should only relate to the value of the correlation p at different values of the factors.
It is convenient here to invoke the consideration presented in Subsection 2.9 and
to replace the copular base {U;, U,}(y;, y,) with its transformation

{T., To} (71, 72) ={Z " (U,), Z7 (U} (71, 72),

where Z is the standard normal integral. This is equivalent to the conventional
transformation of {X;, X,}(7;, y,) into

Xy — (1) Xo—po(72)
T,,T =
{1, 2}(})1’)/2) { ai(y1) ’ ax(y1)

}(71, 72)-

The random vector {T,, T,}(y,, y,) is bivariate-normally distributed with standard
normal marginals and the correlation p = p(y;, y,). Using the fact that the condi-
tional distribution of T, given T, =1, is normal with the mean p¢, and variance
1 — p? (and analogously for T, given T, =t¢,), one can write (35) with R=Z""!
the form

(11, s ) — P2, YD pa =P8, 99) pa

1—p%(y1,79) 1—p%(y9,79)

I+

To(t, 13 72) — (¥, v2) Py Pa— (3. 73) Pa

V1=p2(%,72) 1—p2(1%,99)

where the choice of the sign in the first equation only depends on the value of y,,
and that in the second depends only on y,.
This leads to the following version of selective attribution:

V1=p(1,73) _ 1—p%(71,79)
T,=+P Y ——_—"2.P, {p(h, Y2 Fp(rY, y%)}
J1=02(0.79) 1—p%(3%, %)
V=203, 72) _ J1=p0%72)
T,= ipzpf;z‘f‘f’l [P(V?a V2) +P(V(1), Voz)lz}
V1=p(y172) 1—p(79,79)

|
-+



UNCONDITIONALLY SELECTIVE DEPENDENCE 445

Since {T;, T,}(y,, y,) is uniquely characterized by p(7,, y,), it remains to compute
this correlation from the above representation:

p(r1,72) =E(T T, ].

If one denotes

P(y1, 79 =cos dy(y1), Py, v2) =cos d(y,),

and

(71, v3) =cos ¢1(7]) = cos d,(y3) = cos ¢,

the computation yields a remarkable result,

P(y1>v2)=cos[ P i(y1) £ da(y2) ], (38)

where the choice of the signs at ¢,(y;) and ¢,(y,) may only depend on the corre-
sponding factors. If the factors (y;,y,) are continuous variables, then it is
reasonable to require, in addition, that p(y,, y,) be a continuous function. One can
easily verify, by considering the convergence (y;,y,)— (y9,75), that under this
requirement the only possible combinations of the signs at ¢,(y,) and ¢,(y,) are

cos[ ¢+ ¢i(y1) —da(72)]
p(y1,72) = or : (39)
cos[ ¢ —i(y1) +da(72)]

Together with (36) and (37), the formulas (38) and (39) establish a complete
characterization of the selective influence effected by {I';={y,}, I,={y,}} on a
bivariate normally distributed {X, X,}(y,, y,). If the distribution of {X;, X5} (71, 72)
is known on a sample level only, and if the sample statistically supports the
assumption that the distribution of the random vector is bivariate normal, then the
hypothesis of selective influence can be tested by comparing the fit to the data of
the unconstrained bivariate normal distribution with that of the bivariate normal
distribution whose parameters satisfy (36)—(37) and (38) or (39).

The solution has a surprisingly nice mathematical form, and although it satisfies
all the intuitive requirements underlying the theory of selective influence, it would
be difficult to foresee this solution based on one’s intuition alone.

It is instructive to contrast this solution with that obtained when the same situa-
tion is being approached from the point of view of conditionally selective influence
(see Subsection 1.1). Not only is the solution here less elegant mathematically, it
also lends itself to a much less satisfactory interpretation. This is especially apparent
when one considers the first of the two examples of Subsection 1.1, when
{X, X5} (71, 72) are two directly observable aptitude scores. Clearly, in this example
nothing prevents one from focusing only on one of the two scores, say, X;, or from
not conducting the second test altogether: this should not affect the distribution of
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X, if the two tests, as normally happens, are conducted separately. When taken
separately, however, the distribution of X, has glaringly counterintuitive properties.
To begin with, the variance

o2 = C%(Vl)
Tl _kC%(Vl) C%(Vz)

depends on both y; and y,, which means that X is not selectively influenced by y,.
Using the language of this paper, conditionally selective influence does not have the
property of nestedness. Another counterintuitive feature is that the way the mean
value u; of X, depends on the two factors is different depending on the correlation
p between X, and X,: if p is identically zero, then x, may depend on y,, but it may
not depend on either of the two factors if p can attain nonzero values. Put
differently, if «, is observed to depend on y,, then X; cannot be conditionally selec-
tively influenced by y, if taken in combination with any score with which it may be
correlated.

Returning to the unconditionally selective influence, two issues should be
mentioned among those that remain to be investigated. First, it is not clear at
present to what extent the pairwise disjointness of the factor subsets {I"y, ..., I} is
a critical limitation of the theory. Second, perhaps more importantly, it is not clear
at present whether the theory of selective influence can be constructed without the
requirement of the factor effectiveness with respect to marginals. It is shown in this
paper that this requirements is sufficient for achieving the uniqueness of selective
attribution, but there is no proof that this is also necessary. It seems to me that the
theory would be more satisfying if the uniqueness could be ensured by means of a
constraint formulated entirely in terms of copular bases (with the understanding, of
course, that no X, is allowed to depend on any factors outside its factor subset I,
i=1,..,n). Then the notion of selective influence would be well-defined even when
the marginal distributions do not vary at all.

APPENDIX: PROOFS

Proof of Lemma 3. Since {Uy, .., U,}(®) has a continuous density with an
n-dimensional convex support, by Lemma 2 {P,..,P,} in (9) can always be
chosen to have the same property. With this choice, the chained conditional

Gi|(p19 v Di_1, p;)) =Prob[P,<p,|P,=p, & ...&P,_=p, 4]

is continuous in all arguments and increasing in its main argument (i.e., the variable
being conditioned). The random vector {Ry, .., R,}, defined by

R1 = Gl(Pl)
Rz = G2|(P1a Pz)

R,=G,(P,,..P

n

P,)

n—1>
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consists of independent random variables uniformly distributed between 0 and 1,
and {P,, .., P,} can be presented as

P, =G '(R))
P,= G2_|1(P1a R,)

n n—laRn)

P,=G,\(P,,..P

where the inverses of conditional distribution functions are taken with respect
to the main arguments. Obviously, the relationship between {P,,..,P,} and
{Ry, .., R,} is homeomorphic. By a chain of nested substitutions,

P, = Gfl(Rl) =0,(R,)
P,= Gil(gl(Rl), R;)=0,(R{, R;)

Pn = G;Zl(el(Rl)a ) en—l(Rls () Rn—l)a Rn) = Hn(Rla () Rn)

By choosing any continuous and increasing on some interval domain distribution
function H(gq), one can replace {R,..,R,} in the representation above with
{H(Q,), .., H(Q,)}, where Q; is distributed according to H(gq), i=1, ..., n. Sub-
stituting these expressions for {P, .., P,} in (9) and renaming {Q, .., Q,} into
{P,, .., P,}, we obtain the statement of the lemma.

Proof of Lemma 4. At &@=@®°=T%0 ... UI'? the statement (i) is true
for any i, by construction. Since &;(py, ..., pn; I'?) does not depend on factors
outside I;, the statement must hold irrespective of the values of the other factor
subsets.

Putting now I';,=1" ]‘.’ for all j#i and allowing I'; to vary freely, we have

Uy =C(P1s s D> r(l)):pl_
U;=E(P1sees Dis vos Pus 13)

L unzén(pla () pnarg):pn_

Since {&4, .., ,} » is @ homeomorphism for any @, the relationship between u; and
p; must be continuous and one-to-one. By agreement, the domain of {p,, .., p,} is
a convex region of the standard unit cube, because of which the domain of p,,
for fixed values of other arguments, is a certain interval within [0, 1].
Then &,(py, s Pis - Pns ;) must be either strictly increasing or strictly decreasing

in p;.
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Proof of Theorem 2. By Lemma 4, at ® = ®? we have

(U, =¢&(Py, ., P, T =P,

U,;=¢,(Py, ... P, 1) s

Un = én(Pla cery Pns F;(:) :Pn

where &,(py, ..., pn; I';) 18 either increasing or decreasing in p;. It the former case

Ci|[p17 v Pi— 15 éi(pla (3] pn;ri)ﬂ pi+1’ b pn’ ¢?]

& U.=p,; d°
Jelloam g 2D

= Prob {U&é,-(pl, o D> T4)

& P,=p: @?}

= Prob [Pi <p;
je{lny — {3}

= Ci|(p1a ws Pic 15 Pis Piv1s -5 Pus (po)’

while for the decreasing relationship

Ci||:p19 v Pi— 15 fi(plv s Dns Fi)n Piv1s - Pns ¢?]

& U= g@p}
jettom—qn I PP

ZPI‘Ob |:Ui<£j(p1’ (233 pn; rl)

& P,=p; @?}

= Prob {Pl—Z -
Pil e St

=1- Ci|([71’ v Di1s Pis Piv15 - Pus (po)_

Since the conditional distribution functions are continuous in all arguments, the
choice between these two possibilities cannot depend on the values of { py, ..., p,},
but it may depend on ®? whose only varying part is I";. The statement of the
theorem now follows immediately.

Proof of Theorem 5. 1t is sufficient to prove the theorem for the subvector
{Xs, .., X,,}. Rewrite (18) as

C1|[Ul9 P29 ooy Pns gD(l)] = I C1|(P15 ) Pna (’DO)

CylPy, .. P UL P, P Y] =1 Cy(Py, ., P, @°)

Cn||:P1’ " Pn—la Una ¢;01] = 1 Cn|(P1a eeey Pn; ¢0)
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Excluding the first equation and putting P, = p, we have

r Cylp, Uy, o, P01 =1 Cyy(p, Py, o, P @°) .

Cylp, Py s P UL P, P @Y =1 Cy(p, Py, ., P @°)

Cnl[p7 PZ: ey Pn—l’ Un’ ¢2] = 1 Cnl(p’ PZ’ (] Pn’ @0)

It follows that

1 1
L) Cl|[p’ PZ» [} Pi—l: Ui’ Pi+19 [} Pna @?] dp = I L) Cl|(p’ P2’ ooy Pn’ ¢0) dp:

i=2,..,n ()

On observing that P, is distributed uniformly between 0 and 1, and that, due to
Lemma 4, {P,, ..., P,_, U, P, 1, ... P,} ={Uy, .., U,}(®?), we have

1
[0 Cil[pa P25 s Di—1s Uis Pig15 s P ¢?] dp

P;=p,

jel2, man) —{i}

= Prob {U,-gu,-

=C(Pas s Pi_1s Uiy Pig1s s Pus DY), i=2,..,n

Analogously,
! 0
fo Ci(p P25 s Py P7) dp

=Prob | P,<p; & P.=p,
{ P',G{Z,m,n}_{i} 7= b

=Cy(pys e Py P°),  i=2,..,n0.
Equation (x) therefore is equivalent to
Cy(Pyy s P, U Py, s Py @9 =1 Cy(Py, ., Py @0), =2, .1

Solving with respect to U;, we get the representation

U, =G '[Py Py, ] Cy(Pyy o P 0°), Py, P 0]
= Ci(PZa ooy Pn, Fi), i= 2, ey M.

This means that {U,, .., U,} is selectively attributable to {7, .., I',}. Obviously,
{I,, ..., I,} is a partition of @' =@ —TI', and {U,, .., U,} ={U,, .., U, } (D).
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Proof of Theorem 5 under Definition 1*. Recall that {Xi,.., X,}(®) is so
arranged that {U,, .., U, }(®) is one of its regular copular subbases. It is sufficient
to prove the theorem for the subvector obtained from {X{, .., X,,} (@) by removing
one of its components, X,. The statement of the theorem is trivially true if
U,e{U, 1, .. U,}. Assume therefore that U, e {U,, .., U,,}, say, U,=U,. If at
least one regular copular subbase of {X, .., X,,} (@) does not contain U, then the
vector {X,, ..., X, }(®'), &' =@ —1TI, is regularly m-dimensional. In this case we
simply delete the first equation from (30) to obtain

B U2= C2_|1[P1’ 1 C2|(P1’ ooy Pma ¢0)9 [} Pm’ @?] 7

U, =C '[P, .. P,_1, | Cpy(Py, .., P, D°); D),
Um+l :wm+1[P1: ey Pmn ¢O +1]

m

- Un :wn[Pla (] Pma ¢2] =

By Lemma 6, this representation is homeomorphic, hence it satisfies Definition 1%,
and the statement of the theorem holds. It remains to consider the case when all
regular copular subbases of {Xj, ..., X,}(®) contain U,. Then none of the random
variables {U,,, i, .., U,} is a function of U, for any &. Indeed, if U, i=m +1, .., n,
were a function of U,, then it would have been a continuously differentiable func-
tion of {U,, .., U,,}, and the subvector {U,, .., U,,, U,} would have been a regular
copular subbase (for it would have possessed a continuous density), contrary to the
assumption that all regular copular subbases contain U,. We have therefore

U,=w;(U,, .., U,; ®), i=m+1,..,n,

where all the functions are continuously differentiable. The proof of Theorem 5
(under Definition 1) can now be applied to {U,, .., U, }(®') to transform

Uizéi(Pl’ Pz,..., Pn;ri)s l=2, ey M,
into a homeomorphism

U':Ci(P27 ) P

13

'Fi)) l:2, ey M.

m»

This completes the proof.
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