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The perceived spatial distances between visual objects moving with the same velocity shrink 
along the direction of motion. The distance-in-motion to distance-at-rest ratio decreases as a 
function of physical velocity and, for a given physical velocity, as a function of parameters 
increasing perceived velocity. This eNect (Space Contraction in Motion) implies that 
spatiotemporal coordinates and motion vectors are assigned to visual objects in an inter- 
dependent way, reflecting the fundamental structure of visual space-time. This structure can 
be described by non-Galileian transformations of spatiotemporal coordinates of visual objects 
in visual motion. The transformations are linear in coordinates, but do not obey the Galileian 
relativity principle (there is a privileged, absolutely resting system of coordinates), and they 
do not form a uniparametric (Lorentz) group with respect to velocity. Nor do they necessarily 
imply that perceived time intervals, and/or perceived simultaneity, must change in motion too. 
Visual deformations-in-motion are a complex mixture of geometric transformations and 
changes in color/brightness distribution due to visual integration-interaction mechanisms. 
Changes in spatial resolution of moving acuity targets (including moving verniers) cannot be 
derived from the geometric transformations only; one has to specify in addition detection rules 
and the logical order of geometric and distributional changes. 0 1992 Academic Press, Inc. 

1. INTRODUCTION 

In this paper I present a theory (or theoretical language) that places the Space 
Contraction in Motion (SCM) effect, described in the preceding papers of the 
Visual Kinematics series (Dzhafarov, 1992a, b), within a general context of 
spatiotemporal coordinate transformations in motion. The results established in the 
preceding papers, both theoretical and empirical, that are essential for the issues 
discussed in this paper will be briefly recapitulated. 
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S. Runeson, C. von Hofsten, V. Sarris, and G. A. Lienert for discussions and comments. Address 
reprint requests to Ehtibar Dzhafarov at the Department of Psychology, University of Illinois at 
Urbana-Champaign, 603 East Daniel Street, Champaign, IL 61820. 
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1.1. Basic Concepts and Facts 

The analysis of SCM is based on the Mapping Homogeneity Principle (MHP), 
according to which if a luminance distribution I(x, y, t) is perceptually mapped into 
a color/brightness distribution L(X, Y, T), then a shifted replica of 1(x, y, t), along 
(x), (y), or (t) axes, is mapped into a correspondingly shifted replica of 
L(X, Y, T).’ The shifts AX, A Y, and AT are proportional to the corresponding 
physical shifts Ax, Ay, and At, respectively. The coefficients of proportionality, &, 
4 yy, and drT, generally depend on parameters of the stimulus being shifted, 
44 y, t). 

If f(x, y, t) = I,(x - ut, y), i.e., it is a luminance profile Is(x, y) moving along the 
(x)-axis with velocity v, then it is perceptually mapped into L,(X- VT, Y), a 
color/brightness profile L,(X, Y) moving along the (X)-axis with velocity F 

v/v =4xX(4 V/4174% v; 
v= V(u, p). 

(1) 

The vector p stands for all presentation/observation parameters other than u on 
which the perceived velocity V might depend (such as steady fixation versus free 
looking; see Visual Kinematics II). Since V(u, p) is a strictly increasing function of 
u, for a fixed vector p the proportionality coefficients dXX and drr are functions of 
one argument only, which can be chosen to be either u or V. The reason for presen- 
ting 4xx and 4rr. as functions of both physical and perceived velocity is as follows. 

It has been shown in Visual Kinematics I and II that q5XX does not depend on 
luminance/contrast, shape/size, and other parameters of moving stimuli that do not 
noticeably affect the perceived velocity of motion. However, dXX decreases as a 
function of physical velocity u and, for a given u, as a function of other observa- 
tion/stimulation parameters that increase the perceived velocity V (the SCM 
phenomenom). Generalizing, a decrease in d-XX is always associated with an increase 
in V, whether or not it is due to an increase in u (The Perceived Velocity 
Hypothesis, PVH). The following formula provides a fair approximation for the 
dependence of 4,.. on v: 

1 if v< uO 

Gkx(h PI = (~o/~Y if vO<O<u, (2) 

h14p (hJU,Y if v>v,, 

’ In this paper I follow the notation agreements adopted in Visual Kinematics I and II: uppercase and 
lowercase symbols will refer to perceptual and physical parameters and coordinates, respectively; 
boldface roman symbols denote vectors of parameters; angle brackets denote axes or frames of reference. 
Physical spatial coordinates and velocity are measured in external rather than retinal coordinates. The 
(x)-axis in the physical plane and the (X)-axis in the perceptual plane will always be assumed to be 
collinear with the direction of physical motion and perceived motion, respectively. 
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where v 0 x lO”/s, vi z 45”/s.’ The constants CI and /I (but not v0 and vI) depend on 
observer and observation/presentation conditions, p, that affect the perceived 
velocity V: an increase in V corresponds to increases in both c( and /I (the value of 
p/o! was shown to be relatively stable across different conditions and observers, 
/?/a z 7). 

It follows from this formula that dXX can be rewritten as a function of V. For 
example, assuming that va is a fixed strictly increasing transformation F of V, we 
have 

where V, and V, are the “reference” perceived speeds corresponding to v0 and vl, 
and @ in (3) replaces j/a in (2). One can see that in both representations, (2) and 
(3), #xx (considered across all possible sets of observation/presentation conditions, p) 
is a function of both V and v, allthough only one of these arguments explicitly 
enters in each expression.3 

No systematic data are available on metrical transformations of time intervals in 
motion. Assuming, however, that the MHP holds for temporal as well as spatial 
shifts, 4tT should also be representable as a function of V and v. Indeed, from (1) 
dtT= #XX(v, V) v/V. Finally, the coefficient $,* can be set identically equal to unity 
because SCM does not occur in the direction orthogonal to that of motion. 

’ The value of v ,, x lO”/s is obtained by extrapolation of the middle part of Eq. (2). Informal observa- 
tions did not reveal any noticeable SCM below l(r15”/s, but it is possible that putting d,x= 1 in this 
region is just an approximation for a very slowly decreasing branch. In any case, there should be a 
transition point u,, in the proximity of lCrlS’/s, separating the branches with distinctly different rates 
of decrease. 

3 As a tentative speculation, one might relate the transition velocities u0 and u1 in (2) and (3) to 
processing limits of the parvocellular (P) and magnocellular (M) pathways in primates (Lennie ef al., 
1990). Both M and P pathways contribute to both spatial and movement characteristics of moving 
stimuli, but the relative role of the M pathways has been shown to be substantially greater at 2O”/s than 
at 1 “/s (Merigan, Byrne, & Maunsell, 1990). Perhaps v ,, e lO”/s is a transition point from predominantly 
P (or M - P) processing to predominantly M processing. There is psychophysical evidence that the 
perception of line spatial details (primarily processed by the P pathways; Merigan & Eskin, 1986) is 
egective for motion below 10-15”/s, but not above (Burr, 1980; Fahle & Poggio, 1981). The M pathways 
(via V, layer 4B and indirectly via V2 and V3) project to area MT, which is believed to play a major 
role in motion perception (Movshon, Adelson, Gizzi, & Newsome, 1986) and in smooth-pursuit eye 
velocity control (Newsome, Wurtz, Dursteler, & Mikami, 1985). The second transition velocity in (2) 
and (3), a1 ~45”/s, is in the range of the maximum smooth-pursuit velocities in response to an 
unexpected motion (Westheimer, 1954; Hallett, 1986); it is also in the range of u at which the Weber 
fraction Au/u begins to increase from a 5-7% plateau (Sekuler, Anstis, Braddick, Brant, Movshon, & 
Orban, 1990). One might speculate, therefore, that velocities exceeding 45”/s are beyond the optimal 
range of area MT (in Sekuler et al., 1990, the optimal range is related to the representation of different 
velocities in the population of velocity-tuned MT cells). 
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1.2. The Space-Time-Velocity Triad in Vision 

In a color/brightness distribution L(X, Y, T) = Ls(X- VT, Y), the perceived 
velocity V equals the ratio of spatial and temporal intervals traversed by a point 
taken on the moving shape L,(X, Y). Equation 1 is essentially a restatement of this 
simple proposition, except that the intervals AX and AT (defining $XX and dzT) 
represent perceptual shifts between two otherwise identical images, rather than 
intervals traversed by a single point. The diagrams in Fig. 1 help to illustrate this 
point and clarify the operational meaning of the coefficients 4.rX and #rT. 

The configuration shown in the top left diagram is an example of the double- 
perturbation (2P) stimulation. In general, the 2P stimulation consists of two identi- 
cal perturbations of a uniform luminance field shifted with respect to each other 
along both (x) and ( y) dimensions and moving with a common velocity u along 
the (x)-axis. If u #O the Ax-shift translates into a At-shift measured between the 
moments when a fixed (x)-position is crossed by two points correspondingly 
located within the two perturbations: Ax/At = v. The parameters of the two pertur- 
bations and their separation can be chosen so that the perceptual mapping of either 
perturbation is independent of that of the other (in Visual Kinematics I it was 
shown how this lack of interference can be verified experimentally). Due to the 
MHP the two distributions are mapped into identical, except for a spatiotemporal 
shift, visual objects. Then the (X), ( Y), and (T) distances between any two 

FIG. 1. (Top) (x, y) and (X, Y): a uniformly moving 2P stimulus with spatial separation (dx, dy) 
is mapped into two uniformly moving identical shapes with spatial separation (dX, AY) = (dxxAx, Ay). 
(Bottom) (x, t) and (X, T): AX is a spatial shift between A and B taken at a given time moment (open 
circles with T= 0); AT is a time shift between A and B taken in a given (X)-position (open circles with 
X= 0); analogously for Ax and At; V= AX/AT=d,,Ax/qi,,At = f~#.~~/l,~ (Eq. (1)). 
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points identically located within the two objects should represent AX, dY, and AT 
in the MHP formulation. These distances can be estimated numerically or by a 
matching technique (Visual Kinematics I). An operational definition of AT, there- 
fore, is the estimated interval between the moments when the two images first cross 
a transversely oriented spatial marker (provided the latter can be shown to not 
affect the perceived motion). 

It follows that by estimating the transformations of AX and AT for different 
values of u (with a fixed Ax or a fixed At) one can obtain a valid psychophysical 
function for perceived velocity (AX/AT= V). Given the controversial character of 
perceived velocity measurements by means of “direct stalling” techniques (see 
Visual Kinematics II), the reconstruction of the psychophysical function through 
measurements of spatial and temporal intervals in motion is a desirable prospect. 
Indeed, perceived linear extent is approximately proportional to physical length 
both in motion and at rest (Visual Kinematics I and II), and an approximate 
proportionality seems to hold between perceived and physical durations, at least for 
stationary stimuli (Eisler, 1976; Allan, 1979). It remains to be demonstrated 
experimentally that the same is true for time intervals in motion, as required by the 
MHP. 

Note that given the proportionality between AX and Ax for any v, a lack of such 
proportionality between AT and At would indicate that a uniform stimulus motion 
is mapped into a perceptual motion with varying speed; it would not indicate that 
a constant visual velocity does not obey the “distance-time ratio law.” If a charac- 
teristic of a perceptually uniform motion does not obey this “law,” it simply should 
not be called velocity , allthough it may be related to the latter by a one-to-one 
function. Numerous attempts have been made to test the “distance-time ratio law” 
empirically (e.g., Mashour, 1964; Rachlin, 1966). From the viewpoint adopted in 
this paper, what is really tested in such work is whether certain measurement 
procedures do measure perceived velocity or (if motion is non-uniform) whether 
observers average instantaneous speeds arithmetically. The problem goes beyond 
just correcting the scales for nonsensory factors (Pot&on, 1979; Gescheider, 1988). 
Even if a true sensory scale is obtained, the “ratio law” is the only criterion for 
deciding that the measured quantity is velocity. Think of a physical device labeled 
“rapidness” and found to measure a quantity proportional to the squared 
distance-time ratio. A proper conclusion would be that “rapidness” means 
something different from, although functionally related to, velocity (in this case it 
could be kinetic energy). Aglom and Cohen-Raz (1984, 1987) state explicitly the 
validating function of the “ratio law” for a perceived velocity scale. 

Another aspect of the “ratio law,” quite apparent when presented in the form of 
(l), is that neither the numerator nor the denominator of the ratio can be replaced 
with estimates of length and time intervals in stationary stimuli. The assumption 
that such replacement is possible is equivalent to the fixed-metric hypothesis 
(dxX= drT= 1) which was shown to be wrong in the previous Visual Kinematics 
papers. Note in Eq. (1) that if the coefficients #lX and (btT did not depend on u, the 
perceived velocity V would necessarily be proportional to u. 
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2. VISUAL KINEMATICS 

2.1. Frames of Reference 

The theory will be presented on a semi-formal level. It is based on the following 
idealized picture of visual perception. A visual image is viewed as a distribution of 
“point-events” uniquely localized in the perceptual (frontoparallel) space and time, 
with motion vectors assigned to them. The spatiotemporal coordinates of a point- 
event with a motion vector I/ are denoted by (X,, Y,, TV). These are the coor- 
dinates of the point-event in the stationary frame of reference (X, Y, T), which will 
be referred to as PFR, (Perceptual Frame of Reference, stationary). Consider now 
another frame of reference, moving with respect to the former along its (X)-axis 
with velocity V: PFR.. In this moving frame of reference the point-event under 
consideration is stationary, and its coordinates can be denoted as (X,,, Y,, To). 
Note that the subscripts for the frame of reference and the coordinates are 
symmetrically opposite, as it should be since they refer to motion velocity in both 
cases. 

Visual kinematics is (described by) a system of transformations from (X0, Y,, T,) 
to (X,, Y,, T,). Formally, this definition is identical with that of physical 
kinematics. However, unlike in physical kinematics, the two frames of reference in 
visual perception are not interchangeable. It is meaningless to say that the observer 
can perceptually switch from one to the other. If the observer experiences a real or 
illusory self-motion with velocity V, the very fact that this motion is perceived 
indicates that the frame of reference does not change. One can perceive oneself as 
moving along with a moving visual object, and this, obviously, is not equivalent to 
stabilizing the latter in a moving frame of reference. It is also obvious that a physi- 
cal motion of the observer that is not perceived as such does not lead to a change 
of the perceptual frame of reference either. A conclusion is that the observer is 
bound to a single frame of reference, which therefore constitutes an “absolute rest” 
position. Strictly speaking, it is the only frame of reference in visual perception, 
PFR, = (X, Y, T), whereas the moving frame of reference, PFR., is merely a 
mathematical abstraction. To make this abstraction a usefulanalytic tool, it should 
be constructed consistent with the MHP and operationally consistent with the 
MHP-based 2P paradigm. 

2.2. MHP-Consistency of Visual Kinematics 

Somewhat loosely defined, the MHP-consistency means that a system of moving 
visual objects “frozen” in the PFR y has a spatiotemporal metric isomorphic to that 
of the system of moving stimuli “frozen” in the imaginary physical frame of 
reference moving along with the stimuli. A rigorous definition involves the following 
requirement imposed on the coordinate transformation formulae from (X0, Y,, TO) 
to (Xv, Y,, TV) and from (&, Yo, To) to (x, Y, t). 

Refer to Fig. 1 once again. Let two points, A and B, be chosen correspondingly 
located in the two shifted visual objects. Ignoring for the moment the ( Y)-axis, the 
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points are represented by two parallel motion lines shifted with respect to each 
other by (AX, LIT) (bottom right diagram). The coordinate transformation 
formulae applied to each point of the two motion lines will map them into two lines 
in the PFR, parallel to the time axis (because the PRF., by definition, stabilizes 
the moving points in place). Consider now these two horizontal lines in the PFR, 
as if they were representing two points, a and b, correspondingly located within two 
constituting perturbations of a moving 2P stimulus, but viewed from a physical 
frame of reference moving with the same velocity u. Then switching to a stationary 
physical frame of reference (x, t) would map the two horizontal lines into two 
parallel lines with the slope of u, shifted with respect to each other by (dx, At) (as 
in the bottom left diagram of Fig. 1). 

The MHP-consistency now can be formulated as the requirement that the 
resulting Ax and At equal the factual shift values in the 2P stimulus whose visual 
image was used to define the points A and B. Put differently, the transformation 
formulae from (X0, Y,, TO) to (X,, Y,, TV) should be set so that the values of 
AX/Ax and AT/At equal the empirically found coefficients $XX( V, u) and drT( V, u), 
respectively. Generalizing this statement to include AY/Ay, and recalling that 
d,r = 1, one can put Y, = Y, in the coordinate transformations and thereby reduce 
them to (X,,, T,,) + (I,, TV). 

To make the MHP-consistency unambiguous, the PFR, and the physical frame 
of reference (x, t) should be considered isomorphic, except that the PFR y is 
moving with respect to (x, t) with velocity v. Formally this means that the trans- 
formations from (%0, TO) to (x, t) are Galileian: 

[+nx[~]: nl=[:, I]. (4) 

Note that the MHP-consistency does not imply that one can find a physical 
point a “corresponding” to a perceptual point A, so that A is a visual image of a. 
Such a statement would be meaningless, for any point of a visual image is deter- 
mined by the luminance distribution within a certain spatiotemporal area. When 
considering the mapping from (X, Y, T) to (x, y, t) (via the auxiliary PFR V), 
corresponding points are always taken within two parts of a 2P stimulus or two 
parts of its image. Due to the logic of the 2P paradigm it is irrelevant what two 
points are taken in either case. 

2.3. Transformation Formulae from PFR, to PFR. 

Since all spatial and temporal axes considered are interval scales, to be invariant 
with respect to shifts of the origins the transformations (X0, T,,) + (X,, T,) should 
be linear in coordinates. Making the origins of PFR, and PFR, coincide and 
observing that 

(00, To) + (VT,, Tv) (5) 
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FIG. 2. Solid circles: coordinates (XV, T,) in PFR, (perceptual frame of reference) and (x,, t,) in 
(x, t) (physical frame of reference) corresponding to unit coordinates in PFR, (imaginary frame of 
reference “stabilizing” moving percepts); the coordinates (X,, T,) and (x, t) are obtained by applying 
the two transformation matrices to (X0= 1, T,,= 1). Open circles are as in Fig. 1. 

(by the definition of uniform motion), we have 

[;;]=M#], M=[tl T]. 
Here M = M( V, u), and for a fixed set of presentation/observation parameters M 
can be considered a function of V alone (see Section 1.1 ).” This is the most general 
form of linear kinematics possible. 

Figure 2 shows how the coefficients #XX( V, u) and qSrT( V, u) should be expressed 

4 Considered as functions of V the coeficients A and B, are even-symmetric, and B, is odd-symmetric: 
A( - V) = A( V); B,( - V) = -B,(V); B2( - V) = B2( V). A proof is obtained from symmetry considera- 
tions by switching V to - V and (X0, T,) to (-X,,, T,). Denoting the dimensionality of A by [[A]], 
the dimensionality of V by [[VI], and so on, and referring to a dimensionless value as [[l]], we have: 
CCAII = CC&II = CClll, CCB,ll= ~C~IIICC~ll= CL-VII-‘. 
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through the functions A, B,, and B, to provide the MHP-consistency of the matrix 
M: 

which obviously agrees with (1). 

2.4. Identification Problem 

To identify visual kinematics means to find the values of the transformation 
coefficients, M( V, u), for any given values of u and other stimulation/observation 
parameters on which T/ depends. A complete identification is not possible on the 
basis of measuring the coefficients bXX and dtT only. Equation (7) provides informa- 
tion concerning only the values of A - VB, and ‘/; this, of course, does not allow 
one to unconfound the values of A and B, and to find B,. Visual kinematics can 
be identified, however, if in addition to dXX and btT measurements one can find 
operational procedures for measuring, or plausible theoretical grounds for deriving, 
the coefficients B, and B,. 

This problem is far beyond the scope of this paper: its solution should involve 
non-rigid motion (temporal changes embedded in moving luminance profiles), 
which might turn out to be methodologically mqre complex a task than the SCM 
measurements. An interpretation for B, and B2 can be derived from considering the 
M-transformations of the following two pairs of point-events in the PFR.: O(0, 0), 
1(X, = 1, T,, = 0), i.e., two simultaneous point-events in the PFR, separated by a 
unit space interval; and O(0, 0) and J(X, = 0, T, = l), i.e., two isotopic point-events 
in the PFR, separated by a unit time interval. In the PFR, the first pair maps into 
O(0, 0) and 1(X,= A, TV= B,), so the two point-events are now separated by a 
time interval B, (“simultaneity transformation coefficients”). The second pair maps 
into O(0, 0) and J(X, = VB,, T, = B,) in the PFR,, which means that the two 
point-events are now separated by a time interval B, (“time transformation 
coefficient”; note that the point-events are no more isotopic). 

The coefficient B, should not be confused with drT (Eq. (7)), which might also 
be referred to as a “time transformation coefficient.” In general, one should be 
cautious in labeling transformations along one axis without specifying intervals 
along the other. A unit time interval isotopically measured in the PFR, transforms 
into B, in the PFR,; a unit time interval isotopically measured in the PFR, trans- 
forms into B,(A - VB,)/A in the PFR., which is derived by applying M -’ to 
J’(X,= 0, TV= 1); drr in Eq. (7) relates two intervals isotopically measured both in 
PFR, and in the physical frame of reference (x, t). All these coefficients can be 
referred to as “time transformation” coefficients, but they have different meanings 
and quantitative values. 

2.5. Comparison with Physical Kinematics 

It is of great theoretical importance that the three types of kinematic transforma- 
tions, of space, of time, and of simultaneity, are logically independent. Thus one 
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cannot exclude a priori that B, = 0 (“absolute simultaneity”), and/or B, = 1 
(“absolute time”), even though dXX= A - VB, changes with V (SCM). 

The reciprocity of the time transformation coefficient B, and the space 
transformation coefficient (A - VB,), which holds for the two forms of kinematics 
considered in mechanics (Galileian and Lorentzian), follows from the Galileian 
relativity principle 

M-‘(V,v)=M(-V, -0). (8) 

This principle says that the transformation formulae from PFR,, to PFR, should 
be identical with those from PFR, to PFR,, except that the direction of motion is 
reversed. Stated in a better known form: all uniformly moving frames of reference 
are equivalent. Equation 8 yields 

VA 1 A ’ (9) 

Relating (6) and (7) to (9), observe that 4XX = A - VB, = A-’ and B, = A in this 
kinematics. The Galileian relativity principle, however, has no operational meaning 
in the visual kinematics. As discussed above, an observer cannot change the frame 
of reference with respect to the same visual percept: in this sense there is only one, 
“absolutely resting,” frame of reference in visual perception. Only empirical analysis 
can show whether the form (9) still holds in visual kinematics as a mathematical 
coincidence. 

If, by another coincidence, M formed a group with V as the group parameter 
(Hoffman, 1966, 1978; Dodwell, 1983), then the kinematics should be formally 
Lorentzian. Indeed, the uniparametric group assumption is equivalent to the 
requirements that (a) the Galileian relativity holds; and (b) for any two velocities, 
V and W, there is a velocity U, such that M(V) x M( W) = M(U). A straight- 
forward algebraic derivation leads to 

which means that [A* - 1]/[AV12 is a constant independent of V. Because 
A = 4;;) and dXX < 1 (SCM), this constant is positive and can be denoted by Q*. 
Because A is dimensionless (see footnote 4) [[Q]] = [ [ V] ] - ‘. The resulting 
kinematics is represented by 

M = [ 

(l-&pf/4-1/2 V( 1 - Q*v2)-“2 
1;22Jq/(1427/2)-l/2 1 (l-Qq/-y/2 . (10) 

As a special case, if a is zero, the kinematics is Galileian (m in Eq. (4) with V 
replacing Y), but this possibility is ruled out for visual kinematics by the SCM effect. 

Caelli, Hoffman, and Lindman (1978) proposed that (10) could be appropriate 
for visual kinematics if V is assumed to be proportional to u and Sz-’ is interpreted 
as the “maximum perceivable velocity.” (The first assumption, V a u, is not made 
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FIG. 3. The best tit of the Lorentzian model of visual kinematics to the experimental data presented 
in the Visual Kinematics papers (including the experiment presented in this paper). Each symbol 
represents an average across subjects and experimental factors that have been found irrelevant: 
4 observers x 60 estimates per symbol (top); 2 observers x 60 estimates (middle); 5 observers x 20 estimates 
(left bottom); and 6 observers x 20 estimates per symbol for the 2P data of Fig. 5 (right bottom). The 
fitted formula is QXX = (1 - I+/*; V= (u/const)K. 
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explicit in their paper.)’ Such a model predicts, of course, the existence of SCM 
(Lorentz-Fitzgerald contraction), but the predicted dependence of tiXX on u is very 
different from the one obtained in the experiments reported in this and the 
preceding Visual Kinematics papers (Eq. (2)). The experimental data presented 
in Caelli et al. (1978) are on the estimated length of a single light segment; this 
paradigm will be shown below to deal with a mixture of geometric and distribu- 
tional deformations (due to the integration-interaction mechanisms, such as 
luminance summation), and therefore it cannot provide decisive evidence. 

I have tested the Lorentzian model on the results of all experiments reported in 
Visual Kinematics I and II, after having replaced the restriction I/ a u implicitly 
imposed by Caelli et al. (which does not work obviously) with a more general 
assumption: I’ a v’. For every empirical SCM curve the optimal values of K and 
Q-r/” were found to provide the best least-square fit (in linearizing transformations 
of the plots). Parameter Q-liK is the hypothetical “maximum perceivable velocity” 
(a-’ is its perceived value). The fit, as one can see in Fig. 3, was quite poor. Only 
pooled data are shown in Fig. 3, but the fit is even worse when applied to 
individual data. 

One can conclude that there is neither empirical nor theoretical support for the 
assumption that visual kinematics is Lorentzian. One must add to this that there 
seems to be no grounds for the very concept of the “maximum perceivable 
velocity,” at least not for attaching to this concept a kinematic meaning. A light 
distribution can move fast enough to be completely smeared, but this hardly can be 
considered a velocity perception limit: an increase in contrast or distance traversed 
may be sufficient to restore the perception of motion. 

The conclusion that visual kinematics does not form a uniparametric group has 
obvious negative implications for the general theory of Lie transformation groups 
in visual perception (Hoffman, 1966, 1978; Dodwell, 1983). 

3. GEOMETRIC AND DISTRIBUTIONAL TRANSFORMATIONS COMBINED 

3.1. A Mixture of Geometric and Distributional Transformations 

According to the theory just presented, the transformations of the visual space 
metric in visual motion are universal, in the sense that they affect spatial intervals 
between any two visual points in a state of common motion. As a result, the 
geometric transformations should affect the appearance of any moving light 

’ This assumption is essential: the “subjective Lorentz transformations” of Caelli et al. cannot be 
derived otherwise. At the same time their analysis of velocity halving is equivalent to the assumption that 
V= arctanh(uS2). This is not an internal contradiction in their model, but an isolated error: the arctanh- 
formula has no substantiation in Lorentzian or any other kinematic transformations (ratios and/or 
differences of speeds should be computed algebraically, not according to the “relativistic addition of 
velocities”). Curiously, I found that their velocity halving data are better approximated by straight lines 
than by their curves, suggesting a power function, V = Iv”, with exponents between 1.20 and 1.68. 

480/36/4-6 
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distribution, irrespective of what other, non-geometric, perceptual deformation 
the distribution was subjected to. These deformations in motion can be called 
distributional because they change distributions of color/brightness in visual space, 
rather than the metric of the space itself. That distributional deformations do occur 
in motion is a well-known fact, traditionally described in terms of luminance 
summation/integration and visual masking (see Visual Kinematics .I for a more 
detailed discussion). 

As a simple demonstration, consider a “point-size” luminance perturbation. 
When stationary, and if the contrast is within certain limits, this stimulus is mapped 
into a “point-size” color/brightness perturbation. If SCM were the only factor 
involved, the apparent shape/size of the same stimulus in motion would be practi- 
cally the same as that when at rest: the contraction of a close to zero value should 
be negligible. It is known, however, that a moving dot stimulus generally looks 
elongated along the direction of motion. It is not obvious a priori in what logical 
order a moving luminance profile is subjected to the geometric and distributional 
transformations: whether the distributional changes take place in the geometrically 
shrunken space or whether the geometric shrinkage is applied to smeared or 
otherwise deformed visual objects. 

The experiment described below does not answer this question, but merely 
demonstrates the complexity of the mixture of geometric and distributional 
deformations in moving single-perturbation stimuli. Viewed from a methodological 
standpoint, the experiment shows that the use of the 2P paradigm in the 
experiments presented in the preceding Visual Kinematics papers was critical for 
the geometric/kinematic interpretation of the SCM phenomenon. Even in a crude 
approximation the geometric transformations could not be identified if the 
observers were to judge the shape/size parameters of a single moving stimulus. An 
immediate motivation for the experiment to be presented is related to the work by 
Caelli et al. (1978), who attempted to reconstruct visual kinematics from the length- 
in-motion estimates of a single light segment, and to the work by Burr (1980) who 
demonstrated that the visual system can effectively minimize visual smear in 
motion. 

3.2. 2P versus 1P Stimulation 

Figure 4 schematically shows the 2P and 1P stimuli used in the experiment: two 
identical rectangular luminance increments on a uniform background moving along 
their longer dimension with a common velocity (2P), and a single rectangular 
segment (1P). The moving stimuli appeared from behind the left screen border, 
uniformly moved toward the right one, and disappeared behind it (the borders were 
clearly seen because the luninance outside the screen was practically zero). The 
experiment was carried out under free looking observation conditions: no fixation 
point was present, and the observers were allowed to move their eyes in a natural 
way (see Visual Kinematic II); viewing was binocular; the head movements were 
restrained by a chin rest with a forehead support. 

The parameters characterizing the light segments and their spatial separation in 
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FIG. 4. 2P stimulation (left) and 1P stimulation (right) used in the experiment. 6x:6y, shape 
parameters (actual value was 12.9”:0.5” in 2P stimuli and 4.2”:O.S” in 1P stimuli); s:b, segment/ 
background contrast (30 cd. m-*: 3 cd me*); hs vs, screen size parameters (36.8” : 10.7”); Ax: Ay, shift 
parameters in 2P stimuli (4.2”: 1.2”). Note that 6x,, = Ax,,=4.2”. The bottom panel schematizes the 
“gradual” appearancedisappearance mode of presentation used. The velocity varied at seven levels from 
22.1”/s to 86.4”/s. 

the 2P stimulation should be clear from the figure (see Visual Kinematics I for a 
detailed discussion). The single light segment was identical to the constituting 
segments of the 2P stimuli, except that its length, 6x, was equal to Ax in the 2P 
stimuli. In the 2P trials the dependent variable was the estimated perceived spatial 
separation, AX, between two segments constituting a 2P stimulus. In the 1P trials 
the task was to estimate the apparent length of the moving segment (6X). The 
estimates of both types were made by adjusting the length of a stationary light 
segment to match AX or 6X 

The 2P and 1P trials with different velocities were completely randomized, with 
the total of 20 match-estimations per stimulus type per velocity per observer. The 
adjustments of the stationary length segment (match-estimates) were made after a 
moving stimulus had been presented four times in brief succession. 

The experimental setup (an optical-mechanical system) was identical to that 
described in Visual Kinematics I (Experiments 8 and 9f of that paper). 
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FIG. 5. AX in units of Ax for 2P stimuli (0) and 6X in units of 6x for 1P stimuli (0) as functions 
of angular velocity. Matching, free looking, Axtp = 6X,, = 4.2”. 20 estimates per symbol. Solid lines for 
1P data are spline-interpolations. Solid lines for 2P data are obtained by fitting Eq. (2). 
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Six observers with normal or corrected-to-normal acuity participated in the 
experiment. All observers, except for KVL, were naive to the aims and design of the 
experiment. 

3.3. Discussion of the Results 

The results are presented in Fig. 5. The match-estimates of AXIS and &Y(u),, 
for every value of angular velocity u have been normalized by the physical value of 
Ax,, = 6x,,. This is equivalent to normalizing by AX(O),,, or &Y(O),,, the 
perceived separation (length) at rest. The vertical bars attached to a symbol show 
rt 1 standard deviation averaged over all conditions represented by this symbol. 

Inspection of the SCM curves for the 2P stimuli reveals a pattern the same as 
that in the experiments described in the preceding Visual Kinematics papers: for all 
observers the dependence of AX/Ax on o can be reasonably approximated by (2), 
with v 0 x loo/s (the intersection of the extrapolated upper branch of the curve with 
the no-contraction level) and v i z 45”/s (the intersection of the two descending 
branches). The occasional deviations are clearly nonsystematic and disappear in the 
across-subject pooling shown in Fig. 6 (bottom curve, geometric averaging). Note 
the change of the vertical scale when visually comparing Figs. 5 and 6 with Fig. 3. 

The 1P curves in Fig. 5 are presented in the format 6X/6x versus u, by analogy 
with the 2P curves. In striking contrast to the latter, the 1P curves exhibit substan- 
tial qualitative differences between different observers, from practically coinciding 
with the 2P curves (observer KVL) to monotonically increasing with‘ u (observer 
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FIG. 6. Open symbols: pooled 2P stimulation data from Fig. 5. Solid line is obtained by fitting 
Eq. (2). Solid symbols: geometrically averaged GX/dx ratio from Fig. 5. Solid line is a spline- 
interpolation. 
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SL). No across-subject pooling algorithm in this situation would be representative 
of the individual data. One should conclude from these data that even if it might 
be possible to separate the distributional and geometric components in the 
GX-transformations (by comparing them to the AX-transformations), it would be 
grossly misleading to use a 1P paradigm alone for investigation of the visual 
geometry in motion. 

One might suggest that a curve of “purely distributional deformations” for each 
observer could be computed by dividing the values of 6X/6x by the corresponding 
values of AX/Ax (or, equivalently, 6X,, by AX,,, because 6x,, = Ax,,). This 
procedure is based on the assumption that the geometric transformations take place 
after the moving contours have been deformed by the light integration-interaction 
mechanisms of vision. In other words, these mechanisms change the apparent 
length from how it looks at rest (6x) to how it would have looked in motion if the 
frontoparallel geometry did not change (6X*); then this length is geometrically 
transformed into 

6X(u) = fjxx(u) 6x*(u). (11) 

The division procedure that restores 6X* follows then from the fact that 4xx(u) 
is estimated by AX/Ax. Actual computations of 6X,,/AXzp yield very dissimilar 
curves for different observers, with only one feature in common: no curve shows a 
considerable decreasing trend. The pooled values of GX/AX (geometric averaging) 
are shown in Fig. 6 (top curve). 

The individual variability observed in the 6Xn,/AX,,-curves indicates a flaw in 
the assumptions that led to (11): either the GX-estimates are influenced by high- 
level cognitive factors or the logical order of the distributional and geometric 
transformations is different from the one assumed. The involvement of high-level 
cognitive factors is more than just plausible: in fact it was phenomenologically 
obvious that the “length” of a moving 1P stimulus is a poorly defined concept, due 
to the brightness non-uniformity along the moving shape. Oversimplifying, the 
moving brightness profile is composed of a “body,” a segment of relatively uniform 
brightness, and a low-contrast decaying “comet tail,” with no clear endpoint. My 
informal observations suggest that the distance from the frontal edge to the “comet 
tail end,” increases with u, whereas the distance to the “body end” decreases. This 
makes the GX-estimates critically dependent on the observer’s criterion of the 
segment’s trailing end (compare, e.g., the curves for observers MG and SL, Fig. 5). 
Moreover, different criterion positions can be adopted for different velocities. As 
velocity increases, the boundary between the “body” and the “tail” becomes less 
pronounced, thus inducing the observer to shift the criterion to the “tail end” (see 
Fig. 5, observer TA). It is remarkable that, judging by the observer KVL’s data 
(Fig. 5), a highly experienced observer can maintain such a criterion position 
(probably at the “body end”) that the transformations of the corresponding length 
are almost entirely geometric. 

A general conclusion seems to be that in order to make ax-estimates theoretically 
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tractable, one needs detailed measurements of the moving brightness profile, and a 
way to determine the observer’s criterion of the endpoints. Note that neither is 
needed in the 2P paradigm. The possibility that the two “corresponding” points are 
in fact placed asymmetrically within the two visual shapes is formally equivalent to 
the assumption that the shapes themselves are different (mapping inhomogeneity) 
and is ruled out by the same arguments (see Visual Kinematics I). 

SCM, as measured in the 2P paradigm, is a robust effect that can be replicated 
with any visual display that allows a perceptually continuous motion with velocities 
exceeding lO-W/s and is free from crude geometric distortions. Other (non- 
geometric) characteristics of a display are irrelevant by the very logic of the 2P 
paradigm: they would transform both moving images equally, without changing 
physical distance between them. Here again the 2P paradigm is in a sharp contrast 
with the “length measurements” in the 1P stimuli. For example, a moving segment 
presented on a CRT screen, as in the experiments of Caelli et al. (1978), in addition 
to the visual distributional deformations will also be subjected to physical 
deformations due to the phosphorus decay time. 

Finally, even if detailed measurements of a moving brightness profile were 
available, it still remains to be found by what algorithm one can “subtract” the 
geometric transformations (2P curves) from their combination with distributional 
deformations (1P curves). This returns us to the possibility mentioned earlier, that 
distributional deformations do not necessarily precede geometric transformations. 
There is nothing a priori implausible in assuming that distributional deformations 
occur on different successive levels, partly preceding and partly following the 
geometric transformations. 

4. DETECTION AND DISCRIMINATION OF SPATIAL INTERVALS IN MOTION 

In this section I will consider the consequences of the geometric transformations 
in motion for detection and discrimination of moving spatial intervals. The problem 
is important because of the considerable interest in dynamic acuity in the 
psychophysical literature. Another motivation for the discussion is that “class A” 
measurements are traditionally considered to be superior to magnitude estimation 
and sensory-physical matching (Marks, 1974). Finally, the discussion provides a 
good example of how an “obvious” derivation from the kinematic theory might 
turn out to be wrong. 

Indeed, it seems almost obvious that due to the SCM effect detectability and 
discriminability of spatial intervals should change in motion too. Applied to the 
dynamic vernier acuity, a prediction seems to be that the vernier thresholds should 
increase in motion by a factor of l/~,,(u). The fact is, however, that although this 
possibility is not excluded, neither is it predicted by the kinematic theory. 

A typical vernier stimulus can be viewed as a 2P stimulus with a very small value 
of Ax (usually dy z 0, and Sy is much larger than 6x; cf. Fig. 4). A typical dynamic 
vernier acuity task is to determine the sign of the Ax-misalignment in a moving 
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vernier target. Consider first the following simple model bringing dynamic vernier 
acuity conceptually close to the SCM effect. Let AX(u) be a random variable and 
let Ax be judged to be positive if and only if AX(o) > 0. Let, for simplicity, AX(u) 
be distributed normally with parameters pL, and 0”. Then, for Ax > 0, the 
probability of correct response will be 

P, = Prob[“Ax > O”] = @(p,/o,), (12) 

where Q, is a standard normal integral. Now CL, = E[AX(u)] = tixx(u) Ax is a 
monotonically decreasing function, but the probability P, depends also on 0”. If 
and only if the latter is a velocity-independent constant, one comes to the 
prediction mentioned earlier: the vernier threshold (taken as the value of Ax corre- 
sponding to a fixed P,) should increase in motion by factor lN,.Ju). If, however, 
(T, itself is a decreasing function of u, then the vernier threshold predictions would 
depend on the comparative rates of decrease in pu and rrv. Thus, if (T, decreases 
faster than ~1” does, the predicted thresholds will actually decrease with increasing 
u. The most natural possibility is, of course, that cV is a fixed proportion of ,uL,. 
Indeed, if each “instantaneous” value of the random variable AX(u) is shrunken by 
the factor of l/q4,,(u) with respect to the values of the random variable AX(O), then 
both p0 and ev will be shrunken by the same factor; pL,/cr, = const. The thresholds 
will then not be affected by SCM at all. 

Assumptions about the decision rule are as important for predictions as are the 
assumptions concerning the distribution of AX(u). To give only one example, 
consider the following decision rule: the observer says “Ax > 0” if AX(u) > E, says 
“Ax < 0” if AX(u) < -E, and guesses with probability p that “Ax > 0” if IAX(u)l < E, 
where E is a velocity-independent constant. Unlike in the preceding model, the 
predicted thresholds in this case would increase with v, even if G~,/P~ is constant. By 
changing the assumptions concerning the decision rule and distribution of AX(u), 
one can generate different models covering all possible dependencies of dynamic 
vernier acuity on u. 

In addition, one has to take into account the possibility that all these models 
might be wrong in assuming that vernier judgements are based exclusively on the 
value of AX. Although the problem is far from being settled, empirical evidence 
suggests that several different misalignment cues can be utilized for judging vernier 
offsets (Watt, Morgan, & Ward, 1983; Westheimer & McKee, 1977b). If so, then 
in addition to constructing a detection model, one has to find out in what logical 
order and how the different cues are modified by geometric and distributional 
transformations in motion. The available experimental data on dynamic vernier 
acuity impose at most weak limitations on the spectrum of theoretical possibilities. 
One of the few firmly established facts is that at low velocities (below 1&15”/s for 
perceptually continuous undirectional motion) dynamic vernier acuity is practically 
independent of velocity (Fahle & Poggio, 1981; Westheimer & Mckee, 1975, 
1977a). Unfortunately for these theoretical considerations (but perhaps not coin- 
cidentally; see footnote 3), this is the very velocity range in which no or little SCM 
seems to occur. 
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With only minor modifications all of the above analyses can be repeated for 
spatial discrimination tasks, like same-different or greater-less judgements 
concerning moving spatial intervals. Again, the kinematic theory provides only one 
component of a psychophysical model, rather than a complete model. 

5. CONCLUSION 

It has been established in this work (Visual Kinematics I-III) that the fronto- 
parallel geometry of the visual space changes in visual motion as a function of 
motion velocity: perceived spatial intervals contract in the direction of motion, but 
not transversely, the contraction coefficient being independent of the contracted 
value. The possibility to speak of the visual geometry in motion unambiguously, 
and to measure its properties experimentally, isolated from all distributional defor- 
mations in motion, has been provided by the Mapping Homogeneity Principle, the 
central theoretical construct of the Visual Kinematics papers. The MHP has all the 
characteristics of a fundamental principle: it is general, simple, empirically 
falsifiable, and consistent with actual experimental data. At the same time, the 
principle itself and the kinematic theory based on it are only reasonable 
approximations. One cannot exclude the possibility, for example, that more precise 
and detailed measurements of the SCM effect would reveal small but systematic 
departures from the proportionality relation for near-threshold or even large spatial 
intervals. I do not think that this possibility diminishes the heuristic value of the 
MHP. 

The proposed theory of visual kinematics places the SCM effect in a broader 
theoretical context: the interconnection between (relative) spatiotemporal localiza- 
tion of visual events and their state of motion. The theory shows also a direction 
of research whose results would be necessary and sufficient for a complete identifica- 
tion of visual kinematics, i.e., specification of the transformation coefficients and the 
psychophysical function for perceived velocity. On the basis of the experiments 
reported, and in agreement with the MHP, visual kinematics has been identified as 
approximately linear (with respect to spatiotemporal coordinates), but this seems 
to be the only property it shares with the two kinematic structures considered in 
mechanics (Galileian and Lorentzian). In particular, the existence of spatial 
transformations in motion in no way implies the existence of time and simultaneity 
transformations (as defined in Section 2.4): this is a strictly empirical question. The 
logical independence of the transformations of space (A - VB, = dXX), time (B2), 
and simultaneity (B,), seen clearly when constructing a kinematic theory ab ovo, 
rather than uncritically copying it from mechanics, has broader implications 
than for visual psychophysics alone. Even in very good treatises on relativistic 
kinematics, for example, attempts are made to derive two of the three transforma- 
tions from the remaining one (usually simultaneity), interpreting the latter as a 
“cause” of the former two (e.g., Arzelier, 1966). In fact kinematic properties do not 
have causes any more than Euclidean geometry does: one can say only that the 
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“cause” of the very derivability of any two transformations from the third one is in 
the Galileian relativity principle (which is fundamental for mechanics, but cannot 
be substantiated in vision). 

Comparison with physical kinematics helps one also to realize the importance of 
the non-Galileian structure of visual kinematics for the traditional question of 
whether visual motion is a sensory attribute or a “subconscious inference” from the 
difference in spatiotemporal positions of the same visual object. With very few 
exceptions (e.g., Kinchla & Allan, 1969; Mandriota, Mintz, & Notterdam, 1962), it 
has been maintained throughout the history of experimental psychophysics that 
motion perception is “direct” rather than “inferred” (e.g., Gibson, 1965; Sekuler, 
1975). At least some arguments, however, advanced to support this view are quite 
weak and “indirect,” mainly because the question is ambiguously formulated and, 
to a large extent, terminological (see Lappin, Bell, Harm, & Kottas, 1975, for a 
brief overview of some arguments). One such argument, that I find faulty, has been 
mentioned earlier: it claims that visual motion is not inferred because visual 
velocity does not equal the ratio of spatial and temporal intervals traversed. Even 
the commonly accepted dissociation between visual motion and visual displacement 
in a motion aftereffect (Wolgemuth, 1911) needs further investigation to be 
demonstrated convincingly and formulated rigorously. 

The way I understand the meaning of the proposition “Visual motion is inferred” 
is that continuous visual motion can be equivalently presented as a succession of 
instantaneously vanishing visual events along the motion path (as in Zeno’s famous 
aporia). In other words, a visual event appears and disappears in position (X, T), 
a similar visual event appears and disappears in position (X+ dX, T + dT), and so 
on. The question is now whether this conceptual removal of visual motion vectors 
is consistent with the spatiotemporal properties of visual scenes. 

It might come as a surprise, but there is a clear and well-known physical 
analogue for the dichotomy of “sensory vs inferred,” if understood in the way just 
described. It is the distinction between a real, energy-transmitting, motion and what 
is called “geometric motion.” To give a simple example, the motion of a light source 
is real, whereas the motion of the optical image formed by the light source on the 
retina is “geometric”: the light flux forming the image at moment t, is different from 
the light flux forming the image at moment tZ, however close the two moments are. 
The principle kinematic difference between real and “geometric” motions is that the 
transformation formulae (for spatiotemporal coordinates) associated with the latter 
are necessarily Galileian. One can imagine different physical worlds with different 
kinematic structures associated with real motions (including Galileian), but it is 
logically contradictory to imagine a non-Galileian kinematics associated with 
“geometric” motions (e.g., Ugarov, 1969). From this point of view, the 
non-Galileian structure of visual kinematics established in this work is a direct 
indication that visual motion is real, rather than “geometric,” or, in psychophysical 
terms, is sensory rather than inferred. 
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