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Abstract: Bell-type criteria of contextuality/nonlocality can be derived without any falsifiable as-
sumptions, such as context-independent mapping (or local causality), free choice, or no-fine-tuning.
This is achieved by deriving Bell-type criteria for inconsistently connected systems (i.e., those with
disturbance/signaling), based on the generalized definition of contextuality in the contextuality-by-
default approach, and then specializing these criteria to consistently connected systems.
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1. Introduction

The criteria (necessary and sufficient conditions) of contextuality/nonlocality (usually,
but not necessarily, in the form of inequalities) are at the heart of the foundations of
quantum physics. Since John Bell’s pioneering work, researchers have been interested in
what assumptions about nature one needs to justify these criteria. Several such assumptions
have been proposed. One of them is that measurements cannot be affected by spacelike
remote events (local causality). Another assumption is that experimenters choose what they
measure independent of the background events determining measurement outcomes (free
choice). It has also been proposed that statistically identical measurement outcomes should
have identical ontological models (no-fine-tuning). This article shows that the criteria of
contextuality/nonlocality can be derived without any such assumptions.

Although our discussion is valid for essentially all possible systems of random vari-
ables, we will use a system describing the Bohm’s version of the Einstein-Podolsky-Rosen
experiment (EPR/B) [1–3] as a throughout example. This allows us to avoid technicalities
needed in a more general exposition. The system in question is

R1
1 R1

2 c = 1
R2

2 R2
3 c = 2

R3
3 R3

4 c = 3
R4

1 R4
4 c = 4

q = 1 q = 2 q = 3 q = 4 systemR4

. (1)

The random variables in (1) represent outcomes of spin measurements of two en-
tangled particles along direction q; in every trial Alice chooses between directions q = 1
and 3, and Bob chooses between q = 2 and 4 (indicated by subscripts of the random
variables). We call subscripts q in Rc

q the contents of the corresponding random variables.
The four combinations of the Alice-Bob choices form contexts c = 1, . . . , 4 (indicated by
the superscripts of the random variables). If the spin along an axis q (i.e., content q) is
measured in context c, we write:

q ≺ c. (2)

For instance q = 2 ≺ c = 1 but q = 3 6≺ c = 1. The particles are spin-1/2, so all the
random variables in the system are dichotomous, say ±1.
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The structure of this article is as follows. In Section 2, we do preliminary work:
we present a rigorous version of the traditional account of the criteria for contextual-
ity/nonlocality of systems of random variables with no disturbance (we call them consis-
tently connected systems), and then we stipulate the traditional assumptions involved in
the formulation of these criteria. The main point of this paper is presented in Section 3.
There, we generalize the definition of contextuality/nonlocality to inconsistently connected
systems (those with disturbance or signaling), and show that the generalized Bell-type
criteria in this generalized conceptual setting can be derived with no assumptions. Instead
they are derived from a classificatory definition of (non)contextuality based on the notion
of the difference between random variables. The traditional Bell-type criteria then imme-
diately follow by specializing the generalized criteria to consistently connected systems,
again, with no assumptions about nature.

The term “nonlocality” has been criticized as misleading, unnecessary, or even out-
right contradicting the tenets of quantum physics in several recent publications [4–6]. In
this paper, however, the term is used to simply designate a special case of contextuality,
for systems where contexts are formed by spacelike separated components. Barring ex-
perimental biases, such a system is consistently connected, and its mathematical analysis
does not differ from that of other consistently connected systems [7,8]. Singling nonlocal
systems out, however, is justified due to their special importance in quantum physics.

2. Contextuality for Consistently Connected Systems

Consider a random variable Λ and a measurable function F mapping Λ and q into
{−1, 1}. In contextuality/nonlocality analysis of a system we are asking whether one can
choose(Λ, F) so that, for every context c,

(F(q, Λ) : q ≺ c) d
=
(

Rc
q : q ≺ c

)
, (3)

where d
= stands for “has the same distribution as”. In other words, the joint distribution of

all F(q, Λ) for a given context c is the same as the joint distribution of all Rc
q in this context.

Thus, for systemR4 in (1),

(F(q = 1, Λ), F(q = 2, Λ))
d
=
(

R1
1, R1

2
)
,

(F(q = 2, Λ), F(q = 3, Λ))
d
=
(

R2
2, R2

3
)
,

etc.

(4)

Note that the random variables
(

Rc
q : q ≺ c

)
in a given context c are jointly distributed:

e.g., the event
[
R1

1 = x, R1
2 = y

]
is well-defined for any x, y ∈ {−1, 1}, and has a probability

assigned to it. At the same time, random variables in different contexts, e.g., R1
1 and R2

1,
or R1

1 and R2
2, do not have a joint distribution, as different contexts are mutually exclusive

[9]. However, all random variables F(q, Λ) are jointly distributed, because Λ is one and
the same for all q and c. Therefore, the random variables Sc

q below form a (probabilisitic)
coupling of systemR4:

S1
1 = F(1, Λ) S1

2 = F(2, Λ)
S2

2 = F(2, Λ) S2
3 = F(3, Λ)

S3
3 = F(3, Λ) S3

4 = F(4, Λ)
S4

1 = F(1, Λ) S4
4 = F(4, Λ)

. (5)

Generally, a coupling of a system of random variablesR =
{

Rc
q : c ∈ C, q ∈ Q, q ≺ c

}
is a set of jointly distributed S =

{
Sc

q : c ∈ C, q ∈ Q, q ≺ c
}

such that, for any c ∈ C,

Sc =
{

Sc
q : q ∈ Q, q ≺ c

}
d
=
{

Rc
q : q ∈ Q, q ≺ c

}
= Rc. (6)
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Note that any set of jointly distributed random variables is a random variable. Therefore,
S, Sc, and Rc are random variables, butR is not (hence the difference in notation).

In the coupling (5), the octuple of the Sc
q-variables is jointly distributed, and the within-

context joint distributions of Sc
q variables are the same as the joint distributions of the

corresponding Rc
q variables. In addition, since F(q, Λ) does not depend on c, we have (with

Pr standing for probability):
Pr
[
Sc

q = Sc′
q

]
= 1, (7)

for any q ≺ c, c′ . In other words, the probabilities

Pr
[
S1

1 = s1
1, S1

2 = s1
2, . . . , S4

4 = s4
4, S4

1 = s4
1

]
(8)

are well-defined for all 28 octuples of sc
q ∈ {−1, 1}. These probabilities are subject to the

following constraints:

1. For every fixed (c, q, q′), such that q, q′ ≺ c, and any fixed values sc
q, sc

q′ ∈ {−1, 1},

∑ ι[
Sc

q=sc
q ,Sc

q′=sc
q′
] Pr

[
S1

1 = s1
1, . . . , S4

1 = s4
1

]
= Pr

[
Rc

q = sc
q, Rc

q′ = sc
q′

]
, (9)

where the coefficient ι[expression] is the Boolean indicator of whether the event
S1

1 = s1
1, . . . , S4

1 = s4
1 contains expression;

2. For any fixed (c, c′, q) such that q ≺ c, c′, and any fixed values sc
q, sc′

q ∈ {−1, 1},

∑ ι[
Sc

q=sc
q ,Sc′

q =sc′
q

] Pr
[
S1

1 = s1
1, . . . , S4

1 = s4
1

]
=

{
0 if sc

q 6= sc′
q

Pr
[

Rc
q = sc

q

]
= Pr

[
Rc′

q = sc
q

]
if sc

q = sc′
q

. (10)

This can be compactly presented as a linear programing (LP) task [7,10]:

MX = P, X ≥ 0, (11)

where X is the vector of the 28 probabilities (8), P is the vector of the probabilities in the
right-hand sides of (9) and (10), and M is a Boolean incidence matrix, whose entries are
the ι-coefficients in (9) and (10). The condition X ≥ 0 (componentwise) ensures that the
solution X, if it exists, consists of numbers interpretable as probabilities (the summation of
these values to 1 in (11) is ensured).

Denoting by LP[M, P] a Boolean function that equals 1 if and only if a solution X exists,
it is well-known that LP[M, P] is computable in polynomial time [11]. Consequently,

LP[M, P] = 1 (12)

can be taken as a criterion of noncontextuality/locality. As an optional step, by a facet
enumeration algorithm, this criterion can be presented in the form of inequalities and
equations involving moments of the distributions within contexts. For system R4, this
yields [3,12,13]:∣∣∣〈R1

1R1
2

〉
+
〈

R2
2R2

3

〉
+
〈

R3
3R3

4

〉
+
〈

R4
4R4

1

〉
− 2 min

(〈
R1

1R1
2

〉
,
〈

R2
2R2

3

〉
,
〈

R3
3R3

4

〉
,
〈

R4
4R4

1

〉)∣∣∣ ≤ 2, (13)

〈
R1

1

〉
=
〈

R4
1

〉
,
〈

R1
2

〉
=
〈

R2
2

〉
,
〈

R2
3

〉
=
〈

R3
3

〉
,
〈

R3
4

〉
=
〈

R4
4

〉
. (14)

Equalities (14) present the condition of consistent connectedness.
What ontological assumptions have we made in the foregoing? Let us note first that

we need no assumptions to derive the criterion LP[M, P] = 1 or its equivalents from (3).
The derivation of the criterion is by straightforward linear programming, optionally com-
plemented by facet enumeration. However, we need certain assumptions about nature
to justify the plausibility of using the function F(q, Λ), which is the starting point of the
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derivation. Namely, we must have assumed that the mapping does not contain context c
among its arguments. For the EPR/Bohm experiment, following Bell [14], this assumption
can be called local causality, because dependence of the mapping on c can be interpreted
as dependence of measurement outcomes on spacelike-remote settings. More generally,
however, this can be called context-independent mapping, in order to also include the Kochen-
Specker type contextuality [15], when measurements in the same context are not spacelike
separated. We must have also assumed that Λ in F(q, Λ) is one and the same for all q
and for all c. This is called the assumption of free choice, or statistical independence (of mea-
surements and settings). In relation to systemR4, the necessity of adding the free choice
assumption to the local causality assumption was pointed out to John Bell by Shimony,
Horne, and Clauser in their 1985 interchange [16,17]. The relationship between free choice
and local causality (more generally, context-independent mapping) is an interesting issue,
but it is discussed elsewhere [18].

One can replace both the assumption of context-independent mapping and the free
choice assumption with the assumption proposed by Cavalcanti, called no-fine-tuning [19,20].
For our purposes it can be formulated thus: if two random variables sharing a content in
different contexts have the same distribution, their representations in the form

F(some parameters, some random variables) (15)

should be identical. This is an attractive alternative to context-independent mapping,
because the latter is not especially compelling in the cases of Kochen-Specker-type con-
textuality, when contexts are not defined by spacelike remote settings. Note that the
no-fine-tuning can also be considered a principle of theory construction, essentially a
conceptual parsimony principle, rather than an ontological assumption.

As it turns out, however, by generalizing the notion of (non)contextuality to include
inconsistently connected systems, one can avoid the necessity of making any of these, or
other, falsifiable assumptions. The no-fine-tuning assumption (or parsimony principle) is a
consequence of specializing this general definition to consistently connected systems.

3. Contextuality in Inconsistently Connected Systems

The generalization follows the broadening of the class of systems of random variables
amenable to contextuality analysis. As one can see in (14), the criterion LP[M, P] = 1 can be
satisfied only if the system of random variables is consistently connected: random variables
measuring the same property in different contexts have the same distribution. We will now
drop this constraint, and allow for inconsistent connectedness. In particular, we allow for
signaling between Alice and Bob if their measurements are timelike separated.

We begin with the maximally lax representation

Rc
q = γ

(
q, c, λc

q

)
, (16)

in which both the outcome of the measurement and the background random variable are
allowed to depend on both q and c. This representation obviously holds for any system of
random variables. Now, because all Rc

q in a given context c are jointly distributed, it follows
that all λc

q in this context are jointly distributed. Therefore, there is a random variable λc of
which λc

q for all q ≺ c are functions. As a result, we get a seemingly more restrictive but
still universally applicable representation:

Rc
q = g(q, c, λc). (17)

The remaining dependence of λc on context c can also be eliminated, by the following
reasoning. Let us form an arbitrary coupling

Λ d
= (λc : all c), (18)
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e.g., couple all λc independently. Then:

Rc
q

d
= g(q, c, Projc(Λ)) = G(q, c, Λ), (19)

where Projc is the cth projection function. This representation (with Λ one and the same for

all q and c) is also universally applicable. Note that in (19) we only have Rc
q

d
= G(q, c, Λ),

rather than Rc
q = G(q, c, Λ), because the latter would make Rc

q jointly distributed across
mutually exclusive contexts c (which is nonsensical).

It remains to define (non)contextuality in this generalized conceptual setting. In the
contextuality-by-default approach (CbD) [8–10,21,22], the system is considered noncontex-
tual if (Λ, G) in (19) can be chosen so that the probability:

Pr
[
G(q, c, Λ) = G

(
q, c′, Λ

)]
(20)

is the maximal possible, for all (q, c, c′) such that q ≺ c, c′. For dichotomous random
variables, this means

Pr
[
G(q, c, Λ) = G

(
q, c′, Λ

)
= 1

]
= min


Pr
[

Rc
q = 1

]
Pr
[

Rc′
q = 1

] . (21)

The rationale for this definition is as follows. The maximal probability with which
G(q, c, Λ) and G(q, c′, Λ) can be made to coincide shows how similar the random variables
Rc

q and Rc′
q are if taken as an isolated pair, “out of their contexts.” Denoting by pc

q the value

of Pr[F(q, c, Λ) = 1] = Pr
[

Rc
q = 1

]
, the maximum probability of F(q, c, Λ) = F(q, c′, Λ) is

1−
∣∣∣pc

q − pc′
q

∣∣∣, and it is achieved if and only if the joint distribution of Sc
q = F(q, c, Λ) and

Sc′
q = F(q, c′, Λ) is (assuming pc

q ≤ pc′
q ):

Sc
q = 1 Sc

q = −1

Sc′
q = 1 pc

q 0 pc
q

Sc′
q = −1 pc′

q − pc
q 1− pc′

q 1− pc
q

pc′
q 1− pc′

q

. (22)

The existence of a coupling of the system in which all pairs
(

Sc
q, Sc′

q

)
have this joint

distribution indicates that the way Rc
q and Rc′

q are related to other random variables in the
corresponding contexts leaves their dissimilarity intact. Otherwise, the contexts of the
system “force” some of the pairs of Rc

q and Rc′
q to be more dissimilar than they are when

taken in isolation.
The Bell-type criterion for this generalized definition is also determined by the LP

problem (11). The only difference is that the part of vector P determined by (10) is replaced
with the probabilities given in (22):

∑ ι[
Sc

q=sc
q ,Sc′

q =sc′
q

] Pr
[
S1

1 = s1
1, . . . , S4

1 = s4
1

]
=


pc

q if sc
q = sc′

q = 1
1− pc′

q if sc
q = sc′

q = −1
etc.

. (23)

Note that this definition of (non)contextuality is purely classificatory, it does not
involve any assumptions about nature.



Entropy 2021, 23, 1543 6 of 8

Suppose now that the system is consistently connected. Then the maximal probability
in (20) is 1, i.e., (22) holds with pc

q = pc′
q , and the system is noncontextual if and only if

(Λ, G) can be chosen so that:

Pr
[
G(q, c, Λ) = G

(
q, c′, Λ

)]
= 1, (24)

whenever q ≺ c, c′. But the latter means that

G(q, c, Λ) ≡ F(q, Λ). (25)

We have thus arrived at the same representation as in the previous section, but without
assuming context-independent mapping, free choice, or no-fine-tuning.

4. Conclusions

We have seen that if one does not make any constraining assumptions about how a
measurement outcome in a system depends on settings, local or remote, and if one adopts
the CbD definition of generalized (non)contextuality, the derivation of the traditional crite-
ria of (non)contextuality follows with no ontological assumptions, by simply specializing
the definition in question to consistently connected systems.

Let us examine possible doubts about the validity of our analysis.
(1) Is not the property of consistent connectedness from which we derive (24) and

(25) an assumption? If the distributions of the random variables are only known to us on a
sample level, then it is indeed an assumption, as any other statistical hypothesis. However,
the discussion in this article deals with the systems known to us precisely, as random
variables rather than samples. For example, a standard quantum mechanical computation
can yield the precise joint probabilities for the pairs of variables in each context of system
R4.

(2) By writing Rc
q = γ

(
q, c, λc

q

)
, have we not made the assumption of “outcome

determinism”? The latter means that the values of the relevant arguments uniquely
determine the value of Rc

q. What if q, c, and λc
q only determine the distribution of the

random variable Rc
q rather than its value? This possibility, however, amounts to introducing

yet another random variable among the arguments of the function determining the value
of Rc

q:

Rc
q = γ

(
q, c, λc

q, µc
q

)
. (26)

This obviously reduces to the initial representation on renaming
(

λc
q, µc

q

)
into λc

q. This
observation is, in fact, a short (and generalized) version of a theorem established as early
as 1982 by Arthur Fine [12].

(3) Is not the generalized CbD definition of contextuality a form of the no-fine-tuning
assumption? This is clearly not true for the original no-fine-tuning assumption [19,20],
as the latter is confined to consistently connected systems. However, it has been shown
by M. Jones [23] that it is possible to generalize the no-fine-tuning assumption to become
a principle that forbids “hidden influences” in ontological models of a system. “Hidden
influences” mean dependence of measurement outcomes on factors that do not influence
the distributions of these outcomes. Maximizing the probability of G(q, c, Λ) = G(q, c′, Λ)
ensures that the entire difference between the influences of c and c′ on the measurement of
q is reflected in the difference of their distributions. However, in CbD, this is a consequence
of defining (non)contextuality of a system in terms of differences between content-sharing
random variables, rather than an assumption about nature or a principle for constructing
plausible ontological theories.

(4) Finally, let us address the question about the distinction we make between onto-
logical assumptions and a classificatory definition. Is it defensible? Is not any assumption
convertible into a definition and vice versa? Specifically, the traditional analysis of con-
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textuality can be presented as a definition according to which a (consistently connected)
system is noncontextual if a representation(

Rc
q : q ≺ c

)
d
= (F(q, Λ) : q ≺ c) (27)

exists, and it is noncontextual otherwise. Not denying this obvious possibility, it is never-
theless reasonable to ask how such a definition is motivated. The assumptions of context-
independent mapping, free choice, and no-fine-tuning serve to provide this motivation.
(Let us note in passing that most of the traditional analyses of contextuality confuse the
distributional equation (27) with the equality Rc

q = F(q, Λ). The ensuing logical problems
are discussed in [9,21].) In our analysis, we begin with a hidden variable model that cannot

be empirically false, Rc
q = γ

(
q, c, λc

q

)
, and reduce it to Rc

q
d
= G(q, c, Λ), that cannot be false

either. Then we pose the question about the difference between random variables Rc
q and

Rc′
q , measuring the same content in different contexts. Asked about the motivation for this

question, the obvious answer is that we are interested in the dependence of measurements
on their contexts. The maximal probability of Sc

q = Sc′
q in the coupling(

Sc
q = F(q, c, Λ), Sc′

q = F
(
q, c′, Λ

))
(28)

provides the answer for Rc
q and Rc′

q taken in isolation from their contexts. Finally, we ask

the question if thus measured differences between Rc
q and Rc′

q are compatible with their

respective contexts, by finding out if the maximal probability of Sc
q = Sc′

q remains the same
or decreases within the overall couplings of the system. If asked about the motivation for
this question, the answer is that the situations when these maximal probabilities decrease
(for some Rc

q and Rc′
q ) indicate a special form of dependence of measurements on their

contexts, beyond the difference of their distributions. There seems to be no assumptions
about nature that would pertain to this distinction (see point 3 above). To summarize, the
point we make in this paper is not based on the admittedly blurry distinction between
definitions and assumptions. Rather, it is based on dealing with a representation, γ

(
q, c, λc

q

)
or G(q, c, Λ), that is universally applicable, and does not therefore involve any ontological
assumptions.
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