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Regular Minimality: A
Fundamental Law of
Discrimination
Ehtibar N. Dzhafarov1 and Hans Colonius2

1 Purdue University
2 Universität Oldenburg

1. INTRODUCTION
The term discrimination in this chapter is understood in the meaning of
telling stimuli apart. More specifically, it refers to a process or ability by
which a perceiver judges two stimuli to be different or identifies them as
being the same (overall or in a specified respect). We postpone until later the
discussion of the variety of meanings in which one can understand the terms
stimuli, perceiver, and same—different judgments. For now, we can think of
discrimination as pertaining to the classical psychophysical paradigm in
which stimuli are being chosen from a certain set (say, of colors, auditory
tones, or geometric shapes) two at a time, and presented to an observer or
a group of observers who respond by saying that the two stimuli are the
same, or that they are different. The response to any given pair of stimuli
(x;y) in such a paradigm can be viewed as a binary random variable whose
values (same—different) vary, in the case of a single observer, across the
potential infinity of replications of this pair, or, in the case of a group,
across the population of observers the group represents. As a result, each
stimulus pair (x;y) can be assigned a certain probability, Ã (x;y), with
which a randomly chosen response to x and y (paired in this order) is “the
two stimuli are different,”

Ã (x;y) = Pr [x and y are judged to be different] : (1)

The empirical basis for considering (x;y) as an ordered pair, distinct
from (y;x), is the same as for considering (x;x) as a pair of two identical
stimuli rather than a single stimulus. Stimuli x and y presented to a per-
ceiver for comparison are necessarily different in some respect, even when
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2 Dzhafarov and Colonius

one refers to them as being physically identical and writes x = y: thus, x
(say, a tone) may be presented first and followed by y (another tone, per-
haps otherwise identical to x); or x and y (say, aperture colors) may be
presented side-by-side, one on the left, the other on the right. Dzhafarov
(2002b) introduced the term observation area to reflect and generalize this
distinction: two stimuli being compared belong to two distinct observations
areas (in the examples just given, spatial locations, or ordinal positions in
time). This seemingly trivial fact plays a surprisingly prominent role in the
theory of perceptual discrimination. In particular, it underlies the formula-
tion of the law of Regular Minimality, on which we focus in this chapter.
There is more to the notion of an observation area than the difference

between spatiotemporal locations of stimuli, but this need not be discussed
now. Formally, we refer to x in (x;y) as belonging to the first observation
area, and to y as belonging to the second observation area, the adjectives
“first” and “second” designating the ordinal positions of the symbols in the
pair rather than the chronological order of their presentation. The differ-
ence between the two observation areas, whatever their physical meaning,
is always perceptually conspicuous, and the observer is supposed to ig-
nore it: thus, when asked to determine whether the stimulus on the left
(or presented first) is identical to the stimulus on the right (presented sec-
ond), the observer would normally perceive two stimuli rather than a single
one, and understand that the judgment must not take into account the
difference between the two spatial (or temporal) positions. In the history
of psychophysics, this aspect of discrimination has not received due atten-
tion, although G. T. Fechner did emphasize its importance in his insightful
discussion of the “non-removable spatiotemporal non-coincidence” of two
stimuli under comparison (1887, p. 217; see also the translation in Scheerer,
1987).
It should be noted that the meaning of the term discrimination, as used

by Fechner and by most psychophysicists after him, was different from
ours. In this traditional usage, the notion of discrimination is confined to
semantically unidimensional attributes (such as loudness, brightness, or at-
tractiveness) along which two stimuli, x and y; are compared in terms
of which of them contains more of this attribute (greater—less judgments,
as opposed to same—different ones). Denoting this semantically unidimen-
sional attribute by P, each ordered pair (x;y) in this paradigm is assigned
probability ° (x;y) ; defined as

° (x;y) = Pr [y is judged to be greater than x with respect to P] : (2)

As a rule, although not necessarily, subjective attribute P is being related
to its “physical correlate,” a physical property representable by an axis
of nonnegative reals (e.g., sound pressure, in relation to loudness). In this
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case, stimuli x;y can be identified by values x; y of this physical property,
and probability ° (x;y) can be written as ° (x; y).3 The physical correlate is
always chosen so that y ! ° (x; y); (i.e., function ° considered as a function
of y only, for a fixed value of x) is a strictly increasing function for any value
of x, as illustrated in Fig. 1, left. Clearly then, x ! ° (x; y) is a strictly
decreasing function for any value of y. Note, in Fig. 1 (left), the important
notion of a Point of Subjective Equality (PSE). The difference between x,
in the first observation area, and its PSE in the second observation area, is
sometimes called the constant error associated with x (the term “systematic
error” being preferable, because the difference between x and its PSE need
not be constant in value across different values of x). The systematic error
associated with y; in the second observation area, is defined analogously.

yx

1/2

y  γ (x, y)y  γ (x, y)

PSE for x

x

y  ψ(x, y)y  ψ(x, y)

PSE for x

y

Fig. 1: Possible appearance of discrimination probability functions
γ (x, y) = Pr [y is greater than x in attribute P] (left) and ψ (x, y) =
Pr [x is different from y] (right), both shown for a fixed value of x, with x
and y represented by real numbers (unidimensional stimuli). For γ (x, y), the
median value of y is taken as the Point of Subjective Equality (PSE) for x (with
respect to P). For ψ (x, y), PSE for x is the value of y at which ψ (x, y) achieves
its minimum.

Same—different discrimination also may involve a semantically unidi-
mensional attribute (e.g., “do these two tones differ in loudness?”), but it
does not have to: the question can always be formulated “generically”: are
the two stimuli different (in anything at all, ignoring however the difference

3Here and throughout, we use boldface lowercase letters to denote stimuli,
and lightface lowercase letters when dealing with their real-number attributes; by
convenient abuse of language, however, we may refer to “stimulus x” in place of
“stimulus x with value x.”
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between the observation areas). It is equally immaterial whether stimuli
x;y can be represented by real numbers, vectors of real numbers, or any
other mathematical construct: physical measurements only serve as labels
identifying stimuli. For convenience of graphical illustrations, however, we
will assume in the beginning of our discussion that x;y are matched in
all respects except for a unidimensional physical attribute (so they can be
written x; y). In such a case, discrimination probability function might look
as shown in Fig. 1, right. The important notion of PSE here acquires a new
meaning: for x; in the first observation area, its PSE is the stimulus in the
second observation which is least discriminable from x (and analogously for
PSE for y in the second observation area). That such a point exists is part
of the formulation of the Regular Minimality principle.4

Our last introductory remark relates to a possible confusion in under-
standing of functions y ! Ã (x;y) and x ! Ã (x;y); (this remark equally
applies to functions y ! ° (x;y) and x ! ° (x;y) for greater—less discrim-
inations). The mathematical meaning of y ! Ã (x;y) ; for example, is that
x is being held constant whereas y varies, with Ã varying as a function of y:
It is important to keep in mind that whenever we use such a construction,
the distinction between x and y is purely conceptual, and not procedural:
it is not assumed that x is being held constant physically within a certain
block of trials whereas y changes from one trial to another. To emphasize
this fact, we often refer to y ! Ã (x;y) and x ! Ã (x;y) as cross-sections
of function Ã (x;y), made at a fixed value of x or y; respectively. The ideal
procedure our analysis pertains to involves all possible pairs (x;y) being
presented with equal likelihoods and with no sequential dependences. All
necessary and optional deviations from this ideal procedure are only accept-
able under the assumption (more easily stated than tested) that they yield
discrimination probabilities Ã (x;y) which approximate those obtainable by
means of the ideal procedure. Among necessary deviations from the ideal
procedure, the most obvious one is that we have to use samples of (x;y)
pairs with a finite number of replications per pair, rather than all possible
pairs of stimuli of a certain type replicated infinite number of times each.
Among optional deviations, we have various partial randomization schemes
(including, as a marginal case, blocking trials with constant x or y). One
should contrast this understanding with Zhang’s analysis (2004; see also
Zhang’s chapter in this volume) of the situations where Ã (x;y) critically
depends on the blocking of constant-x or constant-y trials, or on which of

4The reason y → ψ (x, y) in Fig. 1 (right) is drawn with a “pencil-sharp” rather
than rounded minimum is that the latter can be shown (Dzhafarov, 2002b, 2003a,
2003b; Dzhafarov & Colonius, 2005a) to be incompatible with the conjunction of
Regular Minimality and Nonconstant Self-Dissimilarity, discussed later.
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the two stimuli in a trial is semantically labeled as the “reference” to which
the other stimulus is to be compared.

2. REGULAR MEDIALITY

It is useful for our discussion to stay a while longer with the greater—less
discrimination probabilities, to formulate a principle which is analogous
to Regular Minimality but has a simpler mathematical structure. Refer to
Figs. 2 and 3. Think, for concreteness, of x; y being independently varying
lengths of two otherwise identical horizontal line segments presented side-
by-side, x on the left, y on the right; ° being the probability of judging y
longer than x:

y

x

γ(
x,

 y
)

1/2

1

0

Fig. 2: Possible appearance of psychometric function γ (x, y) for unidimensional
stimuli. (This particular function was generated by a classical Thurstonian model
in which x and y are mapped into independent normally distributed random
variables whose means and variances change as functions of these stimuli.)
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y

x

x1 x2

y1 y2

1/2

1/2

y  γ (x1, y)y  γ (x1, y)

y  γ (x2, y)y  γ (x2, y)

x  γ (x, y2)x  γ (x, y2)

x  γ (x, y1)x  γ (x, y1)

Fig. 3: Cross-sections of psychometric function γ (x, y) shown in Fig. 2 made at
two fixed values of x (upper panel) and two fixed values of y (lower panel). The
figure illustrates the Regular Mediality principle for greater—less discriminations:
y is the Point of Subjective Equality (PSE) for x if and only if x is the PSE for
y. Thus, γ (x1, y) achieves level 1

2
at y = y1, and this is equivalent to γ (x, y1)

achieving level 1
2
at x = x1 (and analogously for x2, y2).
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We assume that, for any given x; as y changes from 0 to 1 (or what-
ever the full range of presented lengths might be), function y ! ° (x; y)
increases from some value below 1

2 to some value above
1
2 (in Fig. 3, from

0 to 1). Because of this, the function attains 1
2 at some unique value of y;

by definition taken to be the PSE of x. We have therefore the following
statement:

(S1) every x in O1 has a unique PSE y in O2,

where O1;O2 abbreviate the two observation areas. The value of y may but
does not have to be equal to x. That is, we allow for a systematic error,
interpretable, say, as indicating that one’s perception of a given length
depends on whether the segment is on the left or on the right (perceptual
bias), or that the observer is predisposed to say “y is longer than x” less
often or more often than to say “y is shorter than x” (response bias).

y

x

γ(
x,

 y
)

1/2

1

y = h(x), x = g(y)

Fig. 4: The upper half of psychometric function γ (x, y) shown in Fig. 2. The
horizontal cross-section of the function at level 1

2
is the PSE line, representing

bijective maps h and g between the sets of all possible values for x and for y,
g ≡ h−1. By construction, γ (x, h (x)) = 1

2
for all x; equivalently, γ (g (y) , y) = 1

2

for all y.
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We further assume that, for any given y; as x changes from 0 to 1,
function x ! ° (x; y) decreases from some value above 1

2 to some value
below 1

2 ; because of which it reaches
1
2 at some unique value of x; the PSE

for y: We have the next statement:

(S2) every y in O2 has a unique PSE x in O1.

On a moment’s reflection, we also have the third statement:

(S3)
y in O2 is the PSE for x in O1

if and only if
x in O1 is the PSE for y in O2.

Indeed, ° (x; y) = 1
2 means, by definition, that both y is a PSE for x and x

is a PSE for y; and due to S1 and S2, these PSEs are unique. The seeming
redundancy in the formulation of S3 serves to emphasize that the statement
does not involve any switching of the physical locations of the two lines as
we state their PSE relations: x remains on the left, y on the right.
The three statements just formulated, S1 to S3, constitute what can be

called the Regular Mediality principle (Dzhafarov, 2003a). Its significance
in this context is in that the formulation of Regular Minimality, as we
see in the next section, is essentially identical, with the following caveats:
in the Regular Minimality principle, the PSEs are defined differently, the
formulations of S1 to S3 are not confined to unidimensional stimuli, and S3
is an independent statement rather than a consequence of S1 and S2.
Before we turn to Regular Minimality, however, it is useful to observe

the following, in reference to Fig. 4. Statement S1 is equivalent to saying
that there is a function y = h (x) such that ° (x; h (x)) = 1

2 , for all x:
Analogously for S2, there is a function x = g (y) such that ° (g (y) ; y) = 1

2 ;
for all y: The meaning of S3 then is that g and h are inverses of each other
(hence they are both bijective maps, one-to-one and onto). Geometrically,
there is a single PSE line in the xy-plane, equivalently representable by
y = h (x) and x = g (y) :

3. REGULAR MINIMALITY

We give the formulation of Regular Minimality in full generality, for stimuli
of arbitrary nature.
Discrimination probability function Ã (x;y) satisfies Regular Minimality

if the following three statements are satisfied:

(RM1) There is a function y = h (x) such that, for every x in O1, function
y ! Ã (x;y) achieves its minimum at y = h (x) in O2;
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(RM2) There is a function x = g (y) such that, for every y in O2, function
x ! Ã (x;y) achieves its minimum at x = g (y) in O1;

(RM3) g ´ h¡1:

Remark 1. Strictly speaking, the formulation of Regular Minimality re-
quires a caveat: physical labels for stimuli in the two observation areas
have been assigned so that, in O1; x1 = x2 if and only if they are “psycho-
logically indistinguishable,” in the sense that Ã (x1;y) = Ã (x2;y) for all
y; and analogously for y1;y2 in O2. The notion of psychological equality
(indistinguishability) is discussed later, in Section 10).

Remark 2. It follows from RM1 to RM3 that both h and g are bijective
maps (one-to-one and onto), from all possible values of x onto all possible
values of y, and vice versa.

Remark 3. Statement RM3 can also be formulated in the form of S3 for
Regular Mediality:

y in O2 is the PSE for x in O1

if and only if
x in O1 is the PSE for y in O2.

Figures 5 and 6 provide an illustration using unidimensional stimuli.
Focusing on x1 (in O1) and y1 (in O2), they are PSEs of each other be-
cause y ! Ã (x1; y) achieves its minimum at y = y1 and x ! Ã (x; y1)
achieves its minimum at x = x1. Note that x1 and y1 need not coincide
(we see later that this depends on our choice of physical labeling). Note
also that the two cross-sections, y ! Ã (x1; y) and x ! Ã (x; y1) ; may very
well have different shapes and generally cannot be reconstructed from each
other. Their minima, however, are necessarily on the same level (see Fig.
7), because, due to Regular Minimality, this level is, for the first of these
cross-sections, Ã (x1; y = y1), and for the second, Ã (x = x1; y1).
Unlike Regular Mediality, where the uniqueness of the PSE relation

(statements S1 and S2) is generally lost outside the context of unidimen-
sional stimuli, Regular Minimality applies to stimuli of arbitrary nature,
including multidimensional stimuli, such as colors identified by Commis-
sion Internationale de l’Eclairage (CIE) or Munsell coordinates, discrete
stimuli (such as letters of alphabet), and more complex stimuli (such as hu-
man faces or variable-trajectory variable-speed motions of a visual target),
representable by one or several functions of several arguments. Figure 8
illustrates Regular Minimality for two-dimensional stimuli (the analogue of
Fig. 5, being a four-dimensional hypersurface, cannot, of course, be shown
graphically).
A toy example demonstrates Regular Minimality in the case of a dis-

crete stimulus set. Symbols xa; xb; xc; xd represent stimuli in the first
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x
y

y = h(x), x = g(y)

ψ
 (x

, y
)

1

0

Fig. 5: Possible appearance of discrimination probability function ψ (x, y) for uni-
dimensional stimuli. (This particular function was generated by the “quadrilateral
dissimilarity” model described in Section 7.2.) The function satisfies Regular Min-
imality. The curve in the xy-plane is the PSE line, representing bijective maps h
and g between the sets of all possible values for x and for y, g ≡ h−1. By definition
of PSE, for any fixed x,ψ (x, y) achieves its minimum at y = h (x) ; and for any
fixed y, ψ (x, y) achieves its minimum at x = g (y).
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y

x

y  ψ (x2, y)y  ψ (x2, y)

y  ψ (x1, y)y  ψ (x1, y)

x  ψ (x, y2)x  ψ (x, y2)

x  ψ (x, y1)x  ψ (x, y1)

x1

y1

x2

y2

Fig. 6: Cross-sections of discrimination probability function ψ (x, y) shown in Fig.
5 made at two fixed values of x (upper panel) and two fixed values of y (lower
panel). The figure illustrates the Regular Minimality principle for same-different
discriminations: y is the PSE for x if and only if x is the PSE for y. Thus, ψ (x1, y)
achieves its minimum at y = y1, while ψ (x, y1) achieves its minimum at x = x1
(and analogously for x2, y2).



12 Dzhafarov and Colonius

y  ψ (x1, y)y  ψ (x1, y)

x  ψ (x, y1)x  ψ (x, y1)

x1y1

ψ1

x, or y

Fig. 7: The superposition of functions ψ (x1, y) and ψ (x, y1) from Fig. 6. Minimum
level ψ1 is the same in these two (generally different) functions because in both
cases it equals ψ (x1, y1).

x1

y1

x1

x2

x1

y1

y1

y2

x  ψ(x, y1)x  ψ(x, y1)

y  ψ(x1, y)y  ψ(x1, y)

ψ1

ψ1

Fig. 8: Two cross-sections of a discrimination probability function, ψ (x,y),
x = x1, x2 , y = y1, y2 , made at a fixed value of x (x = x1, lower panel) and
a fixed value of y (y = y1, upper panel). The figure illustrates the Regular Min-
imality principle for same—different discriminations of two—dimensional stimuli:
ψ (x1,y) achieves its minimum at at y = y1 (i.e., y1 is the PSE for x1) if and
only if ψ (x,y1) achieves its minimum at x = x1 (i.e., x1 is the PSE for y1).
Minimum level ψ1 is the same in the two panels because in both cases it equals
ψ (x1,y1). This is essentially a two-dimensional analogue of Figs. 6 and 7.
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observation area, ya; yb; yc; yd represent the same four stimuli in the sec-
ond observation area. (We discuss later that, in general, stimulus sets in
the two observation areas need not be the same.) The entries of the matrix
represent discrimination probabilities Ã (x;y) :

110.70.5xd

0.610.51xc

0.10.80.90.9xb

0.80.10.60.6xa

ydycybyaTOY1

110.70.5xd

0.610.51xc

0.10.80.90.9xb

0.80.10.60.6xa

ydycybyaTOY1

Here, Regular Minimality manifests itself in the fact that

1. every row contains a single minimal cell;
2. every column contains a single minimal cell;
3. a cell is minimal in its row if and only if it is minimal in its column.

The four PSE pairs in this example are (xa;yc) ; (xb;yd) ; (xc;yb) ; and
(xd;ya) :

4. NONCONSTANT
SELF-DISSIMILARITY

Another important feature exhibited by our matrix TOY1 is that the min-
ima achieved by function Ã (x;y) at PSE pairs are not all on the same
level:

O1 xa xb xc xd

O2 yc yd yb ya

Ã 0:1 0:1 0:5 0:5

The same is true for the discrimination probability function shown in
Fig. 5. This is best illustrated by the “wall” erected vertically from the
PSE line until it touches the surface representing Ã (x; y), as shown in Fig.
9. The upper contour of the “wall” is function !1 (x) = Ã (x; h (x)) or
equivalently, !2 (y) = Ã (g (y) ; y), the values attained by Ã (x; y) when x
and y are mutual PSEs.
In general, we call the values of Ã (x;y) attained when the two argu-

ments are each other’s PSEs (i.e., y = h (x) ; x = g (y)), the self-dissimilarity
values, and we call either of functions !1 (x) = Ã (x;h (x)) and !2 (y) =
Ã (y;h (y)) ; the minimum level function. Although !1 (x) and !2 (y) may
be different functions, geometrically they describe one and the same set of
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Fig. 9: The “wall” whose bottom contour is PSE line y = h (x) (equivalently,
x = g (y)) for function ψ (x, y) shown in Fig. 5, and the top contour is minimum
level function ψ (x, h (x)) (equivalently, ψ (g (y) , y)) for the same function. The
figure illustrates, in addition to Regular Minimality, the notion of Nonconstant
Self-Dissimilarity: the minimum level function is not constant..
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points in the xyÃ-coordinates (in the same way h (x) and g (y) describe
one and the same set of points in xy-coordinates).
According to the principle of Nonconstant Self-Dissimilarity, !1 (x) (or,

equivalently, !2 (y)) is not necessarily a constant function. The modal quan-
tifier “is not necessarily” should be understood in the following sense. For a
given stimulus set presented to a given perceiver it may happen that !1 (x)
has a constant value across all values of x: It may only happen, however, as
a numerical coincidence rather than by virtue of a law that compels !1 (x)
to be constant: !1 (x) considered across all possible sets of stimuli pairwise
presented in all possible experiments with all possible perceivers will at least
sometimes be a nonconstant function. If !1 (x) is nonconstant for a partic-
ular discrimination probability function Ã (x;y), we say that Nonconstant
Self-Dissimilarity is manifest in this function. This is the most conserva-
tive formulation of the principle. With less caution, one might hypothesize
that minimum level function !1 (x) ; at least in psychophysical applications
involving same—different judgments, is never constant, provided the proba-
bilities are measured precisely enough.
For completeness, Fig. 10 illustrates Nonconstant Self-Dissimilarity for

two-dimensional stimuli, like the ones in Fig. 8. The surface that contains
the minima of the cross-sections y ! ψ (x;y) is the minimum level function
!2 (y) :

5. FUNCTIONS VIOLATING REGULAR
MINIMALITY

Unlike Regular Mediality, which can be mathematically deduced from the
monotonicity of cross-sections x ! ° (x; y) and y ! ° (x; y) ; Regular Min-
imality is not reducible to more elementary properties of Ã (x;y) :
It is easy to see how Regular Minimality can be violated in discrete

stimulus sets.

110.70.5xd

0.610.51xc

0.10.80.90.9xb

0.80.10.60.1xa

ydycybyaTOY2

110.70.5xd

0.610.51xc

0.10.80.90.9xb

0.80.10.60.1xa

ydycybyaTOY2

110.70.4xd

0.80.70.61xc

0.40.80.90.9xb

0.80.20.40.7xa

ydycybyaTOY3

110.70.4xd

0.80.70.61xc

0.40.80.90.9xb

0.80.20.40.7xa

ydycybyaTOY3

Using the same format as in matrix TOY1, the first of the two matrices
above has two equal minima in the first row, in violation of RM1. One
can say here that xa in O1 has two PSEs in O2 (ya and yc), or (if the
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y1

y2

y ψ (x1, y)y ψ (x1, y)

y ψ (g(y), y)y ψ (g(y), y)

y ψ (x2, y)y ψ (x2, y)

y ψ (x3, y)y ψ (x3, y)

Fig. 10: An illustration of Nonconstant Self-Dissimilarity for two-dimensional
stimuli. Shown are three cross-sections y→ψ (x,y) , x = x1,x2,x3, of discrim-
ination probability function ψ (x,y), whose minima, h (x1) , h (x2) , and h (x3),
lie on minimum level surface ψ (g (y) ,y) , where g ≡ h−1. This surface is not
parallel to the y1y2-plane, manifesting Nonconstant Self-Dissimilarity.



Regular Minimality 17

uniqueness of a PSE is considered part of its definition) that the PSE for
xa is not defined. Matrix TOY3 above is of a different kind: it satisfies
properties RM1 and RM2 but violates RM3. Stimulus xc in O1 has yb in
O2 as its unique PSE; the unique PSE in O1 for yb, however, is not xc but
xa (one could continue: and the PSE for xa is not yb but yc). In a situation
like this one can say that the relation “is the PSE of” is not symmetrical,
and the notion of a “PSE pair” is not well defined.

x
y

ψ
 (x

, y
)

1

0 y = h(x)

x = g(y)

Fig. 11: An example of function ψ (x, y) that violates Regular Minimality. (This
particular function was generated by Luce-Galanter’s Thurstonian-type model
described in Section 7.1.) For a fixed value of x, ψ (x, y) achieves its minimum at
y = h (x) ; for a fixed value of y, ψ (x, y) achieves its minimum at x = g (y) . But
g is not the inverse of h : the lines y = h (x) and x = g (y) (nearly straight lines
in this example) do not coincide. Compare to Fig. 5.

Figures 11, 12, and 13 present an analogue for TOY3 in a continuous
(unidimensional) domain. The function depicted in these figures satisfies
properties RM1 and RM2, but violates RM3: if y is the PSE for x; the
latter generally will not (in this example, never) be the PSE for y, and
vice versa. The notion of a PSE pair is not well defined here. Specifically,
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x1 x2

y1 y2

y

y  ψ (x2, y)y  ψ (x2, y)

y  ψ (x1, y)y  ψ (x1, y)

x

x  ψ (x, y2)x  ψ (x, y2)

x  ψ (x, y1)x  ψ (x, y1)

x1x1 x2x2

Fig. 12: Cross-sections of function ψ (x, y) shown in Fig. 11 made at two fixed
values of x (upper panel) and two fixed values of y (lower panel). The figure
details violations of the Regular Minimality principle in this function: ψ (x1, y)
achieves its minimum at y = y1, but ψ (x, y1) achieves its minimum at a point
different from x = x1 (and analogously for x2, y2). One cannot speak of PSE
pairs unambiguously in this case: for example., (x1, y1) and (x̄1, y1) are both
“PSE pairs,” with one and the same y1 in the second observation area.
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x1y1

y  ψ (x1, y)y  ψ (x1, y)

x, or y

x  ψ (x, y1)x  ψ (x, y1)

ψx1

ψy1

x1x1

Fig. 13: The superposition of functions ψ (x1, y) and ψ (x, y1) from Fig. 12. Mini-
mum level ψx1 for the former is not the same as minimum level ψy1 for the latter.
Compare with Fig. 7.

one and the same stimulus (say, x = a in O1) can be paired either with y
at which Ã (a; y) achieves its minimum, or with ¹y such that x ! Ã (x; ¹y)
achieves its minimum at x = a:

It may be useful to look at this issue more schematically. Regular Min-
imality can be represented by the diagram

x

y

a

b

in which the two “beaded strings” stand for stimuli in the two observation
areas, and arrows stand for relation “is the PSE for.” Starting at any point
and traveling along the arrows, one is bound to return to this point after
having visited just one other point, its PSE in the other observation area. If
Regular Minimality is violated, the traveling along the arrows between the
observation areas becomes more adventurous, with the potential of “wan-
dering away” indefinitely far:

a1

b1

a2

b2

a3
x

y

a1

b1

a2

b2

a3
x

y
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6. EMPIRICAL EVIDENCE

Discrimination probabilities of the same—different type have not been stud-
ied as intensively as those of the greater—less type. The available empirical
evidence, however, seems to be in good agreement with the hypothesis that
discrimination probabilities (a) satisfy Regular Minimality and (b) manifest
Nonconstant Self-Dissimilarity.
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Fig. 14: An empirical version of Fig. 9, based on one of the experiments described
in Dzhafarov and Colonius (2005a). x and y are lengths of two horizontal line
segments, in pixels (1 pixel ≈ 0.86 min arc), presented side-by-side; each panel
represents an experiment with a single observer. The bottom line shows estimated
positions of PSEs, y = h (x), the upper line shows the corresponding probabili-
ties, ψ (x, h (x)) (the minimum level function). Straight lines in the xy-planes are
bisectors. Each probability estimate is based on 500 to 600 replications.

In an experiment reported in Dzhafarov and Colonius (2005a), observers
were asked to compare two side-by-side presented horizontal line segments
(identical except for their lengths, x on the left, y on the right). The results
of such an experiment are represented by a matrix of pairwise probabilities
Ã (x; y) ; with x and y values providing a dense sample of length values
within a relatively small interval. Except for an occasional necessity to in-
terpolate a minimum between two successive values, the compliance with
Regular Minimality in such a matrix is verified by showing that the matrix
is structured essentially like TOY1 in Section 3 rather than TOY2 or TOY3

in Section 5. If (and only if) Regular Minimality is established, one can draw
a single line through PSE pairs, (x; h (x)) or, equivalently, (g (y) ; y), in the
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xy-plane. Plotting the discrimination probability against each of these PSE
pairs, we get an empirical version of the minimum level function. The re-
sults presented in Fig. 14 clearly show that Regular Minimality is satisfied,
and that Ã (x; h (x)) is generally different for different x (i.e., Nonconstant
Self-Dissimilarity is manifest). Note, in relation to the issue of canonical
transformations, considered in Section 9, that x and y in a PSE pair (x; y)
in these data are generally physically different, y (the length on the right)
tends to be larger, indicating that the right lengths tend to be underesti-
mated with respect to the left ones (“systematic error”). Analogous results
are reported in Dzhafarov (2002b) and Dzhafarov and Colonius (2005a)
for same—different discriminations of apparent motions (two-dot displays
with temporal asynchrony between the dots) presented side-by-side or in a
succession.
Figure 15 shows the results of an experiment by Zimmer and Colonius

(2000), in which listeners made same—different judgments in response to
successively presented sinusoidal tones varying in intensity (x followed by
y). Regular Minimality here holds in the simplest form: x and y are mutual
PSEs if (and only if) x = y: The minimum level function here is therefore
Ã (x; x) (equivalently, Ã (y; y)), and it clearly manifests Nonconstant Self—
Dissimilarity.
Indow, Robertson, von Grunau, and Fielder (1992) and Indow (1998) re-

ported discrimination probabilities for side-by-side presented colors varying
in CIE chromaticity-luminance coordinates (a three-dimensional continuous
stimulus space). With the right-hand color y serving as a fixed reference
stimulus, function x ! Ã (x;y) in this study reached its minimum at x = y,

x 6= y =) Ã (y;y) < Ã (x;y) :

The experiment was not conducted with fully randomized color pairs, and
it was not replicated with the left-hand color x used as a reference. One
cannot therefore check for the compliance with Regular Minimality directly.
It is reasonable to assume, however, that Ã (x;y) for side-by-side presented
colors is order-balanced,

Ã (x;y) = Ã (y;x) ;

and under this assumption, it is easily seen, the inequality above implies
Regular Minimality in the simplest form: x and y are mutual PSEs if (and
only if) x = y. Nonconstant Self-Dissimilarity is a prominent feature of
Indow’s data: for instance, with reference color y changing from grey to
red to yellow to green to blue, the probability Ã (y;y) for one observer
increased from 0.07 to 0.33.
The conjunction of the simplest form of Regular Minimality with promi-

nent Nonconstant Self-Dissimilarity was also obtained in two large data sets



22 Dzhafarov and Colonius

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

30 40 50 60 70 80 90

y (db)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

30 40 50 60 70 80 90

y
ψ

(x
, y

)
x

ψ
(x

, y
)

x (db)

ψ(y, y)

ψ(x, x)

Fig. 15: An empirical version of Fig. 6, based on an experiment reported in Zimmer
and Colonius (2000). x and y represent intensity of pure tones of a fixed frequency.
The data are shown for a single listener. The PSEs in this case are physically
identical, h (x) = x; that is, for any x, ψ (x, y) achieves its minimum at y = x,
and for any y, ψ (x, y) achieves its minimum at x = y. The value of ψ (x, x)
decreases with increasing x.
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involving discrete stimuli (36 Morse codes for letters and digits in Rothkopf,
1957, and 32 Morse code-like stimuli in Wish, 1967; sequential presentation
in both cases). Below is a small fragment of Rothkopf’s matrix: Ã (x;y) in
each cell, for x;y = D;H;K; S;W: Each value on the main diagonal is the
smallest probability in both its row and its column (Regular Minimality),
and this value varies along the diagonal from 0.04 to 0.14 (Nonconstant Self-
Dissimilarity). (A single deviation from this pattern found in Wish’s data
can be attributed to a statistical estimation error; for details, see Chapter
2 in this volume.)

.14.88.71.85.78W

. 88.04.87.41.70S

.67.98.09.89.27K

.91.63.91.13.75H

.82.71.19.64.12D

WSKHDRO

7. THE CONJUNCTION OF REGULAR
MINIMALITY AND NONCONSTANT

SELF-DISSIMILARITY
When dealing with stimulus sets containing finite number of elements, it is
easy to construct examples of discrimination probability matrices that both
satisfy Regular Minimality and manifest Nonconstant Self-Dissimilarity
(as our matrix TOY1 shown earlier). Here is a simple algorithm: given
an n-element stimulus set, create any sequence (i1; j1) ; :::; (in; jn) ; with
(i1; :::; in) and (j1; :::; jn) being two complete permutations of (1; :::; n) ; fill
in cells (i1; j1) ; :::; (in; jn) with probability values Ã1 ¸ ::: ¸ Ãn; fill in the
rest of the i1th row and j1th column by values greater than Ã1; fill in the
rest of the i2th row and j2th column by values greater than Ã2; etc. In thus
a created matrix, the ikth row stimulus (interpreted as a stimulus in O1)
and the jkth column stimulus (in O2) will be mutual PSEs (k = 1; :::; n),
and Nonconstant Self-Dissimilarity will be manifest if at least one of the
inequalities in Ã1 ¸ ::: ¸ Ãn is strict. It is equally easy to construct exam-
ples that do not satisfy Regular Minimality (as TOY2 and TOY3 matrices
above) or do not manifest Nonconstant Self-Dissimilarity (set Ã1 = ::: = Ãn

in the algorithm just given).
The construction of examples is less obvious in the case of continu-

ous stimulus sets, as in our Fig. 5 and Fig. 11. It is instructive there-
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fore to consider theoretical models which generate functions Ã (x;y) that
always satisfy the conjunction of Regular Minimality and Nonconstant
Self-Dissimilarity, as well as theoretical models whose generated functions
Ã (x;y) always violate this conjunction of properties. We consider the latter
class of models first.

7.1. Thurstonian-type models

To avoid technicalities, we confine our discussion here to the unidimensional
case, with x; y taking on their values on intervals of reals, finite or infinite.
The results to be mentioned, however, generalize to arbitrary continuous
spaces of stimuli.
Consider the following scheme, well familiar to psychophysicists. Let

any pair (x; y) presented to an observer for a same—different comparison
be mapped into a pair of perceptual images, (Px; Qy) ; and let Px and Qy

be mutually independent random entities taking on their values in some
perceptual space, of arbitrary nature.5 In any given trial, the observer ex-
periences two realizations of these random entities, (p; q) ; and there is a de-
cision rule that maps some of the possible (p; q)-pairs into response “same”
and the remaining ones into response “different.” The decision rule can
be arbitrary, and so can be the distributions of Px and Qy in the percep-
tual space, except for the following critical constraint: we assume that Px

and Qy are “well-behaved” in response to small changes in x and y: This
means the following. The distribution of Px is determined by the probabil-
ities with which p falls within various measurable subsets of the perceptual
space, and these probabilities generally change as x changes within an ar-
bitrarily small interval of values. Intuitively, Px is well-behaved if the rate
of these changes cannot get arbitrarily high. The well-behavedness of Qy

is defined analogously.6 As shown in Dzhafarov (2003a), no Ã (x; y) gen-
erated by such a model can both satisfy Regular Minimality and manifest

5Notation conventions: Px, Qy, and Sx,y designate random entities whose
distributions depend on their index. Random entities are called random variables
if their realizations p, q, s, are real numbers (with the Lebesgue sigma-algebra).

6 In terminology of Dzhafarov (2003a), this is the “well-behavedness in the
narrow (or absolute) sense”: for any x = a, the right-hand and left-hand deriva-
tives of Pr [Px ∈ p] with respect to x exist and are bounded across all measurable
sets p and all values of x within an arbitrarily small interval [a− ε, a+ ε] (and
analogously for y and Qy). This requirement can be considerably weakened, with
respect to both the class of (x, y)-values and the class of measurable sets for which
it is supposed to hold (details in Dzhafarov, 2003a, b). The simplest and perhaps
most important example of a non-well-behaved Px is a deterministic entity, having
a single possible value for every x.
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Nonconstant Self-Dissimilarity. This means, in particular, that with such a
model,

1. if Ã (x; y) satisfies Regular Minimality, then Ã (x; y) ´ constant across
all PSE pairs (x; y) (i.e., Regular Minimality can only coexist with
Constant Self-Dissimilarity);

2. if y ! Ã (x; y) achieves a minimum at y = h (x), if x ! Ã (x; y) achieves
a minimum at x = g (y) ; and if either Ã (x; h (x)) orÃ (g (y) ; y) is non-
constant across, respectively, x and y values, then g cannot coincide
with h¡1 (i.e., even if RM1 and RM2 are satisfied, Nonconstant Self-
Dissimilarity forces RM3 of Regular Minimality to be violated).

The class of such models has its historical origins in Thurstone’s analysis
of greater—less discriminations (Thurstone, 1927a, 1927b), because of which
in Dzhafarov (2003a, 2003b) such models are referred to as “Thurstonian-
type” (see Fig. 16). The simplest Thurstonian-type model for same—different
discriminations is presented in Luce and Galanter (1963): the perceptual
space is the set of reals, Px and Qy are normally distributed, and the deci-
sion rule is “respond ‘different’ if and only if jp¡ qj > ";” for some " > 0. If
the means and the variances of these normal distributions,

¡
¹P (x) ; ¾2

P (x)
¢

and
¡
¹Q (y) ; ¾2

Q (y)
¢
, are piecewise smooth functions of x and y (which is

sufficient although not necessary for Px and Qy to be well-behaved), then
the resulting Ã (x; y) must violate the conjunction of Regular Minimality
and Nonconstant Self-Dissimilarity. Figures 11, 12, and 13 are generated
by means of such a model (with x; y positive, and ¹P (x) ; ¾2

P (x) ; ¹Q (y) ;
¾2
Q (y) linear transformations of their arguments).
Most Thurstonian-type models proposed in the literature for same—

different discriminations involve univariate or multivariate normal distri-
butions for perceptual images of stimuli (Dai, Versfeld, & Green, 1996;
Ennis, 1992; Ennis, Palen, & Mullen, 1988; Luce & Galanter, 1963; Sorkin,
1962; Suppes & Zinnes, 1963; Thomas, 1996; Zinnes & MacKay, 1983).
With these and other distributions possessing finite density in Rn (n ¸ 1),
a piecewise smooth dependence of their parameters on x or y implies their
well-behavedness, hence the impossibility of generating a discrimination
probability function with both Regular Minimality and Nonconstant Self-
Dissimilarity. Luce (1977) called Thurstonian models the “essence of sim-
plicity”: “this conception of internal representation of signals is so sim-
ple and so intuitively compelling that no one ever really manages to es-
cape from it. No matter how one thinks about psychophysical phenomena,
one seems to come back to it” (p. 462). Luce refers here to the simplest
Thurstonian models, involving unidimensional random representations and
simple decision rules based on values of p¡ q. These models do work well
for greater—less discriminations, generating functions like the one shown in
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P(x)

Q(y)

p q
R(p, q)?

same different

Fig. 16: Schematic representation of a Thurstonian-type model. Stimuli x and y
are mapped into their “perceptual images,” random variables P (x) and Q (y)
(here, independently normally distributed on a set of reals). Response “same” or
“different” is given depending on whether the realizations p, q of P (x) and Q (y)
in a given trial stand or do not stand in a particular relation, R, to each other
(e.g., |p− q| exceeds or does not exceed some ε, or p, q fall or do not fall within one
and the same interval in some partitioning of the set of reals). In general, p and q
may be elements of an arbitrary set, the decision rule may be probabilistic (i.e.,
every pair p, q may lead to response “different” with some probability π (p, q)),
and “perceptual images” P (x) and Q (y) may be stochastically interdependent,
provided they are selectively attributable to x and y, respectively (in the sense
of Dzhafarov, 2003c).
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Figs. 2-4, subject to Regular Mediality. In the context of same—different
discriminations, however, if the properties of Regular Minimality and Non-
constant Self-Dissimilarity do hold empirically, as data seem to suggest,
Thurstonian-type models fail even if one allows for arbitrary decision rules
and arbitrarily complex (but well-behaved) distributions for Px and Qy.7

Moreover, the failure in question extends to the models in which decision
rules are probabilistic rather than deterministic, that is, where each pair
(p; q) can lead to both responses, “same” and “different,” with certain prob-
abilities (Dzhafarov, 2003b).
Finally, the failure in question extends to models with stochastically

interdependent Px and Qy; provided Px can still be considered an image
of x (and not also of y) whereas Qy is considered an image of y (and not
also of x). The selective attribution of Px and Qy to x and y; respectively,
is understood in the meaning explicated in Dzhafarov (2003c): one can find
mutually independent random entities C; C1; C2; whose distributions do
not depend on either x or y; such that

Px = ¼ (x;C;C1) ; Qy = µ (y; C;C2) ; (3)

where ¼; µ are some measurable functions. In other words, Px and Qy de-
pend on x and y selectively, and their stochastic interdependence is due to
a common source of variability , C. The latter may represent, for example,
random fluctuations in the arousal or attention level, or in receptive fields’
sensitivity profiles. Px and Qy then are conditionally independent at any
fixed value c of C; because random entities ¼ (x; c; C1) and µ (y; c; C2) have
independent sources of variability, C1; C2. As shown in Dzhafarov (2003b),
if, for any c; ¼ (x; c; C1) and µ (y; c; C2) are well-behaved in the sense ex-
plained earlier (in which case we call Px and Qy themselves well-behaved),
the resulting discrimination probability functions cannot both satisfy Reg-
ular Minimality and manifest Nonconstant Self-Dissimilarity.
The selectiveness in the attribution of Px to x and Qy to y is an im-

portant caveat. In Dzhafarov’s (2003a, 2003b) terminology which we follow
here, it is a necessary condition for calling a stochastic model Thurstonian-
type. Any function Ã (x; y) can be accounted for by a model in which x
and y jointly map into a perceptual property, Sx;y; which then either maps
into responses “same” and“different” probabilistically, or is a random en-
tity itself, mapped into the responses by means of a certain decision rule
(these two conceptual schemes are mathematically equivalent). For exam-
ple, Sx;y may be a nonnegative random variable interpretable as a measure

7The well-behavedness constraint, in some form, is critical here: as shown in
Dzhafarov (2003a), any function ψ (x, y) can be generated by a Thurstonian-type
model if P (x) and Q (y) are allowed to have arbitrary distributions arbitrarily
depending on, respectively, x and y. The well-behavedness constraint, however,
is unlikely to be violated in a model designed to fit or simulate empirical data.
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of “subjective dissimilarity” between x and y; and the decision rule be as
in the classical signal detection theory: respond “different” if and only if
the realization of s of Sx;y exceeds some " > 0. A model of the latter va-
riety can be found, for example, in Takane and Sergent (1983). With this
approach, Sx;y can always be set up in such a way that Ã (x; y) possesses
both Regular Minimality and Nonconstant Self-Dissimilarity. Once this is
done, Dzhafarov’s (2003a, 2003b) results would indicate that Sx;y cannot
be computed from any two well-behaved random entities Px and Qy selec-
tively attributable to x and y (e.g., subjective dissimilarity Sx;y cannot be
presented as jPx ¡Qyj in Luce and Galanter’s model mentioned earlier).
In other words, Sx;y must be an “emergent property,” not reducible to the
separate (and well-behaved) perceptual images of x and of y: We discuss
such models next, but we prefer to do this within the conceptually more
economic (but equivalent) theoretical language in which Sx;y is treated as
a deterministic quantity, S (x; y), mapped into responses “same” and “dif-
ferent” probabilistically.

7.2. “Quadrilateral dissimilarity,” “uncertainty blobs,”
etc.

At this point, we can switch back to stimuli x;y of arbitrary nature, as the
case of unidimensional stimuli is technically no simpler than the general
case. We consider a measure of subjective dissimilarity, S (x;y), a deter-
ministic quantity (i.e., having a fixed value for any x;y) related to discrim-
ination probabilities by

Ã (x;y) = ¯ (S (x;y)) ; (4)

where ¯ is some strictly increasing function. Such a model is distinctly
non-Thurstonian as it does not involve individual random images for indi-
vidual stimuli. Rather the models of this class are in the spirit of what Luce
and Edwards (1958) called “the old, famous psychological rule of thumb:
equally often noticed differences are equal” (p. 232), provided one keeps
in mind that the “difference,” understood to mean dissimilarity S (x;y),
cannot be a true distance (as this would force constant minima at x = y).8

As it turns out, for a broad class of possible definitions of S (x;y), such

8The Probability-Distance hypothesis, as it is termed in Dzhafarov (2002a),
according to which ψ (x,y) is an increasing transformation of some distance
D (x,y), is as traditional in psychophysics as is the Thurstonian-type modeling.
In the context of unidimensional stimuli and greater—less discrimination proba-
bilities γ (x, y) this hypothesis is known as the “Fechner problem” (Falmagne,
1971; Luce & Edwards, 1958). See Dzhafarov (2002a) for history and a detailed
discussion.
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models only generate discrimination probability functions that are subject
to both Regular Minimality and Nonconstant Self-Dissimilarity. Intuitively,
the underlying idea is that the dissimilarity between stimulus x in O1 and
stimulus y in O2 involves (a) the distance between x and the PSE g (y) of
y (both in O1), (b) the distance between y and the PSE h (x) of x (both
in O2), and (c) some slowly changing “residual” dissimilarities within the
PSE pairs themselves, (x;h (x)) and (g (y) ;y) :9

As before, the “beaded strings” in the diagram below schematically
represent stimulus sets in the two observation areas, but the arrows now
designate the components of a possible dissimilarity measure between xa

and yb: The PSE relation is indicated by identical index at x and y: thus,
(xa;ya) and (xb;yb) are PSE pairs.

x

y

xa

R 1(
a) R

2 (b)

D(a,b)

D(a,b) xb

ybya

We assume some distance measure D among stimuli within either of the
observation areas: the notation D (a;b) indicates that the distance between
xa and xb in O1 is the same as that between their respective PSEs, ya and
yb, in O2. By definition of distance, D (a;b) ¸ 0; D (a;b) = 0 if and only
if a = b; D (a;b) = D (b;a) ; and D (a;b) + D (b; c) ¸ D (a; c) :10 We
also assume the existence of the “residual” dissimilarity within the PSE
pairs, across the two observation areas: for any PSE pair (xc;yc) ; this
dissimilarity is a nonnegative number denoted R1 (c) if computed from O1

to O2, and R2 (c) if computed from O2 to O1. Generally, R1 (c) 6= R2 (c) :
The overall dissimilarity is computed as

S (xa;yb) = R1 (a) + 2D (a;b) +R2 (b) : (5)

Note that
S (xb;ya) = R2 (a) + 2D (a;b) +R1 (b)

9The choice of β is irrelevant for our discussion, because the properties of
Regular Minimality and Nonconstant Self-Dissimilarity are invariant under all
strictly increasing transformations of ψ (x,y). This is a fact with considerable
theoretical implications, some of which is discussed in Chapter 2 of this volume
(possible transformation of discrimination probabilities).

10Note that the first and the second a in (a,a), as well as in (a,b) and (b,a),
generally stand for different stimuli, xa, and ya. We are essentially using here a
canonical transformation of stimuli, formally introduced in Section 9.
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is generally different from S (xa;yb) ; and for a = b;

S (xa;ya) = R1 (a) +R2 (a) :

x

y
R2(a)

xa

ya

R 1(
a)

x

y

R2(a) R 1(
b)

D(a,b)

D(a,b)xa xb

ybya

The conjunction of Regular Minimality and Nonconstant Self-Dissimilarity
is ensured by positing that R1 (c), R2 (c) need not be the same for all c;
and that

jR1 (a)¡R1 (b)j < 2D (a;b) ; jR2 (a)¡R2 (b)j < 2D (a;b) :

These inequalities are a form of the Lipschitz condition imposed on the
growth rate of R1 and R2: Figures 5 to 7 were generated in accordance
with this “quadrilateral dissimilarity” model: we chose ¯ (s) in (4) as 1 ¡
exp (¡µs¡ ´) ; and putD (a; b) = ° ja¡ bj ; R1 (a) = sin (µ1a¡ ´1) ; R2 (b) =
sin (µ2b¡ ´2), with all Greek letters representing appropriately chosen pos-
itive constants; labels a; b in this example are related to stimuli xa; yb by
xa =

p
a and yb = b (so that x and y are mutual PSEs if and only if

x =
p
y).

Except for technicalities associated with R1 and R2 and for the fact
that identically labeled x and y in (5) are generally different stimuli, the
mathematical form of (5) is essentially the same as in Krumhansl’s (1978)
model. Somewhat more directly, the “quadrilateral dissimilarity” in (5) is
related to the dissimilarity between two “uncertainty blobs,” as introduced
in Dzhafarov (2003b). Figure 17 provides an illustration. The “common
space” in which the blobs are defined has the same meaning as the set of
indices a;b assigned to stimuli x;y in the description of the quadrilateral
dissimilarity above: that is, xa and yb are mapped into blobs centered at a
and b, respectively. The intrinsicality of metric D¤ means that for a certain
class of curves in the space, one can compute their lengths, and the distance
between two points is defined as the length of the shortest line connecting
them (a geodesic). By the assumptions made, a D¤-geodesic line connecting
a to b can be produced beyond these points until it crosses the borders of
the two blobs, at points aa and bb. It is easy to see that no point in the
first blob and no point in the second one are separated by D¤-distance
exceeding D¤ (aa;bb). Taking this largest possible distance for S (xa;yb),
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a

aa

b

bb

b
aa

bb
a

b
aa

bb
a

Fig. 17: Schematic representation of the “uncertainty blobs” model (Dzhafarov,
2003b). The figure plane represents a “common space” S with some intrinsic
metric D∗ such that any two points in the space can be connected by a geodesic
curve, and each geodesic curve can be produced beyond its endpoints. Each stim-
ulus x in O1 (or y in O2) is mapped into a “blob,” a D∗-circle in S centered
at a = f1 (x) with radius R1 (a) (respectively, centered at b = f2 (y) with radius
R2 (b)), such that f1 (x) = f2 (y) if and only if x,y are mutual PSEs (as shown in
the right lower corner). Dissimilarity S (x,y) is defined as the largest D∗-distance
between the two blobs, here shown as the length of the geodesic line connecting
points aa and bb.
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we have then

S (xa;yb) = R1 (a) +D¤ (a;b) +R2 (b) ,

which is identical to (5) on putting D¤ (a;b) = 2D (a;b). To make this
identity complete, all we have to do is stipulate that the radii of the blobs
change relatively slowly, in the same meaning as shown earlier,

jR1 (a)¡R1 (b)j < D¤ (a;b) ; jR2 (a)¡R2 (b)j < D¤ (a;b) :

8. RANDOM VARIABILITY IN STIMULI
AND IN NEUROPHYSIOLOGICAL
REPRESENTATIONS OF STIMULI

In the foregoing, we tacitly assumed that once stimulus labels have been
assigned, they are always identified correctly. In a continuous stimulus set,
however, stimuli are bound to be identified with only limited precision.
Confining, for simplicity, the discussion to unidimensional stimuli, one and
the same “apparent” physical label (i.e., the value of stimulus as known to
the experimenter, say, 10 min arc, 50 cd/m2; 30 dB) generally corresponds
to at least slightly different “true” stimuli in different trials. To put this
formally, apparent stimuli x; y chosen from a stimulus set correspond to
random variables Px; Qy taking on their values in the same set of stimuli
(quantities Px¡x; Qy ¡y being the measurement, or identification errors).
In every trial, a pair of apparent stimuli (x; y) is probabilistically mapped
into a pair of true stimuli (p; q), which in turn is mapped into the response
“different” with probability Ã (p; q) (about which we assume that it satisfies
Regular Minimality). We have therefore

Ãapp (x; y) =

Z
q2I

Z
p2I

Ã (p; q) dFx (p) dFy (q) ; (6)

where Ãapp (x; y) is discrimination probability as a function of apparent
stimuli; Fx (p), Fy (q) are the distribution functions for true stimuli Px; Qy

with apparent values x and y; and I is the interval of all possible stimulus
values.
If we assume that Px; Qy are stochastically independent and well-behaved

(e.g., if they possess finite densities whose parameters change smoothly
with the corresponding apparent stimuli, as in the classical Gaussian mea-
surement error model), then the situation becomes formally equivalent to
a Thurstonian-type model, only “perceptual space” here is replaced with
the set of true stimuli. Applying the results described in Section 7.1, we
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come to the following conclusion: although the true discrimination proba-
bility function, Ã (p; q), satisfies Regular Minimality, the apparent discrim-
ination probability function, Ãapp (x; y), generally does not. Indeed, it is
easy to show that the minimum values of functions y ! Ãapp (x; y) and
x ! Ãapp (x; y) computed from (6) will not generally be on a constant
level (across, respectively, all possible x and all possible y); and we know
that Ãapp (x; y) ; being computed from a Thurstonian-type model with well-
behaved random variables, cannot simultaneously exhibit the properties of
Nonconstant Self-Dissimilarity and Regular Minimality. If the independent
measurement errors for x and y are not negligible, therefore, one can expect
apparent violations of Regular Minimality even if the principle does hold
true.
This analysis, as we know, can be generalized to stochastically inter-

dependent Px; Qy; provided they are selectively attributable to x and y,
respectively. Stated explicitly, if Px and Qy are representable as in (3)
(with C being a source of error common to both observation areas and
C1; C2 being error sources specific to the first and second observation ar-
eas), and if ¼ (x; c; C1) and µ (y; c; C2) are well-behaved for any value c of
C; then Regular Minimality can be violated in Ãapp (x; y) : Conversely, if
Ãapp (x; y) does not violate Regular Minimality, then the aforementioned
model for measurement error cannot be correct: either measurement errors
for x and y cannot be selectively attributed to x and y, or ¼ (x; c; C1) and
µ (y; c; C2) are not well behaved. As an example of the latter, ¼ (x; c; C1) and
µ (y; c; C2)may be deterministic quantities (see Footnote 6), or equivalently,
representation (3) may have the form

Px = ¼ (x;C) ; Qy = µ (y; C) : (7)

Clearly, when statistical error in estimating Ãapp (x; y) is involved, all such
statements should be “gradualized”: thus, the aforementioned measurement
error model may hold, but the variability in ¼ (x; c; C1) and µ (y; c; C2)
may be too small to make the expected violations of Regular Minimality
observable on a sample level.
Now, the logic of this discussion remains valid if instead of understand-

ing Px and Qy as stimulus values we use these random entities to designate
certain neurophysiological states, or processes evoked by stimuli x and y
(which we now take as identified precisely). The mapping from stimuli to
responses involves brain activity, and at least at sufficiently peripheral lev-
els thereof we can speak of “separate” neurophysiological representations
of x and y. Clearly, the response given in a given trial (same or different)
depends on the values of these representations, Px = p andQy = q; irrespec-
tive of which stimuli x; y they represent. We need not decide here where the
neurophysiological representation of stimuli ends and the response forma-
tion begins. Whatever the nature and complexity of Px; Qy, our conclusion
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will be the same: if Ã (x; y) satisfies Regular Minimality (and manifests
Nonconstant Self-Dissimilarity), then either Px; Qy cannot be selectively
attributed to x and y; respectively (in which case they probably should not
be called neurophysiological representations of x and y in the first place),
or else, they are not well-behaved: for example, they covary in accordance
with (7), or still simpler, are deterministic entities,

Px = ¼ (x) ; Qy = µ (y)

(perhaps a kind of neurophysiological analogues of the “uncertainty blobs”
depicted in Fig. 17).
A word of caution is due here: the mathematical justification for this

analysis is derived from Dzhafarov (2003a, 2003b) and, strictly speaking,
is confined to continuous stimulus spaces only (although not just unidi-
mensional spaces considered here for simplicity): the definition of well-
behavedness is based on the behavior of random entities Px; Qy in response
to arbitrarily small changes in x and y: Restrictions imposed by the Regular
Minimality and Nonconstant Self-Dissimilarity on possible representations
of discrete stimulus sets remain to be investigated.

9. CANONICAL REPRESENTATION OF
STIMULI AND DISCRIMINATION

PROBABILITIES
We have seen that the conjunction of Regular Minimality and Nonconstant
Self-Dissimilarity has a powerful restrictive effect on the possible theories of
perceptual discrimination. In particular, it rules out two most traditional
ways of modeling discrimination probabilities: by monotonically relating
them to some distance measure imposed on stimulus space, and by deriv-
ing them from well-behaved random representations selectively attributable
to stimuli being compared. The following characterization therefore is well
worth emphasizing. Regular Minimality and Nonconstant Self-Dissimilarity
are purely psychological properties, in the sense this term is used in Dzha-
farov and Colonius (2005a, 2005b): they are completely independent of the
physical measures or descriptions used to identify the individual stimuli
in a stimulus space. If Ã (x;y) satisfies Regular Minimality and manifests
Nonconstant Self-Dissimilarity, then the same remains true after all stimuli
x (in O1) and/or all stimuli y (in O2) have been relabeled by means of
arbitrary bijective transformations. In other words, insofar as the identity
of a stimulus is preserved, its physical description is irrelevant. In the next
section, we see that the preservation of a stimulus’s identity itself has a
prominent “psychological” (nonphysical) aspect.
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x
y

y = x

ψ
 (x

, y
)

1

0

Fig. 18: A canonical form for discrimination probability function ψ (x,y) shown
in Fig. 5. The PSE line y = h (x) transforms into y = x.

In this section, we consider the identity-preserving transformations of
stimuli that make the formulation of Regular Minimality especially conve-
nient for theoretical developments. We have already used this device (canon-
ical transformation of stimuli, or bringing Ã (x;y) into a canonical form)
in the previous section. It only remains to describe it systematically.
The simplest form of Regular Minimality is observed when x and y are

mutual PSEs if and only if x = y. That is,

x 6= y =) Ã (x;y) > max fÃ (x;x) ; Ã (y;y)g ; (8)

or equivalently,

x 6= y =) Ã (x;x) < min fÃ (x;y) ; Ã (y;x)g : (9)

It is possible that in the case of discrete stimuli (such as letters of alphabet
or Morse codes), Regular Minimality always holds in this form. In general,
however, PSE function y = h (x) may deviate from the identity function.
Thinking of the situations when the stimulus sets in the two observation
areas are different (see Section 11), x = y may not even be a meaningful
equality.
It is always possible, however, to relabel the stimuli in the two observa-

tion areas in such a way that (a) the stimulus sets in O1 and O2 are identical
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x1

y1

y

x

x2

y2

y  ψ (x2, y)y  ψ (x2, y)

y  ψ (x1, y)y  ψ (x1, y)

x  ψ (x, y2)x  ψ (x, y2)

x  ψ (x, y1)x  ψ (x, y1)

Fig. 19: Analogous to Fig. 6, but the cross-sections are those of discrimination
probability function ψ (x,y) in a canonical form, as shown in Fig. 18. y is the
PSE for x (equivalently, x is the PSE for y) if and only if x = y.
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Fig. 20: Analogous to Fig. 9, but for discrimination probability function ψ (x,y)
in a canonical form, as shown in Fig. 18. The transformation of the PSE line into
y = x does not, of course, change the contour of the minimum level function,
exhibiting Nonconstant Self-Dissimilarity.

x = a

x1

x2

y = a

y1

y2

x  ψ(x, a)x  ψ(x, a)

y  ψ(a, y)y  ψ(a, y)

ψa

ψa

Fig. 21: Analogous to Fig. 8, but the two cross-sections are those of discrimination
probability function ψ (x,y) in a canonical form. The cross-sections are made at
x = a (lower panel, with ψ (a,y) reaching its minimum at y = a) and y = a
(upper panel, with ψ (x,a) reaching its minimum at x = a).
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and (b) Regular Minimality is satisfied in the simplest form, (8) to (9). We
know that Regular Minimality implies a bijective correspondence between
the stimulus sets in O1 and O2: It is always possible, therefore, to form a
set S of “common stimulus labels” (or simply, “common stimuli”) and to
map it by means of two bijective functions, f¡1

1 and f¡1
2 , onto the stimulus

sets in O1 and O2 in such a way that, for any a 2 S;
¡
f¡1
1 (a) ; f¡1

1 (a)
¢
is a

pair of mutual PSEs. Equivalently, f1 (x) = f2 (y) if and only if (x;y) is a
pair of mutual PSEs (see the legend to Fig. 17). Once this is done, one can
redefine Ã by

Ãold (x;y) = Ãnew (f1 (x) ; f2 (y)) :

As an example, matrix TOY1 in Section 3 allows for the relabeling
shown below,

O1 xa xb xc xd

O2 yc yd yb ya

common label A B C D

The following, therefore, is a canonical transformation of TOY1:

0.50.711D
10.50.61C

0.90.90.10.8B
0.60.60.80.1A
DCBATOY0

0.50.711D
10.50.61C

0.90.90.10.8B
0.60.60.80.1A
DCBATOY0

110.70.5xd

0.610.51xc

0.10.80.90.9xb

0.80.10.60.6xa

ydycybyaTOY1

110.70.5xd

0.610.51xc

0.10.80.90.9xb

0.80.10.60.6xa

ydycybyaTOY1

For continuous stimuli, given a PSE function, y = h (x) ; any pair of
functions f1 ´ f ; f2 ´ h ± f ; for any (bijective) f ; provides a canonical
transformation. Figures 18, 19, 20, and 21 illustrate canonical forms for our
earlier examples.

10. PSYCHOLOGICAL IDENTITY OF
STIMULI

Up to this point, we implicitly assumed that all stimuli in either of the
observation areas are psychologically distinct, in the following sense: if x1 6=
x2 in O1; then at least for one stimulus y in O2;

Ã (x1;y) 6= Ã (x2;y) ;

and analogously for any y1 6= y2 in O2: Put differently, if Ã (x1;y) =
Ã (x2;y) for all y in O2; then x1 = x2; and if Ã (x;y1) = Ã (x;y2) for
all x in O1; then y1 = y2: On a moment’s reflection, this is not a real
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constraint. If x1 6= x2; but Ã (x1;y) = Ã (x2;y) for all y in O2 (in which
case, one can say that that x1 and x2 are “psychologically equal”), one can
always relabel the stimuli so that x1 and x2 receive identical labels. For
example, if aperture colors are initially labeled by their radiometric spectra
(radiometric intensity as a function of wavelength), we know that there
are an infinity of distinct spectra that are, for a given level of adaptation,
equally distinguishable from any given spectrum (metameric). As a result,
all mutually metameric colors can be merged and assigned a single label, say,
a triple of CIE color coordinates. Figure 22 provides a schematic illustration.

observation area 1 observation area 2

ψ (a1, y)
a1

a2

a
b

ψ (a2, y)

b1

b2

ψ (a, b)

Fig. 22: Equivalence class of psychologically equal stimuli (shown by striped lines).
a1 and a2 in O1 are psychologically equal because ψ (a1,y) = ψ (a2,y) for every
y in O2; these two stimuli therefore are assigned a common label, a. Equivalence
classes a and b are treated as single stimuli in O1 and O2, respectively, with
ψ (a,b) put equal to ψ (x,y) for any x ∈ a, y ∈ b. The Regular Minimality
condition is assumed to hold for these “reduced” stimulus sets (sets of equivalence
classes, shown by the two straight lines).

The example below shows a matrix of discrimination probabilities that,
following the procedure of “lumping together” psychologically equal stimuli,
yields our matrix TOY1:
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1
1

0.6
0.1
0.1
0.8
0.8
y7

1
1
1

0.8
0.8
0.1
0.1
y5

0.7
0.7
0.5
0.9
0.9
0.6
0.6
y3

10.70.50.5x7

0.10.90.90.9x4

0.80.60.60.6x2

10.70.50.5x6

0.60.511x5

0.10.90.90.9x3

0.80.60.60.6x1

y6y4y2y1TOY11

1
1

0.6
0.1
0.1
0.8
0.8
y7

1
1
1

0.8
0.8
0.1
0.1
y5

0.7
0.7
0.5
0.9
0.9
0.6
0.6
y3

10.70.50.5x7

0.10.90.90.9x4

0.80.60.60.6x2

10.70.50.5x6

0.60.511x5

0.10.90.90.9x3

0.80.60.60.6x1

y6y4y2y1TOY11

xa

xc

xb

xd

ya yc
yb yd

110.70.5xd

0.610.51xc

0.10.80.90.9xb

0.80.10.60.6xa

ydycybyaTOY1

110.70.5xd

0.610.51xc

0.10.80.90.9xb

0.80.10.60.6xa

ydycybyaTOY1

Thus, fx1;x2g ! xa; fy1;y2g ! ya; and so forth. In this example, each
equivalence class of psychologically equal stimuli inO1 bijectively maps onto
an equivalence class of psychologically equal stimuli in O2: fx1;x2g Ã!
fy1;y2g ; fx5g Ã! fy5g ; and so forth. Although we cannot think of a
realistic counterexample, on this level of abstraction there is no reason to
postulate such a correspondence. The matrix below illustrates the point.

1
1
1
1

0.6
0.1
0.8
y7

0.7
0.7
0.7
0.7
0.5
0.9
0.6
y5

0.7
0.7
0.7
0.7
0.5
0.9
0.6
y3

1110.5x7

1110.5x4

0.10.80.80.9x2

1110.5x6

1110.5x5

0.6111x3

0.80.10.10.6x1

y6y4y2y1TOY12

1
1
1
1

0.6
0.1
0.8
y7

0.7
0.7
0.7
0.7
0.5
0.9
0.6
y5

0.7
0.7
0.7
0.7
0.5
0.9
0.6
y3

1110.5x7

1110.5x4

0.10.80.80.9x2

1110.5x6

1110.5x5

0.6111x3

0.80.10.10.6x1

y6y4y2y1TOY12

xa

xb

xc

xd

ya yc yb yd

110.70.5xd

0.610.51xc

0.10.80.90.9xb

0.80.10.60.6xa

ydycybyaTOY1

110.70.5xd

0.610.51xc

0.10.80.90.9xb

0.80.10.60.6xa

ydycybyaTOY1

This matrix, too, following the relabeling shown, yields matrix TOY1, but
the equivalence classes in O1 cannot be paired with equinumerous equiv-
alence classes in O2 (e.g., fx4;x5;x6;x7g does not have a four-element
counterpart in O2). It is critical for the requirement of Regular Minimality,
however, that the resulting sets of the equivalence classes themselves con-
tain equal numbers of elements in the two observation areas: fxa;xb;xc;xdg
and fya;yb;yc;ydg. Regular Minimality, in effect, says that one can estab-
lish a bijection between the equivalence classes in O1 and the equivalence
classes in O2 in such a way that the corresponding elements (equivalence
classes treated as redefined stimuli) are mutual PSEs.



Regular Minimality 41

11. VARIETY OF PARADIGMS
Here, we describe a variety of meanings in which one can understand same-
different judgments, observation areas, and the very terms stimuli and per-
ceiver .
It was mentioned in the introductory paragraph of this chapter that

the sameness or difference of two stimuli can be judged “overall” or “in
a specified respect.” Expanding on that, the definition of a discrimination
probability function, (1), can be generalized in two ways:

Ã (x;y) = Pr [x and y are different with respect to A] ; (10)

meaning that all differences other than those in a designated property A
(shape, size, color, etc.) should be ignored; and

Ã (x;y) = Pr [x and y are different in any respect other than B] ; (11)

meaning that any differences in a designated property B (which again can
be shape, size, color, etc.) should be ignored. As follows from our discussion
of the two distinct observation areas, the “generic” definition (1) is in fact
a special case of (11), with B designating the perceptual difference between
the two observation areas.
In psychophysical experiments, the observation areas usually mean dif-

ferent locations in space or time, but the scope of possible meanings is much
broader. Thus, O1 and O2 may be defined by the modality of stimulus, as in
the grapheme-morpheme comparisons (e.g., a written syllable x compared
with a pronounced syllable y): in this case, the ordering of two stimuli in
(x;y) is determined by which of them is written and which pronounced,
irrespective of their temporal order. As another example, when a green
color patch and a red color patch of variable intensities are compared in
brightness, the two fixed colors serve to define the two observation areas,
irrespective of the spatial positions or temporal order of the patches.
A combination of several such observation-area-defining attributes (say,

colors £ locations) or simply more than just two values of a given attribute
(say, several locations) may lead to multiple observation areas, in which case
stimulus pairs should be encoded as ((x;o) ; (y;o0)), where x;y are labels
identifying the stimuli in all respects except for their observation areas, the
latter being designated by o; o0 (with o 6= o0). Although the relation among
Ã ((x;o) ; (y;o0)) for different pairs of distinct o; o0 is beyond the scope of
this chapter, our hypothesis is that Regular Minimality should be satisfied
for all such pairs.
In some applications, the difference between the observation areas is

known or assumed to be immaterial. Thus, when asked to compare the at-
tractiveness of two photographs, their spatial arrangement may very well
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be immaterial (or even undefined, if the perceiver is allowed to move them
freely). Our analysis still applies to such cases: although formally distin-
guishing (a;b) and (b;a), we simply impose the order-balance, or sym-
metry condition, Ã (x;y) = Ã (y;x). Counterintuitive as it may sound, the
order-balancedness does not imply that Regular Minimality can only be sat-
isfied in a canonical form. If Ã (x;y) = Ã (y;x) ; the PSE relation y = h (x)
is equivalent to the PSE relation x = h (y) : Comparing this to properties
(RM1 to RM3), in Section 3, we see that h ´ h¡1. The functional equation
h ´ h¡1 is known as Babbage’s equation (see Kuczma, Choczewski, & Ger,
1990), and it has more solutions than just an identity function, although the
latter often is the only realistic solution (e.g., it is the only nondecreasing
solution in the case of unidimensional stimuli).
One can significantly broaden the class of paradigms which can be

treated as same-different comparisons by applying the term stimuli, in a
purely formal way, to any two sets of entities, M1 and M2 (stimuli in the
first and second observation areas, respectively), that can be endowed with
a probability function Ã : M1£M2 ! [0; 1] : The term perceiver then, may
designate any device or computational procedure which, in response to any
ordered pair x 2 M1, y 2 M2, produces a certain output with probability
Ã (x;y). We propose that this output can be interpreted as meaning “x is
different from y” if and only if function Ã (x;y) satisfies Regular Minimal-
ity. In other words, Regular Minimality may serve as a criterion (necessary
and sufficient condition) for the inclusion of otherwise vastly different par-
adigms in the category of same-different comparisons.
To give a very “nonpsychophysical” example, consider a class M of

statistical models, and a class D of possible results of some experiment.
Each model from M can be fitted to each possible result, and rejected or
retained in accordance with some statistical criterion C. Given two models,
x;y 2 M, and a certain experimental outcome d0 2 D, consider a procedure
that consists of (a) fitting x to d0 and specifying thereby all free parameters
of x (b) repeatedly generating outcomes d 2 D by means of thus specified
x; and (c) fitting y to every generated outcome d and rejecting or retaining
it in accordance with criterion C. Then the probability Ã (x;y) with which
model y is rejected by an outcome generated by model x can be taken as the
probability of discriminating y from x; provided Ã (x;y) satisfies Regular
Minimality. In this example, the “observation area” of a model is defined
by the role in which this model is employed: M1 represents the models
specified by fitting them to d0 and used to generate outcomes d, whereas
M2 represents the models tested by applying them to thus generated d.
The “perceiver” in this case, from whose “point of view” the models are
being compared, is the entire computational procedure, specified by d0 and
C. One would normally expect that Regular Minimality for a well-defined
class of models should be satisfied canonically, (8) to (9). This is, however,
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a secondary consideration, because the models in M2, as we know, can
always be relabeled so that the PSE of model x 2 M1 is assigned label x:
As another example, let M1 be a set of categories or sources, each of

which can be exemplified by a variety of entities (e.g., lung dysfunctions
exemplified by X-ray films), and let M2 be the same set of categories or
sources when they are judged to be or not to be exemplified by a given entity
(“does this X-ray film indicate this lung dysfunction?”). The probability
with which an entity exemplifying category x is judged not to belong to
category y then can be taken as Ã (x;y) ; provided Ã satisfies Regular
Minimality. Again, in a well-calibrating expert system, one would expect
Regular Minimality to hold canonically, but any form of Regular Minimality
can be recalibrated into a canonical form.

12. CONCLUSION
The principle according to which any well-defined discrimination probabil-
ity function Ã (x;y), defined by (1), (10), or (11), should satisfy Regular
Minimality, seems to have all the hallmarks of a fundamental law:

(A) It cannot be derived from more elementary properties of discrimina-
tion probabilities. In this respect, it is very different from the Regular
Mediality principle for greater-less judgments (Section 2).

(B) It is conceptually simple, almost obvious, yet has unexpectedly re-
strictive consequences for theoretical modeling of discrimination prob-
abilities (Sections 7.1, 7.2, and 8), especially when combined with the
property of Nonconstant Self-Dissimilarity (Section 4).

(C) Its conceptual plausibility allows one to use it as a criterion for classi-
fying a paradigm into the category of same-different judgments (Section
11).

(D) It is born out by available experimental evidence (although much more
work remains to be done before one can call this evidence abundant;
see Section 6).

(E) It can serve as a benchmark against which to consider empirical evi-
dence: if the latter exhibits deviations from Regular Minimality, one is
warranted to look for other possible causes before discarding the prin-
ciple itself (Section 8).

We conclude this chapter by a brief comment on the last characteri-
zation. Stimulus uncertainty, which we discussed in Section 8 is only one
of many factors which, if Regular Minimality does in fact hold true, pre-
dictably leads to its apparent violations in data. Skipping over the rel-
atively obvious issue of sampling errors (both in estimating probabilities
and in choosing a representative subset of a stimulus space), perhaps the
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most important factor working against the principle of Regular Minimality
in real-life experiments is the possibility of mixing together discrimination
probability functions with different PSE functions. It is easy to see that if
Regular Minimality is satisfied in both Ã1 (x;y) and Ã2 (x;y), defined on
the same set of stimuli, and if their respective PSE functions are y = h1 (x)
and y = h2 (x), then linear combinations ®Ã1 (x;y)+(1¡ ®)Ã2 (x;y) (0 ·
® · 1) will generally violate Regular Minimality, unless h1 ´ h2. In a psy-
chophysical experiment with continuous stimuli (like the one related to Fig.
14), it seems desirable to use very large numbers of replications per stimu-
lus pair to increase the reliability of the statistical estimates of discrimina-
tion probabilities. In a very long experiment, however, it seems likely that
the discrimination probability function would gradually change, because of
which the resulting probability estimates will be those of a linear combi-
nation of functions Ãt (x;y) ; with t being the time at which (x;y) was
presented. If PSE functions y = ht (x) also vary in time, this mixture may
very well exhibit violations of Regular Minimality. Analogous considerations
apply to group experiments: there we may have to deal with heterogeneous
mixtures of functions Ãk (x;y) ; with k representing different members of a
group.
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