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Reconstructing Distances
Among Objects from
Their Discriminability

Ehtibar N. Dzhafarov! and Hans Colonius?

! Purdue University
2 Universitit Oldenburg

1. INTRODUCTION

The problem of reconstructing distances among stimuli from some empiri-
cal measures of pairwise dissimilarity is old. The measures of dissimilarity
are numerous, including numerical ratings of (dis)similarity, classifications
of stimuli, correlations among response variables, errors of substitution,
and many others (Everitt & Rabe-Hesketh, 1997; Suppes, Krantz, Luce,
& Tversky, 1989; Sankoff & Kruskal, 1999; Semple & Steele, 2003). For-
mal representations of proximity data, like Multidimensional Scaling (MDS;
Borg & Groenen, 1997; Kruskal & Wish, 1978) or Cluster Analysis (Corter,
1996; Hartigan, 1975), serve to describe and display data structures by
embedding them in low-dimensional spatial or graph-theoretical configura-
tions, respectively. In MDS, one embeds data points in a low-dimensional
Minkowskian (usually, Euclidean) space so that distances are monotonically
(in the metric version, proportionally) related to pairwise dissimilarities. In
Cluster Analysis, one typically represents proximity relations by a series of
partitions of the set of stimuli resulting in a graph-theoretic tree structure
with ultrametric or additive-tree metric distances.
Discrimination probabilities,

¥ (x,y) = Pr[x and y are judged to be different], (1)

which we discussed in Chapter 1, occupy a special place among available
measures of pairwise dissimilarity. The ability of telling two objects apart or
identifying them as being the same (in some respect or overall) is arguably
the most basic cognitive ability in biological perceivers and the most basic
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48 Dzhafarov and Colonius

requirement of intelligent technical systems. At least this seems to be a
plausible view, granting it is not self-evident. It is therefore a plausible
position that a metric appropriately computed from the values of ¥ (x,y)
may be viewed as the “subjective metric,” a network of distances “from the
point of view” of a perceiver.

As discussed in Chapter 1, the notion of a perceiver has a variety of
possible meanings, including even cases of “paper-and-pencil” perceivers,
abstract computational procedures assigning to every pair X, y the probabil-
ity ¢ (x,y) (subject to Regular Minimality). The example given in Chapter
1 was that of ¥ (x,y) being the probability with which a data set (in a par-
ticular format) generated by a statistical model, x, rejects (in accordance
with some criterion) a generally different statistical model, y. The pairwise
determinations of sameness/difference in this example (meaning, model y
is retained/rejected when applied to a data set generated by model x) are
usually readily available and simple. It is an attractive possibility, therefore,
to have a general algorithm in which one can use these pairwise determi-
nations to compute distances among conceptual objects (here, statistical
models). The alternative, an a priori choice of a distance measure between
two statistical models, may be less obvious and more difficult to justify.

This chapter provides an informal introduction to Fechnerian Scaling,
a metric-from-discriminability theory which has been gradually developed
by the present authors in the recent years (Dzhafarov, 2002a, 2002b, 2002c,
2002d; 2003a, 2003b; Dzhafarov & Colonius, 1999, 2001, 2005a, 2005b). Its
historical roots, however, can be traced back to the work of G. T. Fechner
(1801-1887). To keep the presentation on a nontechnical level, we provide
details for only the mathematically simplest case of Fechnerian Scaling, the
case of discrete stimulus sets (such as letters of alphabets or Morse codes);
only a simplified and abridged account of the application of Fechnerian
Scaling to continuous stimulus spaces is given. Notation conventions are
the same as in Chapter 1.

1.1. Example

Consider the toy matrix used in Chapter 1, presented in a canonical form,

Tov, | A B C D
A | 01([08|06]|06
B [ 08]01]|09]09
(o3
D

1 106(05]| 1
1 1 10705

This matrix is used throughout to illustrate various points. We describe a
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computational procedure, Fechnerian Scaling, which, when applied to such
matrices, produces a matrix of distances we call Fechnerian. Intuitively,
they reflect the degree of subjective dissimilarity among the stimuli, “from
the point of view” of the perceiver (organism, group, technical device, or
a computational procedure) to whom stimuli x,y € {A, B, C,D} were pre-
sented pairwise and whose responses (interpretable as “same” and “differ-
ent”) were used to compute the probabilities ¢ (x,y) shown as the matrix
entries. In addition, when the set of stimuli is finite, Fechnerian Scaling
produces a set of what we call geodesic loops, the shortest (in some well-
defined sense) chains of stimuli leading from one given object to another
given object and back. Thus, when applied to our matrix TOY, Fechnerian
Scaling yields the following two matrices:

L, A B C D G, B | C D
A A ACBA | ACA | ADA A 0 [13] 1 1
B BACB B BCB | BDCB B (13| 0 | 09|11
Cc CAC | CBC C CDC (3 1109| 0 |07
D DAD | DCBD | DCD D D 111107 | 0

We can see in matrix Lo, for instance, that the shortest (geodesic) loop
connecting A and B within the four-element space {A,B,C,D} is

A—-C—-B—A,
whereas the geodesic loop connecting A and C in the same space is
A—-C—A.

The lengths of these geodesic loops (whose computation will be explained
later) are taken to be the Fechnerian distances between A and B and
between A and C, respectively. As we see in matrix Gy, the Fechnerian
distance between A and B is 1.3 times the Fechnerian distance between A
and C.

We should recall some basic facts from Chapter 1:

(1) The row stimuli and the column stimuli in TOY, belong to two
distinct observation areas (say, row stimuli are those presented on the left,
or chronologically first, the column stimuli are presented on the right, or
second).

(2) {A, B, C, D} are psychologically distinct, that is, no two rows or two
columns in the matrix are identical (if they were, they would be merged
into a single one).

(3) TOYy may be the result of a canonical relabeling of a matrix in
which the minima lie outside the main diagonal, such as
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ToY, ya yb yc yd
X 0.6 | 0.6 | 0.1 [ 0.8

x, | 09]09]08]o0.1
x, | 1 ]05] 1 |06
0507 | 1 |1

The physical identity of the {A,B,C,D} in TOY, may therefore be dif-
ferent for the row stimuli and the column stimuli.

1.2. Features of Fechnerian Scaling

(A) Regular Minimality is the cornerstone of Fechnerian Scaling, and in
the case of discrete stimulus sets, it is essentially the only prerequisite for
Fechnerian Scaling. Due to Regular Minimality, we can assume throughout
most of this chapter that our stimulus sets are canonically (re)labeled (as
in TOYy), so that

x £y = (xy) > max (¥ (x.%). ¢ (y.3)} (2)

or equivalently,

X#£y = (x,x) <min{¢ (x,y),¢ (y,x)}. (3)

In accordance with the discussion of the fundamental properties of discrim-
ination probabilities (Chapter 1), Fechnerian Scaling does not presuppose
that ¥ (x,x) is the same for all x (Nonconstant Self-Dissimilarity), or that
Y (x,y) =7 (y,x) (Asymmetry).

(B) The logic of Fechnerian Scaling is very different from the existing
techniques of metrizing stimulus spaces (such as MDS) in the following
respect: Fechnerian distances are computed within rather than across the
two observation areas. In other words, the Fechnerian distance between a
and b does not mean a distance between a presented first (or on the left) and
b presented second (or on the right). Rather, we should logically distinguish
el (a,b), the distance between a and b in the first observation area, from
G? (a,b), the distance between a and b in the second observation area.
This must not come as a surprise if one keeps in mind that a and b in the
first observation area are generally perceived differently from a and b in the
second observation area. As it turns out, however, if Regular Minimality
is satisfied and the stimulus set is put in a canonical form, then it follows
from the general theory that

G (a,b) = G? (a,b) = G (a,b).
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This is illustrated in the diagram below, where the line connecting a stimu-
lus in O1 with a stimulus in O1 (O standing for observation area) represents
the probability ¢ of their discrimination. Note that, for a given a, b, dis-
tance G (a,b) is computed, in general, from v (x,y) for all x,y, and not
just from v (a, b). Later all of this is explained in detail.

observation
area 1

observation
area 2

(C) In TOYy, a geodesic loop containing two given stimuli is defined
uniquely. In general, however, this need not be the case: there may be more
than one loop of the shortest possible length. Moreover, when the set of
stimuli is infinitely large, whether discrete or continuous, geodesic loops
may not exist at all, and the Fechnerian distance between two stimuli is
then defined as the greatest lower bound (rather than minimum) of lengths
of all loops that include these two stimuli.

1.3. Fechnerian Scaling and Multidimensional Scaling

MDS, when applied to discrimination probabilities, serves as a convenient
reference against which to consider the procedure of Fechnerian Scaling.
Assuming that discrimination probabilities ¢ (x,y) are known precisely,
the classical MDS is based on the assumption that for some metric d (x,y)
(distance function) and some increasing transformation [,

¥ (xy) =6(d(x,y)). (4)

This is a prominent instance of what is called the probability-distance hy-
pothesis in Dzhafarov (2002b). Recall that the defining properties of a met-
ric d are as follows: (A) d(a,b) > 0; (B) d(a,b) = 0 if and only if a = b;
(C) d(a,c) < d(a,b) +d(b,c); (D) d(a,b) = d(b,a). In addition, one
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assumes in MDS that metric d belongs to a predefined class, usually the
class of Minkowski metrics with exponents between 1 and 2.

It immediately follows from (A), (B), (D), and the monotonicity of 3
that for any distinct x,y,

P (x,y) = (y.x) (Symmetry)
Y (x,x) =¢ (y,y) (Constant Self-Dissimilarity) 5
Y (x,y) (5)

Y (x,x) < {¢' (v, %) (Regular Minimality)

We know from Chapter 1 that although the property of Regular Minimal-
ity is indeed satisfied in all available experimental data, the property of
Constant Self-Dissimilarity is not. The latter can clearly be seen in the
table below, a 10 x 10 excerpt from Rothkopf’s (1957) well-known study
of Morse code discriminations. In his experiment, a large number of re-
spondents made same—different judgments in response to 36 x 36 auditorily
presented pairs of Morse codes for letters of the alphabet and digits.?

B 0 1 2 3 4 5 6 7 8 9
16 | 88 | 83 | 86 | 60 | 68 | 26 | 57 | 83 | 96 | 96
95 | 16 | 37 | 87 | 92 | 90 | 92 | 81 | 68 | 43 | 45
86 [ 38 | 11 | 46 | 80 | 95 | 86 | 80 | 79 | 84 | 89
92 | 82 |36 |14 |69 | 77 | 59 | 84 | 83| 92| 9
81 |95 | 74 |5 | 11 | 68 | 56 | 68 | 90 | 97 | 97
55 (8 | 90 | 70 | 31 [ 10 | 58 | 76 | 90 | 94 | 95
20 ([ 85 | 86 | 74 | 76 | 83 | 14 | 31 | 86 | 95 | 86
67 | 78 | 71 | 82 | 85 | 88 | 39 | 156 | 30 | 80 | 87
77 | 58 | 71 | 84 | 84 | 91 [ 40 | 40 | 11 | 39 | 74
86 [ 43 | 61|91 |8 |9 |89 |58 |44 | 9 | 22
97 [ 50 [ 74 | 91 | 89 | 95 | 78 | 83 | 48 | 19 | 6

A
o

OloN(oja|h[WINI= O

Regular Minimality here is satisfied in the canonical form, and one can see,
for example, that the Morse code for digit 6 was judged different from itself
by 15% of respondents, but only by 6% for digit 9. Symmetry is clearly
violated as well: thus, digits 4 and 5 were discriminated from each other
in 83% of cases when 5 was presented first in the two-code sequence, but
in only 58% when 5 was presented second. Nonconstant Self-similarity and

3This particular 10-code subset is chosen so that it forms a self-contained
subspace of the 36 codes: a geodesic loop (as explained later) for any two of its
elements is contained within the subset.
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Asymmetry are also manifest in the 10 x 10 excerpt below from a similar
study of Morse-code-like signals by Wish (1967).*

Uu | w | X 0 1 2 3 4 5
6 | 16 | 38 | 45 [ 35 | 73 | 81 | 70 | 89 | 97
28 | 6 | 44 |24 | 59 | 56 | 49 | 51 | 71 | 69
44 | 42 | 4 |11 [ 78 | 40 | 79 | 55 | 48 | 83
64 | 71| 26 | 3 |86 | 51 | 73 | 27 | 31 | 44
34 |55 | 5 |46 | 6 | 52 | 39 | 69 | 39 | 95
84 | 75|22 |33 |70 3 |69 | 17 | 40 | 97
81 (44 | 62 |31 |45 (50| 7 |41 | 35| 26
94 [ 85 | 44 | 17 | 85 | 19 | 84 | 2 | 63 | 47
89 | 73 | 26 |20 | 65 | 38 | 67 | 45 | 3 | 49
00| 94 | 74 | 11 | 83 | 95 | 68 | 67 | 256 | 3

alh|lw(MN=2(oX|S|c|ln|E

We can conclude, therefore, that MDS, or any other data-analytic tech-
nique based on the probability-distance hypothesis, is not supported by dis-
crimination probability data. By contrast, Fechnerian Scaling, in the case
of discrete stimulus sets, is only based on Regular Minimality, which is sup-
ported by data. Although prior to Dzhafarov (2002d), Regular Minimality
has not been formulated as a basic property of discrimination, indepen-
dent of its other properties (such as Constant Self-Dissimilarity), the vio-
lations of Symmetry and Constant Self-Dissimilarity have long since been
noted. Tversky’s (1977) contrast model and Krumhansl’s (1978) distance-
and-density scheme are two best known theoretical schemes dealing with
these issues.

2. Multidimensional Fechnerian Scaling

MDFS (Multidimensional Fechnerian Scaling) is Fechnerian Scaling per-
formed on a stimulus set whose physical description can be represented by
an open connected region E of n-dimensional (n > 1) real-valued vectors,
such that ¢ (x,y) is continuous with respect to its Euclidean topology.
This simply means that as (xx,yr) — (X,¥), in the conventional sense,

132 stimuli in this study were five-element sequences T3 PyTo P2T3, where T
stands for a tone (short or long) and P stands for a pause (1 or 3 units long). We
arbitrarily labeled the stimuli A, B, ..., Z,0,1, ..., 5, in the order they are presented
in Wish’s (1967) article. The criterion for choosing this particular subset of 10
stimuli is the same as for matrix Ro.
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Y (X, yi) — ¥ (x,¥). The theory of Fechnerian Scaling has been developed
for continuous (arcwise connected) spaces of a much more general structure
(Dzhafarov & Colonius, 2005a), but a brief overview of MDF'S should suffice
for understanding the main ideas underlying Fechnerian Scaling. Through-
out the entire discussion, we tacitly assume that Regular Minimality is
satisfied in a canonical form.

2.1. Oriented Fechnerian Distances in Continuous
Spaces

Any a,b € E can be connected by a smooth arc x (), a piecewise continu-
ously differentiable mapping of an interval [«, 3] of reals into E, such that
x (o) = a, x(8) = b Refer to Fig. 1. The main intuitive idea underlying
Fechnerian Scaling is that

(a) Any point x(¢) on this arc, ¢ € [a,3), can be assigned a local
measure of its difference from its “immediate neighbors,” x (¢ + dt).

(b) By integrating this local difference measure along the arc, from o
to 3, one can obtain the “psychometric length” of this arc.

(c¢) By taking the infimum (the greatest lower bound) of psychometric
lengths across all possible smooth arcs connecting a to b, one obtains the
distance from a to b in space E.

As argued in Dzhafarov and Colonius (1999), this intuitive scheme can
be viewed as the essence of Fechner’s original theory for unidimensional
stimulus continua (Fechner, 1860). The implementation of this idea in
MDFS is as follows (see Fig. 2).

As t for a smooth arc x(t) moves from a to (3, the value of self-
discriminability ¢ (x (t),x (t)) may vary (Nonconstant Self-Dissimilarity
property). Therefore, to see how distinct x (¢) is from x (¢ 4 dt) it would
not suffice to look at ¢ (x (t),x (t + dt)), or ¢ (x (t + dt) ,x (t)); one should
compute instead the increments in discriminability

0 (e (1) x (+d0) = (x(8) x (¢ +dt) = (x (D). x (), )
¢ (x (1), x (t+dt)) = ¢ (x (¢ +db) . x (8) — ¢ (x(£) ,x (1)) .

Both ¢<1) and ¢<2)are positive due to the Regular Minimality property (in
a canonical form). They are referred to as psychometric differentials of the
first kind (or in the first observation area) and second kind (in the second
observation area), respectively.

The assumptions of MDFS guarantee that the cumulation of
oV (x (), x (t + dt)) (i.e., integration of ¢V (x (t),x (t + dt)) /dt+) from
t = a tot = 3 always yields a positive quantity.” We call this quan-

?Aside from Regular Minimality and continuity of  (x,y), the only other
essential assumption of MDFS is that of the existence of a “global psychometric
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Fig.1: The underlying idea of MDFS. [«, ] is a real interval, a — x(t) — b a
smooth arc. The psychometric length of this arc is the integral of “local difference”
of x (t) from x (t + dt) , shown by vertical spikes along [«, 8]. The inset shows that
one should compute the psychometric lengths for all possible smooth arcs leading
from a to b. Their infimum is the oriented Fechnerian distance from a to b.
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y(x(t), x(¥), i=123
or

y(x(9), x(t,)), i=12,3

Fig.2: The “local difference” of x(t) from x (¢t + dt) (as dt — 0+) at a given
point, ¢ = t;, is the slope of the tangent line drawn to % (x(¢;),x(t)), or to
P (x(t),x(t:)), at t = t;+. Using ¥ (x (¢;) ,x(¢)) yields derivatives of the first
kind, using ¥ (x (t) ,x (t;)) yields derivatives of the second kind. Their integration
from « to 8 yields oriented Fechnerian distances (from a to b) of, respectively,
first and second kind.
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tity the psychometric length of arc x(t) of the first kind, and denote it
LW [a — x — b], where we use the suggestive notation for arc x connect-
ing a to b: this notation is justified by the fact that the choice of the function
x:[a, B] — E is irrelevant insofar as the graph of the function (the curve con-
necting a to b in E) remains invariant. It can further be shown that the in-
fimum of all such psychometric lengths L) [a — x — Db], across all possible
smooth arcs connecting a to b, satisfies all properties of a distance except for
symmetry. Denoting this infimum by G, (a,b), we have (A) G; (a,b) > 0;
(B) G1 (a,b) =0 if and only if a = b; (C) G; (a,¢) < Gy (a,b) + Gy (b, ¢);
but it is not necessarily true that G; (a,b) = G;(b,a). Such geomet-
ric constructs are called oriented distances. We call G (a,b) the oriented
Fechnerian distance of the first kind from a to b.

By repeating the whole construction with ¢'? (x (t) ,x (t + dt)) in place
of ¢V (x (1) ,x (t + dt)) we get the psychometric lengths L2 [a — x — b]
of the second kind (for arcs x (t) connecting a to b), and, as their infima,
the oriented Fechnerian distances Gz (a,b) of the second kind (from a to
b).

2.2. Multidimensional Fechnerian Scaling and Multi-
dimensional Scaling

The following observation provides additional justification for computing
the oriented Fechnerian distances in the way just outlined.

A metric d (symmetrical or oriented) on some set S is called intrinsic if
d(a,b) for any a,b € S equals the infimum of the lengths of all “allowable”
arcs connecting a and b (i.e., arcs with some specified properties). The
oriented Fechnerian distances G; (a,b) and G5 (a,b) are intrinsic in this
sense, provided the allowable arcs are defined as smooth arcs. In reference
to the classical MDS, all Minkowski metrics are (symmetrical) intrinsic
metrics, in the same sense.

transformation” @ which makes the limit ratios

[0 0 x(t+ )

s—0+ S

(t=1,2)

nonvanishing, finite, and continuous in (x (¢) ,% (¢)), for all arcs. (Actually, this is
the “First Main Theorem of Fechnerian Scaling,” a consequence of some simpler
assumptions.) As it turns out (Dzhafarov, 2002d), together with Nonconstant Self-
Dissimilarity, this implies that @ (h) /h — k > 0 as h — 0+. That is, @ is a scaling
transformation in the small and can therefore be omitted from formulations, on
putting k£ = 1 with no loss of generality. The uniqueness of extending @ (h) = h
to arbitrary values of h € [0,1] is analyzed in Dzhafarov and Colonius (2005b).
In this chapter, @ (h) = h is assumed tacitly.
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Assume now that the discrimination probabilities ¢ (x,y) on E (with
the same meaning as in the previous subsection) can be obtained from
some symmetrical intrinsic distance d on E by means of (4), with § being a
continuous increasing function. It is sufficient to assume that (4) holds for
small values of d only. Then, as proved in Dzhafarov (2002b),

d(a,b) = G;(a,b) =G5 (a,b)

for all a,b € E. In other words, ¢ (x,y) cannot monotonically and contin-
uously depend on any (symmetrical) intrinsic metric other than the Fech-
nerian one. The latter in this case is symmetrical, and its two kinds G; and
G5 coincide.b

The classical MDS, including its modification proposed in Shepard and
Carroll (1966), falls within this category of models. In the context of con-
tinuous stimulus spaces, therefore, Fechnerian Scaling and MDS are not
simply compatible, the former is in fact a necessary consequence of the
latter (under the assumption of intrinsicality, and without confining the
class of metrics d to Minkowski ones). Fechnerian computations, however,
are applicable in a much broader class of cases, including those where the
probability-distance hypothesis is false (as we know it generally to be).

It should be noted for completeness that some nonclassical versions of
MDS are based on Tversky’s (1977) or Krumhansl’s (1978) schemes rather
than on the probability-distance hypothesis, and they have the potential of
handling nonconstant self-dissimilarity or asymmetry (e.g., DeSarbo, John-
son, Manrai, Manrai, & Edwards, 1992; Weeks & Bentler, 1982). We do not
review these approaches here. Certain versions of MDS can be viewed as
intermediate between the classical MDS and Fechnerian Scaling. Shepard
and Carroll (1966) discussed MDS methods where only sufficiently small
distances are monotonically related to pairwise dissimilarities. More re-
cently, this idea was implemented in two algorithms where large distances
are obtained by cumulating small distances within stimulus sets viewed as
manifolds embedded in Euclidean spaces (Roweis & Saul, 2000; Tenenbaum,

®This account is somewhat simplistic: Because the probability-distance hy-
pothesis implies Constant Self-Dissimilarity, the theorem proved in Dzhafarov
(2002b) is compatible with Fechnerian distances computed with @ other than
identity function (see Footnote 5). We could avoid mentioning this by positing
in the formulation of the probability-distance hypothesis that §(h) in (4) has
a nonzero finite derivative at h = 0+. With this assumption, psychometric in-
crements, hence also Fechnerian distances, are unique up to multiplication by
a positive constant. Equation d = G1 = G2, therefore, could more generally be
written as d = kG1 = kG2 (k > 0). Throughout this chapter, we ignore the trivial
distinction between different multiples of Fechnerian metrics. (It should also be
noted that in Dzhafarov, 2002b, intrinsic metrics are called internal, and a single
distance G is used in place of G1 and G2.)
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de Silva, & Langford, 2000). When applied to discrimination probabilities,
these modifications of MDS cannot handle nonconstant self-dissimilarity,
but the idea of cumulating small differences can be viewed as the essence
of Fechnerian Scaling.

2.3. Overall Fechnerian Distances in Continuous Spaces

The asymmetry of the oriented Fechnerian distances creates a difficulty in
interpretation. It is easy to understand that in general, ¢ (x,y) # ¥ (y, x):
stimulus x in the two cases belongs to two different observation areas
and can therefore be perceived differently (the same being true for y). In
G1 (a,b), however, a and b belong to the same (first) observation area, and
the noncoincidence of G (a, b) and G (b, a) prevents one from interpreting
either of them as a reasonable measure of perceptual dissimilarity between
a and b (in the first observation area, “from the point of view” of a given
perceiver). The same consideration applies, of course, to Go. In MDFS, this
difficulty is resolved by taking as a measure of perceptual dissimilarity the
overall Fechnerian distances G1 (a,b)+ G (b,a) and G2 (a,b) +Gs (b, a).
What justifies this particular choice of symmetrization is the remarkable
fact that

G1(a,b) + Gy (b,a) = Gy (a,b) + G2 (b,a) = G (a,b), (7)

where the overall Fechnerian distance G (a,b) (we need not now specify
of which kind) can be easily checked to satisfy all properties of a metric
(Dzhafarov, 2002d; Dzhafarov & Colonius, 2005a).

On a moment’s reflection, (7) makes perfect sense. We wish to obtain a
measure of perceptual dissimilarity between a and b, and we use the proce-
dure of pairwise presentations with same-different judgments to achieve this
goal. The meaning of (7) is that in speaking of perceptual dissimilarities
among stimuli, one can abstract away from this particular empirical proce-
dure. Caution should be exercised, however: the observation-area-invariance
of the overall Fechnerian distance is predicated on the canonical form of
Regular Minimality. In a more general case, as explained in Section 3.6,
G1(a,b) + Gy (b.a) equals Gy (a’,b’) + G, (b',a’) if a and a’ (as well as
b and b’) are PSEs, not necessarily physically identical.

Equation (7) is an immediate consequence of the following proposition
(Dzhafarov, 2002d; Dzhafarov & Colonius, 2005a): for any smooth arcs
a—x—bandb -y —a,

L<1)[a—>x—>b]+L(1>[b_>y_>a]
=LPa—y b+ LV [b—x—al. )
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E

observation area 2
b

observation area 1

Fig. 3: Illustration for the Second Main Theorem: the psychometric length of the
first kind of a closed loop from a to b and back equals the psychometric length of
the second kind for the same loop traversed in the opposite direction. This leads
to the equality of the overall Fechnerian distances in the two observation areas.
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Put differently, the psychometric length of the first kind for any closed loop
containing a and b equals the psychometric length of the second kind for
the same closed loop but traversed in the opposite direction.

Together (8) and its corollary (7) constitute what we call the Second
Main Theorem of Fechnerian Scaling (see Fig. 3). This theorem plays a
critical role in extending the continuous theory to discrete and other, more
complex object spaces (Dzhafarov & Colonius, 2005b).

3. FECHNERIAN SCALING OF
DISCRETE OBJECT SETS (FSDOS)

The mathematical simplicity of this special case of Fechnerian Scaling allows
us to present it in a greater detail than we did MDFS.

3.1. Discrete Object Spaces

Recall that a space of stimuli (or objects) is a set S of all objects of a
particular kind endowed with a discrimination probability function ¥ (x,y).
For any x,y € S, we define psychometric increments of the first and second
kind (or, in the first and second observation areas) as, respectively,

(b(l) (X: Y) = (Xa Y) -y (Xa X) s (9)
¢(2) (X7Y) = @’ (Y7X) 71#’ (X?X .

~—

Psychometric increments of both kinds are positive due to (a canonical form
of) Regular Minimality, (3). A space S is called discrete if, for any x € S,

ir;f {qﬁ(l) (X,y)] > 0, ir;f {(b(z) (X,y)] > 0.

In other words, the psychometric increments of either kind from x to other
stimuli cannot fall below some positive quantity. Intuitively, other stim-
uli cannot “get arbitrarily close” to x. Clearly, stimuli in a discrete space
cannot be connected by arcs (continuous images of intervals of reals).

3.2. Main Idea

To understand how Fechnerian computations can be made in discrete spaces,
let us return for a moment to continuous spaces E discussed in the previous
section.

Consider a smooth arc x (t),

X [0576] Hva(a) :a,x(ﬁ) =b,
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dOx(2), x(2,,))) or A, X(1;1,))
()™
X(7; e,
i ""~...X( t 1)

L
24w NS
\ Iy, G

Fig. 4: The psychometric length of the first (second) kind of an arc can be approx-
imated by the sum of psychometric increments of the first (second) kind chained
along the arc. The right insert shows that if E is represented by a dense grid
of points, the Fechnerian computations involve taking all possible chains leading
from one point to another through successions of immediately neighboring points.
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as shown in Fig. 4. We know that its psychometric length L(*) [a — x — b]
of the «th kind (¢ = 1,2) is obtained by cumulating psychometric differ-
entials (6) of the same kind along this arc. It is also possible, however, to
approximate L) [a — x — b] by subdividing [a, ] into

a=to,t1, ...tk tkp1 =0

and computing the sum of the chained psychometric increments

k

LW x (to) % (1), oo X (rg1)] = D6 (x (1), x (ti41)) . (10)

=0

As shown in Dzhafarov and Colonius (2005a), by progressively refining the
partitioning, max; {t;41 — t;} — 0, this sum can be made as close as one
wishes to the value of L) [a — x — b].

In practical computations, E (which, we recall, is an open connected
region of n-dimensional vectors of reals) can be represented by a sufficiently
dense discrete grid of points. In view of the result just mentioned, the
oriented Fechnerian distance G, (a,b) (¢« = 1,2) between any a and b in
this case can be approximated by (a) considering all possible chains of
successive neighboring points leading from a to b, (b) computing sums
(10) for each of these chains, and (c) taking the smallest value.

This almost immediately leads to the algorithm for Fechnerian compu-
tations in discrete spaces. The main difference is that in discrete spaces, we
have no physical ordering of stimuli to rely on, and the notion of “neigh-
boring points” is not defined. In a sense, every point in a discrete space can
be viewed as a “potential neighbor” of any other point. Consequently, in
place of “all possible chains of successive neighboring points leading from a
to b,” one has to consider simply all possible chains of points leading from
a to b (see Fig. 5).

3.3. Illustration

Returning to our toy example (matrix TOY(, reproduced here for the
reader’s convenience together with Lo and Gjp), let us compute the Fech-
nerian distance between, say, objects D and B.

A B (3 D
01|08 |06 |06
0801|0909
1 106(05]| 1

1 110705

O|0o|w(>|3
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o(x;, x;,,) or
OIX;, X;y)

Fig.5: In a discrete space (10 elements whereof are shown in an arbitrary spatial
arrangement), Fechnerian computations are performed by taking sums of psy-
chometric increments (of the first or second kind, as shown in the inset) for all
possible chains leading from one point to another.
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L, A B Cc D G, B | C D
A A ACBA | ACA | ADA A 0 |13 1 1
B BACB B BCB | BDCB B |[13]| 0 [09]| 1.1
Cc CAC | CBC Cc CDC C 1109 0 |07
D DAD | DCBD | DCD D D 1111107 0

The whole stimulus space here consists of four stimuli, {A,B,C,D},
and we have five different chains in this space which are comprised of dis-
tinct (nonrecurring) objects and lead from D to B:

DB,DAB,DCB,DACB, DCAB.

We begin by computing their psychometric lengths of the first kind, L(1) [DB],
LM [DAB], and so forth. By analogy with (10), L(!) [DCAB], for example,
is computed as

LW DCAB] = ¢ (D, C) + ¢V (C,A) + ¢V (A, B)
= (D,C)—-v¢ (D,D)] + [t (C,A) - (C,C)]
+ [ (A.B) —¢ (A, A)]
=[0.7—0.5] + [1.0 — 0.5] +[0.8 — 0.1] = 1.4.

We have used here the definition of ¢ (x,y) given in (9). Repeating this
procedure for all our five chains, we will find out that the smallest value is
provided by

LW [DCB] = ¢Y (D, C) + ¢V (C, B)
=[(D,C) -+ (D.D)] + [ (C,B) — ¢ (C,C)]
=1[0.7—0.5] + 0.6 — 0.5] = 0.3.

Note that this value is smaller than the length of the one-link chain (“direct
connection”) DB:

LY [DB] = ¢ (D,B) =¢ (D,B) —¢ (D.D) = 1.0 — 0.5 = 0.5.

The chain DCB can be called a geodesic chain connecting D to B. (Gen-
erally, there can be more than one geodesic chain, of the same length, for
a given pair of stimuli, but in our toy example, all geodesics are unique.)
Its length is taken to be the oriented Fechnerian distance of the first kind
from D to B,

G, (D,B)=0.3.
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Consider now the same five chains but viewed in the opposite direc-
tion, that is, all chains in {A,B,C,D} leading from B to D, and com-
pute for these chains the psychometric lengths of the first kind: L(*) [BD],
L [BAD], and so forth. Having done this, we find out that this time, the
shortest chain is the one-link chain BD, with the length

LY [BD] = ¢Y (B,D) =+ (B,D) —¢ (B,B) = 0.9 — 0.1 = 0.8.

The geodesic chain from B to D therefore is BD, and the oriented Fech-
nerian distance of the first kind from B to D is

G, (B,D)=038.

Using the same logic as for continuous stimulus spaces, we now compute
the (symmetrical) overall Fechnerian distance between D and B by adding
the two oriented distances “to and fro,”

G(D.B)=G(B,D)=G,(D,B)+ G, (B,D)=03+08=1.1.

This is the value we find in cells (D,B) and (B,D) of matrix Gy. The
concatenation of the two geodesic chains, DCB and BD, forms the geodesic
loop between D and B, which we find in cells (D, B) and (B, D) of matrix
Lg. This loop, of course, can be written in three different ways depending
on which of its three distinct elements we choose to begin and end with.
The convention adopted in matrix Lg is to begin and end with the row
object: DCBD in cell (D,B) and BDCB in cell (B, D).

Note that the overall Fechnerian distance G (D, B) and the correspond-
ing geodesic loop could also be found by computing psychometric lengths for
all 25 possible closed loops containing objects D and B in space {A, B, C,D}
and finding the smallest. This, however, would be a more wasteful proce-
dure.

The reason we do not need to add the qualification “of the first kind”
to the designations of the overall Fechnerian distance G (D,B) and the
geodesic loop DCBD is that precisely the same value of G (D, B) and the
same geodesic loop (only traversed in the opposite direction) are obtained
if the computations are performed with psychometric increments of the
second kind.

For chain DCAB, for example, the psychometric length of the second
kind, using the definition of ¢(2) in (9), is computed as

L» [DCAB] = ¢? (D, C) + ¢'? (C,A) + ¢¥ (A, B)
=[¥(C,D) -4 (D.D)] + [¢ (A, C) =% (C,C)]
+ W’ (Ba A) - ¢' (Av A)]
=[1.0 — 0.5] + [0.6 — 0.5] +[0.8 — 0.1] = 1.3.
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Repeating this computation for all our five chains leading from D to B, the
shortest chain is found to be DB, with the length

L? [DB] = ¢'* (D.B) =+ (B,D) —¢ (D.D) = 0.9 — 0.5 = 0.4,

taken to be the value of G2 (D, B), the oriented Fechnerian distance form
D to B of the second kind. For the same five chains but viewed as leading
from B to D, the shortest chain is BCD, with the length

L® BCD] = ¢ (B,C) + ¢'? (C, D)
= [ (C,B) — ¢ (B,B)] + [¢ (D,C) — ¢ (C, C)]
=[0.6 — 0.1] 4+ [0.7 — 0.5] = 0.7

taken to be the value of G2 (B, D), the oriented Fechnerian distance form
B to D of the second kind. Their sum is

G(D.,B)=G(B,D)=G,(D.B)+G,(B,D)=04+0.7=1.1,

precisely the same value for the overall Fechnerian distance as before (al-
though the oriented distances are different). The geodesic loop obtained by
concatenating the geodesic chains DB and BCD is also the same as we
find in matrix Ly in cells (D,B) and (B, D), but read from right to left:
DBCD in cell (D,B) and BCDB in cell (B, D).

The complete formulation of the convention adopted in Lq therefore is
as follows: the geodesic loop in cell (x,y) begins and ends with x and is
read from left to right for the computations of the first kind, and from right
to left for the computations of the second kind (yielding one and the same
result, the overall Fechnerian distance between x and y).

3.4. Procedure of Fechnerian Scaling of Discrete Ob-
ject Sets

It is clear that any finite set S ={sj, s, ..., sy} endowed with probabilities
pij = (s;,s;) forms a discrete space in the sense of our formal definition.
As this case is of the greatest interest in empirical applications, in the fol-
lowing we confine our discussion to finite object spaces. All our statements,
however, unless specifically qualified, apply to discrete object spaces of ar-
bitrary cardinality.

The procedure shown later is described as if one knew the probabilities
pi; on the population level. If sample sizes do not warrant this approxi-
mation, the procedure should ideally be repeated with a large number of
matrices p;; that are statistically retainable given a matrix of frequency
estimates p;;. We return to this issue in the concluding section.
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The computation of Fechnerian distances G;; among {s1,82, ..., SN} pro-
ceeds in several steps. The first step in the computation is to check for
Regular Minimality: for any ¢ and all j # ¢,

pii < min{p;j, pji} -

If Regular Minimality is violated (on the population level), FSDOS will not
work. Put differently, given a matrix of frequency estimates 1 (s;,s,), one
should use statistically retainable matrices of probabilities p;; that do sat-
isfy Regular Minimality; and if no such matrices can be found, FSDOS is
not applicable. The theory of Fechnerian Scaling treats Regular Minimality
as the defining property of discrimination. If it is not satisfied, something
can be wrong in the procedure: for collective perceivers, for example, sub-
stantially different groups of people could be responding to different pairs of
stimuli (violating thereby the requirement of having a “single perceiver”),
or the semantic meaning of the responses “same” and “different” could vary
from one pair of stimuli to another. (Alternatively, of course, the theory of
Fechnerian Scaling may be wrong itself, which would be a preferable con-
clusion if regular Minimality was found to be violated systematically, or at
least not very rarely.)

Having Regular Minimality verified, we compute psychometric incre-
ments of the first and second kind,

¢<1) (Sivsj) = Pij — Pii,
62 (si,87) = pji — piis

which are positive for all j # i.

Consider now a chain of stimuli s; = x1,X%»,...,x;, = s; leading from s;
to s;, with & > 2. The psychometric length of the first kind for this chain,
LW [x1,%s, ...,X;], is defined as the sum of the psychometric increments
gbm (XmsXm+1) taken along this chain,

k
L<1) [XlaXQ:« -"7X/€] = Z ¢<1) (vax’m-‘rl) .

m=1

The set of different psychometric lengths across all possible chains of dis-
tinct elements connecting s; to s; being finite, it contains a minimum

value Lflln)n (si,s85). (The consideration can always be confined to chains
(x1,X2,...,x;) of distinct elements, because if x; = x,,, (I < m), the length
LM cannot increase if the subchain (Xi41, s Xm) is removed.) This value
is called the oriented Fechnerian distance of the first kind from object s; to
object s;:

Gi (sis;) = LU (s0.8).
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It is easy to prove that the oriented Fechnerian distance satisfies all proper-
ties of a metric, except for symmetry: (A) Gy (s;.s;) > 0; (B) G (si,s;) =0
ifand only if i = j; (C) G1 (si,85) < G1 (Si,8m)+G1 (8, s;); but in general,
G (si,s;) # Gi (sj,8i).” In according with the general logic of Fechnerian
Scaling, G (s;,s;) is interpreted as the oriented Fechnerian distance from
s; to s; in the first observation area.

Any chain from s; to s; whose elements are distinct and whose length
equals G (s;, s;) is a geodesic chain from s; to s;. There may be more than
one geodesic chain for given s;,s;. (Note that in the case of infinite discrete
sets mentioned in footnote 7 geodesic chains need not exist.)

The oriented Fechnerian distances G (s;,s;) of the second kind (in the
second observation area) and the corresponding geodesic chains are com-
puted analogously, using the chained sums of psychometric increments P
instead of gzﬁ(l).

As argued earlier (Section 2.3), the order of two stimuli in a given ob-
servation area has no operational meaning, and we add the two oriented
distances, “to and fro,” to obtain the (symmetrical) overall Fechnerian dis-
tances

Gij = Gi(si,85) + Gi(sy,8) =
Gij = G2 (si,85) + G2 (sj,8)

J

G
Gji

iy

G;; clearly satisfies all the properties of a metric.
The validation for this procedure (and for writing G;; without indicating
observation area) is provided by the fact that

G1(si,85) + G1(8),8:) = Ga (si,85) + G2 (sy,8:), (11)

that is, the distance G;; between the ith and the jth objects does not
depend on the observation area in which these objects are taken. This fact
is a consequence of the following statement, which is of interest on its own
sake: for any two chains s; = X1, X0, ..., X =s; and 8; = y1,y2, ..., Y1 = S;j

"Properties (A) and (B) trivially follow from the fact that for i # j, G1 (si, ;)
is the smallest of several positive quantities, L*) [x1,Xa, ...,x%]. Property (C)
follows from the observation that the chains leading from s; to s; through a
fixed si form a proper subset of all chains leading from s; to s;. For an in-
finite discrete S, Lfii)n (a,b) (a,b € S) need not exist and should be replaced
with Ll(ig (a,b), the infimum of LW [x1,X2,...,x%] for all finite chains of dis-

tinct elements with a = x; and xx = b (x1,X2,...,xx € S). The argument for

properties (A) and (B) then should be modified: for a # b, G1 (a,b) > 0 be-
cause L) (a,b) > infyx [d)(l) (a, x)}7 and by definition of discrete object spaces,

inf

infx [qb(l) (a, x)] > 0.
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(connecting s; to s;),

L<1) [X1;X2= "’?Xk] + L(l) [Yh}’l—la "'7y1]

= L<2) [y17y27 "'7YI} + L<2) [Xkaxk—lv "'7X1} . (12)

As the proof of this statement is elementary, it may be useful to present

it here. Denoting p;; = ¢ (x;,x;) and p; = (yi,y;),

L(l) [X17X2a -"axk] + L(1> [YI7Yl—17 "'7y1]
-1

k—1

= z (p;n,nwrl - p;z) + z (ng»l.m - p;;L+1,m+1) )
m=1 m=1
L(Q) [ylvaa "'ayl] + L(Q) [kaxkfla "'axl]

-1 k—1

_ // /1 / /

- E (pm,+1,m - pm,m) + § (p'rrL,777,+1 - pm,+1,m+1) :
m=1 m=1

Subtracting the second equation from the first,

(L(l) [X1,X2, .y Xp] — L® [Xk, X1, ...,Xl])

+ (L“) i yio1s e yi] = L9 [y1,ys, m,yz])
k—1 k—1
= <Z (p;n.m+1 _piz) - Z (pirz,777.+1 - p;77.+1,m+1)>
m=1 m=1

m=1 m=1

-1 -1
+ <Z (péln,+1,m - p;:z,+17m,+1) - Z (pxm-l,m - pgz,m))
= (Phe — 1) + (P11 — Pi) -
But p}, = p, = pi; and pj,;, = p);, = p;j, where, we recall, p;; = ¢ (s;,s;) .
The difference therefore is zero, and (12) is proved. Equation (11) follows
as a corollary, on observing

G1 (Si,Sj) + G1 (S]‘,S,;) :HlfL<1) [Xl,XQ, ...,Xk;] + iIlfL(1> [Yh}’l—h ...,yl]

=inf {L<1) [XlaXQ:« -"7X/€] + L(1> [YI7YZ—17 a}’ﬂ}
=inf {L<2) [y17y21 ~~~-,YI] + L<2) [X]faxkfla ~"7X1]}
—inf L(?) V1.2, . yi] +inf L [xp, X1, .., X1
:G2 (Sj, Si) + G2 (5177 Sj) .

Together (11) and (12) provide a simple version of the Second Main Theo-
rem of Fechnerian Scaling, mentioned earlier, when discussing MDF'S.
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An equivalent way of defining the overall Fechnerian distances G;; is
to consider all closed loops x1,X3,...,Xn, X1 (n > 2) containing two given
stimuli s;,s;: Gj; is the shortest of the psychometric lengths computed for
all such loops. Note that the psychometric length of a loop depends on the
direction in which it is traversed: generally,

L(l) (X13X27 ...,X,,,,,Xl) 7& L(l) (lex’IM "'7X27X1) )

L (X1,X2, 0y Xp, X1) 7 L® (X1, Xp, -0y X2, X1 ) -
The result just demonstrated tells us, however, that
L(l) (X17X27 "'7X7LaX1) = L(2) (X17Xn7 "'7X2axl) )

that is, any closed loop in the first observation area has the same length as
the same closed loop traversed in the opposite direction in the second ob-
servation area. In particular, if x1, X, ..., X,,, X1 is a geodesic (i.e., shortest)
loop containing the objects s;,s; in the first observation area (obviously,
the concatenation of the geodesic chains connecting s; to s; and s; to s;),
then the same loop is a geodesic loop in the second observation area, if
traversed in the opposite direction, X1, Xy, ..., X2, X1.

The computational procedure of FSDOS is summarized in the form of
a detailed algorithm presented in the Appendix at the end of this chapter.

3.5. Two Examples

We used the procedure just described to compute Fechnerian distances
and geodesic loops among 36 Morse codes with pairwise discrimination
probabilities reported in Rothkopf (1957), and among 32 Morse-code-like
signals data with discrimination probabilities reported in Wish (1967). For
typographic reasons only, small subsets of these stimulus sets are shown
in matrices Ro and W+ in Section 1.3, chosen because they form “self-
contained” subspaces: any two elements of such a subset can be connected
by a geodesic loop lying entirely within the subset. The Fechnerian distances
and geodesic loops are presented here for these subsets only: for matrix Ro,
they are
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6. |B|Cc|lo|1|2[3|4a|5|6|7|8]|09
B | 0 |95|151|142|118| 95 | 97 | 16 | 57 | 77 | 140 | 157
0 [151|133| 0 | 48 [ 105|160 | 150 | 147|127 | 99 | 61 | 73
1 (142|114 | 48 | 0 | 57 132|164 | 147 [ 125 | 128 | 106 | 121
2 (118|116 |105| 57 | 0 [100 123|105 129 | 142 | 158 | 161
3 | 95143160 132[100| O | 68 | 95 | 127 | 145 | 165 | 169
4 | 97 [152|150 | 164 (123 | 68 | 0 |106 138160 | 171 | 174
5 | 16 | 109|147 147 [105| 95 | 106 | 0 | 41 | 61 | 124|143
6 | 57 [122|127(125[129 (127|138 | 41 | 0 | 44 | 92 | 118
7 | 77 |107| 99 [ 128142 (145|160 | 61 | 44 | 0 | 63 | 83
8 140|136 | 61 | 106|158 (165|171 |124| 92 | 63 | 0 | 26
9 157|156 | 73 | 121|161 [ 169|174 | 143|118 | 83 | 26 | 0

.| B |o|1|2|3|4|5|6|7]| 8|09
B B BOB B1B BX25B B35B B4B B5B B565B | B5675B | B567875B | B975B
0 0BO 0 010 01210 030 040 050 0670 070 080 090
1 1B1 101 1 121 131 141 151 161 171 1081 10901
2 25BX2 21012 212 2 232 242 252 2562 272 21082 292
3 35B3 303 313 323 3 343 35B3 363 3673 383 393
4 4B4 404 414 424 434 4 45B4 4564 474 484 494
5 5B5 505 515 525 5B35 5B45 5 565 5675 567875 5975
6 65B56 6706 616 6256 636 6456 656 6 676 6786 678986
7 75B567 707 77 727 7367 747 7567 767 7 787 7897
8 875B5678 808 8108 82108 838 848 875678 8678 878 8 898
9 975B9 909 90109 929 939 949 9759 986789 9789 989 9

and for matrix Wi they are®

8In the complete 32 x 32 matrix reported in Wish (1967); but outside the
10 x 10 submatrix Wi, there are two violations of Regular Minimality, both due to
a single value, pryv = 0.03: this value is the same as pyy and smaller than prr =
0.06 (using the labeling of stimuli described in Section 1.3); see also Footnote 4.
As Wish’s data are used here for illustration purposes only, we simply replaced
prv = 0.03 with prv = 0.07, putting p;; = ps; for the rest of the data. Chi-square
deviation of thus defined matrix of p;; from the matrix of p;; is negligibly small.
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6| SJUulw[x]o|[1][2]3]a]s
s | o |32]72]80 |57 |119]112[128]119] 138
u 32| 0767989 [107] 80 [116]107 ] 128
w7276 0 |30 [119] 55 |[122] 67 | 58 | 79
X |89 |79 30| o [123] 67| 94| 39 ] 45| 49
0 | 5789 [119]123| o [113]| 71 [143] 95 | 132
1 [119[107] 55 | 67 [113| 0 [109] 31 | 72 | 108
2 [112] 80 [122] 94 | 71 [109]| 0 [116]| 92 | 74
3 [128]116| 67 | 39 [143] 31 [116] 0 | 84 | 77
4 [119[107| 58 |45 |95 |72 |92 |84 | 0 | 68
5 (138128 | 79 | 49 [132]108| 74 [ 77 | 68 | ©
bvls lu|lw|x|o|1]|2]|3]|4]cs
s S Sus SWS SUXS S0S SUTWS | SU2US | SUX3XS | SUX4WS | SUX5XS
U usu U uwu UXWU | USoSu utwu uU2u UXx31wu UXx4wu UX5XWU
W wsw wuw W WXW wsow W1w W2xXw WX31W WX4wW WXEXW
x XSUX XWUX XWX X X0X X31WX X2X X3X X4X X5X
0 0S0 0SuUSo 0Wso 0X0 0 010 020 0130 040 0250
1 1WSU1 1WU1 W1 1WX31 101 1 121 131 141 135X31
2 2Usu2 2U2 2XW2 2X2 202 212 2 232 242 252
3 3XSUX3 | 31WUX3 | 31WX3 3X3 3013 313 323 3 3X4X3 35X3
4 | swsuxa | awuxe | awxa | axa 404 414 424 4X3X4 4 454
5 5XSUX5 | 5XWUX5 | 5XWX5 5X5 5025 5X3135 525 5X35 545 5

73

Recall our convention on presenting geodesic loops. Thus, in matrix L p,,
the geodesic chain from letter B to digit 8 in the first observation area is
B —5—6—7— 8 and that from 8§ to Bis 8 - 7 — 5 — B. In the
second observation area, the geodesic chains should be read from right to
left: 8 «— 7+ 5« B from B to 8, and B «— 5« 6 «— 7 < 8 from 8 to
B. The oriented Fechnerian distances (lengths of the geodesic chains) are

A more comprehensive procedure should have involved a repeated generation of
statistically retainable p;; matrices subject to Regular Minimality, as discussed
in the concluding section.
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G (B,8) =.70, G; (8,B) = .70, G2 (B,8) = .77, and G2 (8, B) = .63. The
lengths of the closed loops in both observation areas add up to the same
value, G(8, B) = 1.40, as they should.

Note that Fechnerian distances G;; are not monotonically related to dis-
crimination probabilities p;;: there is no functional relation between the two
because the computation of G;; for any given (i, j) involves p;; values for all
(4,7) . And, the oriented Fechnerian distances G (s;, ;) and G2 (s;, s;) are
not monotonically related to psychometric increments p;; — p;; and p;; — pys,
due to the existence of longer-than-one-link geodesic chains. There is, how-
ever, a strong positive correlation between p;; and G;;: 0.94 for Rothkopf’s
data and 0.89 for Wish’s data (the Pearson correlation for the entire ma-
trices, 36 x 36 and 32 x 32). This indicates that the probability-distance
hypothesis, even if known to be false mathematically, may still be accept-
able as a crude approximation. We may expect consequently that MDS-
distances could provide crude approximations to the Fechnerian distances.
That the adjective “crude” cannot be dispensed with is indicated by the
relatively low values of Kendall’s correlation between p;; and G;;: 0.76 for
Rothkopf’s data and 0.68 for Wish’s data.
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0.10 0.10 -
1 2 3 1 2 3
122221
122221 . 11112-4
11122-3 =
222229 u 222224
o 111124 1223
5 [ ]
& 22211-8 ~
2 = 211116 22219
15] = 2111-B -
£ | 20019 - - 22118 2111-8
a 221117 s - 1111-1 s
r - }
A 221117 , M6 B
Dimension 1 Dimension 1

Fig. 6: Two-dimensional Euclidean representations for discrimination probabilities
(nonmetric MDS, Panel A) and for Fechnerian distances in matrix Gro (metric
MDS, Panel B). The MDS program used is PROXSCAL 1.0 in SPSS 11.5, mini-
mizing raw stress. Sequence of "1"s and "2"s preceding a dash is the Morse code
for the symbol following the dash. Insets are scree plots (normalized raw stress
versus number of dimensions).

MDS can be used in conjunction with FSDOS, as a follow-up analy-
sis once Fechnerian distances have been computed. A nonmetric version of
MDS can be applied to Fechnerian distances (as opposed to discrimination
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Fig.7: Same as Fig. 6, but for discrimination probabilities (nonmetric MDS,
Panel A) and for Fechnerian distances in matrix Gw; (metric MDS, Panel B). L
stands for long tone, S for short tone, whereas digits 1 an 3 show the lengths of

the two pauses.
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probabilities directly) simply to provide a rough graphical representation
for matrices like Ro and Wi. More interestingly, a metric version of MDS
can be applied to Fechnerian distances to test the hypothesis that Fech-
nerian distances, not restricted a priori to any particular class (except for
being intrinsic), de facto belong to a class of Euclidean metrics (or, more
generally, Minkowski ones), at least approximately; the degree of approx-
imation for any given dimensionality is measured by the achieved stress
value. Geometrically, metric MDS on Fechnerian distances is an attempt
to isometrically embed the discrete object space into a low-dimensional
Euclidean (or Minkowskian) space. Isometric embedment (or immersion)
means mapping without distorting pairwise distances. Figures 6 and 7 pro-
vide a comparison of the metric MDS on Fechnerian distances (matrices
Ro, W1i) with nonmetric MDS performed on discrimination probabilities
directly (matrices Gro, Gw;). Using the value of normalized raw stress as
our criterion, the two-dimensional solution is almost equally good in both
analyses. Therefore, to the extent that we consider the traditional MDS so-
lution acceptable, we can view the Fechnerian distances in these two cases
as being approximately Euclidean. The configurations of points obtained by
performing the metric MDS on Fechnerian distances and nonmetric MDS
on discrimination probabilities are more similar in Fig. 6 than in Fig. 7, in-
dicating that MDS-distances provide a better approximation to Fechnerian
distances in the former case. This may reflect the fact that the correlation
between the probabilities and Fechnerian distances for Rothkopf’s data is
higher than for Wish’s data (0.94 vs. 0.89). A detailed comparison of the
configurations provided by the two analyses, as well as such related issues
as interpretation of axes, are, however, beyond the scope of this chapter.

3.6. General Form of Regular Minimality

In continuous stimulus spaces, it often happens that Regular Minimality
does not hold in a canonical form: for a fixed value of x, ¢ (x,y) achieves
its minimum not at y = x but at some other value of y. It has been noticed
since Fechner (1860), for example, that when one and the same stimulus is
presented twice in a succession, the second presentation often seems larger
(bigger, brighter, etc.) than the first: this is the classical phenomenon of
“time error.” It follows that in a successive pair of unidimensional stimuli,
(z,y) , the two elements maximally resemble each other when y is physically
smaller than z. Other examples were discussed in Chapter 1. Although it is
possible that in discrete stimulus spaces Regular Minimality always holds
in a canonical form, it need not be so a priori.

Returning once again to our toy example, assume that matrix TOY
was the result of a canonical relabeling of matrix TOY,
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ToY, ya yb yc yd
X 0.6 | 0.6 | 0.1 [ 0.8

x, | 09]09]08]o0.1
x, | 1 ]05] 1 |06
0507 | 1 |1

with the correspondence table

Ol X |Xp | Xc|Xd

02 Yel|Yd|Yb|Ya
common labellA |B |C |D

where 07 and O3, as usual, denote the two observation areas (row stimuli
and column stimuli). Having performed the Fechnerian analysis on TOY
and having computed the matrices Ly and G, it makes sense now to return
to the original labeling (using the table of correspondences above) and
present the Fechnerian distances and geodesic loops separately for the first
and the second observation areas:

L a b c d G, b c d
a a acba | aca ada a 0 1.3 1 1
b bacb b bcb | bdcb b 1.3 0 0.9 1.1
c cac cbhc c cdc c 1 0.9 0 0.7
d dad | dcbd | dcd d d 1 1.1 0.7 0

L, c d b a G,, d b a
c c cbhdc | cbc cac c 0 1.3 1
d dchd d dbd | dabd d 1.3 0 0.9 1.1
b bcb bdb b bab b 1 0.9 0 0.7
a aca | abda | aba a a 1 1.1 0.7 0

Denoting, as indicated in Section 1.2, the overall Fechnerian distances in
the first and second observation areas by G!) (a, b) and G®) (a, b), respec-
tively, not to be confused with the oriented Fechnerian distances G; (a, b)
and Gs (a,b),

GWY (a,b) = Gy (a,b) + G (b,a) = GV (b,a),
G<2) (a7 b) = GQ (aa b) + G2 (b7 a) = G(2> (b7 a) .

~—
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We see, for instance, that G(Y) (a,b) is 1.3, whereas G? (a,b) is 0.7, re-
flecting the fact that a, b are perceived differently in the two observation
areas. On the other hand, G? (c,d) is 1.3., the same as G!) (a, b). This
reflects the fact that ¢ and d in Oy are the PSEs for, respectively, a and b
in O;. Moreover, the geodesic loop containing c,d (in O5) is obtained from
the geodesic loop containing a, b (in O;) by replacing every element of the
latter loop by its PSE.

4. CONCLUDING REMARKS ON
FECHNERIAN SCALING OF
DISCRETE OBJECT SETS

We confine these concluding remarks to FSDOS only because this is the
case of Fechnerian Scaling we presented in a relatively comprehensive way.
With some technical caveats and modifications, the discussion to follow also
applies to MDFS and the more general theory of continuous and “discrete-
continuous” stimulus spaces presented in Dzhafarov and Colonius (2005a,
2005b).

4.1. Statistical Issues

In some applications, the number of replications from which frequency es-
timates of p;; = 1 (s;,s;) are obtained can be made sufficiently large to
ignore statistical issues and treat FSDOS as being performed on essentially
a population level. To a large extent, this is how the theory of FSDOS is
presented in this chapter. The questions of finding the joint sampling dis-
tribution for Fechnerian distances é'ij (i,j =1,2,...,N) or joint confidence
intervals for G;; are beyond the scope of this chapter. We can, however,
outline a general approach.

The estimators P;; of the probabilities p;; are obtained as

1
Pij= 2= Xijp.

k=1

where {X,,;jl, -y XijR,;  are random variables representing binary responses
(1 =dif ferent, 0 = same). The index k may represent chronological trial
numbers for (s;,s;), different examples of this pair, different respondents,
or some combination thereof. Random variables X;;, and X can be
treated as stochastically independent, provided (i, j, k) # (i, j', k'). Strictly
speaking, X;;i and X, ; are unrelated random variables, they do not have
a joint distribution (i.e., there is no pairing scheme for potential realizations
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of these two variables). Unrelated random variables, however (with no pair-
ing scheme), can always be treated as independent (all-to-all pairing).’

Assuming that Pr [X,;; = 1] does not vary too much as a function of k
(i.e., ignoring such factors as fatigue, learning, and individual differences),
Pij may be viewed as independent normally distributed variables with
means p;; and variances p;; (1 — p;;) /R;;, from which it would follow that
the joint distribution of the psychometric lengths of all chains with distinct
elements is asymptotically multivariate normal, with both the means and
covariances being known functions of true probabilities p;;. The problem
then is reduced to finding the (asymptotic) joint sampling distribution of
the minima of psychometric lengths with common terminal points. Realis-
tically, the problem is more likely to be dealt with by means of Monte Carlo
simulations.

Monte Carlo is also likely to be used for constructing joint confidence
intervals for G;;, given a matrix of p;;. The procedure consists of repeatedly
replacing the latter with matrices of p;; that are subject to Regular Mini-
mality and deviate from p;; less than some critical value (e.g., by the con-
ventional chi-square criterion), and computing Fechnerian distances from
each of these matrices.

4.2. Choice of Object Set

In some cases, as with Rothkopf’s (1957) Morse codes, the set S of stim-
uli used in an experiment or computation may contain all objects of a
given kind. If such a set is too large or infinite, however, one can only
use a subset S’ of the entire S. This gives rise to a problem: for any two

9In psychometric applications, it is customary to treat random variables ob-
tained from one and the same group of observers responding to different treat-
ments as being paired by the observer,that is, having a joint distribution and
being potentially interdependent. This is not a mathematical necessity, however,
but merely an indication of what one is interested in. Let R;; = Ryj» = R, and
let K be the random variable attaining values (1, ..., R) with (say) equal prob-
abilities. The question of traditional interest then can be formulated as that of
finding Pr[X;;x =1 and X,/ ;s x = 1] (the probability that responses randomly
chosen from the two cells are 1 given that they are by one and the same ob-
server), which need not decompose as Pr [X;;x = 1] Pr [X,; ;s x = 1] although X
and X,/ are independent for every k. In this context, however, the relevant
question is different: what is Pr[X;jx = 1 and X;/;sx = 1] (the probability that
responses randomly chosen from the two cells are 1)? Here, K and K’ are indepen-
dent random variables attaining values (1, ..., Ri;) and (1, ..., R;y/;), respectively:
in this case, R;; and R;/;; need not be the same, and all computations are in-
variant with respect to all possible permutations of the third index in all sets
{Xijl, ey Xinij } .
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stimuli a, b €5, the Fechnerian distance G (a,b) will generally depend on
what other stimuli are included in S’. Thus, adding a new object syi1
to a subset {sj,ss,...,sy} may change the pairwise discrimination prob-
abilities 9 (s;,s;) within the old subset (i,j = 1,2,...,N). This generally
happens in a psychophysical experiment, when pairs of stimuli are pre-
sented repeatedly to a single observer. In a group experiment with each
pair presented just once, or for the “paper-and-pencil” perceivers (as in our
example with statistical models), adding sy41 may not change 1 (s;.s;)
within {s1,sS2,...,sy}, but it will still add new chains with which to con-
nect any given stimuli s;,s; (i,7 = 1,2,..., N); as a result, the minimum
psychometric lengths Lfflgn (si,s;) and Ll(ﬁn
decrease.!?

A formal approach to this issue is to simply state that the Fechnerian
distance between two given stimuli is a relative concept: G (a, b) shows how
far apart the two stimuli are “from the point of view” of a given perceiver
and with respect to a given object set. This approach may be sufficient
in a variety of applications, especially in psychophysical experiments with
repeated presentations of pairs to a single observer: one might hypothesize
that the observer in such a situation gets adapted to the immediate context
of the stimuli in play, effectively confining to it the subjective “universe of
possibilities.” A discussion of this “adaptation to subspace” hypothesis can
be found in Dzhafarov and Colonius (2005a).

Like in many other situations involving sampling, however (including,
for example, sampling of respondents in a group experiment), one may only
be interested in a particular subset S’ of stimuli to the extent that it is rep-
resentative of the entire set S of stimuli of a particular kind. In this case,
one faces two distinctly different questions. The first question is empiri-
cal: is S’ large enough (well chosen enough) for its further enlargements
not to lead to noticeable changes in discrimination probabilities within S’?
This question is not FSDOS-specific, any other analysis of discrimination
probabilities (e.g., MDS) will have to address it, too. The second question
is computational, and it is FSDOS-specific: provided the first question is
answered in the affirmative, is S’ large (well chosen) enough for its fur-
ther enlargements not to lead to noticeable changes in Fechnerian distances
within S’? A detailed discussion being outside the scope of this chapter, we
can only mention what seems to be an obvious approach: the affirmative
answer to the second question can be given if one can show, by means of an

(sj.8;) (v =1,2) will generally

10This decrease must not be interpreted as a decrease in subjective dissimilarity.
Fechnerian distances are determined up to multiplication by an arbitrary positive
constant, which means that only relative Fechnerian distances G (a,b) /G (c,d)
are meaningfully interpretable. Adding a new object to a subset may very well
increase G (a, b) with respect to some or even all other distances.
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appropriate version of subsampling, that the exclusion of a few stimuli from
S’ does not lead to changes in Fechnerian distances within the remaining
subset.

4.3. Other Empirical Procedures

The procedure of pairwise presentations with same—different judgments is
the focal empirical paradigm for FSDOS. With some caution, however, FS-
DOS can also be applied to other empirical paradigms, such as the identifi-
cation paradigm: all stimuli {s;, 9, ..., sy } are associated with rigidly fixed,
normative reactions {R1, R, ..., Ry} (e.g., fixed names, if the perceiving
system is a person or group of people), and the stimuli are presented one at
a time. Such an experiment results in (estimates of) the stimulus-response
confusion probabilities 7 (R,|s;) with which reaction R, (normatively re-
served for s;) is given to object s;. FSDOS here can be applied under the
additional assumption that 7 (R;[s;) can be interpreted as 1 -1 (s;,s;). The
Regular Minimality property here means that each object s; has a single
modal reaction R, (in the canonical form, R;), and then any other object
evokes R; less frequently than does s;. Thus understood, Regular Minimal-
ity is satisfied, for example, in the data reported in Shepard (1957, 1958).
We reproduce here one of the matrices from this work (matrix Sh, rows are
stimuli, columns normative responses, entries conditional probabilities of
responses given stimuli), together with the matrix of Fechnerian distances
(Gsp). Geodesic loops are not shown because the space {A,B, ..., I} here
turns out to be a “Fechnerian simplex”: a geodesic chain from a to b in
this space is always the one-link chain a — b.!!

Sh A B C D E F G H |

A | 0.678|0.148 | 0.054 | 0.03 |0.025| 0.02 | 0.016 | 0.011 | 0.016
B | 0.167 | 0.544 | 0.066 | 0.077 | 0.053 | 0.015 | 0.045 | 0.018 | 0.015
C | 0.06 | 0.07 | 0.615 | 0.015 | 0.107 | 0.067 | 0.022 | 0.03 |0.014
D | 0.015|0.104 | 0.016 | 0.542 | 0.057 | 0.005 | 0.163 | 0.032 | 0.065
E | 0.037|0.068 | 0.12 | 0.057 | 0.46 | 0.075 | 0.057 | 0.099 | 0.03
F | 0.027 | 0.029 | 0.053 | 0.015 | 0.036 | 0.715 | 0.015 | 0.095 | 0.014
G | 0.011|0.033 | 0.015 | 0.145 | 0.049 | 0.016 | 0.533 | 0.052 | 0.145
H | 0.016 | 0.027 | 0.031 | 0.046 | 0.069 | 0.096 | 0.053 | 0.628 | 0.034
| | 0.005|0.016 | 0.011 | 0.068 | 0.02 | 0.021 | 0.061 | 0.018 | 0.78

"For the identification paradigm the construction of sampling distributions
and confidence intervals mentioned in Section 4.1 should be modified, as the
probability estimators within rows are no longer stochastically independent:

S n(Rylsi) = 1.
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G| A B c D E F G H [
A| 0 |0907|1.179 |1.175| 1.076 | 1.346 | 1.184 | 1.279 | 1.437
B| 0907 | 0 |1.023|0905| 0883 | 1.215[0.999 | 1.127 | 1.293
C| 1179 [ 1023 | 0 |[1.126] 0848 | 1.21 |[1.111|1.182 | 1.37
D| 1175 (0905 | 1126 | 0 |0.888 | 1.237 [0.767 | 1.092 | 1.189
E| 1076 | 0883|0848 0888| 0 |1.064 0887|092 | 1.19
F | 1346 | 1215 | 121 [1.237 | 1064 | 0 |1.217|1.152 | 1.46
G| 1184 | 0999 | 1.111 [ 0.767 | 0.887 | 1.217 | 0 | 1.056 | 1.107
H| 1279 | 1127 | 1182 [1.092 | 092 | 1.152 [1.056| 0 |1.356
I | 1437 | 1293 | 137 [1.189| 119 | 1.46 |1.107|1.356 | O

In a variant of the identification procedure, the reactions may be pref-
erence ranks for stimuli {sq, o, ...,sn}, Ry designating, say, the most pre-
ferred object, Ry the least preferred. Suppose that Regular Minimality
holds in the following sense: each object has a modal (most frequent) rank,
each rank has a modal object, and R; is the modal rank for s; if and only if
s; is the modal object for ;. Then the frequency rank R; that is assigned
to stimulus s; can be taken as an estimate of 1 — (s;,s;), and the data be
subjected to FSDOS. The fact that these and similar procedures are used
in a variety of areas (psychophysics, neurophysiology, consumer research,
educational testing, political science), combined with the great simplicity
of the algorithm for FSDOS, makes one hope that its potential application
sphere may be very large.

4.4. Transformation of Discrimination Probabilities

This is probably the most difficult of the open problems remaining in Fech-
nerian Scaling. If ¢ (x,y) satisfies Regular Minimality, then so does

o (xy) =9 (xy)],

for any strictly increasing transformation ¢. Regular Minimality is the only
prerequisite for FSDOS, and the latter makes no critical use of the fact that
the values of 1 (x,y) are probabilities, or even that they are confined to the
interval [0,1]. The question arises, therefore: Is there a principled way of
choosing the “right” transformation ¢ [¢) (x,y)] of ¥ (x,¥)? In particular,
is it justifiable to use the “raw” discrimination probabilities?

One possible approach to this issue is to relate it to another issue: to that
of the possibility of experimental manipulations or spontaneous changes of
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context that change discrimination probabilities but leave intact subjective
dissimilarities among the stimuli. In other words, we may relate the issue of
possible transformations of discrimination probabilities to that of response
bias.

Suppose that according to some theory of response bias, discrimination
probability functions can be presented as ¢z (x,y), where B is value of
response bias, varying within some abstract set (of reals, real-valued vec-
tors, functions, etc.). Intuitively, this means that although Vg, (x,y) and
Y, (x,y) for two distinct response bias values may be different, the dif-
ference is not in “true” subjective dissimilarities but merely in the “overall
readiness” of the perceiver to respond “different” rather than “same.” If
Fechnerian distances are to be interpreted as “true” subjective dissimi-
larities, one should expect then that Fechnerian metrics corresponding to
Y, (x,y) and ¢, (x,y) are identical (up to multiplication by positive
constants). This may or may not be true for Fechnerian metrics computed
directly from 1, (x,y), and if it is not, it may be true for Fechnerian met-
rics computed from some transformation ¢ [t (x,y)] thereof. The solu-
tion for the problem of what transformations of discrimination probabil-
ities one should make use of can now be formulated as follows: choose
o5 (X,y) = ¢ [tg (x,y)] so that G (a,b) computed from ¢ (x,y) is invari-
ant (up to positive scaling) with respect to 5.

The approach proposed is, of course, open-ended, as the solution now
depends on one’s theory of response bias, independent of Fechnerian Scal-
ing. Thus, if one adopts Luce’s (1963) or Blackwell’s (1953) linear model of
bias, o is essentially the identity function and one should deal with “raw”
discrimination probabilities. If one adopts the conventional d’ measure of
sensitivity, ¢ can be chosen as the inverse of the standard normal integral,

|pelee)
Y (xy) = E / e % 24z,

We do not know which model of response bias should be preferred.

Another approach to the problem of choosing the “right” transforma-
tion y, which we mention without elaborating, is through adopting a model
for computing discrimination probabilities from Fechnerian distances (and,
possibly, other functions of stimuli). Thus, in Chapter 1, we discussed a
“quadrilateral dissimilarity” model and its mathematically equivalent “un-
certainty blobs” counterpart. According to this model, if we assume the
canonical form of Regular Minimality, ¢ (x,y) (hence also ¢ [ (x,y)]) is a
strictly increasing transformation of

S (Xay) = Rl (X) + 2D (va) + RQ (y)a

where D (x,y) is some intrinsic metric and Rj, Ry some positive functions
subject to certain constrains. It is easy to show that D (x,y) will generally
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be different from the Fechnerian metric G (x,y) computed from thus gener-
ated ¢ (x,y) . The two intrinsic metrics may coincide, however, if G (x,y)
is computed from ¢ [¢) (x,y)] rather than ¢ (x,y). This suggests the fol-
lowing solution for the problem of what transformations of discrimination
probabilities one should make use of: choose ¢ (x,y) = ¢ [¢ (x,¥)] so that
G (a,b) computed from ¢ (x,y) coincide with D (x,y) in the “quadrilateral
dissimilarity” model.

APPENDIX: ALGORITHM OF
FECHNERIAN SCALING OF DISCRETE
OBJECT SETS

Given: a set of objects {s1,s2,...,sy} and N x N matrix of dis-
crimination probabilities 1 (s;,s;) (referred to later as the original
matrix).

1. Check the matrix for Regular Minimality: for ¢ = 1,..., N, the ith row
should contain a single minimum 1 (s;.s;) in cell (7, 5), and this value
should also be a single minimum in the jth column.

e The row object s; and the column object s; forming such a cell, are
points of subjective equality (PSE) for each other.

2. Form the table of mutual PSEs (row object vs. column object):

(slv sj1) ) (52* sz) 3oy (sN?SjN) .

e (j1,j2,...,Jn) is a complete permutation of (1,2,...,N).

3. Relabel the objects by assigning the same but otherwise arbitrary labels
to mutual PSEs:

(Sl‘sjl) - (alﬁal) ’ (5275]'2) - (327a2) y ooy (SNast) - (aNﬁaN) .
4. Form the matrix {a;,as,...,ay} x {aj,as, ...,ay}, with PSEs compris-

ing the main diagonal.

e Denote 1,} (a/i?aj) = Dij (7] = 1, N)
e Regular minimality now is satisfied in the canonical form: p; <
min {p;;, p;; } for all j # i.

5. Compute the matrix of psychometric increments of the first kind,

¢(1) (a,,;,aj) = Dij — Dii-
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6. For every ordered pair (a;,a;), compute the smallest value of

k—1
LW (X1,Xgy ooy Xp,) = Z ¢>(1> (xm,xm_ﬂ)

m=1

across all possible chains a; = x1,%,,...,x;, = a; (k =1,..., N) whose
elements are distinct.
e This minimum value, Ll(i?n (a;,a;), is the oriented Fechnerian dis-
tance G (a;,a;), of the first kind.
e Any chain at which this minimum is achieved is a Fechnerian geo-
desic chain from a; to a;.
e [Simple heuristics can significantly reduce the combinatorial search
for G, (a;,a;).]
7. From the N x N matrix of G; (a;,a,), compute the overall Fechnerian
distances
Gij = Gi(ai,a;) + G1 (a),ai) = Gji.
e The concatenation of a geodesic chain from a; to a; with that from

a; to a; forms a geodesic loop between a; and a; whose length L")
equals Gj;.

8. (Alternatively or additionally, for verification purposes.) Perform Steps
5, 6, 7 with (;S(Q) (aj,aj) = pji — pii replacing (b(l) (a;,aj) to obtain
oriented Fechnerian distances G2 (a;,a;), of the second kind, overall
Fechnerian distances G;; = G2 (a;,a,) + G2 (aj,a;) = Gj;, and the
corresponding geodesic chains and loops between a; and a;.

e Overall Fechnerian distances should be the same,

G2 (a,-, aj) + G2 (aj, ai) = G1 (ai,aj) + Gl (aj,ai) .

e Geodesic chains and loops are the same, but read in the opposite
direction.

9. In the matrix of overall Fechnerian distances, relabel the objects back,
{a1 — S1,a2 — S2,...,aN — SN}

and
{a; = s;,,a2 —'sj,,...,an — S,y },
to obtain, separately, the matrix of Fechnerian distances Gl(-jl-> for the row
objects of the original matrix and the matrix of Fechnerian distances
stz) for the column objects of the original matrix.
. GE;) = GE,QJ-)/ if and only if (s;,s;) and (s;,s;) are pairs of mutual
PSEs.
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10. In the matrix of geodesic loops, relabel all the objects back, as in the
previous step, to obtain the geodesic loops between the row objects
of the original matrix, and separately, the geodesic loops between the
column objects of the original matrix.

e A loop x1, X2, ..., Xp, X1 is a geodesic loop between the row objects
s; and s; if and only if the corresponding loop of PSEs y1, ya, ...,
¥n, ¥y, traversed in the opposite direction (i.e., y1, ¥n, -y ¥2, ¥1)
is a geodesic loop between the column objects s;» and s; that are
PSEs for s; and s;, respectively.

Remark 1. No relabeling is needed if Regular Minimality in the original
matrix holds in the canonical form to begin with. The matrices of Fech-
nerian distances and geodesic loops for the row and column objects then
coincide (except that the geodesic loops for the column objects should be
read in the opposite direction).

Remark 2. The original matrix of probabilities 1 (s;,s;) can be any matrix
that satisfies Regular Minimality and whose values are statistically compat-
ible with the empirical estimates 12' (si,s;j). The algorithm does not work
if no such matrix can be found. With large sample sizes, 1 (s;,s;) can be
simply identified with 1) (si,s;), with smaller sample sizes, one may need
to try a large set of matrices, v (s;,s;) statistically compatible with given
0 (si,s;), and to replicate the algorithm with each of these to eventually
obtain joint confidence intervals for Fechnerian distances.
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