# ARTICLE IN PRESS

Journal of Mathematical Psychology 🛚 ( 💵 🖛 ) 💵 – 💵



Contents lists available at ScienceDirect

## Journal of Mathematical Psychology



journal homepage: www.elsevier.com/locate/jmp

### Corrigendum

# Corrigendum to: "Dissimilarity cumulation theory in arc-connected spaces" [J. Math. Psychol. 52 (2008) 73–92]

## Ehtibar N. Dzhafarov

Department of Psychological Sciences, Purdue University, 703 Third Street, West Lafayette, IN 47907-2081, USA

### ARTICLE INFO

Article history: Received 10 March 2009 Available online xxxx

On p. 86, footnote 5 to Lemma 2 contains an error which, although inconsequential for the lemma's validity, needs to be corrected. The lemma relies on the fact that given a (necessarily countable) collection I of closed, nondegenerate, pairwise disjoint intervals in an interval [c, d], there is a continuous, onto function  $\phi : [c, d] \rightarrow [a, b]$  which is constant on each of the intervals in I and increasing everywhere else. The lemma correctly states that "such a  $\phi$  can be constructed in a variety of ways". The footnote in question was to provide an example of such a construction, and this example was in error.

Here is a correct example, chosen for closely following the standard construction of the Cantorian "devil's staircases": missing details therefore can be easily reconstructed from textbook descriptions of the latter (e.g., Kannan and Krueger, 1996, Example 1.3.3).

For simplicity, let [c, d] = [0, 1]. If there is no interval  $[0, v_0] \in \mathbb{I}$ , put  $v_0 = 0$  and include [0, 0] in  $\mathbb{I}$ . If there is no interval  $[u_1, 1] \in \mathbb{I}$ , put  $u_1 = 1$  and include [1, 1] in  $\mathbb{I}$ . Enumerate the intervals by dyadic numbers  $r = k2^{-n}$  ( $n = 0, 1, 2, ..., k = 0, ..., 2^n$ ) so that  $[0, v_0] = I_0$ ,  $[u_1, 1] = I_1$ , and if  $r_1 < r_2$  then  $I_{r_1}$  is below

 $I_{r_2}$ . This is easily achieved by a recursive construction starting with  $I_0$ ,  $I_1$  and following the rule that for any two intervals enumerated  $I_{i2^{-n}}$  and  $I_{(i+1)2^{-n}}$ , an arbitrary interval in between is chosen and designated  $I_{(2i+1)2^{-(n+1)}}$  (and if there is no such interval, the number  $(2i + 1)2^{-(n+1)}$  is not used in the enumeration). We define the mapping  $\phi$  on  $\bigcup \mathbb{I}$  by  $\phi(x) = r$  on interval  $I_r$ . If  $x \in [0, 1] \setminus \bigcup \mathbb{I}$ , we first define  $x_v = \sup\{v_r : v_r < x\}$  and  $x_u = \inf\{u_r : u_r > x\}$ , where we use the notation  $I_r = [u_r, v_r]$ , Then we put  $\phi(x_v) = \sup\{r : v_r < x\}$ ,  $\phi(x_u) = \inf\{r : u_r > x\}$ , and  $\phi(x) = \phi(x_v) + (\phi(x_u) + \phi(x_u))\frac{x-x_v}{x_u-x_v}$ , with the understanding that  $\phi(x) = \phi(x_v) = \phi(x_u)$  if  $x_u = x_v = x$ . The function obtained is a well-defined mapping  $[0, 1] \rightarrow [0, 1]$ , continuous, onto, constant on the enumerated intervals, and increasing everywhere else. (A Cantorian singular function is a special case in which  $x_u = x_v = x$  for all  $x \in [0, 1] \setminus \bigcup \mathbb{I}$ .)

#### References

Kannan, R., & Krueger, C. K. (1996). Advanced analysis on the real line. New York: Springer.

DOI of original article: 10.1016/j.jmp.2008.01.005. *E-mail address*: ehtibar@purdue.edu.

0022-2496/\$ – see front matter 0 2008 Elsevier Inc. All rights reserved. doi:10.1016/j.jmp.2009.03.004

Please cite this article in press as: Dzhafarov, E. N. Corrigendum to: "Dissimilarity cumulation theory in arc-connected spaces" [J. Math. Psychol. 52 (2008) 73–92]. Journal of Mathematical Psychology (2009), doi:10.1016/j.jmp.2009.03.004