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Abstract
The Contextuality-by-Default approach to determining and measuring the (non)contextuality

of a system of random variables requires that every random variable in the system be represented
by an equivalent set of dichotomous random variables. In this paper we present general principles
that justify the use of dichotomizations and determine their choice. The main idea in choosing
dichotomizations is that if the set of possible values of a random variable is endowed with a pre-
topology (V-space), then the allowable dichotomizations split the space of possible values into two
linked subsets (“linkedness” being a weak form of pre-topological connectedness). We primarily
focus on two types of random variables most often encountered in practice: categorical and real-
valued ones (including continuous random variables, greatly underrepresented in the contextuality
literature). A categorical variable (one with a finite number of unordered values) is represented
by all of its possible dichotomizations. If the values of a random variable are real numbers, then
they are dichotomized by intervals above and below a variable cut point.

1 Introduction
This paper deals with systems of random variables

R =
{
Rc

q : c ∈ C, q ∈ Q, q � c
}
, (1)

where Q denotes the set of properties q being measured (generically referred to as contents of the
random variables), C denotes the set of conditions under which the measurements are made (referred
to as contexts of the random variables), and the relation �, a subset of Q×C, indicates which content is
measured in which context. As an example, consider the system of random variables describing Bohm’s
version of the Einstein-Podolsky-Rosen experiment (EPR/B) [1], the one for which Bell derived his
celebrated inequalities [2–4]:

R1
1 R1

2 c = 1
R2

2 R2
3 c = 2

R3
3 R3

4 c = 3
R4

1 R4
4 c = 4

q = 1 q = 2 q = 3 q = 4 R

. (2)

Here, the random variables represent measurements of spins of two entangled spin-1/2 particles, one
measured by Alice along the axis q = 1 or 3, and the other measured by Bob along the axis q = 2 or 4.
The contexts c here are defined by the four combinations of the Alice-Bob choices of axes, and we have
(q = 1) � (c = 1), (q = 2) � (c = 1), (q = 2) � (c = 2), etc. More generally, contexts c may be defined
by any systematically varied conditions under which measurements are made. Thus, in the system

R1
1 R1

2 c = 1
R2

1 R2
2 c = 2

q = 1 q = 2 R
(3)
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the contexts c = 1 and c = 2 may represent two orders in which two measurements, of q = 1 and of
q = 2, are performed: 1→ 2 and 2→ 1. In this case, every q is measured in every c.

The sets of contexts and contents, C and Q, can be infinite and even uncountable, although in
all practical applications known to us C is finite. The systems R are classified into contextual and
noncontextual ones. The traditional approaches to contextuality are confined to systems without
disturbance, i.e., those in which any two Rc

q and Rc′

q have identical distributions. We call such systems
consistently connected [5]. In fact, in the traditional analysis one usually assumes that consistent
connectedness holds in the strong form: for any pair of contexts c, c′,{

Rc
q : q ∈ Q, q ≺ c, c′

} d
=
{
Rc′

q : q ∈ Q, q ≺ c, c′
}
, (4)

where d
= means “have the same distribution.” That is, the joint distributions for identically subscripted

random variables are identical [6,7]. For instance, in system (3), strong consistent connectedness means
that the two distributions, in c = 1 and c = 2, are identical:

{
R1

1, R
1
2

} d
=
{
R2

1, R
2
2

}
.

Our approach, however, called Contextuality-by-Default (CbD) [8–15], also applies to systems with
disturbance (e.g., signaling ones), generically referred to as inconsistently connected systems. The
reason for this is that, both in quantum physics and in non-physical applications, inconsistently con-
nected systems are abundant. Declaring them all contextual or denying the applicability to them of the
notion of contextuality seems unreasonably restrictive, as this leaves important empirical phenomena
outside contextuality analysis. For instance, system (2) describes not only the EPR/B experiment,
but also a single photon two-slit experiment. In this application q = 1 and 3 stand for the left slit
open and closed, respectively, and q = 2 and 4 stand for the right slit open and closed, respectively.
The random variables Rc

q are binary, indicating whether the photon in a given trial hits a localized
detector having passed through q when the two slits are in a particular closed-open arrangement c.
For example, Rc=2

q=2 = 1 if the particle passes through the open right slit and hits the detector when
the left slit is closed. This system is inconsistently connected, and its CbD analysis shows that it is
noncontextual [16]. By contrast, a three-slit single particle experiment, as shown in the same paper, is
described by an inconsistently connected system that can be contextual or noncontextual depending
on specific distributions of the random variables.

To give another example, system (3) can describe two sequential projective measurements performed
on a single particle, and then the system can be easily shown to be inconsistently connected (and
CbD analysis shows it is noncontextual [17]). Outside quantum mechanics, system (3) describes an
important behavioral phenomenon called “question order effect” [18]. Mathematically, this phenomenon
is precisely the inconsistent connectedness. In this application, q = 1 and 2 are two questions that can
be asked of a responder in one of two possible orders.

A practical benefit offered by CbD compared to traditional approaches to contextuality is the
ability to analyze real experiments, in which inconsistent connectedness is present either due to the
nature of the experimental object, or due to unavoidable or inadvertent design biases. Thus, an
important quantum-mechanical experiment [19] aimed at testing the contextuality inequalities for
cyclic systems of rank 5 [20] (cyclic systems will be defined below) exhibits two violations of consistent
connectedness, one of them expected, the other inadvertent. This makes the traditional theory of
contextuality inapplicable without elaborate work-arounds. The CbD analysis of this experiment [8]
faces no such difficulty, and demonstrates contextuality in these data with no “corrections” thereof
involved. Several other applications of CbD to quantum-mechanical experiments can be found in the
literature, e.g. [21–26]. Bacciagaluppi [27,28] used CbD to study the Leggett-Garg paradigm [29] where
“signaling in time” typically leads to inconsistent connectedness [30,31].

In human behavior (including decision making and psychophysical judgments) inconsistent connect-
edness is universal. Numerous attempts to demonstrate contextuality in behavioral and social systems
(reviewed in [17]) have failed because they overlooked or could not properly handle this fact. Contex-
tuality in some systems of random variables describing human behavior was, however, unambiguously
demonstrated in recent experiments [32–34].
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This paper focuses on a particular aspect of CbD, one that has not been sufficiently elaborated
previously. Namely, CbD requires that in contextuality analysis of arbitrary systems every non-binary
random variable Rc

q should be dichotomized, replaced with a set of jointly distributed binary vari-
ables. We explain in this paper why this should be done and how one is to choose the set of such
dichotomizations. We do this by systematically introducing the basics of CbD and relating them to
several principles or desiderata for an acceptable theory of contextuality. In the process, we also explain
other features of CbD, such as the use of multimaximally connected couplings.

Let us explain the terminology. The distribution of each random variablesRc
q shows the probabilities

of various measurable subsets of the set Eq of possible values of Rc
q. The types of the sets Eq endowed

with measurable subsets are virtually unlimited: the elements of Eq can be numbers, functions, sets,
etc. It is, however, always possible to present Rc

q by a set of jointly distributed binary random variables,
those attaining values 0 and 1. Indeed, for every measurable subset A of Eq one can form a random
variable

Rc
q,A =

[
Rc

q ∈ A
]

:=

{
1 if Rc

q ∈ A
0 otherwise

. (5)

The joint distribution of
{
Rc

q,A : A ∈ Σq

}
, where Σq is the sigma-algebra on Eq, is uniquely determined

by and uniquely determines the distribution of Rc
q. The binary variables Rc

q,A are called dichotomiza-
tions of Rc

q, and {A,Eq −A} is called a dichotomization of Eq. We can agree not to distinguish Rc
q,A

and Rc
q,Eq−A, and also exclude A = ∅ and A = Eq, for obvious reasons.

The problem of choice arises because in most cases
{
Rc

q,A : A ∈ Σq

}
is too large a set of dichotomiza-

tions, and one can equivalently represent Rc
q by much smaller sets

{
Rc

q,A : A ∈ Υq
}
, with Υq a proper

subset of Σq. For instance, if a random variable Rc
q is absolutely continuous with respect to the usual

Lebesgue measure, the set of possible dichotomizations includes Rc
q,A for all Borel-measurable A (or

“one half” of them, as we do not distinguish A and Eq −A). However, as shown in [10], using this set
would lead to the disappointing conclusion that all inconsistently connected systems comprising such
random variables are contextual (contravening thereby the Analyticity principle formulated in Section
3). One can do much better by observing that the distribution of such a variable is uniquely described
by its distribution function

F c
q (x) = Pr

[
Rc

q ≤ x
]
, (6)

whence it follows that Rc
q can be equivalently represented by a much smaller set of the variables

Rc
q,(−∞,x] =

[
Rc

q ≤ x
]
. (7)

We will see that this choice of dichotomizations is dictated by the general principles formulated in
Section 4. The theory of continuous and other real-valued random variables is discussed in Section 6.

Another class of random variables that plays an important role in contextuality analysis is the class
of categorical variables, those with a finite set of values that are arbitrary labels, with no ordering.
Let, e.g., Rc

q have the probability mass function

value : 1 2 3 4
probability : p1 p2 p3 p4

. (8)

It has 7 distinct dichotomizations,

Rc
q,{1}, R

c
q,{2}, R

c
q,{3}, R

c
q,{4}, R

c
q,{1,2}, R

c
q,{2,3}, R

c
q,{1,3}, (9)

but Rc
q can also be presented by a subset of them, say,

Rc
q,{1}, R

c
q,{2}, R

c
q,{3}, (10)
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with the joint distribution
Rc

q,{1} Rc
q,{2} Rc

q,{3} probabilty

1 0 0 p1

0 1 0 p2

0 0 1 p3

0 0 0 p4

...
...

... 0

. (11)

The theory of categorical random variables is discussed in Section 7. The application of the general
principles here leads one to choose the complete set (9) of dichotomizations over its subsets.

2 Systems and their couplings
The random variables Rc

q in (1) are measurable functions

Rc
q : Ωc → Eq, (12)

which implies that for any given context c ∈ C, the random variables in

Rc := {Rc
q : q ∈ Q, q � c} (13)

are jointly distributed (defined on the same sample space Ωc).1 The set of random variables Rc is
called a bunch (intuitively, the variables measured jointly).

For a given content q ∈ Q, the set

Rq := {Rc
q : c ∈ C, q � c} (14)

is called a connection; the random variables in a connection take their values in the same space Eq,
endowed with the same sigma-algebra Σq. The random variables in a connection are stochastically
unrelated (defined on different sample spaces Ωc).

A powerful way to investigate relations between stochastically unrelated variables is to construct
their probabilistic copies and make them jointly distributed. For instance, to find out how different
are two stochastically unrelated variables X1 and X2 one can consider all jointly distributed variables
(Y1, Y2) such that Y1

d
=X1 and Y2

d
=X2, and ask what is the minimal probability with which Y1 and

Y2 can differ. Note that this question is meaningless if posed for the {X1, X2} themselves, but the
minimal probability of Y1 6= Y2 can be viewed as a degree of difference between X1 and X2. The pair
(Y1, Y2) in this example is a special case of the notion defined next.

Definition 1. A coupling of a set {Xi : i ∈ I} of random variables (generally stochastically unrelated)
is a jointly distributed set {Yi : i ∈ I} of correspondingly indexed random variables where each Yi has
the same distribution as Xi :

Yi
d
=Xi, (15)

for all i ∈ I. Two couplings of the same set of random variables are considered indistinguishable if they
have the same distribution.2

1We use script letters, R,Rq , etc., for a set of random variables if they are not necessarily jointly distributed. If, as
in Rc, all elements of a set are jointly distributed, then Rc is a random variable in its own right, and we can use ordinary
italics.

2This means that the choice of a domain space for {Yi : i ∈ I} is irrelevant. There is a canonical way of constructing
this space. Let the set of values of Xi be Ei, with the induced sigma-algebra Σq . Then the domain space for {Yi : i ∈ I}
can be chosen as the set

∏
i∈I Ei endowed with

⊗
i∈I Σi. With this choice, every Yi is a coordinate projection function.
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For the wealth of uses of this notion in probability theory, see e.g. [35]. The following special types
of couplings are important in analyzing systems of random variables. An independent coupling is a
coupling {Yi : i ∈ I} such that all random variables in it are independent. This coupling exists and is
unique for any {Xi : i ∈ I}. A maximal coupling {Y1, Y2} of a pair {X1, X2} of random variables is a
coupling that maximizes the coupling probability Pr [Y1 = Y2] among all couplings of {X1, X2}. This
coupling also always exist, but is not generally unique unless X1, X2 are binary variables.3

Definition 2. A multimaximal coupling {Yi : i ∈ I} of {Xi : i ∈ I} is a coupling such that {Yi, Yj} is
a maximal coupling of {Xi, Xj} for all i, j ∈ I.

Multimaximal couplings play a central role in contextuality analysis. As a special case, the identity
coupling of {Xi : i ∈ I} is a coupling {Yi : i ∈ I} such that all random variables in it are identical:
Pr [Y1 = Y2] = 1 for all i, j ∈ I. Such a coupling only exists if variables in {Xi : i ∈ I} are identically
distributed, and then {Yi : i ∈ I} is the unique multimaximal coupling of {Xi : i ∈ I}.

The following theorem characterizes the multimaximal couplings for binary (0/1) random variables.

Theorem 3. Let {Xi : i ∈ I} be a set of binary random variables, and let {Yi : i ∈ I} be a coupling
of it. Then, the following statements are equivalent:

1. The coupling {Yi : i ∈ I} is multimaximal.

2. Given any finite subset {i1, . . . , in} ⊂ I of indices such that

Pr[Xi1 = 1] ≥ · · · ≥ Pr[Xin = 1],

the distribution of Yi1 , . . . , Yin is given by the probability mass function p(yi1 , yi2 , yi3 , . . . , yin−1
, yin)

determined by the n+ 1 probabilities (all other probabilities being zero)

p(0, 0, 0, . . . , 0, 0) = 1− Pr[Xi1 = 1],

p(1, 0, 0, . . . , 0, 0) = Pr[Xi1 = 1]− Pr[Xi2 = 1],

p(1, 1, 0, . . . , 0, 0) = Pr[Xi2 = 1]− Pr[Xi3 = 1],

...
p(1, 1, 1, . . . , 1, 0) = Pr[Xin−1 = 1]− Pr[Xin = 1],

p(1, 1, 1, . . . , 1, 1) = Pr[Xin = 1].

3. For any finite subset {i1, . . . , in} ⊂ I of indices, both

Pr[Yi1 = Yi2 = · · · = Yin = 0] and Pr[Yi1 = Yi2 = · · · = Yin = 1]

are maximal possible probabilities among all couplings {Yi : i ∈ I} of {Xi : i ∈ I}.

4. For any pair of indices i, j ∈ I such that Pr[Xi = 1] ≥ Pr[Xj = 1], any one of the following
statements:

(a) Pr[Y i = 1, Yj = 1] = Pr[Xj = 1], the maximal value among all couplings of {Xi, Xj}.
(b) Pr[Y i = 0, Yj = 0] = Pr[Xi = 0], the maximal value among all couplings of {Xi, Xj}.
(c) Pr[Y i = 0, Yj = 1] = 0.

Proof. With reference to [10], 1⇒ 2⇒ 3⇒1. That any of 4a, 4b, 4c implies the other two is established
by direct computation, any of them is implied by 2, on putting n = 2, and 4a with 4b imply 1.

3Denoting the measurable spaces in which X1, X2 are taking their values by (E1,Σ1) and (E2,Σ2), the definition
of maximal coupling is predicated on the assumption that the diagonal set {(x, y) ∈ E1 × E2 : x = y} is measurable in
Σ1 ⊗ Σ2. For dichotomous random variables this condition is satisfied trivially.
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Theorem 4. The multimaximal coupling {Yi : i ∈ I} of a set of binary random variables {Xi : i ∈ I}
is unique.

Proof. Consider two couplings {Y i : i ∈ I} and {Y ′i : i ∈ I} of {Xi : i ∈ I}, and let Ei denote the
set of values of Xi, for i ∈ I. It follows from Theorem 3 (statement 2) that their distributions agree
on all cylinder subsets of EI (i.e., Cartesian products of measurable Si ⊂ Ei, i ∈ I, with Si = Ei for
all but a finite number of i ∈ I). The cylinder sets form a π-system (a nonempty collection of sets
closed under finite intersections). Since the two distributions agree on a π-system (because cylinder
sets correspond to finite subsets J ⊂ I), it follows [36] that they must agree on the σ-algebra generated
by the π-system, in this case the product σ-algebra of EI .

Theorem 5. Given any set of binary random variables {Xi : i ∈ I}, the set {Yi : i ∈ I} defined by

Yi = [U ≤ Pr(Xi = 1)] :=

{
1, U ≤ Pr(Xi = 1),

0, otherwise,

where U is a uniform random variable on [0, 1], is the (unique) multimaximal coupling of {Xi : i ∈ I}.

Proof. That {Yi : i ∈ I} is a coupling of {Xi : i ∈ I} follows from the fact that (i) all Yi are functions
of the same random variable U (hence they are jointly distributed), and (ii) Pr [Yi = 1] = Pr[U ≤
Pr(Xi = 1)] = Pr(Xi = 1). For any i, j ∈ I,

Pr [Yi = Yj = 1] = Pr [U ≤ min [Pr(Xi = 1),Pr(Xj = 1)]] = min [Pr(Xi = 1),Pr(Xj = 1)] ,

which implies multimaximality by Theorem 3 (statement 4a).

3 Contextuality
Definition 6. A coupling of a system R = {Rc

q : c ∈ C, q ∈ Q, q � c} is an identically indexed set
S = {Sc

q : c ∈ C, q ∈ Q, q � c} of random variables whose set of bunches {Sc : c ∈ C} is a coupling of
the set of bunches {Rc : c ∈ C} of R.

In other words, S is a coupling of R if (as suggested by the notation) the elements of S are jointly
distributed and, for any c ∈ C,

Sc d
= Rc. (16)

Clearly, S contains as its marginals the couplings Sq =
{
Sc
q : c ∈ C, q � c

}
for each of the connections

Rq =
{
Rc

q : c ∈ C, q � c
}

of R. We can view the coupling S as a system in its own right, and its
marginals Sq as connections of this system. Then we can equivalently say either that, within S,
connections Rq have couplings Sq with some property P (e.g., multimaximal couplings) or that R has
a coupling S whose connections Sq have the property P (e.g., multimaximal connections).

The traditional approach [6, 7, 31, 37–42] is that a system is noncontextual if it has a coupling
whose connection Sq is the identity coupling of Rq, for every q ∈ Q. Recall that in the identity
coupling, Pr

[
Sc
q = Sc′

q

]
= 1 for all components of the connection Sq.4 Thus, for a system R to be

noncontextual in the traditional sense, the system must be consistently connected, and all random
variables Rc

q, Rc′

q , Rc′′

q , . . . in every connection Rq must correspond to one and the same random
variable Tq := Sc

q = Sc′

q = Sc′′

q = . . . in some coupling S of R. If a system is consistently connected
but such a coupling does not exist, the system is considered contextual. For an inconsistently connected
system, identity couplings of connections do not exist, because Pr

[
Sc
q = Sc′

q

]
cannot reach 1 unless

4The notion of a coupling in the traditional approach is not used explicitly (see [12, 13] for difficulties this creates).
To our knowledge, Thorisson [35] (Ch. 1, Sec. 10.4, p. 29) was first to use couplings in contextuality analysis of a system.
In CbD, they play a central role.
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Rc
q

d
= Rc′

q . All inconsistently connected systems therefore, if one follows the logic of the traditional
approach, have to be treated as (trivially) contextual, or else as systems whose contextuality status is
undefined. This violates a general principle that we will now formulate.

Let us define the format of the system R in (1) as

f := (�, {(Eq,Σq) : q ∈ Q}) . (17)

A format therefore specifies which content q is measured in which context c (the sets Q and C are
then effectively determined as projections of �), and it also specifies the type of the random variables
involved, i.e. their sets Eq of possible values and the associated sets Σq of events. Let us agree to
exclude the trivial formats in which every connection consists of a single random variable. The principle
in question is as follows.

Analyticity For any given format, among all inconsistently connected systems of this format there
are noncontextual systems.

In other words, contextuality status of an inconsistently connected system should depend on its bunch
distributions rather than be predetermined by its format. The importance of this principle is that it
rules out trivial extensions of the traditional contextuality theory, including the one that declares all
inconsistently connected systems contextual.

In CbD, the concept of (non-)contextuality is extended to inconsistently connected systems by
replacing identity couplings with multimaximal couplings: the general idea is that a system is non-
contextual if, for all q � c, c′ simultaneously, the value of Pr

[
Sc
q = Sc′

q

]
in some coupling S reaches its

maximum (which is 1 if and only if Rc
q

d
= Rc′

q ). However, the established definition in CbD requires
that the variables in the systems be dichotomized prior to being subjected to contextuality analysis.

Definition 7. A split representation of a system R = {Rc
q : c ∈ C, q ∈ Q, q � c} is a system

D = {Rc
q,A : c ∈ C, q ∈ Q,A ∈ Υq, (q, A) � c},

where
(i) Rc

q,A are binary variables defined by (5),
(ii) the values of Rc

q,A for all A ∈ Υq uniquely determine the value of Rc
q,

(iii) Υq ⊆ Σq, and Σq is the minimal sigma-algebra containing Υq,
(iv) (q, A) � c if and only if q � c and A ∈ Υq.5

For any q ∈ Q, the subsystem

Dq = {Rc
q,A : c ∈ C,A ∈ Υq, (q,A) � c}

is a split-representation of the system consisting of the single connection Rq.
The indexation of Υq implies that the same set of dichotomizations is applied to all random variables

in a given connection Rq. All these variables, we remind, have the same set of values Eq and the same
sigma-algebra Σq. We also remind the convention (to avoid trivial redundancy) that if A ∈ Υq then
Eq −A 6∈ Υq, and A is a proper, nonempty subset of Eq.

The split representation D retains the same set of contexts C as in R but splits each “old” content
q into a set of “new” contents {(q, A) : A ∈ Υq}. For example, suppose that in the system

R1
1 R1

2 c = 1
R2

1 R2
3 c = 2

R3
2 R3

3 c = 3
q = 1 q = 2 q = 3 R

(18)

5There is a slight abuse of notation here: we use the same symbol � to indicate the format relation of both R and D.
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the random variables in connection Rq=1 have values E1 = {1, 2, 3, 4}, the variables in connection
Rq=2 have values E2 = {a, b, c}, and the variables in connection Rq=3 are binary. Then, we could
represent the original system as[

R1
1 ∈ {1}

] [
R1

1 ∈ {1, 2}
] [

R1
1 ∈ {1, 2, 3}

] [
R1

2 ∈ {a}
] [

R1
2 ∈ {b}

]
c = 1[

R2
1 ∈ {1}

] [
R2

1 ∈ {1, 2}
] [

R2
1 ∈ {1, 2, 3}

]
R2

3 c = 2[
R3

2 ∈ {a}
] [

R3
2 ∈ {b}

]
R3

3 c = 3
q = (1, {1}) q = (1, {1, 2}) q = (1, {1, 2, 3}) q = (2, {a}) q = (2, {b}) q = 3 D

. (19)

Since the choice of a split representation of a given R is not unique without additional constraining
principles (to be discussed later), we denote

Υ := {Υq : q ∈ Q} , (20)

and refer to D in Definition 7 as the Υ -split representation of R.

Definition 8. A system R is Υ -noncontextual if its Υ -split representation D has a coupling whose
connections are multimaximal (such a coupling is called multimaximally connected). Otherwise R is
Υ -contextual.

Recall that the connections of a coupling of D are multimaximal if and only if they are multimaximal
couplings of the connections of D. Obviously, Υ -split representation of a system is a system of binary
random variables, and it is its own and only split representation (up to relabeling of values).

We will see in the following that at least in some cases the set Υ need not be mentioned because
its choice is determined uniquely by certain principles, to be formulated in Section 4. Even without
these principles, however, Υ obviously need not be mentioned if the variables in R are binary to begin
with. If the sets of contents and contexts in such a system are finite, the contextuality status of the
system (as well as measures of (non)contextuality, not discussed in this paper) can be computed by
linear programming. For the important special case of cyclic systems, the contextuality status and
measures of (non)contextuality can be determined analytically based on formulas derived in [9,14,15].
A cyclic system of rank n ∈ {2, 3, . . . } has 2n binary random variables arranged in bunches {Ri

i, R
i
i⊕1}

for i = 1, . . . , n, where i⊕ 1 = i+ 1 for i < n and n⊕ 1 = 1. Thus, (2) and (3) represent cyclic systems
of ranks 4 and 2, respectively. Cyclic systems cover a large part of traditionally considered systems
in physics and behavioral psychology. CbD allows one to analyze these systems with any amount of
inconsistent connectedness present.

Definition 8 can be equivalently stated as follows:

Definition 9. A system R is Υ -noncontextual if it has a coupling S whose Υ -split representation is
multimaximally connected.

This version is often preferable, because of the following observation.

Lemma 10. A coupling S of a system R, and the Υ -split representation of S uniquely determine each
other.

Proof. Given a coupling S (which is a system in its own right), a construction of its Υ -split repre-
sentation is given by Definition 7(i). Conversely, given a Υ -split representation D of a coupling S,
Definition 7(ii) implies that each random variable Sq

c of S is fully determined by its representation as
{Rc

q,A : A ∈ Υq} in D, and so the joint distribution of all Sc
q is also determined as all random variables

in D are jointly distributed.

It is clear from the proof that even though the split representation D may be very large, the support
of its coupling has the same cardinality as the support of a coupling S of the original system R.

We conclude this section with the following simple observation.
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Theorem 11. The definition of contextuality in CbD satisfies Analyticity with respect to any Υ -split
representation.

Proof. Given any format, choose, e.g., R of this format in which all random variables are deterministic
(making sure their values vary within a connection so that the system is inconsistently connected).
A unique coupling S then trivially exist for R, and any connection in this coupling is multimaximal.
Any split representation of S will retain the multimaximality of connections, proving that R is Υ -
noncontextual with respect to any Υ .

4 Why multimaximality, and why dichotomizations?
CbD is an extension of the traditional understanding of contextuality effected by two modifications
thereof: (1) the replacement of identity couplings of connections with multimaximal couplings, and (2)
the replacement of systems of random variables with their split representations. Both these modifica-
tions have been justified in previous CbD publications [10]. We will recapitulate these justifications
briefly.

The only alternative to multimaximal coupling proposed in the literature as a generalization of iden-
tity couplings is the notion of a globally maximal coupling. Such a coupling maximizes the probability
of

Sc1
q = Sc2

q = . . . = Sck
q , (21)

where {c1, . . . , cn} are all contexts in which q is measured (i.e.,
{
Sc1
q , . . . , S

ck
q

}
is a coupling of an entire

connection). This generalization was adopted in an earlier version of CbD, but abandoned later as it
fails to satisfy the following principle.

Noncontextual Nestedness Any subsystem of a noncontextual system is noncontextual.

A subsystem of a system is created by removing certain random variables from the system. Consider,
e.g., the system

R1
1 R1

2 c = 1
R2

1 R2
2 c = 2

R3
1 R3

2 c = 3
R4

1 R4
2 c = 4

q = 1 q = 2 R

(22)

with binary random variables whose bunches are distributed as

R1
2 = 1 R1

2 = 0
R1

1 = 1 1/2 0
R1

1 = 0 0 1/2

R2
2 = 1 R2

2 = 0
R2

1 = 1 0 1/2
R2

1 = 0 1/2 0

R3
2 = 1 R3

2 = 0
R3

1 = 1 1 0
R3

1 = 0 0 0

R4
2 = 1 R4

2 = 0
R4

1 = 1 0 0
R4

1 = 0 0 1

. (23)

It is easy to show that the maximal probability of S1
q = S2

q = S3
q = S4

q is zero for both q = 1 and
q = 2. Consequently, any coupling of R has globally maximal connections. If we adopt the definition
of contextuality based on globally maximal couplings, then this system is noncontextual. At the same
time, the subsystem

R1
1 R1

2 c = 1
R2

1 R2
2 c = 2

q = 1 q = 2 R′ ⊂ R
(24)

is, by the same definition (which in this case coincides with our Definition 8), contextual. In fact, it
has the maximal degree of contextuality among all cyclic systems of rank 2 [15]. This example also
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shows that the use of globally maximal connections violates another reasonable principle, formulated
next.

Deterministic Redundancy Any deterministic random variable can be deleted from a system with-
out affecting its contextuality status; and for any (q, c) 6∈ � (q is not measured in c), one can add
a deterministic Rc

q without affecting the system’s contextuality status.

As we use multimaximality to define contextuality, the Noncontextual Nestedness principle is satisfied
trivially, and it is shown in [11] that the Deterministic Redundancy principle is satisfied as well. How-
ever, these and other constraints stipulated in this paper do not determine multimaximality uniquely.
A generalization of multimaximally connected couplings, dubbed C-couplings, has in fact been con-
sidered [11, 44], in which maximality of Pr

[
Sc
q , S

c′

q

]
is replaced by an arbitrary property C that every

pair
(
Sc
q , S

c′

q

)
in a C-coupling S has to satisfy. Any C-coupling satisfies the principles of Noncon-

textual Nestedness and Deterministic Redundancy. At present, however, we do not know reasonable
alternatives to the maximality of Pr

[
Sc
q , S

c′

q

]
as a realization of property C.

The main reason why CbD requires dichotomization is that outside the class of binary random
variables the notion of contextuality does not satisfy the following principle.

Coarse-graining A noncontextual system remains noncontextual following coarse-graining of its ran-
dom variables.

A coarse-graining is a measurable function fq : Eq → E′q, for q ∈ Q. Thus, a coarse-graining maps Rc
q

into another random variable fq
(
Rc

q

)
by lumping together certain elements of Eq (the set of values of

Rc
q), doing this in the same way for all variables in a connection. Dichotomization is a special case of

coarse-graining, with E′q = {0, 1}.
Consider the following system:

R1
1 R1

2 c = 1
R2

1 R2
2 c = 2

q = 1 q = 2 R
, (25)

with the bunches distributed as

R1
2 = 1 R1

2 = 2 R1
2 = 3 R1

2 = 4
R1

1 = 1 1/2 0 0 0
R1

1 = 2 0 0 0 0
R1

1 = 3 0 0 1/2 0
R1

1 = 4 0 0 0 0

R2
2 = 1 R2

2 = 2 R2
2 = 3 R2

2 = 4
R2

1 = 1 0 0 0 0
R2

1 = 2 0 0 0 1/2
R2

1 = 3 0 0 0 0
R2

1 = 4 0 1/2 0 0

.

(26)
This system is noncontextual, because any coupling thereof has (multi)maximal connections. However,
if we coarse-grain (here, dichotomize) them by

f1 : ↓ 1 2 3 4
1 1 0 0

, f2 : ↓ 1 2 3 4
1 1 0 0

, (27)

the bunches of the new system will be distributed as

R1
2 = 1 R1

2 = 0
R1

1 = 1 1/2 0
R1

1 = 0 0 1/2

R2
2 = 1 R2

2 = 0
R2

1 = 1 0 1/2
R2

1 = 0 1/2 0
, (28)

and this system, as already stated in the previous example, is contextual.
By contrast, if a system consists of binary random variables, the Coarse-graining principle is satisfied

trivially. A coarse-graining of a binary variable maps it into itself (modulo renaming its values) or
into a deterministic variable, attaining a single value with probability 1. The latter cannot violate



11

the Coarse-graining principle because the CbD definition of contextuality satisfies the Deterministic
Redundancy principle.

If the system to be analyzed is consistently connected, multimaximal couplings reduce to identity
couplings, and (non)contextuality in CbD properly specializes to the traditional understanding of
(non)contextuality (provided the latter is rigorously stated in terms of couplings). The choice of a
split representation for a consistently connected system is inconsequential, and may even be omitted
as a matter of convenience.

5 How to choose dichotomizations?
The intuition behind how one has to do coarse-graining in general and dichotomization in particular
is simple: allowable “lumping” should only lump together “contiguous” sets of values. This intuition is
captured by the notion of (pre-topologically, or V-) linked sets.6

We define a symmetrical Fréchet V-space (see [43] for a general theory of Fréchet V-spaces) as a
non-empty set E endowed with a collection V of nonempty subsets of E, called vicinities. A vicinity V
can be called a vicinity of any element of V , and every element of E has to have a vicinity. The term
“symmetrical” reflects the fact that if y is in a vicinity of x, then x is in the vicinity of y. A topological
space is a symmetrical V-space with additional properties that we do not need to use.

Let us illustrate this and related concepts on a simple example. In a psychophysical experiment
described in [34], a small visual object (a “dot”) could be in one of five positions, as shown,

∗
∗ ∗ ∗

∗
, (29)

and an observer had to identify the position as center, left, right, up, or down. Thus the response of
the observer was a 5-valued random variable, and we take this set of 5 values as E. Let us associate to
each point x of E as its vicinities all sets consisting of x and its one-step-away neighbor. For instance,
the point left has the vicinities V1 = {left, up}, V2 = {left, center}, and V3 = {left, down}.

To define V-linked sets, we need to remind the concept of limit points (generalized to V-spaces).
Given a V-space E, a point x ∈ E is a limit point of a set F ⊆ E if every vicinity of x contains a point
of F other than x.

Definition 12. A subset F of a V-space E is V-linked if
(i) F is a singleton or a vicinity of some point in E;
(ii) F is a union of a V-linked set and a subset of its limit points;
(iii) F is a union of V-linked sets with a nonempty intersection.

When dealing with a random variable Rc
q whose set of values Eq is endowed with a sigma algebra

Σq, the latter does not generally determine the choice of a V-space Vq for Eq uniquely (and vice versa).
However, in “ordinary” cases, we have a natural choice of Vq and a natural choice of Σq for Eq that
satisfy the following definition.

Definition 13. Let a random variable R have a set of possible values E endowed with a V-space
V and a sigma-algebra Σ. The variable R is said to be ordinary if Σ is the smallest sigma-algebra
containing all the vicinities in V.

In our example (29), one can check that the smallest sigma-algebra containing all the vicinities
is the power set of E (because every singleton can be obtained by appropriate intersections of the
vicinities).

We are ready now to stipulate the definition that guides our choice of dichotomizations.
6This is essentially a weak form of pre-topological connectedness, but we avoid using the latter word to prevent

confusing it with its use in CbD, in such terms as “multimaximally connected” or “consistently connected,” derived from
the term “connection” for the set of random variables sharing a content.
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Definition 14. An allowable coarse-graining of V-space E is a surjection f : E → E′ such that E′ is
a V-space, and

(i) for any V-linked subset X of E, f (X) is a V-linked subset of E′, and
(ii) for any V-linked subset Y of E′, f−1 (Y ) is a V-linked subset of E.
A dichotomization is a mapping f : E → E′ where the vicinities in E′ = {0, 1} are taken to be

{0}, {1}, and {0, 1}. So for any E, the dichotomization is allowable if and only if D0 = f−1 (0),
D1 = F−1(1), and E = F−1({0, 1}) are V-linked.

Thus, in our example (29), there are 15 distinct partitions of the set into two subsets, and all of
them are allowable except for

◦
• ◦ •

◦
,

•
◦ ◦ ◦

•
, (30)

where the filled circles form non-linked sets D0.
The proof of the following statement is obvious.

Theorem 15. Allowable coarse-grainings are closed under compositions, that is, if f : E → E′ and
g : E′ → E′′ are allowable coarse-grainings, then g ◦ f : E → E′′ is an allowable coarse-graining.
In particular, every allowable dichotomization d : E′ → {0, 1} of an allowably coarse-grained V-space
E′ = f(E) yields an allowable dichotomization d ◦ f : E → {0, 1} of the original space E.

It follows that if one forms the split representation of a given systemR by all allowable dichotomiza-
tions of each connection, then the Coarse-graining principle is satisfied. Indeed, a split representation
of a coarse-grained system is merely a subsystem of the split representation of the original system,
because of which if the latter is noncontextual, then so is the former.

In the case of random variables with linearly ordered sets of values E ⊆ R, the natural vicinities of
x ∈ E can be chosen as all intervals {z : a < z < b} containing x, and the natural sigma-algebra is the
Borel sigma-algebra. The only linked subsets of E are intervals. Thence the allowable dichotomizations
are cuts:

{D0 (a) = {x : x ≤ a} , D1 (a) = {x : x > a}} (31)

and
{D′0 (a) = {x : x < a} , D′1 (a) = {x : x ≥ a}} , (32)

for all a ∈ E. One of these two types can be dropped if the other is used, as shown in the next section.
In the case E is a region of Rn, the situation is more complex, as one may associate with it

many “natural” but “uninteresting” V-spaces, making too many types of dichotomizations allowable.
This leads to all inconsistently connected systems being contextual, in violation of the Analyticity
principle. However, a variable with values in Rn can always be treated as n jointly distributed real-
valued variables, in which case the choice reduces to the one previously considered. At present, we do
not know whether there are other approaches to Rn-valued variables that comply with Analyticity.

In the case of a categorical random variable, E = {1, . . . , r}, its V-space involves all possible subsets,
the same as its sigma-algebra. Definition 14 then allows for all possible dichotomizations.

There seems to be no need to multiply examples, as they are easily construable.

6 Cut dichotomizations of real-valued random variables
Consider a single connection

{
R1

q , . . . , R
n
q

}
of a system, with all random variables being defined on

the set of reals endowed with the usual (Borel) V-space and the Borel sigma-algebra. This includes
variables with continuous distribution function, but also a variety of discrete linearly ordered random
variables, such as spin measurements in quantum physics, which have ordering (− 1

2 ,
1
2 ) for spin-1/2
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particles, (−1, 0, 1) for spin-1 particles, (− 3
2 ,−

1
2 ,

1
2 ,

3
2 ) for spin 3/2-particles, etc. Thus, virtually all

measurements in physics can be modeled using real-valued random variables.
Since the content q is fixed, we can drop this subscript and present our connection as

{
R1, . . . , Rn

}
.

In accordance with Section 5, we replace
{
R1, . . . , Rn

}
with the set of its cuts, that is, we form the

system of binary random variables

Rk
(−∞,x] := [Rk ≤ x] :=

{
1 if Rk ≤ x,
0 otherwise,

(33)

for k = 1, . . . , n (rows) and x ∈ R (columns). We could also have chosen them as

Rk
(−∞,x) := [Rk < x] :=

{
1 if Rk < x,

0 otherwise,
(34)

but it would not make any difference. Indeed, the set of points

R0 =
{
x ∈ R : Pr[Rk ≤ x] > Pr[Rk < x] for some k ∈ {1, . . . , n}

}
(35)

is at most countable. Let us indicate the elements of R−R0 by x̄. Consider any coupling
{
S1, . . . , Sn

}
of
{
R1, . . . , Rn

}
. Let a ∈ R and i, i′ ∈ {1, . . . , n} be arbitrary. Using the right-continuity of the

distribution functions,

Pr
[
Si ≤ a, Si′ ≤ a

]
= lim

x̄→a+
Pr
[
Si ≤ x̄, Si′ ≤ x̄

]
, (36)

for any a ∈ R.
But then

Pr
[
Si ≤ x̄, Si′ ≤ x̄

]
= min

{
Pr
[
Si ≤ x̄

]
,Pr

[
Si′ ≤ x̄

]}
(37)

for all x̄ ∈ R− R0 implies

Pr
[
Si ≤ a, Si′ ≤ a

]
= min

{
Pr
[
Si ≤ a

]
,Pr

[
Si ≤ a

]}
, (38)

for all a ∈ R. By Theorem 3 (statement 4a), this means that if the cuts are defined by (33), multimax-
imality of the split representation of

{
S1, . . . , Sn

}
is implied by the multimaximality of the same split

representation from which all connections corresponding to x ∈ R0 are removed. Since the reverse im-
plication is trivial, we can replace the implication with equivalence. We can analogously prove the same
for the split representations defined by (34), using the left-continuity instead of the right-continuity.

Let us therefore choose (33) for subsequent analysis, and let us write Rk
(−∞,x] more conveniently

as Rk
x.

Theorem 16. The split representation of a single connection formed by cuts as given by (33) is
noncontextual.

Proof. This system has the coupling {Sk
x : k = 1, . . . , n, x ∈ R} where

Sk
x = [F−1

k (U) ≤ x] = [U ≤ Fk(x)],

U is a [0, 1] uniform random variable, and Fk and F−1
k are, respectively, the cumulative distribution

function and the quantile function of Rk. As F−1
k (U)

d
=Rk, the first equality implies that this is

indeed a coupling of the system. The second equality implies, by Theorem 5, that this coupling is
multimaximal. As the whole coupling is multimaximal, its connections are also multimaximal, and the
system is noncontextual.
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Si

Sj

Fi(x) < Fj(x)

Fi(x) = Fj(x)

Fi(x) > Fj(x)

Figure 1: Illustration for Theorem 17. The shaded areas and solid lines contain the support of the
joint distribution of

(
Si, Sj

)
whose split representation has maximal connections.

This is quite a difference from considering all possible dichotomizations, which leads to all incon-
sistently connected single connections to be contextual [10]. Since a single connection can be viewed
as a system of random variables, generally inconsistently connected, the theorem shows that split rep-
resentations formed by cuts satisfy the Analyticity principle. Of course, a system consisting of more
than one connection may very well be contextual.

Consider an arbitrary coupling
{
S1, . . . , Sn

}
of a single connection

{
R1, . . . , Rn

}
such that the

split representation of this coupling is multimaximally connected. Theorem 16 says such couplings
exist, but the specific coupling constructed in this theorem is not the only possible multimaximally
connected coupling. We will now analyze the constraints a coupling {Sk

x : k = 1, . . . , n, x ∈ R} with
multimaximal connections imposes on the joint distributions of the coupling

{
S1, . . . , Sn

}
. Let us

choose two arbitrary elements of the coupling and denote them Si and Sj , and let Fi and Fj be their
respective distribution functions (i.e., the distribution functions of Ri and Rj).

Suppose we have a cut point x ∈ R such that Fi(x) > Fj(x). For the dichotomized variables
Si
x = [Si ≤ x] and Sj

x = [Sj ≤ x] this means Pr[Si
x = 1] > Pr[Sj

x = 1], and by Theorem 3 (state-
ment 4c) the pair {Si

x, S
j
x} is maximal if and only if Pr[Si

x = 0, Sj
x = 1] = 0. This is equivalent to

Pr
[
Si > x, Sj ≤ x

]
= 0, i.e., the joint distribution of (Si, Sj) vanishes on the set (x,∞)× (−∞, x].

By symmetry, for a cut point x ∈ R such that Fi(x) < Fj(x), we have {Si, Sj} maximal if and only
if the joint distribution of (Si, Sj) vanishes on the set (−∞, x]× (x,∞).

If Fi(x) = Fj(x), we have Pr[Si
x = 1] = Pr[Sj

x = 1], and {Si, Sj} is maximal if and only if
Pr[Si

x = 0, Sj
x = 1] = Pr[Si

x = 1, Sj
x = 0] = 0, implying that the joint distribution of (Si, Sj) vanishes

in the set (−∞, x]× (x,∞) ∪ (x,∞)× (−∞, x].
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Let us denote

K =
⋃
x∈R


(−∞, x]× (x,∞) ∪ (x,∞)× (−∞, x] if Fi(x) = Fj(x),

(−∞, x]× (x,∞) if Fi(x) < Fj(x),

(x,∞)× (−∞, x] if Fi(x) > Fj(x).︸ ︷︷ ︸
=Kx

(39)

The union does not change if instead of all x ∈ R, we take it only over the union of a countable dense
subset of R and the (at most countable set of) boundary points of the sets {x ∈ R : Fi(x) < Fj(x)}
and {x ∈ R : Fi(x) > Fj(x)}. Since the distribution of (Si, Sj) vanishes on each Kx, it also vanishes
for the countable union of such sets. Thus, we have the following result.

Theorem 17. The split representation of a coupling
{
S1, . . . , Sn

}
of the single connection

{
R1, . . . , Rn

}
of a system is multimaximally connected if and only if, for any i, j ∈ {1, . . . , n}, the joint distribution
of (Si, Sj) vanishes on the set K given by (39).

The region left after removing the set indicated in the theorem is shown in Figure 1 for a situation
when each of the sets {x ∈ R : Fi(x) = Fj(x)}, {x ∈ R : Fi(x) < Fj(x)}, and {x ∈ R : Fi(x) > Fj(x)}
is a union of disjoint intervals (including isolated single-point ones). The statement of Theorem 17
holds, however, in complete generality.

7 Split representation for categorical random variables
For categorical random variables, Definition 14 leads us to use all possible dichotomizations for split
representations of systems. The following notion was introduced in [10].

Definition 18. Given two probability mass functions p and q on the set {1, . . . , k} we say that p
nominally dominates q if and only if p(i) < q(i) for at most one index i ∈ {1, . . . , k}. If A and B are
random variables such that the distribution of A nominally dominates the distribution of B we write
A < B.

The significance of this notion is due to the following result obtained in [10]. (As we consider
single connections of systems, or single-connection systems, in the remainder of this section, we con-
tinue to drop fixed subscripts indicating contents in their notation, writing

{
R1, . . . , Rn

}
instead of{

R1
q , . . . , R

n
q

}
.)

Theorem 19. The split representation of a single connection {R1, R2} of two categorical random
variables with values in {1, . . . ,k} is noncontextual if and only if R1 < R2 or R1 4 R2.

Since k ≤ 3 implies that R1 < R2 or R1 4 R2 always holds, the split representation of a connection
of two categorical random variables is always noncontextual for k = 3. For more than two random
variables, this is no longer the case. For instance, we have the following observation.

Example 20. The split representation of all possible dichotomizations of a system consisting of a
single connection {R1, R2, R3} with values distributed as

1 2 3
R1 1/2 1/2 0
R2 0 1/2 1/2
R3 1/2 0 1/2

is contextual. This is the same system that was used as an example of a set of multi-valued random
variables that does not have a multimaximal coupling in [44]— noncontextuality of the split represen-
tation of all possible dichotomizations of a connection implies the existence of a multimaximal coupling
of the original connection.
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Let us consider next a connection R = {R1, . . . , Rn} with the value set {1, . . . , k}, k ≥ 3. The
split representation is contextual only if Rc < Rc′ or Rc 4 Rc′ for all pairs c, c′ ∈ {1, . . . , n}. This is
a necessary condition only. We obtain a rather weak sufficient condition if we impose the following
stringent constraints on the ordering of the probability distributions. Let us call R dominance-aligned
if, for some permutation {k1, . . . , kn} of {1, . . . , n}, the ordering

Pr[Rk1 = i] ≤ Pr[Rk2 = i] ≤ · · · ≤ Pr[Rkn = i] (40)

holds for all but one value of i ∈ {1, . . . , n}. It is clear that for the exceptional value of i (which, with
no loss of generality, can be taken as i = 1), the ordering is opposite,

Pr[Rk1 = i] ≥ Pr[Rk2 = i] ≥ · · · ≥ Pr[Rkn = i]. (41)

Without loss of generality then {k1, . . . , kn} can be taken to be {1, . . . , n}, which we will assume in
the following proposition.

Theorem 21. If a single connection R = {R1, . . . , Rn} is dominance-aligned, the split representation
of R is noncontextual.

Proof. Let us consider the split representation consisting of the splits

Rc
W := [Rc ∈W ]

for all nonempty W ⊂ {2, . . . , n}. All other splits are complements of these so this is a complete set
of splits. Choose a coupling S of R such that the events

S1 = i, S2 = i, . . . , Sn = i (*)

form a nested sequence of sets in the domain space of S for each i = 2, . . . , k. It follows that the
sequence of events

S1 ∈W,S2 ∈W, . . . , Sn ∈W (**)

forms a nested sequence for each nonempty W ⊂ {2, . . . , k}, since these sequences are termwise unions
of the nested sequences (*). Then, in the split representation of the coupling S, each column SW ,
W ⊂ {2,. . . , n}, is multimaximal, as the sequence of events

S1
W = 1, S2

W = 1, . . . , Sn
W = 1

corresponds to the nested sequence (**).

The well-alignedness condition is far from being necessary, as shown in the example below.

Example 22. The split representation of the single-connection system

a b c d

R1 .7 .1 .1 .1
R2 .1 .5 .2 .2
R3 .2 .2 .3 .3

is noncontextual as it has the coupling

.1 .1 .1 .1 .1 .1 .1 .1 .1 .1

S1 a a a a a a a b c d
S2 b b b b c d a b c d
S3 b a c d c d a b c d

whose split representation can be verified to be multimaximally connected (see the theorem below for
a general condition for this). However, the exceptional index is a for R2 < R1 (and for R3 < R1) and
b for R3 < R2.
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Theorem 23. Let S = {S1, . . . , Sn} be a coupling of the single connection {R1, . . . , Rn} with the value
set {1, . . . , k}, k ≥ 3, and let the index l enumerate all value combinations of S. Let Si(l) denote the
value of Si in the combination of values indexed by l. With reference to the matrix

· · · l · · · l′ · · ·
...

...
...

Si · · · Si (l) = x · · · Si (l′) = y · · ·
...

...
...

Si′ · · · Si′ (l) = z · · · Si′ (l′) = w · · ·
...

...
...

probability · · · pl · · · pl′ · · ·

,

the split representation of S is multimaximally connected if and only if there are no indices i, i′, l, l′
such that pl, pl′ > 0 and

x 6= y 6= w 6= z 6= x

(which does not preclude x = w and z = y).

Proof. If such i, i′, l, l′ exist, then Pr[Si
{x,w} = 1, Si′

{x,w} = 0] ≥ pl > 0 and Pr[Si
{x,w} = 0, Si′

{x,w} = 1] ≥
pl′ > 0, which implies by Theorem 3 (statement 4c) that (S1

{x,w}, . . . , S
n
{x,w}) is not a multimaximal

coupling. Conversely, assume that for someW ⊂ {1, . . . , k} the coupling (S1
W , ˙. . . ,Sn

W ) is not multimax-
imal. This means, by Theorem 3 (statement 4c), that for some i, i′ we have Pr[Si

W = 1, Si′

W = 0] > 0

and Pr[Si
W = 0, Si′

W = 1] > 0, which further implies that there exist indices l, l′ with pl, pl′ > 0 such
that

Si(l)︸ ︷︷ ︸
=:x

, Si′(l′)︸ ︷︷ ︸
=:w

∈W 63 Si′(l)︸ ︷︷ ︸
=:z

, Si(l′)︸ ︷︷ ︸
=:y

.

This implies x 6= y 6= w 6= z 6= x.

Note that in this proof, if the indices i, i′, l, l′ satisfying the stipulated conditions exist, we always
can choose W = {x,w} such that

(
Si
W , Si′

W

)
is not maximal. This W is a two-element or one-element

set. In [10], a subsystem of a split representation of system consisting of the one-element or two-
element dichotomizations is called a 1-2 subsystem. We have therefore the following consequence of
the theorem.

Corollary 24. The split representation of a single connection based on all possible dichotomizations
is noncontextual if and only if its 1-2-subsystem is noncontextual.

This generalizes the analogous result obtained in [10] for connections consisting of two random
variables.

8 Conclusion
To summarize, the CbD notion of (non)contextuality, based on multimaximality and dichotomiza-
tions, satisfies the principles of Analyticity, Noncontextual Nestedness, Deterministic Redundancy,
and Coarse-graining. It properly specializes to the traditional notion when applied to consistently
connected systems, and contains as a special case the well-developed theory of cyclic systems of binary
random variables. We have formulated a general principle by which we choose allowable dichotomiza-
tions. It requires that both parts of a dichotomization of the set of possible values Eq be linked subsets
of Eq. For the broad class of random variables we called ordinary, this uniquely determines the set
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λq of all allowable dichotomizations of Eq, and we have presented applications of this principle to
real-valued and categorical random variables.

Clearly, we have not provided an exhaustive list of principles or desiderata for a well-constructed
theory of contextuality. We may need to explicate additional principles to be able to deduce the CbD
theory (or perhaps a generalization thereof) axiomatically, as the only solution.
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