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Abstract

Ennis’s critique touches on issues important for psychophysics, but the points he makes against the hypothesis that Regular

Minimality is a basic property of sensory discrimination are not tenable.

(1) Stimulus variability means that one and the same apparent stimulus value (as measured by experimenter) is a probabilistic mixture

of true stimulus values. The notion of a true stimulus value is a logical necessity: variability and distribution presuppose the values that

vary and are distributed (even if these values are represented by processes or sets rather than real numbers). Regular Minimality is

formulated for true stimulus values. That a mixture of probabilities satisfying Regular Minimality does not satisfy this principle (unless it

also satisfies Constant Self-Similarity) is an immediate consequence of my 2003 analysis. Stimulus variability can be controlled or

estimated: the cases when observed violations of Regular Minimality can be accounted for by stimulus variability corroborate rather

than falsify this principle. In this respect stimulus variability is no different from fatigue, perceptual learning, and other factors creating

mixtures of discrimination probabilities in an experiment.

(2) Could it be that well-behaved Thurstonian-type models are true models of discrimination but their parameters are so adjusted that

the violations of Regular Minimality they lead to (due to my 2003 theorems) are too small to be detected experimentally? This is possible,

but this amounts to admitting that Regular Minimality is a law after all, albeit only approximate: nothing in the logic of the Thurstonian-

type representations per se prevents them from violating Regular Minimality grossly rather than slightly. Moreover, even very small

violations predicted by a given class of Thurstonian-type models can be tested in specially designed experiments (perhaps under

additional, independently testable assumptions). The results of one such experiment, in which observers were asked to alternately adjust

to each other the values of stimuli in two observation areas, indicate that violations of Regular Minimality, if any, are far below limits of

plausible interpretability.

r 2006 Elsevier Inc. All rights reserved.
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1. Introduction

This paper pursues three goals:
1.
 To explain, more clearly than it is done in Ennis (2006),
the law of Regular Minimality and its conceptual
environment (observation areas, points of subjective
equality, constant errors, Nonconstant Self-Similarity);
2.
 To explain what I mean by Thurstonian-type modeling,
what my analysis of this type of modeling shows, and
what it implies for the nature of the putative random-
ness in the process of comparing stimuli; and
3.
 To demonstrate the untenability of Ennis’s criticisms.
e front matter r 2006 Elsevier Inc. All rights reserved.
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treated differently from the arguments he uses to justify

The issues raised in or derived from Ennis’s criticisms are

these criticisms. The issues are analyzed in the main text,
primarily in Sections 4 and 5. Ennis’s arguments I find to
be confused, and not to interrupt the presentation flow I
place my rejoinders to most of them in the Appendix, in the
form of numbered comments. The reader specifically
interested in these rejoinders may want first to look in
the concluding section of this paper, and then to pay
special attention to the comments referenced there.
I also relegate to the Appendix certain technical

clarifications, whether or not related to Ennis’s critique.
For greater transparency, the amount of detail and the
technical level in the main text are kept relatively low,
lower than required by the logic of the theoretical
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Fig. 1. Two possible operational meanings for the notion of observation

area. Stimuli are line segments uniquely identified by their length.
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constructs used. In particular, although the law of Regular
Minimality pertains to arbitrary sets of stimuli, and my
analysis of Thurstonian-type models deals with arbitrary
continuous stimulus spaces (e.g., regions of Rn), in this
paper the discussion is primarily confined to stimulus
representations comprising intervals of reals (and, in toy
examples, finite sets).

The paper includes many figures, and their captions
often contain essential information not necessarily repli-
cated or even mentioned outside them. A reference to a
figure, therefore, should be taken as that to additional
information (sometimes the main information in a given
paragraph) rather than to a mere illustration for a point
being made.
Observation area 1 (x 2 S1) is defined as ‘‘horizontal, presented on the

left’’; observation area 2 ðy 2 S2Þ is defined as ‘‘horizontal, presented on

the right’’ (in panel A) or ‘‘vertical, presented on the right’’ (in panel B). In

these two examples the meaning of x and y being judged ‘‘the same’’ is that

x and y appear identical in all respects except for being in different

locations and (in B) differently oriented.
2. Regular Minimality and related concepts

2.1. What is Regular Minimality?

Regular Minimality is formulated in terms of pairwise
discrimination probabilities,

cðx; yÞ ¼ Pr½x 2 S1 and y 2 S2 are judged to be different�.

(1)

To explain the symbols, consider the setup shown in Fig. 1.
The sets of stimuli S1 and S2 in this setup are identical sets
of real numbers (segment lengths) but they have different
operational meanings: x 2 S1 means that a segment of
length x is presented on the left, and y 2 S2 means that a
segment of length y is presented on the right. Fig. 1B
illustrates the fact that S1 and S2, two observation areas as
they were called in Dzhafarov (2002b), may also differ in
respects other than stimulus spatial location or temporal
order (see Comment 1).1

The law of Regular Minimality is a tripartite statement:
ðP1Þ
1He

Appen
2Th

functio
for every x 2 S1, function y! cðx; yÞ2 achieves its
global minimum at a single point y 2 S2, called the
point of subjective equality (PSE) for x;
ðP2Þ
 for every y 2 S2, function x! cðx; yÞ achieves its
global minimum at a single point x 2 S1, called the
PSE for y;
ðP3Þ
 y 2 S2 is the PSE for x 2 S1 if and only if x 2 S1 is
the PSE for y 2 S2. (See Comment 2.)
Fig. 2 illustrates the first two parts of the statement, with
the emphasis on the fact that a stimulus and its PSE
generally have different values. The non-coincidence of a
stimulus value and its PSE value is called a constant error,
by analogy with the use of this term in the context of
greater–less discriminations.
re and thereafter, all capitalized numbered comments refer to the

dix.

e notation y! cðx; yÞ means that function cðx; yÞ is viewed as a

n of y alone, with x being fixed; analogously for x! cðx; yÞ.
According to P1 the PSE for x 2 S1 is a well-defined
function of x, say, hðxÞ 2 S2. Analogously, due to P2 the
PSE for y 2 S2 is a well-defined function gðyÞ 2 S1. The
third part of the Regular Minimality law, P3, then can be
written as

g � h�1. (2)

The simplest special case is h � identity (equivalently,
g � identity): in this case no stimulus has a constant
error associated with it, in either observation area (see
Comment 3).
In its entirety the law of Regular Minimality is illustrated

in Figs. 3 and 4. These figures also illustrate the notion of
Nonconstant Self-Similarity3:

cðx; hðxÞÞcconst

or, equivalently,

cðgðyÞ; yÞcconst;

(3)

where c can be read ‘‘is not always.’’ In retrospect, the
prefix ‘‘self’’ was a poor choice on my part, because one
should always keep in mind that it does not indicate one
and the same physical stimulus. Rather it refers to stimuli
which are mutual PSEs. Thus, if one establishes that
cða; aÞcconst this does not constitute Nonconstant Self-
Similarity, unless one knows additionally that h � identity,
in which case physically identical stimuli in the two
observation areas are each other’s PSEs. If hcidentity,
properties of cða; aÞ have no special significance, it is the
3In recent work (e.g., Dzhafarov and Colonius, 2005a, 2005b) we prefer

to speak of Self-Dissimilarity, since we usually deal with function (1)

rather than its complement, Pr½x and y are judged to be the same�. I use

the earlier version here (Dzhafarov, 2002b) because it is used in Ennis’s

paper.
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Fig. 2. Probability cðx; yÞ with which stimuli x 2 S1 and y 2 S2 are judged to be different, shown for one value of x (left) and one value of y (right). For a

given stimulus in either of the two observation areas, PSE is the least discriminable from it stimulus in the other observation area. According to the Law of

Regular Minimality, this stimulus is defined uniquely.
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x
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Fig. 3. An illustration for the Law of Regular Minimality. Every x in observation area S1 has a PSE y in S2, and vice versa; and x is the PSE for y if and

only if y is the PSE for x. This is shown in the left panels for two PSE pairs, ðx1; y1Þ and ðx2; y2Þ. Note that the minima cðx1; y1Þ and cðx2; y2Þ are different
(Nonconstant Self-Similarity). The right-hand inset demonstrates the fact that the minima of the corresponding functions x! cðx; y1Þ and y! cðx1; yÞ
are the same, because they both equal cðx1; y1Þ (and analogously for x2; y2 and all other pairs of PSEs).
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properties of cðx; hðxÞÞ, the minimum level of function
cðx; yÞ, that matter.4 An experimental illustration for
Regular Minimality, Nonconstant Self-Similarity, and
constant error is given in Fig. 5 (see Comment 4).
4Switching to a canonical form (see Comment 3) conceals this difference

by virtue of a ‘‘notational trick,’’ which is one reason I avoid using

canonical transformations in this paper, where conceptual transparency is

critical.
2.2. How can Regular Minimality be violated?

The statement of the law of Regular Minimality consists
of three parts, and if a certain function cðx; yÞ violates this
law it can do this in two ways:
(a)
 either the statements P1 and/or P2 are violated, in
which case the PSE functions h and/or g are not well-
defined and P3 therefore cannot be formulated;
(b)
 or P1 and P2 are satisfied (i.e., h and g are well-defined
functions) but gch�1.
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Fig. 4. A function cðx; yÞ satisfying Regular Minimality and exhibiting

Nonconstant Self-Similarity. (The curves shown in Fig. 3 are cross-

sections of this function taken at two fixed values of x and two fixed values

of y.) The line shown in the xy-plane is the PSE line, it can be described by

either of the equations y ¼ hðxÞ (y is PSE for x) and x ¼ gðyÞ (x is PSE for

y), because g � h�1. Along the PSE line the function is at its minimum:

moving a point ðx; yÞ away from this line along the x-axis or the y-axis

increases the value of cðx; yÞ. Note the Nonconstant Self-Similarity

property: the minimum level of cðx; yÞ along the PSE curve is not

constant.

0.9223.00
0.800.9521.00

0.580.320.500.820.9519.00
0.630.370.530.860.9817.00

0.670.370.570.870.9815.00
0.670.420.600.871.0013.00

0.750.460.570.890.9811.00
0.770.509.00

0.747.00
23.0021.0019.0017.0015.0013.0011.009.007.00

Fig. 5. Experimental estimates for cðx; yÞ, with x and y being as in Fig. 1A

(data for one participant; segment lengths are given in pixels, with 1px �

0:86 min arc; within the central rectangle the estimates are based on � 600

replications per point, outside the rectangle on � 300 replications; for

other details see Dzhafarov and Colonius, 2005a). The law of Regular

Minimality is corroborated because the minimal value in every row

(encircled) is also the minimal value in its column. The encircled values are

clearly different from each other (Nonconstant Self-Similarity). Note the

constant error at each stimulus value: all minima lie outside the main

diagonal (indicated by the dashed line).
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Fig. 6 provides an illustration on three toy examples. In
matrix B, cðx; yÞ violates property P1: hðxÞ is not well-
defined. In matrix C, cðx; yÞ satisfies properties P1 and P2

(each row and each column has a single minimum) but it
violates property P3.
Thurstonian-type models, discussed in the next section,
may violate P1–P2, like matrix B, or only P3, like matrix
C. The latter is usually the case with simpler Thurstonian-
type models, of the kind proposed by Luce and Galanter
(1963) and used for illustration purposes in Dzhafarov
(2003a). With non-essential modifications Ennis’s illustra-
tions too are confined to such models. An example is
provided in Figs. 7 and 8, depicting a discrimination
probability function cðx; yÞ generated by a model in which
stimuli x and y are mapped into random variables X and Y

independently normally distributed on the axis of reals,
with their means and variances linearly related to stimulus
values; the decision ‘‘x and y are different’’ in this model is
made whenever jX� Yj exceeds some preset critical value.
The difference of main interest between Figs. 7 and 4 is

in the PSE lines: Regular Minimality means strictly one
such line, while the model depicted in Fig. 7 has two. Note
that my use of the notion of a PSE is not predicated on the
law of Regular Minimality in its entirety, it only requires
properties P1 and P2. This is convenient, because
otherwise one would have to use different names for
functions h; g depending on whether they are or are not
each other’s inverses. The same consideration applies to the
notion of a constant error: not to multiply terms
unnecessarily, one should speak of a constant error at a
given value of x whenever hðxÞax (and analogously for y,
if gðyÞay), whether or not g � h�1 (see Comment 5).

2.3. Regular Minimality and matching procedure

The law of Regular Minimality is formulated in terms of
the discrimination probability function cðx; yÞ, which
means that the law presupposes an experimental procedure
that provides an estimate of this function. Ideally, one deals
with a representative sample of stimuli repeatedly presented
in all possible pairwise combinations. In view of the
experiment presented later in this paper, however, it is useful
to consider another operationalization of the law, which some
may find even more plausible intuitively than the formulation
P1–P3. This is in fact how the notion of Regular Minimality
was first introduced, in Dzhafarov (2002b).
Consider the procedure of sensory-physical matching, in

which a participant is required to adjust the value of a
stimulus in one observation area until it matches a fixed
value of the stimulus in the other. In reference to Fig. 1, for
example, the segment length x 2 S1 (or y 2 S2) in a trial
may be kept fixed, while the participant changes the length
y 2 S2 (respectively, x 2 S1). Let us idealize the situation
by assuming that the participant makes no ‘‘adjustment
errors,’’ that is, the value of y that she judges to match a
given value of x is the same in all trials involving this value
of x; and analogously for trials involving a given value of y.
The following tripartite statement then can be considered
the matching-based version of the law of Regular Minimality:
ðP�1Þ
 for every x 2 S1 there is a single matching value
y 2 S2;



ARTICLE IN PRESS

110.70.5xd

0.610.51xc

0.10.80.90.9xb

0.80.10.60.6xa

ydycybya(A)

110.70.5xd

0.610.51xc

0.10.80.90.9xb

0.80.10.60.1xa

ydycybya(B)

110.70.4xd

0.80.71xc

0.40.80.90.9xb

0.80.20.7xa

ydycybya(C)

0.6

0.4

Fig. 6. Three toy examples of a stimulus space consisting of four stimuli. Each cell shows the probability with which the cell’s row stimulus ð2 S1Þ and

column stimulus ð2 S2Þ are judged to be different. Matrix A satisfies Regular Minimality because each row and each column in it has precisely one

minimum, and a cell is minimal in its row if and only if it is minimal in its column. The pairs of PSEs in this matrix are ðxa; ycÞ, ðxb; yd Þ, ðxc; ybÞ, and ðxd ; yaÞ.

Matrix B violates Regular Minimality because the first row contains two identical minima. Matrix C violates Regular Minimality because while yb is the

PSE for xc, the PSE for yb is not xc but xa.

Fig. 7. A function cðx; yÞ that does not satisfy Regular Minimality:

although in this example the PSE lines y ¼ hðxÞ (y is PSE for xÞ and

x ¼ gðyÞ (x is PSE for y) are well-defined, they do not coincide (i.e.,

gch�1). This function is derived from a simple Thurstonian-type model

used as an example in Dzhafarov (2003a).
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ðP�2Þ
 for every y 2 S2 there is a single matching value
x 2 S1;
ðP�3Þ
 y 2 S2 matches x 2 S1 if and only if x 2 S1 matches
y 2 S2.
Let us further assume that this idealized matching
procedure is consistent with the same–different procedure,
in the following sense: y is judged to match a fixed value of
x if and only if cðx; yÞocðx; y0Þ for all y0ay, and x is
judged to match a fixed value of y if and only if
cðx; yÞocðx0; yÞ for all x0ax. Clearly, this assumption
implies that the functions h and g are well-defined, y is
judged to match a fixed value of x if and only if y ¼ hðxÞ,
and x is judged to match a fixed value of y if and only if
x ¼ gðyÞ. The notion of a PSE now has the same meaning
in the two procedures, and properties P�1–P
�
3 are equiva-

lent to properties P1–P3 componentwise. Property P�3,
however, has a new (idealized) operational meaning,
depicted in Fig. 9. Consider a ‘‘ping-pong’’ variant of the
matching procedure, in which (1) y is adjusted until it
matches a fixed value of x; (2) in the next trial the matching
value of y achieved in the previous trial is fixed, while x is
set at a random initial level and asked to be adjusted until it
matches y; (3) in the next trial this matching value of x is
fixed and y, being set at some random value, is adjusted to
match x; and so on. Clearly, if Regular Minimality holds,
we will have one and the same pair ðx; yÞ at the end of each
trial.
The situation is dramatically different if Regular

Minimality does not hold (specifically, if P�3 does not hold
while P�1 and P�2 do). This is shown in Fig. 10, a free-hand
generalization of the two non-coinciding PSE curves of
Fig. 7 (without the linearity constraints imposed on the
means and variances of the random images of stimuli).
Consider the ‘‘ping-pong’’ adjustment scheme in this
situation: in all odd-numbered trials y is adjusted until it
matches a fixed value of x, in all even-numbered trials the
procedure is reversed, and in each trial the fixed value is the
matching value achieved in the previous trial. It is easy to
see that now the matching values in either of the two
observations areas will not stay unchanged, they will form
a series of stimuli wandering away from the initial pair
ðx; yÞ: starting with a fixed x, and denoting the statement ‘‘y
is the match for x’’ by xxy, we have

xxyxx0xy0xx00xy00xx000xy000x . . .

Another way of looking at the difference between Figs. 9
and 10 is to say that Regular Minimality makes it possible
to speak of stimuli x and y as matching or mismatching
each other, whereas without Regular Minimality (but with
P�1 and P�2 satisfied) one can only speak of y matching x or
x matching y. If Regular Minimality does not hold, it
should in fact be expected that at least in some cases (when
the difference between the two PSE curves exceeds the
precision of matching adjustments) an observer who has
just adjusted y to match x to his satisfaction, will have to
readjust the value of x as soon as his attention is drawn to
the question of whether x matches y. This simple
observation shows that the law of Regular Minimality is
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Fig. 8. Cross-sections of the function shown in Fig. 7 made at two fixed values of x (top left) and two fixed values of y (bottom left); y1 and y2 are chosen

so that they are PSEs for x1 and x2, respectively. Note that the PSEs for y1 and y2 are not x1 and x2 but some stimuli x̄1 and x̄2, respectively (another way

of stating the fact that the two PSE lines in Fig. 7 do not coincide). The right-hand inset demonstrates that the minimum levels of functions y! cðx1; yÞ
and x! cðx; y1Þ are different even though y1 is the PSE for x1 (but not vice versa), because for the former function the minimum is cðx1; y1Þ while for the
latter function it is cðx̄1; y1Þ.

y = h(x)

x = g(y)

x

y

Fig. 9. A single PSE curve for cðx; yÞ satisfying Regular Minimality. x

and y shown are mutual PSEs. In the idealized matching procedure

described in the text, y will be matched to x if and only if x is matched to y.

Consequently any x and y can be said to be matched or mismatched,

without specifying which of them is compared to which.
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in fact an implicit foundation for a vast body of
psychophysical research: to the extent the existing theories
and summaries of empirical results involving matching do
not have to habitually mention which stimulus was
matched to which when they appear equal, Regular
Minimality must be true at least to a very good degree of
approximation.
A word of caution is due here: one should not forget that

the consistency of the (idealized) matching procedure with
same–different judgments is an additional assumption,
however plausible. Without this assumption one may very
well accept the matching-based version of the law of
Regular Minimality while challenging its main, same–dif-
ferent-based version (or vice versa).

3. Thurstonian-type models

In Dzhafarov (2003a, 2003b) I have shown the following.

Theorem 1 (Well-behaved Thurstonian-type models). Sup-

pose a discrimination probability function cðx; yÞ both

satisfies Regular Minimality and exhibits Nonconstant

Self-Similarity, at least in an arbitrarily small neighborhood

of at least one pair of mutual PSEs ðx0; y0Þ. Then cðx; yÞ
cannot be generated (accounted for) by any well-behaved

Thurstonian-type model (see Comment 6).

This result is the cause of Ennis’s critique of the law of
Regular Minimality. To understand this result we have first
to explain the terms ‘‘Thurstonian-type’’ and ‘‘well-
behaved,’’ as they are defined in Dzhafarov (2003a, 2003b).
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3.1. What does ‘‘Thurstonian-type’’ mean?

Not every model in which stimuli are mapped into
random variables constitutes a Thurstonian-type model.
Consider, for example, the construction presented in
Fig. 11, in which x and y, the stimuli being compared,
jointly evoke a random variable S. By an appropriate
choice of how its distribution’s parameters depend on x

and y one can generate any given discrimination prob-
ability function cðx; yÞ, including those with Regular
Minimality, Nonconstant Self-Similarity, or any other
property. This is not what I call a Thurstonian-type
y = h(x)

x = g(y)

x

y

x'x''x'''

y'

y''

y'''

Fig. 10. Two distinct PSE curves like the ones shown in Fig. 7. The

idealized ‘‘ping-pong’’ matching procedure described in the text forms a

series of distinct stimuli in each of the two observations areas. Here, one

cannot speak of x and y matching each other without specifying first

which of them is matched to which: if y is judged to match x, then x will

not be judged to match y, and vice versa.

subjective

dissimilarity

c b(x, y)

density

�(x, y)

Fig. 11. A trivially universal random representation scheme, to illustrate w

Thurstonian-type models. Any discrimination probability function cðx; yÞ can
variable S (interpretable as ‘‘subjective dissimilarity’’) uniformly distributed be

are different iff S4c’ (c being an arbitrary fixed number). If cðx; yÞ is never pre
the left endpoint fixed at zero.
representation, although, as pointed out below, such a
construction may very well turn out to be a better
description of the stimulus comparison process than any
Thurstonian-type model. The property which this con-
struction lacks (and is, as a result, applicable to any
function c) is selective attribution of random effects to
individual stimuli. In a Thurstonian-type model, as I
defined the term in Dzhafarov (2003a, 2003b), each of the
two stimuli being compared is mapped into a random
variable that can be interpreted as the image of this

stimulus, and not of the other.
This notion, that X is an image of x but not of y while Y

is an image of y but not of x, is illustrated and explained in
Fig. 12. The selective attribution of images to stimuli is not
a trivial issue when the images are stochastically inter-
dependent, and the definition given in Fig. 12 is derived
from the theory presented in Dzhafarov (2003c). In the
special case when X and Y are stochastically independent,
however, their selective attribution to x and y, respectively,
simply means that their distributions depend on x and y,
respectively (see Comment 7). Note that if x and y are
physically equal, or even if they are each other’s PSEs, their
respective images need not be identically distributed: the
dependence of X on x may be completely different from
that of Y on y.

3.2. What does ‘‘well-behavedness’’ mean?

Figs. 13 and 14 illustrate the notion of well-behavedness
in the dependence of a random image on stimulus. A
random entity X distributed on some probability space is
entirely characterized by probabilities Pr½X 2 A� evaluated
for all possible measurable sets (events) A. If X depends
on x, then these probabilities generally change with x.
For real-valued x the well-behavedness of X means that as
x changes around some value, these probabilities change
at well-defined rates (i.e., the directional derivatives
subjective

dissimilarity

c b(x, y)

density

a(x, y)

�(x, y)

hy the selective attribution constraint is essential in the definition of

be modeled as shown in the right-hand panel: stimuli x; y evoke a random

tween endpoints that depend on x and y, with the decision rule ‘the stimuli

cisely 1 one can even use the ‘‘universal’’ model in the left-hand panel, with
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X

Y

x

y

C

Fig. 12. A schematic illustration for the notion of selective attribution (in

the sense of Dzhafarov, 2003c). Random images X and Y (generally

stochastically interdependent) are said to be selectively attributable to (be

images of) stimuli x and y, respectively, if one can find a random entity C

whose distribution does not depend on either x or y and such that X and Y

conditioned upon its value are stochastically independent, with the

conditional distribution of X depending on x alone and the conditional

distribution of Y depending on y alone. In a Thurstonian-type model the

images evoked by two stimuli being compared are assumed to be

selectively attributable to these stimuli. In a well-behaved Thurstonian-

type model, in addition, it is assumed that C can be chosen so that for each

of its values the conditional distributions of X and Y are well-behaved (as

explained in Section 3.2).

x

x'

Fig. 13. An illustration for the notion of well-behavedness. The plane

represents a set of images, the shaded area a measurable subset, the two

figures represent distributions of images evoked by two values of stimulus,

x and x0 (in the same observation area). The well-behavedness means that

if x0 ! x the probability with which a random image falls within a

measurable subset changes at a rate bounded across all measurable

subsets. For example, the random image will be well-behaved if it has a

finite density in Rn smoothly depending on some parameters which in turn

smoothly depend on x. A well-behaved distribution, however, need not be

in Rn, need not possess a density, moments, etc.

x
x'

Fig. 14. Random images concentrated at a point in Rn (singular, or

deterministic images) cannot be well-behaved: one can always find a

measurable subset such that as x0 ! x the probability of the image falling

within this subset jumps from 1 to 0 or vice versa.
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ðq=qx�ÞPr½X 2 A� exist), and across all events A these rates
are bounded. Intuitively, for all events A, in response to
very small changes in x the probabilities of these events do
not jump in value, and do not come arbitrarily close to
jumping.
A Thurstonian-type model is well-behaved if X and Y,

the respective images of x and y, are well-behaved for any
given value of C (as explained in Fig. 12). The mentioning
of C can be dropped if X and Y are assumed to be
independent. Note that X and Y are distributed on some
unspecified probability space: this means that values of X
and Y may be entities of arbitrary complexity, such as
functions or sets rather than real numbers or real-
component vectors. Note also that the notion of a well-
behaved Thurstonian-type model imposes no restrictions
on decision rules: the decision to say that the two stimuli
are the same or different in a given trial is an arbitrary
deterministic or probabilistic function of the values of X

and Y in this trial. Thus, x and y in a model may evoke two
random processes X ¼ xðtÞ, Y ¼ yðtÞ resulting in the
response ‘the stimuli are different’ with some probability
pðX;YÞ. The notion of well-behavedness seems to encom-
pass all Thurstonian-type models that have been described
in the literature (see Comment 8).
A simple example of a Thurstonian-type model would be

one in which a set of perceptual images is partitioned into a
finite number of areas (categories) A1; . . . ;An, and stochas-
tically independent images X and Y of stimuli x and y fall
within these areas with probabilities p1ðxÞ; . . . ; pnðxÞ and
q1ðyÞ; . . . ; qnðyÞ, respectively. This model will be well-
behaved if and only if the derivatives ðq=qx�ÞpiðxÞ and
ðq=qy�ÞqiðxÞ exist. If one posits that the judgment
‘different’ is given if and only if X and Y fall in two
different areas, then cðx; yÞ ¼ 1�

P
piðxÞqiðyÞ. Even with-

out the general Theorem 1 it can be shown that this model
cannot account for both Regular Minimality and Non-
constant Self-Similarity in any area of ðx; yÞ-values,
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however small. Another simple example we find in the
models of Luce and Galanter’s (1963) variety, with
independently univariate-normally distributed X and Y.
Fig. 7 is generated by a model of this kind, with the usual,
Luce–Galanter decision rule (respond ‘different’ iff
jX� Yj4e). Such a model is well-behaved if the means
and variances of X and Y depend on, respectively, x and y

sufficiently smoothly. Unfortunately, Ennis seems to be
uncertain about how these models relate to Regular
Minimality (see Comment 9).

3.3. What does Theorem 1 imply for stochasticity in the

process of discrimination?

Although the well-behavedness constraint is only suffi-
cient but not necessary for Theorem 1 to hold, some
version of this restriction is indispensable, in view of the
following result, also presented in Dzhafarov (2003a).

Theorem 2 (Unrestricted Thurstonian-type models with

independent images). Any discrimination probability func-

tion cðx; yÞ can be generated by a Thurstonian-type model

with stimuli mapping into stochastically independent random

images.

This means that if one accepts Regular Minimality and
Nonconstant Self-Similarity but is set on using Thursto-
nian-type models in dealing with sensory discrimination,
one might use non-well-behaved Thurstonian-type models,
the ones in which Pr½X 2 A� in response to very small
changes in x may change arbitrarily fast. In particular, a
model with stimuli mapped into deterministic images which
in turn map into responses probabilistically is, formally, a
non-well-behaved Thurstonian-type model (see Fig. 14). In
Dzhafarov (2003b) I proposed one such model (‘‘uncer-
tainty blobs’’) which generates Regular Minimality and
Nonconstant Self-Similarity ‘‘automatically.’’ In Dzhafarov
and Colonius (2006) we reformulated and generalized this
model as that of ‘‘quadrilateral dissimilarity.’’ Using
Ennis’s classification, these are models of type II (but see
Comment 10).

Deterministic images, however, are not the only alter-
native to well-behaved Thurstonian-type representations.
Another alternative is to dispense with Thurstonian-type
representations altogether, more specifically, with the idea
that the choice between ‘same’ and ‘different’ is based on
images X and Y selectively attributable to stimuli x and y,
respectively. One can assume instead that the aspect of
mental/neurophysiological processing which is responsible
for same–different judgments is only representable by a
random entity S (state, process, set of states or processes)
whose distribution depends on both x and y, with no
possibility of selective decomposition. The distribution
presented in Fig. 11 provides an example: once the
distribution of S in this figure is chosen to account for
cðx; yÞ with both Regular Minimality and Nonconstant
Self-Similarity properties, it follows from Theorem 1 that
this S cannot be decomposed into (computed from) two
well-behaved images X;Y followed by any decision rule,
deterministic or probabilistic. One can say that the
property S here reflects in an irreducible way a relationship

between x and y, say, their subjective dissimilarity in a
given trial. A model of this variety has in fact been
proposed in the literature (Takane and Sergent, 1983).
To prevent a misunderstanding: to say that same–dif-

ferent judgments depend on a random representation of a
relationship between x and y rather than on their separate
images does not mean that such separate images do not
exist or are not random entities. This only means that the
task of discrimination is not based on these separate
random images. This could be one possible approach to the
question Ennis poses in his paper, of how one could
distinguish the processes in a perceiving system essentially
continuing the presentation of stimuli to this system from
the processes that begin the system’s reaction to these
stimuli.

4. Stimulus variability

Ennis’s analysis of the relationship between the law of
Regular Minimality and the issue of stimulus variability
consists of the following. First he uses an example to
demonstrate (by reasoning I find incorrect, see Comment 9)
the fact that if stimuli x and y in cðx; yÞ are names for
random variables rather than deterministic quantities then
cðx; yÞ may not satisfy Regular Minimality. Then he states
(correctly):

Dzhafarov’s analysis of well-behaved Thurstonian
same–different models for precise-valued stimuli shows
that under certain conditions these models will predict
that h is not invertible. Since Dzhafarov (2003a, 2003b)
defines RM [Regular Minimality] with respect to
precise-valued stimuli, the lack of invertibility of h

(i.e., the failure of P3 while P1–P2 are satisfied) for
noisy stimuli is not relevant to his discussion of RM.

And he immediately contradicts this statement by
saying:

However, since all stimuli exhibit some degree of
physicochemical noise, he exempts practical applications
of Thurstonian models by requiring that stimuli are
precise-valued.

I assume that by my ‘‘requiring that stimuli are precise-
valued’’ Ennis means that I formulate the law of Regular
Minimality in terms of precise-valued stimuli, and not that
I deny the reality of measurement errors or physical
fluctuations. If so, it is difficult to see how a law formulated
for precise-valued stimuli can prevent one from considering
situations in which these precise values vary. To give an
analogy: Newton’s second law of motion is not invalidated
by and does not deny the fact that force, mass, and
acceleration in any engineering application are measured
with some errors and/or fluctuate in their values; if these
errors and fluctuations are not negligible, their explicit
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s1

x y

Pr[‘different’] = �(x, y)

s2

Fig. 15. A simple Thurstonian-type model with stochastic effects and a

probabilistic decision rule: in a given trial stimuli s1 and s2 are

independently mapped into randomly varying effects x and y, respectively,

and the observer says ‘different’ with probability cðx; yÞ. The mathema-

tical structure of the model remains the same irrespective of whether s1; s2
are true stimulus values mapped into perceptual images x; y, or s1; s2 are

nominal (apparent) stimulus values mapped into true stimulus values x; y.
If the distributions of x; y are well-behaved, Theorem 1 applies in either

case.

Fig. 16. A toy example illustrating the fact that stimulus uncertainty

generally leads to violations of Regular Minimality with respect to

apparent stimulus values. The stimulus space is assumed to consist of five

stimuli with true values a; b; c; d; e. The apparent values (as known to the

experimenter) are encircled. On the left: each fan of lines extending from

an apparent value to several true values indicates that this apparent value

can in reality designate one of these true values with equal probabilities.

Thus, in both examples, the apparent value a may in reality designate a or

b with equal probabilities, the apparent value c may in reality be b, c, or d

with equal probabilities, etc. Even though the observer in these examples

discriminates the stimuli perfectly (left-hand matrices), when formulated in

terms of the apparent stimulus values (right-hand matrices) the

probabilities violate Regular Minimality.
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.35 .25 .4 .55 .8
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.3 .35 .4 .2 .3
.25 .45 .1 .55 .7
.35 .5 .4 .55 .2

.35 .25 .4 .55 .8

.15 .3 .3 .45 .6
.3 .35 .4 .2 .3
.25 .45 .1 .55 .7
.35 .5 .4 .55 .2

.26 .29 .38 .52 .60

.28 .31 .36 .44 .48

.30 .29 .34 .40 .47

.37 .34 .39 .38 .42

.39 .34 .43 .42 .50

.26 .31 .38 .43 .60

.28 .34 .33 .34 .39

.30 .32 .34 .33 .47

.34 .33 .34 .31 .44

.39 .36 .43 .40 .50
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a b c d e

a b c d e
a
b
c
d
e

Fig. 17. The same two stimulus misidentification schemes as in Fig. 16,

but applied to a matrix satisfying Regular Minimality in a more general

form. The values placed in squares on the left are the row-column minima.

The right-hand matrices violate Regular Minimality.
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models should be combined with the second law of motion
to produce correct predictions. This also applies to cases
with irreducible stochasticity, such as the number of
photons absorbed by a cone in retina: its Poisson
distribution is compatible with and should be combined
with any law relating the precise number of photons
absorbed to the cone’s electrochemical response.

The point of logic is that the notion of stimulus
variability and of a distribution of stimulus values
presupposes something that varies and values that are
distributed. Without creating an infinite regress, these
values are deterministic, and they can be called ‘‘true’’ or
‘‘precise’’ stimulus values. If an experimenter repeatedly
presents two lines of apparent lengths s1 and s2 (measured,
say, in min of arc), in reality she may be presenting values
x; y that are randomly distributed around these apparent
values, as shown in Fig. 15. Formally, we have a
Thurstonian-type model here (of type III, in Ennis’s
classification), with

cobsðs1; s2Þ ¼

ZZ
cðx; yÞdFs1ðxÞdF s2 ðyÞ, (4)

where cobsðs1; s2Þ is the observed probability with which s1
and s2 are judged to be different, Fs1ðxÞ;Fs2 ðxÞ are
distribution functions corresponding to s1; s2, and the
integration is over all possible values of ðx; yÞ. As with any
model of this kind, to make predictions about cobsðs1; s2Þ it
is equally important to know the properties of the
distribution functions Fs1ðxÞ;Fs2 ðxÞ and of the decision-
making probability function cðx; yÞ. In particular, it is
useful to know whether cðx; yÞ satisfies the law of Regular
Minimality and whether it exhibits Nonconstant Self-
Similarity. Whether cobsðs1; s2Þ has or does not have these
properties then can be determined mathematically. In fact,
if Fs1 ðxÞ and Fs2 ðxÞ are well-behaved (a natural assumption
when dealing with measurement errors), Theorem 1 tells us
that cobsðs1; s2Þ cannot have both.
One does not need Theorem 1, however, to demon-

strate that cobsðs1; s2Þ will generally violate Regular
Minimality when cðx; yÞ satisfies it. Two such demonstra-
tions are provided in Figs. 16 and 17. It would hardly be a
tenable position to maintain that because the stimuli in
these examples are probabilistically misidentified, it is of
little value or interest to know that true stimulus values are
discriminated perfectly (Fig. 16) or according to another
pattern satisfying Regular Minimality (Fig. 17).
The stimulus variability schemes shown in Figs. 15–17

are very simple. In a real psychophysical experiment they
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may be more complex. True stimulus values x; y, for
instance, may have a higher dimensionality than the
apparent stimuli s1; s2 (e.g., line segments identified by
their length may in fact vary not only in length but also in
width, shape, or intensity). True stimulus values may be
processes x ¼ xðtÞ; y ¼ yðtÞ, that is, they may change
within a trial (recall that this makes no difference for
the applicability of Theorem 1). Finally, as Ennis’s example
with chemical stimuli indicates, there may be situations
when one cannot tell, at least at one’s present state of
knowledge, precisely what processes constitute a stimulus.
In criticizing a potentially general law, however, one should
not argue from especially complicated special cases. New-
ton’s second law of motion would be very difficult to
establish on water jets in a waterfall, but once it is
established on more easily analyzable objects, it helps us to
understand waterfalls as well. In a psychophysical experi-
ment we usually identify a stimulus by its controllable
source and by controllable aspects of the observation
conditions. The stimuli we call ‘‘line segments,’’ for
example, are identified by geometric characteristics of their
sources (light distributions in a frontoparallel plane), with
such aspects as intensity, overall illumination, viewing
distance, etc., being held constant. Stimulus variability can
never be entirely eliminated, but one can always try
additional measures to reduce it below a level already
achieved (e.g., by fixing the observer’s head in a chin-rest,
monitoring eye movements, etc.). If these measures result
in a reduction or elimination of the observed violations of
Regular Minimality, it is reasonable to view the latter as
empirically corroborated. Epistemologically, it would have
been worse for the law of Regular Minimality if an
apparent compliance with it could somehow be created
rather than destroyed by uncontrollable stimulus variability.

5. Approximate law of Regular Minimality?

Ennis’s second line of criticism consists in suggesting the
following possibility: discrimination probability function
cðx; yÞ (now assuming that x and y are true stimulus
values) may be generated by a well-behaved Thurstonian-
type model, but the parameters of the latter could be so
chosen that the violations of Regular Minimality, as
predicted by Theorem 1, would be too small to be
detectable in a realistic experiment. Once again, the
substantiation Ennis gives to this possibility is not error-
free (see Comments 11 and 12), but this does not invalidate
the possibility itself. The latter, or at least a certain
interpretation thereof can be arrived at by means of a
simpler argument.

Consider Fig. 5. The set of stimuli used in this or any
other experiment is necessarily finite, involving therefore an
error of discretization. The conjunction of Regular
Minimality and Nonconstant Self-Similarity in Fig. 5 is
only corroborated within a two-pixel precision
ð� 1:8 min arcÞ. One cannot exclude the possibility, for
example, that the PSE for x ¼ 11 px is y ¼ 13 px, as the
data table suggests, but the PSE for y ¼ 13 px is, say,
x ¼ 11:5 px, rather than 11 px. Another illustration is given
in Comment 12, using Ennis’s own simulation study. On a
more general level, suppose that cðx; yÞ is generated by a
well-behaved Thurstonian-type model with two disparate
PSE curves y ¼ hðxÞ and x ¼ gðyÞ, as shown in Figs. 7 and
10. Since the stimulus scale in these figures is not specified,
it is possible that the difference between the two PSE lines
is so small that the grid of stimulus pairs ðai; ajÞ used in a
realistic experiment ði; j ¼ 1; . . . ; kÞ will be relatively too
coarse. It is easy to imagine a combination of two very
close PSE curves with a sparse grid structure in which every
ai will belong to a pair ðai; ajÞ which is so much closer to
both ðai; hðaiÞÞ and ðgðajÞ; ajÞ than the rest of the experi-
mental pairs that cðai; ajÞ will be found to be the smallest
value in both the ith row and the jth column, creating
thereby an ‘‘illusion’’ of Regular Minimality. Thus, if
hðaÞ ¼ gðaÞoa for all a (as it may happen in the simple
symmetric models of the Luce–Galanter variety), the
disparate pairs ðai; hðaiÞÞ and ðgðaiÞ; aiÞ may very well be
much closer to ðai; aiÞ than to any other pair from the
experimental grid, creating the impression that Regular
Minimality holds in its simplest form. Note that this
argument is entirely non-statistical: it holds true even if one
knows the probabilities cðx; yÞ for all experimental points
ðx; yÞ precisely.
I will assume that this ‘‘close-PSE-curves’’ interpretation

can be taken as the intended meaning of Ennis’s ‘‘subtle
and difficult to detect’’ violations of Regular Minimality. It
is important to see the implications of this interpretation.
Saying that cðx; yÞ is generated by a well-behaved
Thurstonian-type model but that this model’s parameters
are such that the two PSE curves y ¼ hðxÞ and x ¼ gðyÞ are
very close to each other does not mean that the closeness of
these PSE curves is ‘‘predictable’’ from the principles
underlying well-behaved Thurstonian-type models. On the
contrary, there is nothing in their internal logic that would
compel the violations of Regular Minimality to be small
rather than arbitrarily gross. To assume the closeness of the
PSE curves within the framework of well-behaved Thur-
stonian-type models amounts to assuming that Regular

Minimality holds as an approximate law, as an external
constraint in constructing these models. A simple but
rather apt analogy may help to understand this clearly.
Consider two competing assumptions about the form of
some relationship u ¼ f ðvÞ: one assumption is that
f ðvÞ ¼ expðkvÞ, the other says that f ðvÞ ¼ PmðvÞ, a poly-
nomial of an unspecified order m. Obviously, if the
exponential model holds, then no polynomial model can
be true (an analogue of our Theorem 1). Suppose that the
exponential model is corroborated by experimental data. A
proponent of the polynomial model may claim, however,
that it is the polynomial model which is true, but the
polynomial order and coefficients have to be adjusted so
that PmðvÞ closely approximates expðkvÞ. Clearly, this is a
possibility, but it does not follow from the internal
structure of polynomial functions. Rather for a proponent
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Fig. 18. A schematic representation of the ‘‘ping-pong’’ matching

procedure. The vertical scale represents values of two stimuli (lengths of

light segments) in two observation areas (x and y). The horizontal scale

shows successive trials. At the end of each trial x and y appear equal. A

new trial begins by a randomly chosen ‘‘disbalancing’’ change (indicated

by vertical point lines) in the stimulus that was kept fixed in the previous

trial. This stimulus is then being adjusted (as indicated by tilted solid lines)

until it appears to match the value of the other stimulus which remains

fixed throughout the trial (horizontal solid lines). This procedure

continues for a series of 200 trials yielding a series of 100 x-values and a

series of 100 y-values (referred to as x and y ‘‘balance’’ points, encircled).

An experiment consists of 10–25 such 200-trial series, all starting with one

and the same fixed x-value.
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Fig. 19. Details of Experiments A, C (with stimulus displays correspond-

ing to Fig. 1A) and Experiments B1, B2 (corresponding to Fig. 1B).

1 px � 0:92 min arcs. In reference to the procedure depicted in Fig. 18, the

initial value of x in each series was 45 px in Experiments A, C, and B1, and

it was 90 px in Experiment B2; the randomly chosen disbalance changes

were uniformly distributed on the set ½�15;�5� [ ½5; 15� (px) in Experi-

ments A, C, B1, and on the set ½�30;�10� [ ½10; 30� (px) in Experiment B2.
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of the polynomial model it amounts to adopting an
additional assumption that the exponential model holds
too, albeit approximately.

The question that arises is how small the hypothetical
small violations of Regular Minimality are in real data. An
obvious way of addressing this question is to conduct
experiments like the one depicted in Fig. 5 but with
progressively increasing density of the experimental grid of
stimuli. With a large number of replications per stimulus
pair, however, this approach may quickly run into
technical difficulties (for one thing, an observer’s percep-
tion and judgments are unlikely to remain unchanged
throughout an experiment that extends over many weeks).
In the remainder of this section I present an alternative
approach, using the matching-based version of the law of
Regular Minimality with the consistency assumption, as
described in Section 2.3. Suppose that the discrimination
probability function c which is consistent with matching
adjustments is generated by a well-behaved Thurstonian-
type model with the two PSE curves y ¼ hðxÞ and x ¼ gðyÞ

as shown in Fig. 10, with no cross-overs. Then the idealized
‘‘ping-pong’’ matching procedure illustrated in the same
figure yields a series of matched values in each observation
area which will deviate from the initial values by intervals
monotonically increasing with the number of adjustment
steps. Even if the two curves are very close to each other,
the eventual separations after a sufficiently large number of
steps can be expected to be large enough to be experimen-
tally detectable.

To switch from the idealized ‘‘ping-pong’’ procedure to a
realistic one I assume that when y is adjusted to match a
fixed value of x the matching value (referred to as balance

point) is achieved at

y ¼ hðxÞ þ eð2Þ, (5)

where eð2Þ is an adjustment error in the second observation
area. Analogously, for x-balance points,

x ¼ gðyÞ þ eð1Þ. (6)

I assume that the adjustment errors are symmetrically
distributed around zero (but are not necessarily stochasti-
cally independent). The details of the experimental
procedure are given in Figs. 18 and 19. Experiment C
referred to in the latter figure is the control experiment
whose main purpose was to help in determining time-series
properties of the balance points. This experiment (‘‘semi-
ping-pong’’ procedure) is described in Comment 13,
together with a summary of the time-series properties.

The results of Experiments A, B1, and B2 (for a single
participant naive as to the aims of the experiments) are
presented in Figs. 20–23. Two aspects of these results are
relevant to the present discussion.
1.
 The distributions of the first-order differences in Figs. 20
and 22 being almost perfectly symmetrical, they provide
no support even for very small violations of Regular
Minimality.
2.
 The magnitude of a systematic trend in the mean balance
points (Figs. 21 and 23) should reflect an average value of
the hypothetical difference between two PSE curves in
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Fig. 20. The results of Experiment A, consisting of 25 ‘‘ping-pong’’ matching series of 200 trials. Each experimental curve represents a series of 100

successive balance points for each of the two observation areas. The fan-like appearance of the tangle indicates a Winer-like process (see Comment 13).

The insets represent the distributions of changes (first-order differences) between successive balance points in a series. The distributions are almost

perfectly symmetrical.
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Fig. 21. The means of the balance point series shown in Fig. 20. The rate of the overall linear trend is about �0.008px/trial for both x and y balance
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Fig. 10 (horizontal difference in the case of x-balance
points and vertical for y-balance points). The observed
magnitudes of the overall trends are clearly below the level
of physiological plausibility, at least by a factor of 100.
Moreover, the trends are of different signs in different
experiments and for different parts of the series. (That the
trends are spurious is also evident from the fact that
smaller but comparable trends are found in the control
Experiment C, Fig. 27, where no trends are predicted
irrespective of whether Regular Minimality holds.)
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that in B1 the initial length on the left (x-value) was 45 pixels, in B2 it was 90 pixels. The insets are as in Fig. 20, and they too exhibit almost perfect

symmetry.
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These conclusions, however, should be taken with
caution, as their validity is based on two additional
assumptions: the absence of cross-overs between the two
hypothetical PSE curves, and a specific adjustment error
model, (5)–(6). Moreover, the relevance of these results for
discrimination probabilities hinges on the assumption of
consistency (Section 2.3). By presenting these experiments
therefore I do not claim a definitive corroboration of the
law of Regular Minimality, either in its main version
(P1–P3) or the matching-based one (P�1–P

�
3). Rather the

goal is to demonstrate that the issue of ‘‘subtle violations’’
can be meaningfully addressed by experimental means.

6. Conclusion

The concluding section of Ennis’s paper provides a
convenient way of summarizing my analysis of his
criticisms. He writes in this section:

... it is easy to show that the mapping between
observation areas may not be invertible when stimuli
possess stimulus noise. The imposition of invertibility of
this mapping on models of discrimination probabilities
would be highly restrictive, particularly when stimulus
variance is a primary source of perceptual variance as
occurs in practical applications of Thurstonian models.

The logical problems with this criticism and with the
arguments by which it was arrived at are explained in
Section 4 and in Comment 9. The summarizing statement
itself seems to augment the confusion by implying that I
impose the property P3 on situations where, according to
my own analysis, this property cannot be satisfied.
Ennis also writes:

... violations of RM may be subtle and difficult to detect
experimentally, often not exhibited in matrices of
same–different discrimination probabilities. Under the
assumptions made it seems that the conditions leading
to more confidence in observing NCSS [Nonconstant
Self-Similarity] are those that increase the likelihood of
observing RM in an experiment.

The confusions in the arguments by which Ennis arrives
at these conclusions are pointed out in Comments 11 and
12. In particular, Comment 12 demonstrates that the
second sentence in the quotation is factually incorrect.
The possibility of ‘‘subtle and difficult to detect’’ violations
of Regular Minimality, however, becomes a valid
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consideration under a reinterpretation of Ennis’s position.
This reinterpretation (involving sparsity of the experimen-
tal grid of stimulus pairs) and its theoretical implications
(‘‘approximate law of Regular Minimality’’) are presented
in Section 5. The experiments with length discriminations
described in that section do not exhibit even small
violations of Regular Minimality, provided ‘‘small’’ is not
meant to fall outside the range of plausible interpretability
(say, below 0.1min arc).

The notion of the range of plausible interpretability
deserves a comment. If the law of Regular Minimality is
valid, its sphere of applicability, as with any other law, is
limited to a certain scale of consideration. In this trivial
sense Regular Minimality is bound to be an approxima-
tion, and its relationship to Thurstonian-type modeling is
only meaningful to discuss within the framework of
appropriately chosen description of a stimulus space. Thus,
since the notion of well-behavedness in Theorem 1 (Section
3) does not apply to discrete stimulus spaces, the
applicability of Theorem 1 may break down on a
‘‘microscopic’’ scale of consideration, where the continuity
in the description of stimuli gets into a conflict with the
discreteness in the structure of receptors, molecular
interactions, or quantal phenomena.
Ennis is doubtlessly right when he says that Thursto-
nian-type models are simple and intuitive. One should not
forget, however, that they are still only models rather than
facts, and that part of their appeal may be in their
potentially unlimited fitting power, due to the unlimited
freedom one has in choosing these models’ unobservables:
probability spaces, multiparametric distributions for ran-
dom images, and decision rules. The correspondence
between the hypothetical random images in these models
and what is known as facts about mental or neurophysio-
logical processing is far from being straightforward or
uniquely determinable. Thus, the fact that any sensory
input gives rise to a complex system of stochastic processes
does not by itself justify the use of well-behaved
Thurstonian-type models, for two reasons: (a) not all
stochasticity has a Thurstonian-type structure (see Section
3.1), and (b) there is a potential infinity of aspects and
properties of observable stochastic processes that may
pertain to a given psychophysical task (such as same–dif-
ferent judgments). For instance, a large number of parallel
realizations of a stochastic process invoked by a stimulus, if
averaged across, may give rise to an essentially determi-
nistic process representing the stimulus, excluding thereby
all well-behaved Thurstonian models (see Section 3.2).
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In spite of my disagreements with Ennis’s reasoning I
find his critical paper very useful for drawing one’s
attention to issues that can be easily glossed over in a
mathematical theory which begins with an abstraction like
‘‘let S be a set of stimuli and c a discrimination probability
function.’’ The first of these issues is the necessity of being
specific and precise in describing one’s set of stimuli. The
second issue is the necessity of being aware that the
observed proportions of responses in an experiment
generally estimate mixtures of true probability functions
rather than a fixed probability function. Stimulus varia-
bility is only one mechanism of creating such mixtures, the
other ones being the numerous sources of non-stationari-
ness in observer’s behavior, depicted by such notions as
fatigue, attention fluctuations, and perceptual learning (see
Dzhafarov & Colonius, 2006). As explained in Section 4,
mixtures do not inherit the law of Regular Minimality from
the individual probability functions they contain. In those
cases where the violations of Regular Minimality are
suspected to be due to mixtures, one faces the necessity of
modeling these mixtures explicitly, as in (4). If one is
willing to use the adjective ‘‘Thurstonian-type’’ to desig-
nate such mixture models, then one can view this as the
possibility, and even necessity, of combining Thurstonian-
type modeling with the law of Regular Minimality in a
cooperative rather than antagonistic way.
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Appendix A. Additional comments

Comment 1: Stated more rigorously, a stimulus x 2 S1 is
characterized by its variable properties (e.g., segment
length) and fixed properties (e.g., being on the left); and
analogously for y 2 S2. The fixed characteristics of a
stimulus define its observation area and are therefore
generally different in S1 and S2. The variable character-
istics in S1 and S2 form identical sets and are referred to as
stimulus values. By convenient abuse of language the term
‘‘stimulus’’ is often used in the sense of a stimulus value.
Thus, two segments x and y can be said to be physically
equal, x ¼ y, even though it is only their lengths that are
equal. Similarly, x 2 S1 and y 2 S2 can be said to belong
to a single stimulus set, with their observation areas being
indicated by their ordinal position within a stimulus pair,
ðx; yÞ. For detailed discussions see Dzhafarov and Colonius
(2005a, 2006).

Comment 2: For completeness, it should be noted that
Regular Minimality is predicated on the assumption that
neither S1 nor S2 may contain distinct elements that are
psychologically indistinguishable: that is, if cða1; yÞ ¼
cða2; yÞ for all y, then a1 ¼ a2, and if cðx; b1Þ ¼ cðx; b2Þ

for all x, then b1 ¼ b2. For example, before one posits
Regular Minimality for aperture colors viewed in daylight,
all photopic metamers of any given color should be labeled
identically (treated as a single stimulus). Fig. 24 provides a
schematic illustration on a toy example with a finite set of
stimuli.

Comment 3: It often simplifies mathematical analysis to
present stimuli in the two observation areas in what I called
‘‘a canonical form’’ (Dzhafarov, 2002b). Essentially, it
means that S1 and S2 are both bijectively mapped onto a
set S so that whenever x 2 S1 and y 2 S2 are mutual
PSEs, they are mapped into one and the same element
(‘‘stimulus label’’ ) z 2 S. This is always possible to achieve
(in an infinite number of ways) due to the law of Regular
Minimality. In those cases (e.g., in the analysis of
Thurstonian-type modeling) where it is important for the
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analysis that stimuli form an open connected region of Rn,
the relabeling S1! S, S2! S must be confined to
diffeomorphisms. In spite of their great convenience in
formal computations, canonical forms should be treated
with caution. In a canonical form, a pair ðz; zÞ is always a
pair of mutual PSEs, but the two z’s may very well be
physically different (i.e., the physical identity of a stimulus
is encoded by both a label and its ordinal position within a
pair). One should remember therefore that a canonical
form does not eliminate constant errors (unless they were
not there to begin with). To prevent confusions on this
account, I do not use canonical representations in this
paper.

Comment 4: When Ennis writes that he acknowledges
‘‘extensive empirical support’’ for Nonconstant Self-Simi-
larity but challenges the validity of Regular Minimality, or
that in the experiments that manifest Nonconstant Self-
Similarity it may be difficult to detect violations of Regular
Minimality, he is glossing over a terminological subtlety:
Nonconstant Self-Similarity, in my meaning of the term,
presupposes Regular Minimality. Clearly, if functions h

and/or g are not defined, then one cannot ask whether the
values of cðx; hðxÞÞ and/or of cðgðyÞ; yÞ are constant. If
properties P1 and P2 of the law of Regular Minimality
hold but P3 does not, cðx; yÞ does not have a single
minimum level function. It has instead two distinct
functions, cðx; hðxÞÞ and cðgðyÞ; yÞ, either of which can be
constant or nonconstant independent of the other. To
make Ennis’s remarks consistent one should redefine the
notion of Nonconstant Self-Similarity as applying to these
two functions separately, under the assumptions P1 and
P2. Such a redefinition may be warranted in the context of
a debate over the validity of P3, but one should clearly
mark the change of the meaning. In this respect the
situation here is different from that with the notion of a
constant error (which, ironically and contrary to my usage,
Ennis does not wish to consider unless Regular Minimality
holds in its entirety).

Comment 5: Ennis writes that he does not consider
constant error a well-defined concept unless Regular
Minimality holds. Irrespective of one’s definitions, how-
ever, if one does not accept the law of Regular Minimality
but assumes (as Ennis does) its properties P1 and P2, one
must allow for the possibility that x and its PSE hðxÞ are
different, and that the same may be true for gðyÞ and y

(even if gch�1). One cannot eliminate the non-coincidence
of stimuli with their PSEs (which is what constant error is,
in my usage) by means of refusing to call it constant error.
This is relevant to one of Ennis’s mistakes mentioned in
Comment 11.

Comment 6: In Dzhafarov (2003a, 2003b) this theorem
(in fact, a series of theorems) is proved for x; y 2 Rn, and it
can be generalized to continuous spaces as defined in
Dzhafarov and Colonius (2005a). The theorem does
not apply, however, to discrete stimulus spaces, such as
spaces of Morse codes or consumer products, where the
notion of well-behavedness is not defined (for a general
definition of discrete spaces see Dzhafarov and Colonius,
2005b).

Comment 7: In the context of greater–less discrimina-
tions Thurstone (1927a, 1927b) assumed that x and y are
mapped into a bivariate normally distributed ðX;YÞ with
the correlation coefficient generally determined by both x

and y, r ¼ rðx; yÞ. It is not known, however, whether it is
always possible to find a variable C (independent of x and
y) such that for any its value the variables X;Y have
independent conditional distributions whose parameters
depend on x and y, respectively (see a discussion of this
issue in Dzhafarov, 2003c). Thurstone’s most general case
therefore does not necessarily describe a Thurstonian-type
model in my meaning of the term.

Comment 8: The definition given in the text is the most
restrictive version of well-behavedness. In Dzhafarov
(2003b) it is shown how this notion can be relaxed without
affecting the validity of what in the present paper is
Theorem 1. Moreover, even these relaxed definitions are
only sufficient conditions for this theorem, it might be
provable under still weaker constraints.

Comment 9: In the context of stimulus variability Ennis
considers a model in which X and Y are independently
normally distributed on R with means mx;my and variances
s2x;s

2
y. (I change Ennis’s notation, because the decomposi-

tion of s2 into ‘‘stimulus variance’’ s2S and constant ‘‘neural
variance’’ s2N is not relevant to this discussion.) He assumes
the distributions of X and Y to be independent of the
observation area: if x ¼ y, then mx ¼ my and s2x ¼ s2y. Then
he considers the situation (again, changing his notation for
greater clarity) when, for some stimulus values a and b

(whether they are values of x or of y), ma ¼ mb but s2a4s2b.
He observes that in this situation cða; aÞ4cða; bÞ ¼
cðb; aÞ4cðb; bÞ, and he claims that this is a violation of
Regular Minimality. There is one logical error and one
misleading implication in this reasoning.
The logical error is this: finding that cða; aÞ4cða; bÞ ¼

cðb; aÞocðb; bÞ for two specific values of a and b does not
indicate a violation of Regular Minimality. To establish the
latter at x ¼ a one has to do three things: (a) to find out if
the function y! cða; yÞ achieves a global minimum at
some y ¼ hðaÞ (if this is not the case, P1 is violated); (b) to
find out if the function x! cðx; hðaÞÞ achieves a global
minimum at some x ¼ gðhðaÞÞ (if this is not the case, P2 is
violated); and (c) to find out if gðhðaÞÞ ¼ a (if this is not the
case, P3 is violated). This analysis is easy to perform, with
the result that if mx; s

2
x (hence also my;s

2
y) are sufficiently

smooth function of x (respectively, y) and if s2x (hence also
s2y) is not a constant, then P1 and P2 hold but P3 is
violated. Ennis does speak of the ‘‘non-invertibility of h’’
but makes no attempt to find hðaÞ. Fig. 25 illustrate this
fallacy on a toy example.
The misleading implication in Ennis’s reasoning is in its

suggesting that the equality ma ¼ mb in combination with
the inequality of variances is somehow responsible for the
fact that this model violates Regular Minimality. In fact,
the specific dependence of the means and variances on
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same as in Ennis’s paper.

E.N. Dzhafarov / Journal of Mathematical Psychology 50 (2006) 74–93 91
stimulus values is irrelevant, insofar as one can show
that cðx; hðxÞÞ is not constant around at least a single
point x ¼ a. This follows from Theorem 1, and even
without it, it is clearly explained in the introduction to
Dzhafarov (2003a) on an illustrating example which,
except for superfluous details, is mathematically identical
to Ennis’s.

Comment 10: The specific model listed in Ennis’s table
under type II and attributed to Shepard (1987) is most
obviously incompatible with Regular Minimality and
Nonconstant Self-Similarity, at least if one does not
consider (as Shepard did not) the possibility that x ¼ y

but x and y (because they belong to different observation
areas) are represented by different vectors of perceptual
attributes (the z’s). The model yields cðx; yÞ ¼ 0 whenever
x ¼ y, which makes it the simplest and most easily
dismissible version of the Probability–Distance hypothesis
(Dzhafarov, 2002a). De facto, however, Shepard used
fðx; yÞfðy; xÞ=fðx;xÞfðy; yÞ (where f � 1� cÞ rather
than cðx; yÞ (see Shepard, 1957, for details). With this
understanding Shepard’s theory is consistent with a version
of the quadrilateral dissimilarity model discussed in
Dzhafarov and Colonius (2006).

Comment 11: Ennis’s argument can be summarized as
follows. He generates cðx; yÞ by means of a well-behaved
Thurstonian-type model which satisfies properties P1 and
P2: that is, for every x the function y! cðx; yÞ achieves its
minimum at some y ¼ hðxÞ, and for every y the function
x! cðx; yÞ achieves its minimum at some x ¼ gðyÞ. The
values of cðx; hðxÞÞ and cðgðyÞ; yÞ vary with x and y,
respectively, and it follows from Theorem 1 that P3 cannot
be satisfied: in fact in Ennis’s examples gðhðxÞÞax for all x.
Moreover, hðxÞax and gðyÞay at all points (constant
errors, in my terminology). Then Ennis considers an
imaginary data-analyst who is supposed to check the
compliance of cðx; yÞ with the law of Regular Minimality.
With one exception (discussed separately, in Comment 12),
the data-analyst does this by testing the null-hypothesis
that hðaÞ ¼ a, for a specific value x ¼ a. Ennis thinks that
he makes his point by showing that, when tested against
the correct value of hðaÞ, the probability of Type 2 error in
this case is not sufficiently low, even if estimates of c
are computed from a large number of replications. There
are at least two logically independent problems with this
reasoning.
One is in Ennis’s assertion that in testing whether

Regular Minimality holds for his function cðx; yÞ, one
would only have to consider whether it holds with no
constant error, i.e., with hðxÞ � x. He gives two reasons for
this assertion.
(a) ‘‘The mapping is not invertible so constant error is

not a well-defined concept.’’ This amounts to saying that
hðxÞ can be made coincide with x by means of not calling
their non-coincidence a constant error (see Comment 5).
(b) Since x ¼ a and y ¼ a in his model are mapped into

identically distributed random variables, Ennis says that
there cannot be a constant error. This is a double-
confusion: first, in his model de facto hðxÞcx and
gðyÞcy, and second, the imaginary data-analyst, in testing
c for compliance with the law of Regular Minimality, is
not supposed to know the model by which c was generated
(especially if the model is known to violate Regular
Minimality).
The second problem is in Ennis’s overlooking the fact

that the experimental corroborations of the law of Regular
Minimality reported in Dzhafarov (2002b, 2003a) and
Dzhafarov and Colonius (2005a) are never based on his
imaginary procedure of a priori choosing a specific pattern
of Regular Minimality (canonical or not) and then failing
to reject it as a null-hypothesis. This would not be good
science. What we have factually done should be apparent
from inspecting Fig. 5. If the true discrimination prob-
abilities in neighboring cells of such a matrix were very
close to each other, the probability of observing a pattern
of minima satisfying Regular Minimality would be
negligibly small.
A legitimate issue that can be taken with our experi-

mental data is different from Ennis’s power analysis, and in
fact is entirely non-statistical: it has to do with the
possibility that the discrete experimental grid of stimulus
pairs may be too coarse. This issue is taken on in the main
text and in the next Comment.

Comment 12: With reference to a personal communica-
tion from me (in which I pointed out some of the problems
mentioned in Comment 11), Ennis cites a simulation study
in which a matrix of statistical estimates of discrimination
probabilities cðx; yÞ was found to be in compliance with
Regular Minimality in 99.3% of cases, in spite of being
generated by a well-behaved Thurstonian-type model
known to violate this law. This may sound as a
valid version of Ennis’s low-statistical-power claim, but it
is not. The issue has nothing to do with statistics, as one
can see by calculating the true, population-level pro-
babilities cðx; yÞ for Ennis’s simulation study (from
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26. The rest is the same as in Figs. 20 and 21. The overall linear trend for the

E.N. Dzhafarov / Journal of Mathematical Psychology 50 (2006) 74–9392
his Eq. (2)):

Stimuli 2:0 2:5 3:0 3:5 4:0

2:0 0:444 j 0:538 0:697 0:837 0:926

2:5 0:538 0:500 j 0:577 0:711 0:837

3:0 0:697 0:577 0:545 j 0:610 0:725

3:5 0:837 0:711 0:610 0:583 j 0:638

4:0 0:926 0:837 0:725 0:638 0:615 j

We see that the true, population-level row-column minima
in this matrix are all located on the main diagonal. It is
hardly surprising therefore that with 600 replications per
cell the statistical estimates of the minima in this matrix
should be located correctly with probability close to 1. The
reason why this matrix does not exhibit violations of
Regular Minimality on the population level is that Ennis
chose a grid of stimulus pairs which is too sparse to include
the true PSE values hðxÞ and gðyÞ predicted by his model,
and the pairs closest to them happen to be the diagonal
values.
A direct minimization shows that in Ennis’s simulation

hðxÞ � x� 0:1, i.e., the true PSEs for the row stimuli x ¼

2; 2:5; 3; 3:5; 4 are y ¼ 1:9; 2:4; 2:9; 3:4; 3:9, respectively (and
g � h due to the symmetry of his model). To reveal
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als obtained by means of the ‘‘semi-ping-pong’’ procedure depicted in Fig.

two mean curves in the bottom panels is �0.0002 px/trial.
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violations of Regular Minimality by Ennis’s model one has
to choose stimuli with 0.1 rather than 0.5 steps, e.g., as
shown below

Stimuli 1:9 2:0 2:1 2:2 2:3

1:9 0:431j 0:441 0:456 0:477 0:501

2:0 0:441j 0:444 0:453 0:468 0:487

2:1 0:456 0:453j 0:456 0:465 0:479

2:2 0:477 0:468 0:465j 0:468 0:476

2:3 0:501 0:487 0:479 0:476j 0:479

Horizontal and vertical lines indicate column and row
minima, respectively: clearly, the two sets of minima are
different. One does not have to resort to a simulation to
calculate that with a large number of replications per cell
the probability with which all estimated minima would fall
on the main diagonal in this matrix is close to zero.

Note that the issue here is in the density of experimental
points rather than in their range: nothing except for
typographic considerations prevents me from extending the
matrix above to include the entire range of stimuli used in
the first matrix (say, from 1.9 to 4.1). Ennis is wrong
therefore when he says ‘‘The conditions required to see
NCSS [Nonconstant Self-Similarity] are incompatible with
those required to detect a violation of RM [Regular
Minimality] in the cases discussed.’’

Comment 13: The ‘‘semi-ping-pong’’ procedure of the
control Experiment C is presented in Fig. 26, the results
are presented in Fig. 27. If Regular Minimality holds, it can
be shown that the nth x-balance point and the nth
y-balance point in this experiment, in a first-order
approximation, are given by

xn � x0 þ
1

h0ðx0Þ
eð2Þn þ eð1Þn ,

yn � hðx0Þ þ eð2Þn ,

where x0 is the initial value and eð1Þn ; e
ð2Þ
n are the adjustment

errors.
In the main Experiment A the corresponding first-order

approximations are

xn � x0 þ
1

h0ðx0Þ

Xn

k¼1

eð2Þk þ
Xn

k¼1

eð1Þk ,

yn � hðx0Þ þ h0ðx0Þ
Xn�1
k¼1

eð1Þk þ
Xn

k¼1

eð2Þk .
Assuming that hðxÞ can be closely approximated by xþ

const one can reconstruct the variance–covariance struc-
ture of the adjustment errors. Without getting into details,
the observed time series in Experiments A and C seem to be
reasonably well accounted for by Var½eð1Þk � � Var½eð2Þk � � 0:4
and Corr½eð1Þk ; e

ð2Þ
k � � �0:5, with all other correlations close

to zero. If the adjustment errors are normally distributed
these parameters characterize the time series of balance
points completely.
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