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About Mathematical Psychology

There are three fuzzy and interrelated understandings of what mathematical
psychology is: part of mathematics, part of psychology, and analytic method-
ology. We call them “fuzzy” because we do not offer a rigorous way of defining
them. As a rule, a work in mathematical psychology, including the chapters
of this handbook, can always be argued to conform to more than one if not
all three of these understandings (hence our calling them “interrelated”). It
seems safer therefore to think of them as three constituents of mathematical
psychology that may be differently expressed in any given line of work.

1. Part of mathematics

Mathematical psychology can be understood as a collection of mathematical de-
velopments inspired and motivated by problems in psychology (or at least those
traditionally related to psychology). A good example for this is the algebraic
theory of semiorders proposed by R. Duncan Luce (1956). In algebra and uni-
dimensional topology there are many structures that can be called orders. The
simplest one is the total, or linear order (S,�) characterized by the following
properties: for any a, b, c ∈ S,

(O1) a � b or b � a;

(O2) if a � b and b � c then a � c;

(O3) if a � b and b � a then a = b.

The ordering relation here has the intuitive meaning of “not greater than.” One
can, of course, think of many other kinds of order. For instance, if we replace
the property (O1) with

(O4) a � a,

we obtain a weaker (less restrictive) structure, called a partial order. If we add
to the properties (O1-O3) the requirement that every nonempty subset X of

1



S possesses an element aX such that aX � a for any a ∈ X, then we obtain
a stronger (more restrictive) structure called a well-order. Clearly, one needs
motivation for introducing and studying various types of order, and for one of
them, semiorders, it comes from psychology.1

Luce (1956) introduces the issue by the following example:

Find a subject who prefers a cup of coffee with one cube of sugar
to one with five cubes (this should not be difficult). Now prepare
401 cups of coffee with (1 + i

100 )x grams of sugar, i = 0, 1, . . . , 400,
where x is the weight of one cube of sugar. It is evident that he will
be indifferent between cup i and cup i+ 1, for any i, but by choice
he is not indifferent between i = 0 and i = 400 (p. 179).

This example involves several idealizations, e.g., Luce ignores here the proba-
bilistic nature of a person’s judgments of sweetness/bitterness, treating the issue
as if a given pair of cups of coffee was always judged in one and the same way.
However, this idealized example leads to the idea that there may be an interest-
ing order such that a ≺ b only if a and b are “sufficiently far apart”; otherwise
a and b are “too similar” to be ordered (a ∼ b). Luce formalizes this idea by
the following four properties of the structure (S,≺,∼): for any a, b, c, d ∈ S,

(SO1) exactly one of three possibilities obtains: either a ≺ b, or b ≺ c or
else a ∼ b;

(SO2) a ∼ a;

(SO3) if a ≺ b, b ∼ c and c ≺ d then a ≺ d;

(SO4) if a ≺ b, b ≺ c and b ∼ d then either a ∼ d or c ∼ d does not hold.

There are more compact ways of characterizing semiorders, but Luce’s seems
most intuitive.

Are there familiar mathematical entities that satisfy the requirements (SO1-
SO4)? Consider a set of reals and suppose that A is a set of half-open intervals
[x, y) with the following property: if [x1, y1) and [x2, y2) belong to A, then
x1 ≤ x2 holds if and only if y1 ≤ y2. Let’s call the intervals in A monotonically
ordered. Define [x, y) ≺ [v, w) to mean y ≤ v. Define [x, y) ∼ [v, w) to mean
that the two intervals overlap. It is easy to check then that the system of
monotonically ordered intervals with the ≺ and ∼ relations just defined forms
a semiorder.

As it turns out, under certain constraints imposed on S, the reverse of this
statement is also true. To simplify the mathematics, let us assume that S can
be one-to-one mapped onto an interval (finite or infinite) of real numbers. Thus,
in Luce’s example with cups of coffee we can assume that each cup is uniquely
characterized by the weight of sugar in it. Then all possible cups of coffee form a
set S that is bijectively mapped onto an interval of reals between 1 and 5 cubes

1The real history, as often happens, is more complicated, and psychology was the main
but not the only source of motivation here (see Fisher & Monjardet, 1992).
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of sugar (ignoring discreteness due to the molecular structure of sugar). Under
this assumption, it follows from a theorem proved by Peter Fishburn (1973)
that the semiorder (S,≺,∼) has a monotonically ordered representation. The
latter means that there is a monotonically ordered set A of real intervals and a
function f : S → A such that, for all a, b ∈ S,

a ≺ b if and only if f (a) = [x1, y1) , f (b) = [x2, y2) , and y1 ≤ x2; (1)

a ∼ b if and only if f (a) = [x1, y1) , f (b) = [x2, y2) , and [x1, y1) ∩ [x2, y2) 6= ∅.
(2)

Although as a source of inspiration for abstract mathematics psychology
cannot compete with physics, it has motivated several lines of mathematical
development. Thus, a highly sophisticated study of m-point-homogeneous and
n-point-unique monotonic homeomorphisms (mappings that are continuous to-
gether with their inverses) of conventionally ordered real numbers launched by
Louis Narens (1985) and Theodore M. Alper (1987) was motivated by a well-
known classification of measurements by Stanley Smith Stevens (1946). In turn,
this classification was inspired by the variety of measurement procedures used in
psychology, some of them clearly different from those used in physics. Psychol-
ogy has inspired and continues to inspire abstract foundational studies in the
representational theory of measurement (essentially an area of abstract algebra
with elements of topology), probability theory, geometries based on nonmetric
dissimilarity measures, topological and pre-topological structures, etc. Finally
and prominently, the modern developments in the area of functional equations,
beginning with the highly influential work by János Aczél (1966), have been
heavily influenced by problems in or closely related to psychology.

2. Part of psychology

According to this understanding, mathematical psychology is simply psychologi-
cal theorizing and model-building in which mathematics plays a central role (but
does not necessarily evolve into new mathematical developments). A classical
example of work that falls within this category is Gustav Theodeor Fechner’s
derivation of his celebrated logarithmic law in the Elemente der Psychophysik
(1861, Ch. 17).2 From this book (and this law) many date the beginnings of
scientific psychology. The problem Fechner faced was how to relate “magnitude
of physical stimulus” to “magnitude of psychological sensation,” and he came
up with a principle: equal ratios of stimulus magnitudes correspond to equal
differences of sensation magnitudes. This means that for any stimulus values
x1, x2 (real numbers at or above some positive threshold value x0) we have

ψ (x2)− ψ (x1) = F

(
x2
x1

)
, (3)

2The account that follows is not a reconstruction but Fechner’s factual derivation (pp.
34-36 of vol. 2 of the Elemente). It has been largely overlooked in favor of the less general
and less clearly presented derivation of the logarithmic law in Chapter 16 (see Dzhafarov &
Colonius, 2012).
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where ψ is the hypothetical psychophysical function (mapping stimulus mag-
nitudes into positive reals representing sensation magnitudes), and F is some
unknown function.

Once the equation was written, Fechner investigated it as a purely mathe-
matical object. First, he observed its consequence: for any three suprathreshold
stimuli x1, x2, x3,

F

(
x3
x1

)
= F

(
x3
x2

)
+ F

(
x2
x1

)
. (4)

Second, he observed that u = x2/x1 and v = x3/x2 can be any positive reals, and
x3/x1 is the product of the two. We have therefore, for any u > 0 and v > 0,

F (uv) = F (u) + F (v) . (5)

This is an example of a simple functional equation: the function is unknown,
but it is constrained by an identity that holds over a certain domain (positive
reals).

Functional equations were introduced in pure mathematics only 40 years
before Fechner’s publication, by Augustin-Louis Cauchy, in his famous Cours
d’analyse (1821). Cauchy showed there that the only continuous solution for
(3) is the logarithmic function

F (x) ≡ k log x, x > 0, (6)

where k is a constant. The functional equations of this kind were later called
the Cauchy functional equations. We know now that one need not even assume
that F is continuous. Thus, it is clear from (1) that F must be positive for
on at least some interval of values for x2/x1: if x2 is much larger than x1, it is
empirically plausible to assume that ψ (x2) > ψ (x1). This alone is sufficient
to derive (4) as the only possible solution for (3), and to conclude that k is a
positive constant.

The rest of the work for Fechner was also purely mathematical, but more
elementary. Putting in (1) x2 = x (an arbitrary value) and x1 = x0 (the
threshold value), one obtains

ψ (x)− ψ (x0) = ψ (x) = k log

(
x

x0

)
, (7)

which is the logarithmic law of psychophysics. Fechner thus used sophisticated
by standards of his time mathematical work by Cauchy to derive the first justi-
fiable quantitative relation in the history of psychology. The value of Fechner’s
reasoning is entirely in psychology, bringing nothing new to mathematics, but
the reasoning itself is entirely mathematical.

There are many other problems and areas in psychology whose analysis falls
within the considered category because it essentially consists of purely mathe-
matical reasoning. Thus, analysis of response times that involves distribution or
quantile functions is one such area, and so are some areas of psychophyscis (es-
pecially, theory of detection and discrimination), certain paradigms of decision
making, memory and learning, etc.
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3. Analytic methodology

A third way one can think of mathematical psychology is as an applied, or ser-
vice field, a set methodological principles and techniques of experimental design,
data analysis, and model assessment developed for use by psychologists. The
spectrum of examples here extends from purely statistical research to method-
ology based on substantive theoretical constructs falling within the scope of the
first of our three understandings of mathematical psychology.

A simple but representative example of the latter category is H. Richard
Blackwell’s (1953) correction-for-guessing formula and recommended experi-
mental design. Blackwell considered a simple detection experiment: an observer
is shown a stimulus that may have a certain property and asked whether she is
aware of this property being present (Yes or No). Thus, the property may be an
increment of intensity ∆B in the center of a larger field of some fixed intensity B.
Depending on the value of ∆B, the observer responds Yes with some probability
p. Blackwell found that this probability p (∆B) was not zero even at ∆B = 0.
It was obvious to Blackwell (but not to the detection theorists later on) that
this indicated that the observer was “guessing” that the signal was there, with
probability pg = p (0). It is clear, however, that the observer cannot distinguish
the situation in which ∆B = 0 (and therefore, according to Blackwell, she could
not perceive an intensity increment) from one in which ∆B > 0 but she failed
to detect it. Assuming that ∆B is detected with probability pd (∆B), we have
the following tree of possibilities:

∆B
pd(∆B)

u}

1−pd(∆B)

"*
detected

1

��

not detected

1−pg

��

pg

px
Yes No

We can now express the probability p (∆B) of the observer responding Yes to
∆B through the probability pd (∆B) that she detects ∆B and the probability
pg that she says Yes even though she has not detected ∆B:

p (∆B) = pd (∆B) + (1− pd (∆B)) pg. (8)

The value of pd (∆B) decreases with decreasing ∆B, reaching zero at ∆B = 0.
At this value therefore the formula turns into

p (0) = pg, (9)

as it should. That is, pg is directly observable (more precisely, can be esti-
mated from data): it is the probability with which the observer says Yes to
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“catch” or “empty” stimuli, those with ∆B = 0. Blackwell therefore should
insist that catch trials be an integral part of experimental design in any Yes/No
detection experiment. Once pg = p (0) is known (estimated), one can “correct”
the observed (estimated) probability p (∆B) for any nonzero ∆B into the true
probability of detection:

pd (∆B) =
p (∆B)− p (0)

1− p (0)
. (10)

We end up therefore with a strong recommendation on experimental design
(which is universally followed by all experimenters) and a formula for finding
true detection probabilities (which is by now all but abandoned). Blackwell’s
work therefore is an example of a methodological development to be used in
experimental design and data analysis. At the same time, however, it is also a
substantive model of sensory detection, and as such falls within the category of
work in psychology in which mathematics plays a central role. The mathematics
here is technically simple but ingeniously applied.

The list of methodological developments based on substantive psychological
ideas is long. Other classical examples it includes are Louis Leon Thurstone’s
(1927) analysis of pairwise comparisons and Georg Rasch’s analysis of item
difficulty and responder aptitude (1960).

On the other pole of the spectrum we find methodological developments
that have purely data-analytic character, and their relation to psychology is
determined by historical tradition rather than internal logic of these develop-
ments. For instance, nowadays we see a rapid growth of sophisticated Bayesian
data-analytic and model-comparison procedures, as well as those based on re-
sampling and permutation techniques. Some psychologists prefer to consider all
these applied-statistical developments part of psychometrics rather than math-
ematical psychology. The relationship between the two disciplines is complex,
but they are traditionally separated, with different societies and journals.
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