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Selective Influence and Response Time
Cumulative Distribution Functions in
Serial-Parallel Task Networks
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We analyze sets of mental processes, some of which are concurrent and
some of which are sequential, under the assumption that the processes are
partially ordered, that is, arranged in a directed acyclic network. Information
about the process arrangement can be discovered by examining the effects on
response time of selectively influencing process durations. Previous work has
mainly focused on analyses of mean response times. Here we consider
analyses based on cumulative distribution functions, for one of the major
classes of directed acyclic networks, serial-parallel networks. When two pro-
cesses are selectively influenced, patterns in the cumulative distribution func-
tions can be used to test whether the processes are sequential or concurrent
and whether the task network has AND gates or OR gates. Cumulative dis-
tribution functions are potentially more informative than means, and some
previous results for means are shown to follow from our results for
cumulative distribution functions.  © 2000 Academic Press

Considerable evidence indicates that the mental processes involved in some
information processing tasks are neither entirely serial nor entirely parallel. Many
alternative forms of processing are conceivable; one of the plausible and useful
forms is a directed acyclic network, such as the one in Fig. 1. The network
represents a combination of sequential and concurrent processing. The stimulus is
presented at o, and processes x and z begin immediately and concurrently. Process
y begins as soon as x is finished. The response is made at r as soon as both y and
z are finished, if there is an AND gate, or as soon as either y or z is finished, if there
is an OR gate.

There are many examples of tasks for which good accounts of response time data
have been given by directed acyclic networks (although not always by that name).
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FIG. 1. A directed acyclic network. This is an example of a serial-parallel network.

The tasks are primarily dual tasks, in which a subject is presented with two stimuli
and makes a response to each. Studies include Davis (1957), De Jong (1993),
Ehrenstein, Schweickert, Choi, and Proctor (1997), Johnston, McCann, and
Remington (1995), McCann and Johnston (1992), Osman and Moore (1993),
Pashler and Johnston (1989), Ruthruff, Miller, and Lachmann (1995), Schweickert
(1983), Van Selst and Jolicoeur (1994), and Welford (1952). In a recent model by
Meyer and Kieras (1997a, 1997b) a set of directed acyclic networks is sometimes
available, from which one is selected for a given trial. For reviews, see Pashler
(1998) and Schweickert and Boggs (1984).

The arrangement of the processes in a directed acyclic network can be discovered
if experimental factors are available that selectively influence the durations of
individual processes. The technique of selective influence was pioneered by
Sternberg (1969) in his Additive Factor Method for tasks in which all the processes
are in series. He noted that if one experimental factor prolongs one process, while
another factor prolongs another process, then the combined effect on mean
response time of prolonging both processes will be the sum of the effects of prolong-
ing them individually.

In later developments, the technique of selectively influencing processes was
extended to more complicated architectures than serial processing. For directed
acyclic networks, the architecture of interest here, Schweickert (1978) showed how
effects of selectively influencing processes could be used to discover details about
the process arrangement, including whether a pair of processes is sequential or con-
current. The problem of inferring the arrangement of mental processes from
measurable quantities has received concerted attention from many people over an
extended period of time. It is not possible to summarize it all here, but recent
surveys can be found in Coles, Smid, Scheffers, and Otten (1995), Luce (1986),
Massaro and Cowan (1993), Schweickert (1992), Townsend (1990a), and
Townsend and Ashby (1983).

For the most part, effects of selectively influencing processes have been evaluated
in terms of mean response times. But a mean is only a summary, and complete
information about a distribution is in its cumulative distribution function.
Cumulative distribution functions have been investigated in a variety of ways; for
examples, see Balakrishnan (1994), Colonius and Vorberg (1994), Dzhafarov
(1992), Fisher and Goldstein (1983), Goldstein and Fisher (1991, 1992), Kounios
(1993), Meyer, Yantis, Osman, and Smith, (1984) Miller (1982), Shaked and
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Shanthikumar (1994), Sternberg (1973); Stoyan (1983), Townsend (1990b), and
Vorberg (1981). For a survey of results in scheduling theory, see Righter (1994).

Our interest here is in using cumulative distribution functions to recover the
process architecture under the assumption of selective influence. Two different
approaches to this problem have been pursued. One technique, developed by Ashby
and Townsend (1980) and Roberts and Sternberg (1992), is a test of whether two
factors selectively influence processes whose durations are combined by addition to
form the response time. For a critical analysis, see Van Zandt and Ratcliff (1995).
A generalization of this technique is presented in Dzhafarov and Schweickert
(1995), Dzhafarov and Cortese (1996), and Cortese and Dzhafarov (1996). With
the generalization one can test not only for the operation of addition, but for
virtually any operation that is commutative and associative.

The other technique was developed by Nozawa (1992) and Townsend and
Nozawa (1995). With this technique, interactions of cumulative distribution func-
tions are examined for evidence that factors selectively influence processes that are
(a) in series or (b) in parallel; the influenced processes are followed by an AND
gate or an OR gate, and perhaps followed by an additional process. Here we
generalize this work to serial-parallel networks, a type of directed acyclic network.
For comparison, we begin with an example of selective influence in a simple
architecture that is not a directed acyclic network. Then we describe directed acyclic
networks, and then we describe the technique applied to them.

A mixture model. Roberts and Sternberg (1992) described a simple mixture
model for information processing. Suppose a task is carried out using process a
with probability p and using process b with probability (1 — p). Let the duration of
a have cumulative distribution function F,(z), and let the duration of » have
cumulative distribution function F,(¢). Then the cumulative distribution for the
response time is G(t) = pF,(t) + (1 — p) Fy(t).

Now suppose one experimental factor selectively influences process a, so when
this factor is at level 7, i=1, 2, the cumulative distribution function for process a is
F,;(t). The cumulative distribution function for process 4 does not change when
levels of this factor change. Likewise, suppose another factor selectively influences
process b. When this factor is at level j, j=1, 2, the cumulative distribution function
for process b is F,;(¢). The cumulative distribution function for process a does not
change when levels of this factor change. When the first factor is at level i and the
second is at level j, the cumulative distribution for the response time is

G (1) = pF (1) + (1 — p) Fp(2).
For any time ¢, define an interaction contrast
c(t) = Gy(t) — Gy (1) — Gp(t) + Gy (2).
It is easy to see that for every ¢, c(t)=0. This provides a simple test for the

hypothesis that the factors selectively influence processes arranged in a mixture
model.
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We turn now to a class of models making different predictions about the interac-
tion contrasts. Eventually, one may be able to compare many models on the basis
of their predictions about selective influence and cumulative distribution functions.
At this time, it remains to be seen whether other models make other distinctive
predictions, and the number of models that can be compared in this way is limited.
However, within the class of directed acyclic network models, the technique can be
used to distinguish some process arrangements from others, and that is the use we
describe here.

DIRECTED ACYCLIC NETWORKS

Suppose a subject performing a task executes a set of mental processes arranged
in a network as in Fig. 1. Each process is represented by a node and has a non-
negative duration which varies from trial to trial. If one process immediately
precedes another, an arrow is drawn from the node representing the former process
to the node representing the latter process. The task begins at a node, o, called the
source, which indicates the presentation of the stimulus. No node precedes the
source. Likewise, the task ends at a node, r, called the terminus, which indicates the
onset of the response. No node follows the terminus.

A process a precedes another process b if there is a path starting at the node
representing a, proceeding along some arc in the direction indicated by the arrow
to another node, and then perhaps proceeding along further arcs and nodes, always
in the directions indicated by the arrows, and ending at the node representing b. We
say processes ¢ and b are sequential if either a precedes b or b precedes a. Two
processes a and b are concurrent if they are not sequential.

If a process can begin execution when any one of its immediate predecessors has
completed, the process is released with an OR gate. If a process can begin execution
only when all of its immediate predecessors have completed, the process is released
with an AND gate. We consider two types of networks here: OR networks, in
which every gate is an OR gate and AND networks, in which every gate is an AND
gate. The response is made at the terminal node, and we assume the terminal node
is an OR gate or an AND gate, of the same type as the others. Networks having
both OR and AND gates, or with other types of gates, are possible, of course, but
are beyond the scope of this paper.

We assume the clock starts when the stimulus is presented at the source node.
The response time is the time at which the response is made at the terminal node.
If all the gates are OR gates, the response time will be the sum of the durations of
all the processes on the shortest path (in terms of total duration) from the source
to the terminus. If all the gates are AND gates, the response time will be the sum
of the durations of all the processes on the longest path (in terms of total duration)
through the network. The longest path through the network is called the critical
path, and a directed acyclic network with AND gates is sometimes called a critical
path network or a PERT network.

In a network with AND gates or OR gates, a path directed from a node to itself
would indicate that the process represented by the node must finish (AND gates)
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or could finish (OR gates) before it could start. This is impossible, so we assume
no process precedes itself, immediately or otherwise. We assume, in short, that the
task network is a directed acyclic network. A more extensive introduction can be
found in Fisher and Glasser (1996) or Schweickert, Fisher and Goldstein (1992).
An introduction to several other network models of processing is given in Liu
(1996).

Serial-Parallel Networks

This paper is primarily about serial-parallel networks. The network in Fig. 1 is an
example. A directed acyclic network is serial-parallel if it can be constructed with
the following procedure. We begin with a single node. A single node is the simplest
possible serial-parallel network, and we may stop the procedure at this point.
Otherwise, we may combine two serial-parallel networks N; and N, in one of the
following ways. (a) We may combine them in parallel, that is, so that no node in
N, precedes any node in N, and no node in N, precedes any node in N;. (b) We
may combine them in series, that is, so that every node in N, precedes every node
in N, or else every node in N, precedes every node in N,. We may continue com-
bining serial-parallel networks, carrying out either step (a) or step (b), and stop
after a finite number of steps. For more background, see Martin (1965) and
Mohring (1982).

The serial-parallel network illustrated in Fig. 1 can readily be seen to have been
constructed in this way. The procedure began with the single node x. Then y was
placed in series with x. Then z was placed in parallel with the network formed by
x and y. Let N; denote the network constructed so far, and let NV, denote a new
network consisting of the single node r. Networks N, and N, were placed in series;
that is, arcs were drawn so that z precedes r and y precedes r (x also precedes r,
then, because y precedes r). The last step was to put the network constructed so far
in series (and following) a network consisting of the single node o. In the completed
serial-parallel network, o is the source node and r is the terminal node.

Directed acyclic networks that are not serial-parallel networks are easily charac-
terized. The network in Fig. 2 is called a Wheatstone bridge. Kaerkes and Mohring
(1978) and Dodin (1985) have shown that a directed acyclic network is a serial-
parallel network if and only if it has no subnetwork in the form of a Wheatstone
bridge. An attempt to construct a Wheatstone bridge with the serial-parallel
procedure will show that it cannot be done. The more interesting fact is that if the
serial-parallel procedure cannot be used to construct a certain network, then that
network must contain within it a subnetwork in the form of a Wheatstone bridge.

Many interesting information processing models are not serial-parallel networks.
For example, models of dual tasks that postulate two or more bottlenecks very
often employ a Wheatstone bridge and hence are not serial-parallel networks; see,
e.g, De Jong (1993), Ehrenstein, Schweickert, Choi, and Proctor (1997), and
Schweickert (1978). Cumulative distribution functions for the Wheatstone bridge
are beyond the scope of this paper, but are discussed in Schweickert and Giorgini
(1999).
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FIG. 2. A Wheatstone bridge. A directed acyclic network is erial-parallel if and only if it does not
contain a subnetwork in the form of a Wheatsone bridge.

Stochastic independence. Consider the set of random variables Y, Y, .., Y. If
the joint distribution of every subset S of the random variables is the product of the
marginal distributions of the random variables in S, then Y,, Y,, .., Y, are called
mutually independent. For convenience, we will call a network in which the process
durations are mutually independent an independent network.

Notation and assumptions about distributions. We denote the duration of a
process z in the network as 7., its cumulative distribution function (cdf) as F.(¢) =
P[T.<t], and the corresponding probability density function as f.(¢). The survivor
function is F.(t)=1—F.(1).

For all random variables, a density function is assumed to exist and to have at
most a finite number of points of infinite discontinuity. A point 7, is a point of
infinite discontinuity of f(#) if (a) as ¢ approaches ¢, from the left the limit of f{(¢)
is +00 or —oo, (b) as ¢t approaches ¢, from the right the limit of f(¢) is + oo or
—o0, or (c) f(¢) oscillates near ¢, and there is no neighborhood of ¢, in which f{(¢)
is bounded (Carslaw, 1930). All distributions are assumed to be continuous, that is,
to have no points of positive mass (Feller, 1971). Each random variable is assumed
to have a finite mean.

We denote the cumulative distribution function for the overall response time RT
as G(t) and the corresponding density as g(z).

Writing the distribution functions. 1t is easy to write a formula for the cdf,
P[ RT < t], of an independent series-parallel network. For two processes ¢ and b in
parallel, followed by a response made at an AND gate,

Ganp(1)=P[RT<t]=P[T,<tAND T,<t]
=P[T,<t] P[T,<t]
:Fa(l) Fb(t)

By a similar calculation, Gog(?) = F,(t) F,(t). Now consider a network consisting
of two processes a and b in series. The cdf of RT=T,+ T, is calculated as follows
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(see, e.g., Feller, 1971; Luce, 1986; Townsend & Ashby, 1983). (Because the two
processes are in series, it does not matter whether we consider the network to have
AND gates or OR gates.)

Ganp(1)=Gor(t)=P[T,+Ty<1]

= PIT.<x&T,=1—x]dx

0

= [ R fr =) a (1)

Feller (1971, p. 145) calls the expression above the convolution of F,(t) and F,(t)
and denotes it F,(7) % F,(¢). The term convolution is also used for a similar, but
different expression. The density function for 7,4+ T} is

8= [ 1) flt =) dx

This expression is called the convolution of f,(t) and f,(¢) by Feller and others and
denoted £, (1)* f,(1).

Consider, as an example, a network consisting of two parallel processes, ¢ and
b, followed by a third process ¢ which starts at an AND gate. One begins by form-
ing the cdf for ¢ and b as a product F,(z)- F,(¢). The convolution of this cdf with
the cdf for process ¢ forms the cdf for the complete network,

LFa(1) - Fiy(2)] X F(2).

If the network was larger, one would continue by taking products for components
in parallel and convolutions for components in series.

As another example, consider the network in Fig. 1. To keep the example simple,
suppose the durations of processes o and r are fixed at 0. For the subnetwork
formed by placing processes x and y in series, the cdf is F,(z) % F (t). Process z is
in parallel with this subnetwork, making the cdf for the completion time of the
entire network

Gann(?) =[F(1) X F,(1)]- F.(1), (2)

when the network has an AND gate. When the network has an OR gate, the
survivor function for the completion time of the entire network is

Gor(1) =[F,(t) *x F,(1)]-F.(1).

After rearranging, the corresponding cdf is seen to be
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EFFECTS OF SELECTIVELY INFLUENCING A SINGLE PROCESS

Consider an experimental factor which selectively influences a process a in a task
network. We denote the duration of process @ when the factor is at level i as T,
for i=1,2,3,.., with the levels numbered so that the process becomes more
difficult to carry out as the level numbers increase. For convenience we will con-
sider only two levels, although our results apply for more than two.

We usually assume the mean duration of the process increases as the factor levels
increase, but our topic is the response time distributions, and the assumption that
the means are ordered implies little about the distributions as a whole (e.g.,
Townsend, 1990a). Here we make the stronger assumption that the factor produces
stochastic dominance for the process durations. That is, if F,,(t)=P[ T, <t] is the
cdf of T, then we assume for every ¢, F,,(t) < F,(t). We say T, is stochastically
larger than 7,,, T,,>,, T,:, and it follows that the expected value of T, is greater
than or equal to that of 7,,. A condition equivalent to stochastic dominance is
presented in Townsend and Schweickert (1989).

By saying the factor selectively influences process a we mean here that the factor
(a) changes the marginal distributions of process @, (b) changes the marginal dis-
tribution of no process other than a (marginal independence), and (c) preserves the
mutual independence of the process durations, that is, the process durations are
mutually independent at all levels of the factor.

More notation. When a factor selectively influencing process a is at level i, we
denote the density function of the duration of a as f,;(z). We denote the density
function of the response time as g;(t), and the corresponding cdf as G,(t). If N* is
a subnetwork of a network N, one can imagine the nodes in N* as preceeded by
a starting node of zero duration and followed by a terminal node of zero duration.
One can then consider the completion time for N* by itself; it has density g*(¢) and
cdf G*(¢). For example, one can consider the subnetwork in Fig. 1 consisting of
processes x and y. The completion time for this subnetwork is the duration of x
plus the duration of y.

Effects on cdfs. It may seem at first that if a process involved in a task is
prolonged, the reaction time for the task must be prolonged as well. Empirically,
this does not always happen. For example, in a dual task, increasing the interval
between the onset of the first stimulus and the onset of the second sometimes
decreases the response time to the first stimulus (Lien, Allen, & Smith, 1998; Van
Selst & Jolicoeur, 1994, Experiment 2). A plausible explanation is that full capacity
can be allocated to the first stimulus until the second stimulus is presented. A delay
in the onset of the second stimulus allows full capacity processing of the first
stimulus to continue longer, thus speeding the first response.

Of course, the interval between two stimuli is not a typical process. A different
example of how prolonging a process could lead to a decrease in reaction time is
illustrated in Fig. 3. Processes are represented as rectangles; the length of a rectangle
indicates the duration of the corresponding process. The system has two processors
and uses the scheduling rule that a processor cannot be idle if a process is available
for it. Suppose for the task illustrated that processes a and d must be executed on
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processor 1 (first row of rectangles). Process ¢ cannot begin until either a or b is
finished. Process d cannot begin until both ¢ and b are finished. In the top panel,
when a is short, process ¢ occupies processor 1, delaying access by process d. When
a is longer, process ¢ occupies processor 2, leading to a faster reaction time (bottom
panel). The upshot is that an increase in the duration of process a leads to a
decrease in reaction time. The example shows that simple scheduling rules some-
times lead to counterintuitive outcomes; other examples are discussed by Graham
(1978).

As a final example of the need for care in extrapolating from the stochastic
dominance of random variables to stochastic dominance of functions taking them
as arguments, note that it is possible that X, <, Y, and X,<,, Y, for random
variables X, X,, X,, and Y,, while it is false that X, + X, <,, Y, + Y, (Ross, 1983,
p- 279, Exercise 8.2). The failure can occur when the random variables are
correlated.

The following theorem shows that processes in independent serial-parallel AND
and OR networks are well behaved in the sense that if a factor produces stochastic
dominance for the distributions of the duration of a single process, then the factor
produces stochastic dominance for the distributions of the response times. The
proof introduces the inductive procedure we will use throughout. Because of this
theorem, if F,,(¢) > F,,(¢) for all  when a factor selectively influences process a, we
simply say that the factor produces stochastic dominance.

FIG. 3. A system in which a processor is not allowed to be idle if a process is available for it. In
each panel, rectangles in the first row represent processes scheduled on processor 1; those in the second
row represent processes scheduled on processor 2. In the top panel, process a is relatively short, but the
completion time of the task is long.
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THEOREM 1. Suppose a factor selectively influences a process a in an independent
serial-parallel network, in which all the gates are AND gates or all the gates are OR
gates. Suppose for all t <z, F,(t) = F,,(t). Then for all t <7, G(1) = G,(t).

Proof. The proof is by induction on the number of processes in the network.

If @ is the only process, clearly the conclusion is true.

Suppose the conclusion is true for independent serial-parallel networks with n or
fewer processes. Consider an independent serial-parallel network N with n+ 1
processes. There are two cases.

Case 1. Suppose network N consists of a subnetwork N* having n or fewer
processes, one of which is a, and a subnetwork N** in parallel with N*. Let the
cdf of the completion time of the subnetwork N* be G¥(7) when the factor is at
level i. Let the cdf of the completion time of the subnetwork N** be G**(¢).

If there are AND gates,

Gi(t)=G(t) G**(1),  so
Gy(1) = Go(1) =[GT(1) = G3()] G**(1)
> 05

for all 7 <.
If there are OR gates,

G(1) = GH(1) + G**(1) — G(1) G**(1).
Then

G\(1) = Go(1) = GY(1) = G3(1) = [GT(1) = GF(1)] G**(1)
=[GT ()= G(NI[1-G**(1)]

207

for all t <z,

Case 2. Suppose network N consists of a subnetwork N* with n or fewer pro-
cesses, one of which is @, and a subnetwork N** in series with N¥. Let the density
of the completion time of the subnetwork N** be g**(¢).

Whether there are AND gates or OR gates,

G,(1)= fot G*(x) g**(1 — x) dx.

By the induction hypothesis, G¥(7) > G5(?).
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Then

Gi(1)=Go1) = || [GF(x) = G3(0)] g™ (1 =) d

\Y

Oa

for all r< 7. Q.E.D.

One immediate consequence of the theorem is that there is no time 7’ such that
g1(1) <g,(t) for all t<1'. Another is the following.

COROLLARY. In both independent AND networks and independent OR networks,
if for all t <z, f,1(1) = [,.(1), then for all t <71, G{(t) = Gy(1).

Effects on density functions. According to the preceding theorem, the assumption
that a factor produces stochastic dominance for the duration of a process implies
that the factor produces stochastic dominance for the duration of a network con-
taining that process. Unfortunately, assumptions about the density function for a
process do not have strong implications about the density function for a network
containing the process. The following theorem shows that for times between 0 and
some critical value in AND networks, a constraint on the density functions for a
process leads to a similar constraint on the density functions for a network contain-
ing the process. The theorem is stated for AND networks. In the Appendix we
briefly discuss the difficulty in applying it to OR networks.

THEOREM 2. Suppose process a in an independent serial-parallel AND network is
selectively influenced by a factor. If there is a time © such that for all t <z

fal(l) ZfaZ(l))

then for all t <t

g1(1) = g,(1).

Proof. 1If a is the only process in the network, the proof is finished.

Otherwise, suppose the statement is true for independent serial-parallel AND
networks with n or fewer processes. Consider an independent serial-parallel AND
network N with n+ 1 processes.

Case 1. Suppose N consists of a subnetwork N* with n or fewer processes, one
of which is a, and a subnetwork N** in parallel with N'*.

Let GF(¢) be the cdf of the completion time of N* when the factor is at level i,
i=1,2. Let G**(¢) be the cdf of the completion time of N**, and let g**(7) be the
corresponding density. For i=1, 2,

G,(1)=GF(1) G**(1),
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so then
gi(1)=gF(t) G*™ (1) + GF (1) g**(1).

We assumed g7(¢) > g3(¢) for ¢ <7, by the induction hypothesis, so G} (¢) > G (1)
for 1<t
Then

g1(1) —gx(1) =g7(t) G**(1) + GT(1) g**(1)
—g5(1) G**(1) — G3(1) g**(1)

=[g7(1) —g3 ()] G**(1) + [GT(1) — G3(1)] g**(1).

Then g,(t) —g,(t) =0 for t <.

Case 2. Suppose N consists of a subnetwork N having n or fewer processes,
one of which is @, and a subnetwork N** in series with N.

The notation is as in Case 1.

Then

gt = er(x) g™ (1) dx

SO

(1) — (1) = || (&7(x) —g3() (1= x) d.

We assume in the induction hypothesis that gi(x)—g>(x)>0 for x<t7. Then
g1(t)—gy(t)=0for <. Q.E.D.

Remark. Note that, if the difference g,(7) — g,(¢) starts positive, it changes sign
later. For suppose g,(¢) > g,(¢) over some interval. If g,(z) — g,(7) >0 for all ¢, then

1 :j:o gy(1) dit> f:o a1 di=1

which is impossible. It follows that for some ¢, g,(¢) —g,(¢) <O.

EFFECTS OF SELECTIVELY INFLUENCING TWO PROCESSES

When two processes are selectively influenced, the resulting cumulative distribu-
tion functions behave differently depending on whether the processes are concurrent
or sequential and whether the gates are AND gates or OR gates. Suppose ¢ and b
are two processes in a series-parallel network. When factor 1 is at level i, let the
duration of a be T,;, and when factor 2 is at level j, let the duration of b be T},.

ais
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Let F,(t) be the cdf of T,; and let F,;(¢) be the cdf of T,;. In our definition of selec-
tive influence, we assume F,(7) is invariant over all levels j of factor 2 and F,(¢)
is invariant over all levels 7 of factor 1. Let G;(¢) be the task completion cdf in con-
dition (i, j), that is, the condition in which factor 1 is at level i and factor 2 is at
level j. The topic of this section is the cumulative distribution function interaction
contrast,

(1) = Gp(1) — Gyy(1) — G1a(2) + Gy4(2).

Nozawa (1992) and Townsend and Nozawa (1995) pointed out that if the task
network consists of two processes in series, then the net area bounded by the cdf
interaction contrast and the time axis will be 0. To see this, let E[ RT;] be the
expected value of the response time when factor 1 is at level i and factor 2 is at level
Jj. Because the response times are nonnegative,

E[RT,]= L [1—Gy(1)]di (4)
(e.g., Cinlar, 1975). From Eq. (4), the interaction contrast for means can be written
E[RT,,] — E[ RTy ]~ E[ RT,,] + E[RT,] = —jo (1) dt.

For the two processes in series we are considering,
E[RT»]—E[RT, ] —E[RT ;] + E[RT,;] =0.

It follows that
[ “ (1) di =0.
0

Nozawa (1992) and Townsend and Nozawa (1995) also showed that when the
two processes selectively influenced are in parallel, possibly followed by another
process, the cdf interaction contrast will be positive for an AND gate and negative
for an OR gate. This result of Nozawa and Townsend for parallel processes is an
essential component of our results for concurrent processes in serial-parallel
networks. Because we assume independence throughout, we only need the version
of the theorem by Townsend and Nozawa (1995) that makes this assumption.
Townsend and Nozawa (1995) also provide a proof for interdependent processes
under additional constraints.

Concurrent Processes

THEOREM 3 (Nozawa & Townsend). Suppose an independent serial-parallel
network consists of two processes a and b in parallel. Suppose one factor selectively
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influences a and another selectively influences b. Suppose for every t, F,,(t) = F (1),
Fo (1) = Fyy(t), and there is an interval I where both inequalities are strict. With an
AND gate, for every t,

Gy(1) — Gy (1) — Gia(2) + Gy4(2) =0,

and over the interval I the inequality is strict.
With an OR gate, the conclusion holds with the inequality reversed; that is,

Go(1) — Gy (1) — Gio(1) + Gy(1) < 0.
Proof. Suppose there is an AND gate. Then

Gi(t)=P[T,;<tAND T, <t]=P[T,<t] P[Ty<t]

= F,,(1) Fyy(0).
Then

(1) = Gop(1) — Gy (1) — Gra(1) + Gy (1)

= (F o) — F 1(1))(Fpo(t) — Fpy(2))

=0.

Clearly, when ¢ €1, the inequality is strict.
Suppose the gate is an OR gate. Then

Gi(t)=P[T,;<tOR Ty <t]=F,(t)+ Fy(t) — F,(t) Fp(t),

and the conclusion ¢(¢) < 0 follows. Q.E.D.

The next theorem generalizes this result to concurrent processes in an arbitrary
serial-parallel network. Before presenting it, we illustrate it for the network in
Fig. 1, considered as an AND network in Fig. 4, and considered as an OR network
in Fig.5. We assume each process has an exponential distribution, that is, the
density function for the duration of a process w is f,,(¢) = Ae ~*, and the cumulative
distribution function is F (t)=P[T,<t]=1—e * where 1/ is the mean
duration of process w. The mean durations for processes u, y, and z are given in the
figure captions. Process durations producing pronounced effects for an AND gate
tend to produce small effects for an OR gate, and vice versa, so to illustrate the
results clearly, different process durations are used in different examples.

The cumulative distribution functions were calculated as follows for the network
in Fig. 1. Let the mean durations of processes x, y, and z be 1/a, 1/§, and 1/y,
respectively. For the subnetwork consisting of x and y in series, Eq. 1 leads to

Fo(t) % Fy(t)=[af(o+ B)I(L —e™ )+ [flla+ H)I(1—e™™)
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Concurrent Processes in an AND Network
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FIG. 4. When the network in Fig. 1 has an AND gate, the interaction contrast function for con-
current processes x and z is positive. Processes o and r have fixed duration 0. All other processes have
exponential durations. Process x has means 10 and 100, process z has means 50 and 500. Process y has
mean 12.5.

(also see, e.g., Fisher & Goldstein, 1983, p. 144). When the network in Fig. 1 is con-
sidered to have an AND gate, the cumulative distribution function for the response
time is given by Equation 2, which leads to

Gann(0) =[[o/(a+B)I(1—e )+ [flla+ )11 —e ™) ](1 —e 7).

When the network in Fig. 1 is considered to have an OR gate, the cumulative dis-
tribution function for the response time can be calculated from Eq. (3), in a similar
manner. This ends the example and we turn now to Theorem 4.

The proofs in the remainder of the paper are based on a classification of the
possible networks into cases. Under the assumptions of some theorems, certain
cases are impossible. They are mentioned nonetheless for the sake of completeness
and to facilitate comparison.

THEOREM 4. Suppose processes a and b are concurrent in an independent serial-
parallel network. Suppose one factor selectively influences a and another selectively
influences b. Suppose for every t, F,,(t) = F,»(t) and F,,(t) = F,,(t).
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Concurrent Processes in an OR Network
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FIG. 5. When the network in Fig. 1 has an OR gate, the interaction contrast function for the
concurrent processes x and z is negative. Process means and distributions are as in Fig. 4.

If all the gates are AND gates, then for every t,
G(1) — Gy (1) = G1o(1) + Gy (2) = 0.

If all the gates are OR gates, the inequality in the conclusion is reversed.

Proof. 1f a and b are the only processes in the network, Theorem 3 applies.

Suppose the proposition is true when the number of processes in the network is
n or fewer. Consider an independent serial-parallel network N with n + 1 processes.
Suppose all the gates are AND gates. It is convenient to consider four cases.

Case 1. Suppose N consists of a subnetwork N with n processes or fewer,
containing both a and b, and another subnetwork N** in parallel with the entire
subnetwork N7,. Let 7 be the duration of N,, when the factor influencing process
a is at level i and the factor influencing b is at level j. Let 1** be the completion
time of the subnetwork N**.

G,(1)=P[TH<tAND T**<(]=P[T*<1] P[T**<1]
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Then

c(t)=[P[TX<t]1—P[TX<t]—P[Th<t]+P[T*<t]] P[T**<1]

=0

by the induction hypothesis.

Case 2. Suppose the situation is as in Case 1, but subnetwork N** is in series
with the subnetwork N%,.

Gy ()=P[TF+T* <t]= f g (x) Gt —x) dx
0
Then
c(t) = Lt X)) Gt —x)— Gy (t—x)— Gt —x) + GF (1 — x)] dx.

Since g**(x) is a density function, g**(x) > 0. By the induction hypothesis,
Go(1) = G3(1) =G0 + G(1) =0.

Then ¢(¢)=0.

If neither Case 1 nor Case 2 applies, N does not consist of a subnetwork N**
in series or in parallel with a subnetwork having n or fewer processes, ¢ and b
among them.

Case 3. Network N consists of a subnetwork N* containing a in parallel with
a subnetwork N}* containing b. Let T} be the duration of the subnetwork N¥
when factor 1 is at level ; T is defined similarly. Then

G,;(t)=P[T}<tAND T}*<1]
=G¥ (1) GF*(1).

By Theorem 1, G¥(1) > G>(t), and GT*(¢) > G3*(¢). The conclusion follows.

Case 4. Network N consists of a subnetwork containing « in series with a sub-
network containing b. This is not possible, because @ and b are concurrent.
The proof is similar if all the gates are OR gates. Q.E.D.

Sequential Processes

The behavior of the cdf interaction contrast is quite different when sequential
processes, rather than concurrent processes, are selectively influenced. To focus on
the key differences, suppose for a moment there are no intervals over which the cdf
interaction contrast is zero. The cdf interaction contrast for concurrent processes is
relatively simple. It has the same sign at all times, positive for AND networks and
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negative for OR networks. For sequential processes, we will see that for AND
networks, the interaction contrast is positive for a short interval of time after 0, and
then it changes sign. Moreover, the area bounded by the cdf interaction contrast
and the time axis beyond an arbitrary time 7> 0 is less than or equal to zero. For
OR networks, the cdf interaction contrast cannot be negative over an interval close
to time 0. For any time ¢ greater than 0, the area from 0 to ¢ bounded by the cdf
interaction contrast and the time axis is greater than or equal to 0.

Times near zero. 1If one of the density functions f,;(¢) and f,,(¢) lies above the
other at some point, and then at a later point the one previously lying above now
lies below, we will say the densities have completely crossed. The following theorem
is based on the assumption that there is a time 7 > 0 such that f,,(¢) and f,,(¢) do
not completely cross in the interval (0, 7). Note that because F,,(¢) > F,,(¢) for all
t, if there is such a 7 it must be that f,,(z) = f,,(¢) for all ¢ in (0, 7).

THEOREM 5. Suppose a and b are sequential processes in an independent
serial-parallel AND network. Suppose one factor selectively influences a and another
selectively influences b. Suppose for all t, F,,(t) = F5(t) and F,(t) = Fy5(t). Suppose
there is a time © >0 such that f,,(t) and f,,(t) do not completely cross in the interval
(0, 7).

Then for all t, 0 <t <71, Gp(t) — Gy (1) — Ga(t) + G14(2) = 0.

Proof. Suppose a and b are the only two processes. Then

)= [ fuao) =~ furO T Pt = ) = Fyt = )] s
=0

for t <.

Suppose the statement is true for independent serial-parallel networks with n
processes or fewer. Consider an independent serial-parallel network N with n+ 1
processes.

Case 1. Network N consists of a subnetwork N}, having n or fewer processes,
a and b among them, and another subnetwork N** in parallel with NJ,.

We use the same notation as before. In particular, G;(t) is the cdf of the comple-
tion time of the subnetwork N% and ¢*(1) = G(1) — G5 (1) — GH(1) + G (2).
Then

G;(1)=GJ(1) G**(1).
o(t)=[Gyn(1) —G3(1) — GH(1) + G1(1)] G**(1)
=c*(t) G*™*(1)

=0

for0<t<r.
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Case 2. Network N consists of a subnetwork N% having n or fewer processes,
a and b among them, and another subnetwork N** in series with N,. Then

G,(1)= [ G3(x) g**(1—x) dx.

Then

for0<t<r.

Case 3. Network N consists of a subnetwork containing process a in parallel
with a subnetwork containing process b. This is impossible, because ¢ and b are
sequential.

Case 4. Network N consists of a subnetwork N* containing « in series with a
subnetwork N;* containing b. Let g¥(¢) be the density of the completion time of
N7 when factor 1 is at level i. The cdf G}™*(¢) is defined analogously.

Gylt) = jot gX(x) GF*(1—x) dx.

By Theorem 1, G3*(z1—x) < G}*(¢—x) for all 1—x. By Theorem 2, g5(x)<
g¥(x) for all u, 0 <x<t. Then

()= [ (€300 = g1 (G2 (1~ x) ~ G (1))

=0

forO<t<r. Q.E.D.

The reason the inequality is not strict in the theorem above is that certain expres-
sions appearing in products, e.g., g5(x) —g7(x), may be 0 for an interval of time,
leading to a value of 0 for the interaction contrast ¢(¢). If all the relevant densities,
cdfs, and differences are not zero throughout an interval, the inequality will be
strict.

The proof of the preceding theorem does not apply to OR networks because
Theorem 2, used in case 4, does not apply for OR gates (see Appendix). The
analogous result for OR networks will be derived below in Theorem 6.

Extended time intervals. The preceding result, Theorem 5, describes the cdf
interaction contrast in a sufficiently brief interval after time 0. We now turn to
extended time intervals.
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We begin with the simplest case. Suppose a network consists only of the two pro-
cesses a and b in series. Suppose one factor selectively influences a and another fac-
tor selectively influences b, each factor producing stochastic dominance. Then for
any f,

[“cwdu<o  and fquym>o, (5)
t 0

where, as before, c(¢) is the cdf interaction contrast.
To see this, note that when the factor influencing « is at level i and the factor
influencing b is at level j, the cdf for the completion time is

0= [Fal@ fylt—a)] da.

Then
| ctwdu=[" [ " [Fur(@) = Forl@]Lfunl—a) = o= )] da di

= [ Fal@ = Fo@)] | Lfunl—a) = foo(u—a)] d da

t

= [ [Fu@) ~ Fu@) N[ Fyr(t — a) ~ Fyalt — )] da

= [Fa(a) = Fo(a) ][ Fpot —a) — Fypi(t—a)] da

The inequality follows because each factor produces stochastic dominance. The
argument for the integral from 0 to ¢ is similar.

The reader may note that because f,,(u—a)=0=f,,(u—a) when a>u, the
region of integration for the double integral above can be expressed as ¢t <u < o0
and 0<a<wu. That is, the upper limit of the inner integral can be expressed in
terms of the outer integrator, u. This does not lead to a problem in interchanging
the order of integration, however, because the region of integration does not have
to be expressed in this way; the region can simply be expressed as t<u < oo and
0<a<oo.

We turn now to extending Inequalities (5) to sequential processes in arbitrary
serial-parallel networks. The results rely on a preliminary lemma.

LemMA 1. Let (a, b) be an interval where ¢ may be — oo and b may be co. Let
H(t) and s(z) be functions on («, b), where s is nonnegative and bounded from
above.

(a) If for every te(a, b)

fHuﬁuza

a
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and if s(¢) is monotonically decreasing on (a, b), then for every ¢ € (a, b)

r H(x) s(x)dx>=0.

a

(b) If for every te(a, b)
b
f H(x) dx <0,
t
and if s(¢) is monotonically increasing on (a, b), then for every t e (a, b)

fb H(x) s(x) dx <0.

Proof. Note for both (a) and (b) that the existence of the integral of H(x)
implies the existence of the integral of H(x) s(x) because 0<s(x) and s(x) is
bounded from above.

Integrating by parts,

jts(x) d [ Hw du=s(1) th(u) du—s(a) [ H(u) du

a a a a

—fj ) du ds(x)

(where s(a) is replaced by lim, _, ,s(x) if a is —o0).

On the right hand side, the first term is nonnegative and the second is 0. Because
s(x) is monotonically decreasing, —s(x) is monotonically increasing. Then the third
term is nonnegative because

jt fx H(u) du d[ —s(x)] >r0 d[ —s(x)]=0.

a

(b) fb H(x) s(x) dxszs(x) de—H(u) du.

X

The rest of the proof is analogous to that for part (a). Q.E.D.

According to the following theorem, when sequential processes are selectively
influenced, the area bounded by the cdf interaction contrast curve is different for
AND networks and OR networks. For AND networks, the area bounded by the
curve from any time 7 to infinity is negative or 0. For OR networks, the area from
0 to any time ¢ is positive or 0. Figure 6 illustrates the theorem for the network in
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Sequential Processes in an AND Network
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FIG. 6. Interaction contrast function for the sequential processes x and y when the network in Fig. 1
has an AND gate. Process duration means are 10 and 100 for x, 12.5 and 250 for y, and 50 for :z.
Distributions are as in Fig. 4. The area bounded by the curve from any time ¢ to infinity is less than or
equal to 0.

Fig. 1 considered as an AND network. Starting at any time ¢, the area bounded by
the cdf contrast from ¢ to infinity is negative; in particular the area bounded by the
entire curve from 0 to infinity equals —13.0. Figure 7 is the corresponding illustra-
tion when the network is considered an OR network. The area bounded by the cdf
contrast from 0 to any time t is positive; in particular, the area bounded by the
entire curve from 0 to infinity equals 23.0.

THEOREM 6. Suppose a and b are sequential processes in an independent series-
parallel network. Suppose one factor selectively influences a and another selectively
influences b, producing stochastic dominance. Let ¢(t) be the cdf interaction contrast
for a and b. If all the gates are AND gates, then for all t =0

J c(u) du<0.
If all the gates are OR gates, then for all t =0

f c(u) du=0.

0
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Sequential Processes in an OR Network
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FIG. 7. Interaction contrast function for the sequential processes x and y when the network in Fig. 1
has an OR gate. Process duration means are 10 and 100 for x, 12.5 and 250 for y, and 500 for z.
Distributions are as in Fig. 4. The area bounded by the curve from 0 to any time 7 greater than or equal
to 0.

Proof. The proof is by induction on the number of processes.

If a and b are the only processes in the network the conclusion is in the earlier
Inequalities (5).

Suppose the conclusion is true for all independent serial-parallel networks with
n or fewer processes, and consider an independent serial-parallel network N with
n+ 1 processes.

Case 1. Suppose N consists of a subnetwork N with n or fewer processes,
including both a and b, and another subnetwork N** in parallel with subnetwork
N7,. Let G (¢) be the cdf of the completion time for N7;,, when the factor influenc-
ing a is at level i and the factor influencing b is at level j. Let G**(¢) be the
completion time for subnetwork N**.

If all the gates are AND gates, the cumulative distribution function for the
network N itself is G;(1) =G (1)- G**(1). Let ¢*(1) = G3(1) — G3y(1) — GTo(1) +
G7,(1). By the induction hypothesis,
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Then by Lemma 1,
[ ctw du=[" G4~ G2() = Ghw) + G ()] G**(w) du
:Jw *(u) G**(u) du <0.

If all the gates are OR gates, the cumulative distribution function for the network
itself is G;(1) = G} (t) + G**(t) — G (1) G**(1), and the proof is similar to that for
AND gates.

Case 2. Suppose N consists of a subnetwork N with n or fewer processes,

including both a and b, and a subnetwork N** in series with subnetwork N7 . Let

G;(Z) be the cumulative distribution function of the completion time for N%,, when

the first factor is at level i and the second is at level j. Let g**(¢) be the density for
the completion time of N**.
Then

Gy(1) =L GX(t—1z) g**(2) d=.
If the gates are AND gates,
J c(u) duzj J c*(u—z) g**(z) dz du
t t 0
= J J c*(u—z)du g**(z) dz.
0 t
By a transformation of variables, the inner integral can be written
j c*(v) dv.

t—z

The inner integral is less than or equal to 0 by the induction hypothesis for any
t—z. Then

jw c(u) du<0.

If the gates are OR gates, the argument is similar.

Case 3. Suppose N consists of a subnetwork containing a in parallel with a sub-
network containing b. This is impossible because a and b are sequential processes.

Case 4. Suppose N consists of a subnetwork N, containing « in series with a
subnetwork N, containing b. The reasoning is analogous to the case of two
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processes in series. Let the cdf of the completion time of N, be GX(¢), when the first
factor is at level i, and let G} () be defined analogously. By Theorem 1, G,,(¢) >
G ,,(1) because F, (1) = F,,(t), and G,(t) = G,,(t) because F(t) = F,,(t). The con-
clusion follows from the reasoning leading to Inequalities (5), with G (?)
substituted for F,, (1), i=1, 2, and G;(t) substituted for Fy;(z), j=1, 2, respectively.

Q.E.D.

Two immediate consequences of Theorem 6 are worth noting. First, when the
assumptions of Theorem 6 are met, an earlier result from Theorem 5 for AND
networks can be reformulated for OR networks. That is, for an OR network meet-
ing the assumptions of Theorem 6, it is easily seen that there is no time 7 such that
¢(t) is negative for all times ¢ in the interval (0, 7). This result, based on stronger
assumptions than those of Theorem 5, circumvents the difficulty mentioned earlier
in proving Theorem 5 for OR networks.

Second, results for mean interaction contrasts can be obtained from the results
of Theorem 6 for cdf interaction contrasts by evaluating the integrals in Theorem
6 from 0 to co. The interaction contrast for mean response times is

E[RT»]—E[RT,] —E[RT, 1+ E[RTy].

From Eq. (4) and Theorem 6, it follows immediately that the mean interaction
contrast for sequential processes is positive or zero for AND networks and negative
or zero for OR networks. This provides an alternative proof, based on different
assumptions, of earlier results by Schweickert and Townsend (1989), Schweickert,
Fisher, and Goldstein (1992), and Schweickert and Wang (1993).

DISCUSSION

To summarize, when two processes in a serial-parallel network are selectively
influenced by experimental factors, the cdf interaction contrasts are informative
about whether the processes are concurrent or sequential and whether the network
has AND or OR gates. The details are in the theorems themselves, but the main
ideas can be stated simply. The main assumptions are (a) the processes involved in
performing a task are arranged in a directed acyclic network in which all the gates
are AND gates or all the gates are OR gates, (b) the network is a serial-parallel
network, (c) there are two experimental factors which selectively influence two
different processes, (d) when the level of a factor is changed, the corresponding cdfs
for the duration of the influenced process exhibit stochastic dominance, and (e) the
process durations are mutually independent random variables at all levels of the
two factors. The main results are the following.

(a) If the two selectively influenced processes are concurrent, then the cdf
interaction contrast will have the same sign at all times ¢, nonnegative for AND
gates and nonpositive for OR gates.

(b) If the two processes are sequential, then the cdf interaction contrast is
nonnegative for a period of time after 0, and then, for an AND network, changes
sign at least once.
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(c) Suppose the two processes are sequential. If the network has OR gates,
then the area bounded by the cdf interaction contrast and the time axis will be non-
negative from time 0 to any arbitrary time ¢. If the network has AND gates, then
the bounded area will be nonpositive from any arbitrary time ¢ to co.

Our results do not imply that the cdf interaction contrast changes signs for
sequential processes in an OR network. Consequently, the pattern for sequential
processes in an OR network may be the same as that for concurrent processes in
an AND network. These two arrangements are different enough that practical
knowledge about the experimental factors would ordinarily distinguish between
them. Aside from these two cases, for serial-parallel networks, one can distinguish
concurrent from sequential processes and OR networks from AND networks with
the cdf interaction contrast.

An overview of our main results can be obtained by comparing the cdf interac-
tion contrast functions in Figs. 4-7. If data in the form of one of these figures were
produced by selectively influencing processes in an independent serial-parallel AND
or OR network, the investigator could classify the underlying process arrangement
in the following way.

In Figs. 4 and 5, the interaction contrast function does not change sign. This is
predicted when two concurrent processes are selectively influenced. The positive
function in Fig. 4 is predicted by concurrent processes in an AND network. Our
results do not rule out the possibility that the function in Fig. 4 was produced by
sequential processes in an OR network. The negative function in Fig. 5 is predicted
by concurrent processes in an OR network. In Figs. 6 and 7, the interaction
contrast function changes sign. This sign change cannot be produced by factors
selectively influencing concurrent processes, but can be predicted by factors selec-
tively influencing sequential processes. The area bounded by the cdf contrast and
the horizontal axis is informative. The net area from any time t to oo is negative
in Fig. 6, characteristic of sequential processes in an AND network. The net area
from 0 to any time t is positive in Fig. 7, characteristic of sequential processes in
an OR network.

The appearance of a predicted pattern in the data does not imply the presence
of the particular process arrangement leading to the prediction, of course, because
a completely different architecture may lead to the same prediction. However, when
a process arrangement predicts a certain pattern in the data, and a different pattern
appears, then the process arrangement can be eliminated as a possibility. The use-
fulness of the predicted patterns is not so much that they are difficult to mimic as
that they are easily checked.

APPENDIX

Theorem 2 and OR Networks

It might seem that if the assumptions of Theorem 2 were true for an OR network,
the conclusion would necessarily follow, but it does not, as the following example
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shows. Consider the simple OR network with a process a in parallel with a process
z. When the factor is at level i, the survivor function is

G(t)=F,(1) F.(1).
Then
(1) = go(1) = [ fur(t) = fur DT FL() + [ F o1 (1) = F ()] f2(2).

By the assumptions of Theorem 2, f,,(#) = f,,(¢) for t < 7. If (at least a weak version
of) Theorem 2 holds, then in some vicinity of 0 it must be true that

[fur(2) = far(O) T Fo(1) 4+ [Fuy(1) — Fa(1)] f2(1) =0.

Since F,(t)=1—F_(t)>0 and (for t<71) F,,(t) — F,,(t) >0, this inequality
is equivalent to

Jar(t) = farlt) _ f0)
Fa(t) = Fap1) " 1= F.(1)°

It is easy to see that the left-hand side of this inequality,

Jar(1) = far(1)

F,

M= (= (1)

= log/[ Fur(1) — Fol(1)].

tends to infinity as ¢t —» 0, because log[ F,,(t) — F,,(1)] > —oo. We now construct
the density function f,(¢) in the following way (refer to Fig. 8). Between points 1 =0
and 7 =1 the function f,(#) is zero except within intervals 27" +4,/2 (n=0,1, 2, ...)
where its value is #(27") k, k> 1 being an arbitrary constant. As a result, f,(¢)
exceeds A(t)between t =0 and ¢ =1 within each of these intervals. The width of the
intervals J,is computed as

where ¢, is any sequence of positive numbers such that

e, < (27" 27" p(2") k

n

and
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FIG. 8. The density function for process z is higher than the function /(¢) in an infinite number of
places. Details in text.

It is easy to check that thus defined intervals do not overlap and that the area
under f.(¢) within any interval 27"%*¢,/2 equals ¢,. To the right of r=1 the
function £.(¢) can be extended arbitrarily except that f.(¢#) >0 and

jf Sty di=1—p.

The total area under f.(t) therefore is

and f.(¢) is a legitimate density function. Observe now that any vicinity of =0,
however small, contains an infinity of intervals 2"*4, /2, and within each of these
intervals f.(¢z) exceeds Ah(t) by a factor of k> 1. Since Ah(t) > oo as t—0, the
difference f.(¢) — h(¢) increases as ¢t — 0. At the same time as ¢ — 0 the difference
between f.(¢) and f.(¢)/[1 — F.(t)] tends to zero. We conclude that in any suf-
ficiently small vicinity of =0 the inequality

fal(t)_faZ(t) > fz(t)
Ful(t) 7F¢12(t) g 1 7F:(t)
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will be violated an infinite number of times. This example shows, then, that
Theorem 2 is not generally true for independent OR networks.

Another approach. Theorem 2 describes the behavior of densities at values of ¢
below some critical value. At first it might seem that a similar result describing the
behavior of densities at values of ¢ exceeding some critical value would apply for
OR gates. It might seem, in other words, that a version of Theorem 2 would apply
if the direction of every inequality in the conclusion was reversed.

The following counterexample shows this to be false for two processes in series,
so it is false for more complicated networks with OR gates also. Suppose ¢ and z
are in series. Suppose for all t>7, f,,(t)— f,.(t)=0. We show it is possible
nevertheless that

(1) =a(1) = || Lfar(x) = fuao)] £t =) de <0

for all > 1.
Let f,(z)=e~". Then

[ Lfur0) = fua ] St =) = [ Lfua(6) = ot ] ¥ s
[ ) = L] e
Since f,,(1) — fu(#) > 0 above
e |7 L) = fual)] e dx >0
and therefore
_’Lt[fal —furx)] ¥ dx<e~ ’Lw [Fi(3) = fin(x)] €
e {fow For(x) e dx— f:o Fon() e"dx}.

To conclude the counterexample it suffices to show that the densities f,,(¢) and
f.2(t) can be chosen so that

[ et an=[" vy e,

while f,,,(2) exceeds f,,(t) for all sufficiently large ¢. As an example, the exponential
function f,,,(¢) = (4/3) e =%/ exceeds the two-stage gamma function f,,(t) =4te %
at sufficiently large values of ¢, but they both have the same expected value of ¢/,
equal to 4.
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