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Abstract
This paper deals with three traditional ways of defining contextuality: (C1) in terms of

(non)existence of certain joint distributions involving measurements made in several mutually
exclusive contexts; (C2) in terms of relationship between factual measurements in a given
context and counterfactual measurements that could be made if one used other contexts; and
(C3) in terms of (non)existence of “hidden variables” that determine the outcomes of all factually
performed measurements. It is generally believed that the three meanings are equivalent, but
the issues involved are not entirely transparent. Thus, arguments have been offered that C2 may
have nothing to do with C1, and the traditional formulation of C1 itself encounters difficulties
when measurement outcomes in a contextual system are treated as random variables. I show
that if C1 is formulated within the framework of the Contextuality-by-Default (CbD) theory,
the notion of a probabilistic coupling, the core mathematical tool of CbD, subsumes both
counterfactual values and “hidden variables”. In the latter case, a coupling itself can be viewed
as a maximally parsimonious choice of a hidden variable.

1 Introduction
The aim of this paper is to consider three historically established ways of understanding (non)contextuality,
and relate them to each other from the vantage point of the Contextuality-by-Default (CbD) the-
ory. The reader unfamiliar with CbD can find its latest version in Ref. [18] (and additional details,
arguments, and proofs in Refs. [13, 14, 16, 32, 34]). My main point is that the three approaches
in question can be viewed as variants or interpretations of the core mathematical tool of CbD —
probabilistic couplings.

The first of the three meanings of contextuality considered in this paper can be called joint-
distributional. It was introduced by Suppes and Zanotti [41] and Fine [22], within the conceptual
framework of establishing its equivalence to the more traditional at the time “hidden-variable” mean-
ing of contextuality, as discussed below. Contexts are defined as conditions, or arrangements under
which one performs one’s measurements (including but not reduced to what other measurements
are performed together with a given one). A system of measurements made in varying, mutually
exclusive contexts is noncontextual if the random variables representing all these measurements
can be considered jointly distributed. This seems to have become a common way of understanding
contextuality, as evidenced by numerous contemporary works [1–3, 9, 10, 30, 35, 36, 39]. The CbD
theory belongs to the same category, and its specific feature is that all measurement outcomes
are consistently treated as contextually labelled random variables. The use of contextual labeling
means that measurements made in different contexts are always represented by different random
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variables, even if they measure the same property. As a result, the possibility of imposing a joint
distribution on all random variables in a system is not a restrictive requirement. In CbD, there-
fore, one is interested in the existence of not just some but only specific joint distributions, those
satisfying certain requirements. To match the traditional understanding, derived from Fine’s and
Suppes and Zanotti’s work, the requirement should be that, in the joint distribution imposed on
the system, the variables measuring the same property in different contexts should always have
equal values (which is achievable only if the random variables in play satisfy the no-disturbance
constraint, as discussed below).

The second meaning of contextuality can be called counterfactual. It is formulated in terms of
whether an outcome of a factual measurement made in some context would have been the same
had it been made in another context. It seems that most contemporary researchers take this
counterfactual formulation as being equivalent to the joint-distributional meaning of contextuality
mentioned above (and to the “hidden-variable” meaning, mentioned below). This is apparent, e.g.,
in Liang, Speckens, and Wisemen’s comprehensive introduction to contextuality [39]. However,
this view is not universally accepted. Thus, Griffiths [24] calls the counterfactual meaning of
contextuality Bell-contextuality, and argues that any system is Bell-noncontextual (see Griffiths’s
paper in the present issue, [25]). This means that, in Griffiths’s opinion, it is always true that had
one measured a factually measured property in another context, the result would have been the
same; and that this has nothing to do with the existence or nonexistence of joint distributions in
the first meaning of contextuality.

The third way of defining (non)contextuality was historically the first. Contextuality (with-
out using this term) was introduced in quantum physics through the notion of hidden variables,
primarily by Bell [5, 6] and Kochen and Specker [31]. In particular, Bell demonstrated that one
could meaningfully address, using only observable measurements, the question famously discussed in
Bohr’s [7] critique of Einstein, Podolsky, and Rosen [21]. This question is whether all measurement
outcomes in a system of measurements can be presented as being determined by some “hidden” ran-
dom variable in a context-independent way, i.e., using context-independent mappings of the values
of this hidden variable into the values of the observed measurement outcomes. The question has
beens historically formulated in terms of “realism”, the existence of hidden variables of which all ob-
servable outcomes of measurements are functions, and “(non)locality”, the (in)dependence of these
functions on the contexts. (To include systems in which spatial separation plays no role, e.g., of
the Kochen-Specker variety, the term “locality” should be replaced with the broader term “context-
independence”.) Quantum mechanics is usually said to exclude the conjunction of realism and
context-independence, but the culprit in this conjunction is not agreed on by all. Thus, Leggett [37]
and Gröblacher, Paterek, Kaltenbaek, Brukner, Żukowski, Aspelmeyer, and Zeilinger [26] show that
quantum mechanics rules out realism in conjunction with certain forms of context-dependent map-
ping.

In this paper, I uphold the prevalent view that all three meanings of contextuality are equivalent.
We will see that counterfactual definiteness and the existence of hidden variables can be viewed as
philosophically and/or physically laden ways of speaking of probabilistic couplings, the notion that
lies at the heart of CbD.

CbD is usually taken to be useful for inconsistently connected systems (systems with “distur-
bance”), where measurements of the same property in different contexts may have differently dis-
tributed outcomes [4, 12, 23, 34, 40, 44]. However, if measurements are treated as random variables
within the framework of classical probability theory, CbD offers considerable conceptual clarity even
for consistently connected systems, those with no “disturbance”. To illustrate this, I focus on such
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systems throughout most of this paper.
The following three aspects of our discussion should be kept in mind. First, the term mea-

surement can be replaced with any procedure with generally random outcomes, e.g., responses of a
biological organism to stimuli. For this reason I prefer in the following to use the standard CbD term
“content” (of a random variable) in place of the “property being measured”. Second, the analysis is
entirely within the framework of classical probability theory, with classical understanding of random
variables. In particular, random variables may but need not be related to observables in Hilbert
space. Third, the arguments I present in favor of using CbD should not be misconstrued as criticism
of other contemporary approaches to (non)contextuality, such as presented in Refs. [2, 3, 9, 29, 39].
In particular, the terms “traditional” and “historical” used in describing positions contrasted with
CbD refer primarily to the literature of the last century.

2 Preliminaries: Terminology and notation
Consider an experiment consisting in measuring several properties, generically called contents, under
various conditions, called contexts. The contents form a set Q, the contexts form a set C, and in
each context c ∈ C one jointly measures some subset Qc of the properties Q, with Qc∩Qc′ generally
nonempty. If q ∈ Qc, the result of measuring this content q in a context c is a random variable Rc

q.
The set of the random variables double-labeled in this way is a system (of random variables).

The random variables belonging to the same context form a set of jointly distributed random
variables {

Rc
q : q ∈ Qc

}
. (1)

Conceptually, the joint distribution of context-sharing variables means that they can be presented
as measurable functions on one and the same domain probability space (sometimes also referred to
as sample space). Equivalently, and more conveniently for our purposes, this means that one can
choose a random variable Hc for each context c, and functions f cq , such that

f cq (Hc) = Rc
q, q ∈ Qc, c ∈ C. (2)

If the sample space for the context-sharing variables in (1) is specified, Hc can be chosen as the
identity function on the same space, in which case f cq is the measurable function defining Rc

q.
However, a practical, and most economic, choice of Hc is (1) itself, which is a random variable in
its own right.1 With this choice, f cq is the componentwise projection function.

By contrast with (1), any two random variables picked from different contexts are stochastically
unrelated, even if sharing a content: Hc and Hc′ for c 6= c′ have no joint distribution (are defined
on distinct sample spaces).

As mentioned above, we focus on consistently connected systems, defined by the following prop-
erty: if q ∈ Qc ∩Qc′ (c, c′ ∈ C), then the distribution of Rc

q is the same as the distribution of Rc′

q .
This is written as

Rc
q ∼ Rc′

q . (3)

That is, a random variable’s distribution in a consistently connected system is determined by the
variable’s content only.2

1As mentioned in Section 5, the distinction between a “single” variable and a set of jointly distributed variables
is purely representational and dispensable.

2This property is known in physics under a variety of names, such as no-signaling, no-disturbance, parameter
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As an example I will use the following system:

R1
1 R1

2 c = 1
R2

2 R2
3 c = 2

R3
1 R3

3 c = 3

q = 1 q = 2 q = 3

. (4)

Consistent connectedness means here that R1
1 ∼ R3

1, R1
2 ∼ R2

2, and R2
3 ∼ R3

3. Because the two
variables within each context are measured together, they are operationally (or empirically) jointly
distributed.3 By contrast, random variables picked from different contexts, say R1

1 and R3
3 or R1

1

and R3
1, are stochastically unrelated : there is no empirical procedure for pairing their values; they

can be paired “on paper”, but not uniquely, with no particular way being privileged.
I will use the example of system (4) in the remainder, sometimes mentioning and sometimes only

implying a generalization to any system of random variables. However, the generalization is trivial
only if we confine our discussion to systems of random variables with finite numbers of contents
and contexts, and to random variables that are categorical, i.e., have finite numbers of values. The
latter is not a restriction for the CbD approach, in which all random variables should be replaced
with sets of jointly distributed dichotomous random variables before contextuality analysis can be
applied [18] (we need not, however, discuss this construction in this paper).

3 Joint-distributional understanding: Identically connected
couplings

The first meaning of contextuality is based on the obvious fact that one can consider a multitude
of ways the six random variables in (4) could be jointly distributed “on paper” (knowing that they
are not jointly distributed de facto). This formulation (with the words “could be”) is hinting at
counterfactuality, but we need not go that way: mathematically, we simply consider all sextuples
of jointly distributed random variables

S1
1 S1

2

S2
2 S2

3

S3
1 S3

3

, (5)

with the same row-wise distributions as in (4). Any such a sextuple is a probabilistic coupling
of the system (4), and the set of possible couplings is always nonempty. More generally, given
a set X of random variables, its coupling is defined as a set X of jointly distributed random
variables, in a bijective correspondence with X , such that for any Y ⊆ X , if the elements of Y are

invariance, etc. [11]. In psychology it is known under the name of simple marginal selectivity. The term “consistent
connectedness” is less connotationally loaded than most of these terms. It is a naturally formed term in CbD, because
contexts in this theory are represented by isolated “islands” of random variables, and they are only “connected” to
each other by the fact that some variables in different contexts have the same content. The set of all variables Rc

q
with the same content q is then natural to call a connection [15].

3The term “measured together” usually means simultaneously, but it could be any empirical scheme by which
the values of two variables are paired. They can be measured at different times, as in the Leggett-Garg-type
experiments [9,38], and they can be related to the same or different physical objects. This is one reason my analysis
is not critically related to such issues as commutativity of the quantum operators generating the random variables.
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jointly distributed, then the corresponding subset Y ⊆ X has the same distribution. In particular,
corresponding elements of X and X are identically distributed.4

In contextuality analysis of a consistently connected system one is interested in whether among
all possible couplings of a system of random variables one can find one with a special property. This
property is that in each connection, i.e. each column of (5), the two random variables are equal to
each other with probability 1. If such a coupling exists (in CbD it is called identically connected),
then the system (4) is considered noncontextual. Otherwise it is contextual. Thus, if the variables
in the system (4) are dichotomous, +1/− 1, then it is known [3, 32] that this system is contextual
if and only if

max
odd # of −’s

(
±
〈
R1

1R
1
2

〉
±
〈
R2

2R
2
3

〉
±
〈
R3

3R
3
1

〉)
> 1, (6)

where the maximum is taken over all combinations with odd numbers of minus signs (1 or 3).
Examples of such systems are readily constructed.

Traditionally, the system (4) would be presented as

R1 R2 c = 1
R2 R3 c = 2

R1 R3 c = 3

q = 1 q = 2 q = 3

, (7)

with overlapping sets of random variables (here, each random variable occurs in two different
contexts). This is the case, e.g., in what seems to be historically very first joint-distributional
analysis of contextuality (without using this term), the 1981 paper by Suppes and Zanotti [41].
The central theorem in that paper says (mutatis mutandis):5

Suppes-Zanotti’s Theorem. Let R1, R2, R3 be random variables with possible values 1
and -1. Then a necessary and sufficient condition for the existence of a joint probability
distribution of the three random variables is

max
odd # of −’s

(±〈R1R2〉 ± 〈R2R3〉 ± 〈R3R1〉) ≤ 1. (8)

While the necessity part of this statement is straightforward, the sufficiency part encounters diffi-
culties. The reason for this is that the relation of being jointly distributed is “agglutinative”, in the
following sense:

(Agglutinativity) given sets A and B of jointly distributed random variables, if A∩B 6= ∅, then
A ∪B is a set of jointly distributed random variables.6

This property holds essentially by definition of a random variable. It follows that for R1, R2, R3 to
be jointly distributed it is sufficient that at least two of the expected values 〈R1R2〉 , 〈R2R3〉 , 〈R3R1〉

4This definition is modified with respect to the standard one [42] to better suit contextuality analysis.
5Compared to the original formulation, notation is changed, an unnecessary constraint is removed, and the

inequality is replaced with an equivalent one to make it comparable to (6).
6In a previous publication [16] this property was erroneously called “transitivity”. When applied to three random

variables, X,Y, Z, transitivity means that joint distributions of (X,Y ) and (Y, Z) implies that of (X,Z). Aggluti-
nativity means that joint distribution of (X,Y ) and (Y, Z) implies that of (X,Y, Z). This implies transitivity but is
not equivalent to it.
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be well-defined, i.e. at least two of the pairs (R1, R2) , (R2, R3) , (R3, R1) be jointly distributed. But
the latter would be the case even if

max
odd # of −’s

(±〈R1R2〉 ± 〈R2R3〉 ± 〈R3R1〉) > 1, (9)

in which case R1, R2, R3 cannot be jointly distributed. This contradiction shows that a correct
formulation of Suppes-Zanotti’s theorem should have been as follows:

Let R1, R2, R3 be random variables with possible values 1 and -1. Then a necessary
and sufficient condition for the existence of a joint probability distribution of the three
random variables is the existence of a joint distribution of any two of the three pairs
(R1, R2) , (R2, R3) , (R3, R1). If this is the case, (8) is satisfied.

However, then it follows that (9) cannot ever hold. Put differently, if (7) is a system (implying,
in particular, that the joint distributions within contexts are well-defined), then this system can
only be noncontextual. Therefore, if it happens that (9) holds for this system, then one has a true
contradiction on one’s hands, and this contradiction cannot be resolved within the framework of
(7). It can only be resolved by explicating and rejecting some hidden assumptions – and in this case
the culprit is the assumption that the random variables measuring the same content in different
contexts are the same.

This problem is ubiquitous in the traditional literature succeeding Ref. [41], although its critical
analysis is complicated by the fact that many authors would refer to elements of (7) as measure-
ments or observables rather than random variables. I take it as a given, however, that the notion
of a distribution of Ri, or the probability of Ri being equal to some value, can only be used if Ri

is a random variable. With this in mind, the contradiction just described can only be resolved by
using contextual notation, and CbD offers a straightforward way of doing this. However, contextual
notation can also be applied to probabilities rather than random variables per se, and this seems
to be the way chosen in some of the contemporary literature. Thus, Khrennikov [28, 29] proposes
labeling of the form Pr [Ri = r | c = j], calling this “contextual probabilities” and warning against
identifying them with conditional probabilities. Liang, Speckens, and Wisemen [39] use essentially
the same notation (if one considers quantum preparations part of contexts). Abramsky and col-
leagues [1, 2] developed a similar system in which ec denotes the joint probability of all random
variables in context c, and distributions of their subsets are treated as specializations: e.g., the
distribution of R1 in c = 3 would be denoted ec=3|q=1. Contextual notation for probabilities, the
same as CbD’s contextual notation for random variables, allows one to avoid the difficulties related
to the agglutinativity.

4 Counterfactual approach
The second meaning of (non)contextuality is predicated on an affirmative answer to the following
question:

(Q1: counterfactual definiteness) when one makes measurements in a given context, can one
meaningfully speak of what the outcomes of measurements would have been had one chosen
another context?

Using our example system (4), if the chosen context is c = 2, one records the values of R2
2 and R2

3. Is
it meaningful to ask what the recorded values would have been had we chosen c = 1 or c = 3 instead
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of c = 2? If the answer is negative, there is nothing more to discuss, and the counterfactual meaning
of contextuality cannot be formulated. A positive answer means that whenever a measurement is
being made, all random variables in all contexts can be thought of as having definite values. It
makes no difference for any possible consequences whether this assignment of values is understood
epistemologically (the experimenter can always assign these counterfactual values, perhaps not
uniquely) or ontologically (the random variables in counterfactual contexts have true values, but
being unknown in principle, one should consider possibilities, perhaps more than one, of what these
“true” values could be).

Assuming the answer to Q1 is positive, one can ask the next, critical question:

(Q2: counterfactual identity) is it possible that in this assignment of values to all random vari-
ables in the system any two content-sharing random variables Rc

q and Rc′

q be always assigned
the same value?

If this question, too, is answered in the affirmative, i.e., if there is an assignment of values that
only depends on the variables’ contents, rather than also on their contexts, the system is deemed
noncontextual in the “counterfactual sense”.

Note: in our understanding of Q2, the variables Rc
q and Rc′

q measure the same content in two
distinct contexts, one of which may be, but need not be factual. One might object to this and argue
that one should only be interested in this question if one of the contexts c, c′ is the factual context.
A comparison of two counterfactual assignments, one might insist, is of no interest. I can see no
convincing justification for imposing this restriction. Using our example (4), if one meaningfully
contemplates a counterfactual value of R1

2 when the measurements are factually made in context
c = 2, one should also be able to consider counterfactual value of R1

1: after all, R1
2 and R1

1 are
jointly distributed, it may even be the case that one of them is uniquely determined by the other,
e.g., R1

2 = −R1
1. But then, if one can speak of the value that R1

1 would have had if one measured
q = 1 in context c = 1 instead of measuring q = 2 in context c = 2, then one can also speak of
what the value of R3

1 would have been if the same q = 1 were measured in context c = 3. And the
requirement that the assignment of values should only depend on content would then dictate that
R3

1 be assigned the same value as R1
1.

The picture we arrive at now is: irrespective of what factual measurements are made, all random
variables are assigned values, and we ask whether this can be done so that any two Rc

q and Rc′

q

be assigned the same value. Assume that this is possible, i.e., the system is noncontextual in the
counterfactual sense. Then Rc

q and Rc′

q , being always equal to each other, are jointly distributed. By
the agglutinativity of the relation of being jointly distributed, this means that all random variables
in the system are jointly distributed. This is obvious in our example, where the identity requirement
across contexts together with the joint distributions within contexts yields the following graph of
pairwise jointly distributed random variables:

R1
1 R1

2

R2
2 R2

3

R3
1 R3

3

. (10)
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Any path in this graph that includes all nodes suffices to establish that the random variables are
jointly distributed. Even easier, consider contexts as nodes of a graph and connect two contexts by
an edge if they involve at least one common content. In our example it would look like this:

c1 c2

c3

. (11)

If such a graph is constructed for an arbitrary system, and if, as in our example, it is connected,
then in this system all random variables are jointly distributed. Systems whose context graphs
are not connected do not pose difficulties as they can (and should) always be studied as several
unrelated to each other systems with connected graphs.

It is now obvious that a system that is noncontextual (or contextual) in the the counterfac-
tual sense is precisely a system for which there exists (respectively, does not exist) an identically
connected coupling. The two meanings coincide. One can even say that the notion of a coupling
is nothing but a rigorous mathematical meaning of the “counterfactual sense”. Instead of making
the assumption, some would say distinctly metaphysical in flavor, that a random variable has a
definite value even if unmeasured, one can state as a fact, with no assumptions involved, that one
can impose a joint distribution on (construct a coupling of) all random variables in the system.
And then one can ask whether among all such couplings one can find an identically connected one.
Counterfactual statements can be rigorously formalized, but most would agree that their logical
status is more involved than that of factual statements. “The system has a coupling with properties
X” is more “ordinary” a statement than “Had we measured A in another context its value would
have been x.” As stated in a Stanford Encyclopedia of Philosophy article [43], “Philosophers, lin-
guists, and psychologists remain fiercely divided on how to best understand counterfactuals.” It is
hard to be divided over the notion of a coupling.

5 Hidden variables with context-independent mapping
As mentioned in Section 2, several random variables are jointly distributed if and only if they
are functions of one and the same random variable. Thus, because in each content c all random
variables Rc

q (q ∈ Qc) are jointly distributed in the operational sense (measured “together”), one
can define a random variable Hc and functions f cq (q ∈ Qc) such that (2) holds. This is a context-
specific hidden-variable construction, and it is obviously nonrestrictive, applicable to any system.
The third meaning of (non)contextuality we are discussing now is about the possibility of a single
hidden variable for all contexts, and context-independent functions that map it into the random
variables comprising the system. In other words, one asks whether there is a random variable H
and a set of functions fq (q ∈ Q) such that for any c ∈ C and q ∈ Qc,

Rc
q = fq (H) . (12)

If (and only if) such a construction is possible, the system is noncontextual in the “hidden variable”
sense.
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Applied to our example, the question is about the possibility of replacing (4) with

f1 (H) f2 (H) c = 1
f2 (H) f3 (H) c = 2

f1 (H) f3 (H) c = 3

q = 1 q = 2 q = 3

. (13)

At every measurement, the variable H has some value, and all six random variables, irrespective
of what context c is being factually measured, are determined by this value. At that, the values of
any two random variables measuring the same content are always equal (because the functions are
labeled by their contents only). It is easy to see that this is precisely the same as the existence, for
any factual measurement, of the assignment of values to all random variables in the system, such
that Rc

q = Rc′

q for any q ∈ Qc ∩Qc′ . Of course, in CbD, (12) has to be replaced with

Rc
q ∼ fq (H) = Sq, (14)

i.e. (13) represents a coupling of the system rather than the system itself.
This completes the demonstration that the three meanings of (non)contextuality considered in

this paper are subsumed by the notion of a coupling in the CbD sense.
There is also a “stochastic” version of the hidden-variable hypothesis, in which each variable Rc

q

is a function fq of a common source of randomness H and some specific source of randomness Vq
(context-independent),

Rc
q ∼ fq (H,Vq) . (15)

This version, however, is immediately reduced to the previous, “deterministic” version (12), on
renaming (

H, {Vq}q∈Q
)
7→ H ′. (16)

The existence of the single underlying random variables H is sometimes referred to as “realism”,
whereas the context-independence of the mappings fq is the generalization of what is traditionally
referred to as “locality” (when applied to spatially distributed systems of particles). It is worth
noting that of these two requirements for a hidden variable theory, it is only context-independence
of mappings that has a restrictive effect. Indeed, the variables Hc in (2), of which we know that
it is universally applicable, can always be coupled in a variety of ways, e.g. independently. In our
example, let us replace Hc=1, Hc=2, Hc=3 with a triple of jointly distributed, e.g. independent, ran-
dom variables (Gc=1, Gc=2, Gc=3) such that Gc ∼ Hc. Being jointly distributed, Gc=1, Gc=2, Gc=3

can be presented as functions of some random variables G,

Gc = gc (G) , c = 1, 2, 3.

This variable G can be chosen, e.g., as the vector

G = (Gc=1, Gc=2, Gc=3) , (17)

in which case
Rc

q ∼ f cq (gc (G)) = hcq (G) , c = 1, 2, 3, q = 1, 2, 3, (18)

where gc is the cth projection function. Denoting

hcq (G) = Sc
q , (19)

9



we form a coupling of the system. In accordance with [37], this “realist” construction is completely
nonrestrictive, applicable to any system. This does not exclude the possibility that some special
cases of context-dependent mapping too can be ruled out (e.g., by laws of quantum mechanics),
and this was demonstrated in Refs. [37] and [26].

In terms of counterfactual values, the construction (18) does introduce them implicitly, adhering
thereby to counterfactual definiteness. However, it does not require counterfactual identity, i.e., it
is not necessary that Sc

q = Sc′

q whenever q ∈ Qc ∩ Qc′ (e.g., Rc
q and Rc′

q are independent if so
are Gc=1, Gc=2, Gc=3). The assumption of counterfactual identity is equivalent to that of context-
independent mappings, this assumption is restrictive and may be empirically violated.

It is perhaps useful here to dispel the naive but not infrequent misconception that the random
variable in “realist” representation must be “single”, so that, e.g., G in (17) is not a legitimate choice.
Any set of jointly distributed random variables can always be replaced with a “single” one. In the
special case of a countable set of random variables defined on reals endowed with Borel sigma-
algebra this random variable can always be chosen, if one so wishes, as a single variable uniformly
distributed between 0 and 1 [8, 19, 27]. “Probabilistic dimensionality” (the number of components
of a random entity) is entirely a matter of one’s choice.

The obvious statement that jointly distributed random variables X and Y are functions of one
and the same random variable Z becomes even more obvious if one realizes that Z can always be
chosen as (X,Y ). In particular, a coupling S of a system can itself be viewed as a hidden variable,
and the most “economically chosen” one at that. Thus, in the classical proof of the Bell theorem [5],
for three dichotomous random variables A,B,C, the hidden variable λ could be chosen, with no
loss of generality, as the eight-valued λ = (A,B,C). To see that this is the most economic choice,
note that any λ such that A = fA (λ) , B = fB (λ) , C = fC (λ) can be presented as the jointly
distributed quadruple (A,B,C, λ) of which A,B,C are the first three projections. Obviously, no
choice of λ can make this quadruple simpler than eliminating λ altogether.

6 Conclusion
The language of probabilistic couplings used in CbD is a rigorous and parsimonious way of talking
about counterfactuals and hidden variables with context-(in)dependent mapping. It is also con-
ducive to expanding the sphere of applicability and depth of contextuality analysis [13–16, 18]. If
an identically connected coupling of (4) does not exist, other couplings do, and one can profitably
study this set of possible couplings, e.g. to compute the degree of contextuality. Using our example
(4), if the probabilities with which S1

1 = S3
1 , S1

2 = S2
2 , and S2

3 = S3
3 in a coupling (5) cannot all be

1, one can be naturally interested in the maximal values of the sum

∆ = Pr
[
S1
1 = S3

1

]
+ Pr

[
S1
2 = S2

2

]
+ Pr

[
S2
3 = S3

3

]
(20)

that can be achieved among all possible couplings (5). Then the difference 3 − ∆ will serve as a
possible measure of contextuality of system (4). For arbitrary consistently connected systems, ∆ is
the sum of Pr

[
Sc
q = Sc′

q

]
for all (c, c′, q) such that q ∈ Qc ∩Qc′ , and the measure of contextuality

is N −∆, where N is the number of all such (c, c′, q).
As we know, the main motivation for developing CbD, was that the language of probabilistic

couplings allows one to “smoothly” go beyond the class of consistently connected systems [13, 16–
18, 20, 32, 34]. An arbitrary system

{
Rc

q : q ∈ Qc, c ∈ C
}
is considered noncontextual if and only if

it has a coupling
{
Sc
q : q ∈ Qc, c ∈ C

}
in which, for any (c, c′, q) with q ∈ Qc ∩Qc′ , the probability

10



of Sc
q = Sc′

q is maximal possible. Denoting this sum of all these maximal values by ∆0, the
measure of contextuality mentioned above is generalized as ∆0 − ∆. It is, of course, only one of
many possible measures of contextuality, other measures being described, e.g., in Refs. [15,18]. An
important extension of measures of contextuality into measures of noncontextuality, if a system is
noncontextual, is addressed in another paper in the present issue [33].
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