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Abstract

Contextuality was originally defined only for consistently connected systems of random vari-
ables (those without disturbance/signaling). Contextuality-by-Default theory (CbD) offers an
extension of the notion of contextuality to inconsistently connected systems (those with distur-
bance), by defining it in terms of the systems’ couplings subject to certain constraints. Such
extensions are sometimes met with skepticism. We pose the question of whether it is possible
to develop a set of substantive requirements (i.e., those addressing a notion itself rather than
its presentation form) such that (1) for any consistently connected system these requirements
are satisfied, but (2) they are violated for some inconsistently connected systems. We show
that no such set of requirements is possible, not only for CbD but for all possible CbD-like
extensions of contextuality. This follows from the fact that any extended contextuality theory
T is contextually equivalent to a theory T′ in which all systems are consistently connected.
The contextual equivalence means the following: there is a bijective correspondence between
the systems in T and T′ such that the corresponding systems in T and T′ are, in a well-defined
sense, mere reformulations of each other, and they are contextual or noncontextual together.

Keywords: contextual equivalence, contextuality, consistent connectedness, consistifica-
tion, connections, disturbance, signaling.

A formal theory T of contextuality is defined by a class R of possible systems of random variables and
a rule by which these systems are divided into noncontextual and contextual ones. In the original
theory of contextuality ( in which term we include both the Kochen-Specker contextuality and the
contextuality in distributed systems, referred to as nonlocality [1–8]), the class R is confined to
consistently connected systems, or a subclass thereof. These are the systems with no “disturbance”
or “signaling,” which means that the variables representing the same property (answering the same
question) in different contexts are identically distributed. The Contextuality-by-Default theory
(CbD) extends the notion of contextuality to all systems of random variables, including those with
disturbance [9,10], and it has been applied to several experimental and theoretical situations [11–18].
A recent workshop on contextuality [19] exhibited a renewed interest to studying contextuality in
inconsistently connected systems, including approaches that are distinctly non-CbD-like [20–22],
and some work directly critical of CbD ( [23], responded to in Ref. [24]).

The present paper is not about CbD specifically. Rather it is about a broad class of all possible
CbD-like theories, as defined below. The plan and the main message of the paper are as follows. In
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Section 1, we present the terminology and notation to be used, and define the notion of a system of
random variables modeling (representing, describing) another system. In Section 2, we define the
traditional notion of contextuality in the language of probabilistic couplings [25], and we introduce
the notion of C-contextuality as a very broad generalization of both traditional contextuality and
CbD-contextuality. In Section 3, we introduce the notion of consistification of a system, and show
that any theory T, irrespective of its class R of systems and a specific version of the C-contextuality
it uses, can be redefined as a theory T′, whose systems are consistently connected, and that uses the
traditional notion of contextuality. Because of this, we conclude, there can be no set of substantive
requirements X for the notion of contextuality that are satisfied by all consistently connected systems
but contravened by some inconsistently connected ones. Indeed, if such a set of requirements existed,
one could form a theory T whose class R includes some systems contravening X. But X would then
be satisfied by the theory T′ that is contextually equivalent to T and a mere reformulation thereof.
Consequently, requirements X cannot be substantive: they address a form rather than the substance
of the notion of contextuality. In Section 4, we discuss some issues related to the consistified systems
(the term used for the consistently connected systems in T′), including the representability thereof
by hidden variable models. We also briefly discuss there a still more general (in fact, maximally
general) notion of C-contextuality, one that does not have the existence-and-uniqueness property
postulated for C-contextuality. In the final analysis this does not alter the main conclusion of the
paper.

The idea that consistification precludes the possibility of rejecting extended contextuality while
accepting the traditional one was previously mentioned in Ref. [24]. However, it was confined to
CbD only, and mentioned without elaborating. The consistification procedure was first described in
Ref. [13] for an older version of the CbD approach, and it was elaborated and adapted to the current
version of CbD in Ref. [26]. Finally, the C-contextuality in our paper generalizes a more limited
version of C-contextuality that was used in Ref. [27] as a generalization of the CbD approach.

1 Basic notions
A system of random variables is a set of double-indexed random variables

R =
{
Rc

q : c ∈ C, q ∈ Q, q ≺ c
}
, (1)

where q ∈ Q identifies what the random variable Rc
q represents (measures, responds to, describes),

c ∈ C identifies circumstances under which Rc
q is recorded (including what other random variables

are recorded together with Rc
q). q and c are referred to as, respectively, the content and the context

of the random variable Rc
q. The relation q ≺ c indicates that a variable with content q is recorded

in context c. As an example, this is a system with Q = {1, 2, 3} and C = {1, 2, 3, 4}:

R1
1 R1

2 c = 1
R2

2 R2
3 c = 2

R3
1 R3

3 c = 3
R4

1 R4
2 R4

3 c = 4

q = 1 q = 2 q = 3 R

. (2)

The subset Rc =
{
Rc

q : q ∈ Q, q ≺ c
}

of random variables recorded in the same context c (a
row in the matrix above) is termed a bunch, and the subset Rq =

{
Rc

q : c ∈ C, q ≺ c
}

of random
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variables sharing a content q (a column in the matrix above) is termed a connection. The difference
in font (Rc vs Rq) reflects the fact that Rc is a random variable in its own right (i.e., all its
components are jointly distributed), whereas the components of Rq are not jointly distributed. In
fact, no two random variables Rc

q and Rc′

q′ are jointly distributed unless they are in the same bunch,
c = c′. The measurable space on which Rc

q is distributed is assumed to be the same for all elements
of a connection, and can be denoted (Aq,Σq).

The triple (Q,C,≺) is called the format of the system. It is essentially the mathematical
depiction of “what the system is about,” what kind of empirical or theoretical situation it represents.
Thus, the format of the system in (2) can be presented as

⋆ ⋆ c = 1
⋆ ⋆ c = 2

⋆ ⋆ c = 3
⋆ ⋆ ⋆ c = 4

q = 1 q = 2 q = 3 R’s format

, (3)

where ⋆ indicates the elements of the relation ≺. To define a system of a given format, one has to
specify the distributions of its bunches

As should be clear from the abstract and introduction, in this paper we use the notion of one
system of random variables, B, being a “mere reformulation” of another, A. Intuitively, this means
that whatever empirical or theoretical situation is modeled (described, represented) by A, it is also
modeled by B. The relation between a system and a situation it depicts is difficult to formalize
directly, as one would have then to impose some formal structure on the situation being represented
before it is represented (as it is done in the representational theory of measurement, [28, 29]).
However, it is sufficient for our purposes to formalize a simpler relationship: between a system
A and another system that models (describes, represents) the system A. Moreover, rather than
presenting this relationship in a most general possible way, it will suffice to describe one special,
universally applicable construction of the modeling systems B. We will refer to this construction as
canonical modeling.

Consider two classes of systems, R and R†, in a bijective correspondence to each other, about
which we say that any system in R is canonically modeled by the corresponding system in R†. The
following definition gives a precise meaning to this relation.

Definition 1.1. We say that a system R ∈ R with format (Q,C,≺) is canonically modeled by a
system R† ∈ R† with format

(
Q†, C†,≺†) if

(canonical contents) Q† = {(q, c) : q ≺ c},

(canonical contexts) C† = {(·, c) : c ∈ C} ⊔ {(q, ·) : q ∈ Q},

(canonical relation) (q, c) ≺† (·, c) ⇐⇒ (q, c) ∈ Q†, and (q, c) ≺† (q, ·) ⇐⇒ (q, c) ∈ Q†,

(main bunches) R(·,c) =
{
R

(·,c)
(q,c) : (q, c) ≺

† (·, c)
}

d
=

{
Rc

q : q ≺ c
}
= Rc

(auxiliary bunches) R(q,·) =
{
R

(q,·)
(q,c) : (q, c) ≺

† (q, ·)
}

is uniquely determined by the distributions

of the corresponding variables in R(q,·) =
{
R

(·,c)
(q,c) : (q, c) ≺

† (q, ·)
}

.
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Here, the symbol d
= stands for “has the same distribution as.” The dot symbol in (·, c) and (q, ·)

should be taken as part of the names of these contexts. We choose this notation to emphasize that
every random variable Rc

q of the system R is placed in R† within two contexts, (·, c) and (q, ·),
whose names are derived from the indices of the variable. Note that the variables in the set R(q,·)
defined here have the same distributions as the corresponding variables in Rq =

{
Rc

q : q ≺ c
}
. We

use the former set, however, to emphasize that the auxiliary bunches are uniquely determined by
the corresponding variables in the main bunches. Note that the variables in R(q,·) are not jointly
distributed, so R(q,·) depends on their individual distributions only.

To give an example, consider the systems

R1
1 R1

2 c = 1
R2

1 R2
2 c = 2

q = 1 q = 2 A

R
(·,1)
(1,1) R

(·,1)
(2,1) c = (·, 1)

R
(·,2)
(1,2) R

(·,2)
(2,2) c = (·, 2)

R
(1,·)
(1,1) R

(1,·)
(1,2) c = (1, ·)

R
(2,·)
(2,1) R

(2,·)
(2,2) c = (2, ·)

q = (1, 1) q = (2, 1) q = (1, 2) q = (2, 2) B

. (4)

Observe that in system B the contents, contexts, and the relation between them are constructed in
accordance with Definition 1.1. System B canonically models system A if{

R
(·,1)
(1,1), R

(·,1)
(2,1)

}
d
=

{
R1

1, R
1
2

}
,

{
R

(·,2)
(1,2), R

(·,2)
(2,2)

}
d
=

{
R2

1, R
2
2

}
, (5)

and if there is a rule by which the distribution of

R(q,·) =
{
R

(q,·)
(q,1), R

(q,·)
(q,2)

}
, q = 1, 2, (6)

is uniquely determined by the distributions of the corresponding variables in

R(q,·) =
{
R

(·,1)
(q,1), R

(·,2)
(q,2)

}
, q = 1, 2. (7)

Observe the following properties of canonical modeling.

1. The formats of R and R† are reconstructible from each other, and so are the bunches of the
two systems. Moreover, R† faithfully replicates the bunches of R. This allows one to say that
R and R† describe the same empirical or theoretical situation.

2. One might wonder why we need the auxiliary contexts at all, and they are indeed unnecessary
if all one wants is a system modeling another system, e.g.,

R
(·,1)
(1,1) R

(·,1)
(2,1) c = (·, 1)

R
(·,2)
(1,2) R

(·,2)
(2,2) c = (·, 2)

q = (1, 1) q = (2, 1) q = (1, 2) q = (2, 2) B′

However, we will see the utility of the auxiliary contexts when we introduce consistifications
and contextual equivalence, in Section 3.
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3. The contents in the modeling system are “contextualized.” For instance, system A in (4) may
be describing an experiment in which two questions, q = 1 and q = 2, are asked in two orders,
c = 1 indicating “1 then 2,” and c = 2 indicating “2 then 1” [30, 31]. In this case, in the
modeling system the content q = (1, 2) should be interpreted as “question 1 asked second,”
and q = (1, 1) as “question 1 asked first.” We will return to the issue of interpretation in
Section 4.1.

4. The indexation of the variables in a canonical model is clearly redundant, and it can be
simplified. It is more important, however, to maintain the general logic of indexing the
variables by their contents and contexts.

2 Traditional and extended contextuality
A system R is consistently connected if in every connection Rq all its constituent variables have
one and the same distribution. Otherwise the system is inconsistently connected. (The latter term
is also used to designate arbitrary systems, i.e., in the meaning of “not necessarily consistently
connected.”)

An overall coupling of a system R in (1) is an identically labelled system

S =
{
Sc
q : c ∈ C, q ∈ Q, q ≺ c

}
(8)

of jointly distributed random variables such that its bunches Sc are distributed as the corresponding
bunches Rc,

Sc d
= Rc. (9)

Clearly, S has the same format as R. A coupling Sq of a connection Rq is a set

Sq =
{
Sc
q : c ∈ C, q ≺ c

}
(10)

of jointly distributed random variables such that Sc
q

d
= Rc

q for all its elements. A connection coupling
Sq is said to be an identity coupling if Sc

q = Sc′

q for any two of its elements. Obviously, such a
coupling exists if and only if all of its elements (equivalently, all elements of the connection Rq)
have one and the same distribution. Moreover, the identity coupling is unique if it exists. (The
uniqueness of a coupling should always be understood as the uniqueness of its distribution. In
other words, it is irrelevant on what domain probability space the coupling is defined as a random
variable.)

The traditional notion of contextuality is confined to consistently connected systems, and it can
be rigorously defined in our terminology as follows.

Definition 2.1. A consistently connected system R ∈ R is noncontextual if it has a coupling S
in which any connection Sq is the identity coupling of the connection Rq. Otherwise the system is
contextual.

The class of all possible systems R in a theory T is denoted R. For instance, R can only contain
the systems with finite sets Q and C, or only the systems with dichotomous random variables. By
constraining the class R one induces constraints on all possible random variables, Rc

q ∈ R+
+, on

bunches of random variables, Rc ∈ R+, and on possible connections, Rq ∈ R+.
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In CbD, contextuality of a system R is defined by considering its couplings S and determining
if in some of them the couplings Sq of the system’s connections Rq satisfy a certain statement. To
generalize this definition to all possible CbD-like theories, all one has to do is to replace this specific
statement with one that is (almost) arbitrary. Let C be any statement of the form “the coupling
of connection Rq has the following properties: ...”. The only constraints we impose on C are as
follows.

Definition 2.2. C is considered well-fitting if (1) for any connection Rq ∈ R+ there is one and
only one coupling Sq of Rq that satisfies C; and (2) if Rq consists of identically distributed random
variables, then the coupling that satisfies C is the identity coupling. We denote such a coupling of
Rq as C [Rq].

To give an example of a well-fitting statement C: in CbD, if the class R of all possible systems
is confined to the systems with dichotomous variables, the well-fitting statement is C = “for any
two random variables Sc1

q and Sc2
q in the coupling of connection Rq, the probability of Sc1

q = Sc2
q is

maximal possible.” Another example: if the class R of all possible systems is confined to the systems
with real-valued (or more generally, linearly ordered) variables, then a well-fitting statement can
be C = “for any two random variables Sc1

q and Sc2
q in the coupling of connection Rq, Sc1

q and Sc2
q

have the same quantile rank.” In section 4.3 we will discuss the possibility of dropping the first of
the two defining properties of a well-fitting statement C.

Definition 2.3. Given a well-fitting C, a system R is C-noncontextual if it has a coupling S
such that, for any connection Rq of the system, the connection coupling Sq coincides with C [Rq].
Otherwise the system is C-contextual.

3 Equivalence and impossibility theorems
It follows from the last two definitions that, for a well-fitting C, a consistently connected system
is C-noncontextual if and only if it is noncontextual in the traditional sense (i.e., in the sense of
Definition 2.1). In other words, any extension of the notion of contextuality using a well-fitting C
properly reduces to the traditional notion when confined to consistently connected systems. This is
not, obviously, sufficient to consider the extension of contextuality by means of C well-constructed.
There may be other desiderata for a well-constructed notion of contextuality, and a specific choice
of C may not satisfy them. The question we pose now is as follows:

Q*: is it possible to formulate a set of such desiderata/requirements X for the notion of contextuality
that, for some choice of C, (1) X is satisfied for any consistently connected system, but (2) X
is not satisfied for some inconsistently connected systems?

Note that we impose no constraints on what X may entail, except for its being related to con-
textuality. It may, e.g., for some relation B between systems, have the form “if system R1 is
(non)contextual, then any system R2 related to R1 by B is (non)contextual” [24].

To answer the question Q* we need the following result.

Theorem 3.1. For any well-fitting C and system R, there is a consistently connected system R‡

that canonically models it (Definition 1.1), such that R is C-contextual (Definition 2.3) if and only
if R‡ is contextual in the traditional sense (Definition 2.1).
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Proof. Let R‡ be a canonically modeling system for R, with

R(q,·) =
{
R

(q,·)
(q,c) : (q, c) ≺

‡ (q, ·)
}

d
= C

[{
Rc

q : q ≺ c
}]

= C [Rq] . (*)

One can check that R‡ is consistently connected: every connection R(q,c) of R‡ consists of precisely

two variables, R(·,c)
(q,c) and R

(q,·)
(q,c), where R

(·,c)
(q,c)

d
= R

(q,·)
(q,c). Indeed, R(·,c)

(q,c)

d
= Rc

q, because R(·,c) d
= Rc

in any canonically modeling system; and R
(q,·)
(q,c)

d
= Rc

q because we know from (*) that R
(q,·)
(q,c)

d
= Sc

q ,
where Sc

q ∈ C [Rq].
The system R‡ thus constructed is referred to as a consistification of R. We can now define the

consistification S‡ of a coupling S of a system in precisely the same way as for the system itself,
except that (*) is replaced with the straightforward

S(q,·) = Sq,

with the obvious correspondence between the different indexations within the two random vectors.
Clearly, S‡ is a coupling of R‡.

Assume now that R is noncontextual. This means that it has a coupling S such that (a) Sc d
= Rc

for every c ∈ C, and (b) Sq = C [Rq] for every q ∈ Q. Then in the coupling S‡ of system R‡ we
have (a’) S(·,c) d

= R(·,c) for every (·, c) ∈ C‡, and (b’) S(q,·) = C [Rq] for every (q, ·) ∈ C‡. Moreover,
since both S

(·,c)
(q,c) and S

(q,·)
(q,c) equal Sc

q , we have (c’) S(·,c)
(q,c) = S

(q,·)
(q,c). But (a’)-(b’)-(c’) mean that R‡ is

noncontextual in the traditional sense. The implication here is easily seen to be reversible, and we
conclude that R is noncontextual if and only if so is R‡.

In our example (4), B is a consistification of A if we specify the rule for the auxiliary bunches
as follows: R(q,·)

(q,c)

d
= R

(·,c)
(q,c), and the distribution of R(q,·) is the same as that of C [Rq]. If C is chosen

as in CbD, the consistification of the system R in (2) is the system below (omitting for simplicity
the parentheses and commas in R

(·,c)
(q,c) and R

(q,·)
(q,c)):

R·1
11 R·1

21 c = ·1
R·2

22 R·2
32 c = ·2

R·3
13 R·3

33 c = ·3
R·4

14 R·4
24 R·4

34 c = ·4
R1·

11 R1·
13 R1·

14 c = 1·
R2·

21 R2·
22 R2·

24 c = 2·
R3·

32 R3·
33 R3·

34 c = 3·
q = 11 q = 21 q = 22 q = 32 q = 13 q = 33 q = 14 q = 24 q = 34 R‡

, (11)

where all variables are assumed to be dichotomous, and in each of the auxiliary bunches, the
variables are pairwise equal with maximal possible probability.

For the purposes of contextuality analysis, R‡ can be viewed as a mere reformulation of R, a
different form of the same substance. We express this fact by saying that R and R‡ are contextually
equivalent. (In Refs. [24, 26] contextual equivalence is defined more narrowly, requiring also the
numerical coincidence of certain measures of contextuality, such as contextual fraction [32]. In this
paper, however, the level of abstraction is higher, and we only consider the notion of contextuality
rather than its quantifications.)
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Consider now a theory of (generally, extended) contextuality T = T (C,R). In accordance with
Theorem 3.1, we can form the class R‡ of the consistifications of the elements of R in a bijective
correspondence with R. By extension of the term, we can say that T and T′ = T

(
C0,R

‡) are
contextually equivalent. C0 here denotes the statement “the connection Rq has an identity coupling”
that underlies the traditional notion of contextuality, because by definition, it can be viewed as
a special case of any well-fitting statement C. We have now everything we need to demonstrate
our main conclusion. Let there be a set of requirements X of the notion of contextuality that are
satisfied by all consistently connected systems (using the traditional contextuality) and contravened
by some inconsistently connected ones, using some version of C-contextuality. Let T include some
of the inconsistently connected systems contravening X. Clearly then, requirements X contradict
theory T, but they are satisfied by the contextually equivalent theory T′ = T

(
C0,R

‡). Therefore
X is not a set of substantive requirements. We can summarize this as a formal theorem.

Theorem 3.2. For any well-fitting C, there can be no set of substantive requirements X of the
notion of contextuality that are satisfied by all consistently connected systems (using the traditional
contextuality) and contravened by some inconsistently connected ones, using C-contextuality.

Of course, a set of requirements X satisfied by T′ but not T can be readily formulated. The
theorem says, however, that all it can do is to lead one to prefer one of two equivalent representations
of contextuality, without affecting the substance of the notion.

Note also that in the theorem just formulated we assume no relationship between the set of
requirements X and the bijective correspondence relating R to R‡. In particular, let X have the
form “if system R1 is contextual, then any system R2 related to R1 by relation B is contextual.” It
is not necessary then, although not excluded either, that R‡

2 is also related to R‡
1 by relation B. All

that is stated in the theorem above is that if one wishes to use this X as a substantive principle in
testing competing theories, then the failure of a theory to satisfy it cannot be selectively attributed
to the fact that its R contains inconsistently connected systems.

4 Miscellaneous remarks
Here, we consider a few issues related to the main point of this paper.

4.1 Interpretation of contents and contexts
Dealing with consistified systems R‡, one needs to get used to a new interpretation of contents and
contexts of the random variables: as mentioned previously, in R‡, contents are “contextualized,”
with (q, c) in place of just q, and the contexts are simply marginalized contents, (·, c) and (q, ·).
Consider as an example the EPR/Bohm experiment, the most widely investigated paradigm in
contextuality/nonlocality research [1, 33, 34]. In the usual CbD notation, the system representing
it is

R1
1 R1

2 c = 1
R2

2 R2
3 c = 2

R3
3 R3

4 c = 3
R4

1 R4
4 c = 4

q = 1 q = 2 q = 3 q = 4 A

, (12)

where q = 1 and q = 3 denote two settings (axes) to be chosen between by Alice, q = 2 and q = 4
are settings to choose between by Bob, c indicates the combination of their choices, and Rc

q are

8



dichotomous (spin-up/spin-down) variables. The consistified representation of the same experiment
is (again, omitting the parentheses and commas in the indexation)

R·1
11 R·1

21 c = ·1
R·2

22 R·2
32 c = ·2

R·3
33 R·3

43 c = ·3
R·4

44 R·4
14 c = ·4

R1·
11 R1·

14 c = 1·
R2·

21 R2·
22 c = 2·

R3·
32 R3·

33 c = 3·
R4·

43 R4·
44 c = 4·

q = 11 q = 21 q = 22 q = 32 q = 33 q = 43 q = 44 q = 14 A‡

. (13)

The interpretation of, say, the content q = (3, 2) here is as follows: it is the choice of axis 3 (that
we know to be made by Alice) when Bob’s choice of his axis forms combination 2 with Alice’s
choice (which we know to mean that Bob chooses axis 2). The interpretation of context c = (·, 2)
is that it is simply the set of contents whose second component is 2. Similarly, c = (3, ·) is the set
of contents whose first component is 3. The random variables within context c = (·, 2) are jointly
distributed by observation, whereas the random variables within context c = (3, ·) are jointly
distributed by computation (that, in turn, is uniquely determined by the observations). If C is
defined in accordance with CbD,

(
R2·

21, R
2·
22

)
is computed so that R2·

21
d
= R·1

21, R2·
22

d
= R·2

22 (consistent

connectedness), and the probability of R2·
21 = R2·

22 is maximal possible. In particular, if R·1
21

d
= R·2

22,
then R2·

21 = R2·
22.

4.2 Hidden variable models
One possible argument against contextuality in inconsistently connected systems is that it is not
distinguishable from inconsistent connectedness itself in the language of hidden variable models
(HVMs). If, the argument goes, a consistently connected system R in (1) is noncontextual, it has
a coupling S in which all random variables can be presented as

Sc
q = F (q,Λ) , (14)

where Λ is a “hidden” random variable [35]. If R is contextual, then all its couplings can only be
presented as

Sc
q = F (q, c,Λ) , (15)

with ineliminable c. However, the latter representation is also required for all inconsistently con-
nected systems, irrespective of whether they are C-contextual or C-noncontextual. We would argue
in response that this only means that on this general level (merely showing the arguments of the
functions) the language of HVMs is too crude to capture the subtler properties of the couplings,
such as contextuality under inconsistent connectedness. However, even if one takes this issue as a
matter of concern, it is eliminated by the consistification procedure. The system R‡ corresponding
to R is noncontextual if and only if it has a coupling S‡ such that, for all (q, c) ∈ Q‡,

S
(·,c)
(q,c) = G ((q, c) ,Λ) = S

(q,·)
(q,c), (16)
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for some random variable Λ. If R‡ is contextual, then in all its couplings, for some (q, c) ∈
Q‡,S

(·,c)
(q,c) ̸= S

(q,·)
(q,c), which means that their HVM representations can only be different functions,

S
(·,c)
(q,c) = G1 ((q, c) ,Λ) , S

(q,·)
(q,c) = G2 ((q, c) ,Λ) , (17)

or, equivalently, the same function but with differently distributed hidden variables,

S
(·,c)
(q,c) = H ((q, c) ,Λ1) , S

(q,·)
(q,c) = H ((q, c) ,Λ2) . (18)

It is instructive to apply this to the EPR/Bohm systems A and A‡ in (12) and (13). Here,
contextuality is traditionally referred to as nonlocality, because for the contextual system A, all its
couplings are represented in the form of (15): the ineliminable dependence on c here is interpreted
as the dependence of a measurement on a remote setting. However, if one models the EPR/Bohm
experiment by system A‡ instead, the HVM representations (16) and (17) both contain the contex-
tualized content (q, c) as an argument. Following the logic above, they should both be considered
nonlocal, even though one of them represents a noncontextual system and is equivalent to (14),
while the other represents a contextual system and is equivalent to (15). It seems to us, in agree-
ment with other authors [36], that this demonstration speaks against a naturalistic interpretation
of the HVMs in terms of physical dependences.

4.3 The existence and uniqueness constraint
In the definition of C-couplings, their reducibility to identity couplings when applied to identically
distributed variables is indispensable, because without it the C-contextuality will not be an extension
of traditional contextuality. How critical, however, is the second constraint imposed on well-fitting
C, that the C [Rq]-coupling always exists and is unique? What if one considers statements C for
which C [Rq] is a set that may be empty or contain more than one coupling? This does complicate the
matters conceptually, because then, in the consistification procedure, the (q, ·)-type bunches, those
filled with the C [Rq]-couplings, cannot be formed at all or cannot be formed uniquely. However,
the main point of this paper can still be made, with some qualifications.

We can agree that the consistification of an inconsistently connected system R is not a single
system R‡ but a cluster of systems

{
R‡

i : i ∈ I
}

, the elements of which are obtaining by filling the
(q, ·)-type bunches in the consistification of R by all possible couplings of R’s connections. We can
further agree that the cluster

{
R‡

i : i ∈ I
}

is considered noncontextual if it contains a noncontextual

system R‡
i . In particular, if

{
R‡

i : i ∈ I
}

is empty (which means that C [Rq] does not exist for at
least one of the connections of R), the latter definition is not satisfied, and the cluster should be
considered contextual. Once again, we have a theory dealing with consistently connected systems
only, except that the empirical or theoretical situations they depict are represented by clusters of
systems sharing a format and the (·, c)-bunches.

It might seem that dealing with an infinity of possible couplings C [Rq] or proving that C [Rq]
is empty is a significantly more difficult mathematical task than when C is well-fitting. This is
not the case, however, the complication is not necessarily major. Mathematically, the problem of
finding whether a system R is contextual consists in determining whether the variable S having
the same format as R can be assigned a probability measure subject to certain constraints on its
marginals. The constraints are imposed by the distributions of the bunches Rc (that Sc have to
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match) and by the statement C that has to be satisfied by the couplings Sq of the connections Rq.
For discrete random variables and finite sets Q and C, this is a linear programming task, provided
the compliance with C can be presented in terms of linear inequalities of the probabilities in the
distribution of Sq. For the consistification R‡ the problem is precisely the same, except that in
place of connection couplings one deals with (q, ·)-type bunches.
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