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Abstract

Most behavioral and social experiments aimed at revealing contextuality are confined to cyclic
systems with binary outcomes. In quantum physics, this broad class of systems includes as
special cases Klyachko-Can-Binicioglu-Shumovsky-type, Einstein-Podolsky-Rosen-Bell-type, and
Suppes-Zanotti-Leggett-Garg-type systems. The theory of contextuality known as Contextuality-
by-Default allows one to define and measure contextuality in all such system, even if there are
context-dependent errors in measurements, or if something in the contexts directly interacts with
the measurements. This makes the theory especially suitable for behavioral and social systems,
where direct interactions of “everything with everything” are ubiquitous. For cyclic systems with
binary outcomes the theory provides necessary and sufficient conditions for noncontextuality, and
these conditions are known to be breached in certain quantum systems. We review several be-
havioral and social data sets (from polls of public opinion to visual illusions to conjoint choices to
word combinations to psychophysical matching), and none of these data provides any evidence for
contextuality. Our working hypothesis is that this may be a broadly applicable rule: behavioral and
social systems are noncontextual, i.e., all “contextual effects” in them result from the ubiquitous
dependence of response distributions on the elements of contexts other than the ones to which the
response is presumably or normatively directed.
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1 Introduction

Although the word is widely used in linguistics, psychology, and philosophy, the notion of contextuality
as it is used in this paper comes from quantum mechanics, where in turn it came from logic [1]. The
reason for the prominence of this notion in quantum theory is that classical-mechanical systems are
not contextual while some quantum-mechanical systems are. Contextuality is sometimes even presented
as one of the “paradoxes” of quantum mechanics. In psychology, as it turns out, a certain variety
of (non)contextuality has been prominent too, but it is known under different name: selectiveness of
influences, or lack thereof (for details, see Refs. [2, 3]).

The term “contextuality” refers to properties of systems of random variables each of which can be
viewed (sometimes artificially) as a measurement of some “object” in some context. For instance, an
object q may be a question, and the context may be defined by what other question q′ it is asked in

combination with. Then the answer to this question is a random variable R
(q,q′)
q that can be interpreted
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as the measurement of q in the context (q, q′). If the same question q is then asked in combination with

some other question q′′, then the measurement is a different random variable, R
(q,q′′)
q . More generally,

context in which q is measured is defined by the conditions c under which the measurement is made,
yielding random variable Rc

q. This notation (or one of numerous variants thereof) is called contextual
notation for random variables: it codifies the idea that the identity of a measurement is defined both
by what is measured and by the conditions under it is measured [4–11].

Within each context the measurements are made “together”, because of which they have an empiri-
cally defined joint distribution. Thus, in context (q, q′) we have two jointly distributed random variables

R
(q,q′)
q and R

(q,q′)
q′ . We call the set of all random variables jointly recorded in a given context a bunch (of

random variables, or of measurements). Two different bunches have no joint distribution, because there
is no empirically defined way of coupling the values of one bunch with those of another. We say that
they are stochastically unrelated. Thus, in

R(q,q′) = (R(q,q′)
q , R

(q,q′)
q′ ) and R(q,q′′) = (R(q,q′′)

q , R
(q,q′′)
q′′ ) (1)

any component of R(q,q′) is stochastically unrelated to any component of R(q,q′′), including R
(q,q′)
q and

R
(q,q′′)
q .

This work is based on the theory of contextuality dubbed Contextuality-by-Default (CbD) [5,6,12–17]
(for precursors of this theory, see Refs. [9–11]). On a very general level, its main idea is that

a system of different, stochastically unrelated bunches of random variables can be character-
ized by considering all possible ways in which they can be coupled under well-chosen con-
straints imposed, for each object, on the relationship between the measurements of this object
in different contexts.

To couple different bunches simply means to impose a joint distribution on them. In the example above,
this means finding four jointly distributed random variables (A,B,X, Y ) such that, in reference to (1),

(A,B) ∼ R(q,q′) and (X, Y ) ∼ R(q,q′′), (2)

∼ standing for “is distributed as”. The quadruple (A,B,X, Y ) is then called a coupling for the bunches
R(q,q′) and R(q,q′′). The “well-chosen constraints” is a key notion in the formulation above. In our

example, these constraints should apply to A and X, the coupling counterparts of R
(q,q′)
q and R

(q,q′′)
q

measuring (answering) the same question q in two different contexts.
Intuitively, “noncontextuality” means “independence of context”, and because of this it is tempting

to say that the system of two bunches in (1) is noncontextual if we can consider R
(q,q′)
q and R

(q,q′′)
q as

“one and the same” random variable, Rq. This may appear simple, but in fact it is logically impossible:

since R
(q,q′)
q and R

(q,q′′)
q are stochastically unrelated, they cannot be “the same”. A random variable

cannot be stochastically unrelated to itself. The precise meaning here comes from considering couplings

(A,B,X, Y ) for the two bunches. Clearly, in every such a coupling A ∼ R
(q,q′)
q and X ∼ R

(q,q′′)
q . We

can say that the measurement of q in the system is context-independent if among all possible couplings
(A,B,X, Y ) there is at least one in which Pr[A 6= X] = 0. In this particular example, due to its
simplicity (only three random variables involved in two contexts) it can be shown that such a coupling

does exist, provided R
(q,q′)
q ∼ R

(q,q′′)
q . In a more complex system, such a coupling may not exists even if

the system is consistently connected : which means that in this system the measurements of one and the
same “object” always have the same distribution.

The traditional approaches to contextuality were confined to consistent connectedness, but this con-
dition is too restrictive in quantum physics [14,16,18] and virtually inapplicable in social and behavioral
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sciences: almost always, a response to question (or stimulus) q will depend on the context in which it

is asked, which may translate into R
(q,q′)
q and R

(q,q′′)
q having different distributions. There is nothing

wrong in calling any such a case contextual, and this is done by many (see Sections 3 and 6 below).
It is, however, more informative to separate inconsistent connectedness from contextuality, and this is
what is done in the CbD theory. We use the term inconsistently connected for the systems that are not
necessarily consistently connected (but may be so, as a special or limit case).

The logic of the CbD approach is as follows. We first consider separately the random variables

measuring the same object in different contexts, in our example R
(q,q′)
q and R

(q,q′′)
q . We call this set of

random variables the connection (for the measured object, in our case q). Among all possible couplings

(A′, X ′) for the connection {R(q,q′)
q , R

(q,q′′)
q }, i.e., among all jointly distributed (A′, X ′) such that A′ ∼

R
(q,q′)
q and X ′ ∼ R

(q,q′′)
q , we find the minimal value m′ of Pr[A′ 6= X ′]. Then we look at the entire

system of the bunches, in our case (1), and among all possible couplings (A,B,X, Y ) for this system
we find the minimal value m for Pr[A 6= X]. It should be clear that m′ cannot exceed m, because in

every coupling (A,B,X, Y ) for (1) the part (A,X) forms a coupling for the connection {R(q,q′)
q , R

(q,q′′)
q }.

But they can be equal, m = m′, and then we say that the system is noncontextual. If m > m′, the
system is contextual. Again, due to its simplicity, the system consisting of the two bunches (1) cannot
be contextual, but this may very well be the case in more complex systems.

As an example of the latter, consider a system with two bunches

R(q,q′) = (R(q,q′)
q , R

(q,q′)
q′ ) and R(q′,q) = (R(q′,q)

q , R
(q′,q)
q′ ) (3)

in which there are only two “objects” q, q′, and the two contexts differ in the order in which these objects
are measured. We have two connections here,

{R(q,q′)
q , R(q′,q)

q } and {R(q,q′)
q′ , R

(q′,q)
q′ }. (4)

Let us assume the measurements are binary, with values +1 and −1 (e.g., corresponding to answers
Yes and No), and let us further assume that all four random variables are “fair coins”, with equal
probabilities of +1 and -1. Then the distribution of the bunches R(q,q′) and R(q′,q) in (3) are uniquely

defined by the product expected values 〈R(q,q′)
q R

(q,q′)
q′ 〉 and 〈R(q′,q)

q R
(q′,q)
q′ 〉.

It easy to see that, across all possible couplings (A′, X ′) for {R(q,q′)
q , R

(q′,q)
q }, the minimum value m′1

of Pr[A′ 6= X ′] is 0, and the same is true for the minimum value m′2 of Pr[B′ 6= Y ′] across all possible

couplings (B′, Y ′) for {R(q,q′)
q′ , R

(q′,q)
q′ }. However, it follows from the general theory that across all possible

couplings (A,B,X, Y ) for the entire system (3) the values m1 of Pr[A 6= X] and m2 of Pr[B 6= Y ] cannot

be both zero unless 〈R(q,q′)
q R

(q,q′)
q′ 〉 = 〈R(q′,q)

q R
(q′,q)
q′ 〉. The latter need not be the case: it may, e.g., very

well be that 〈R(q,q′)
q R

(q,q′)
q′ 〉 = 1 (perfect correlation) and 〈R(q′,q)

q R
(q′,q)
q′ 〉 = −1 (perfect anti-correlation).

In this case m1 + m2 ≥ 1, whence either m1 > m′1 = 0 or m2 > m′2 = 0, indicating that the system is
contextual.

As we show in this paper, the general rule for a broad spectrum of behavioral and social systems of
measurements seems to be that they are all noncontextual in the sense of CbD.

2 Cyclic systems of arbitrary rank

In this section and throughout the rest of the paper we assume that all our measurements are binary
random variables, with values ±1.
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We apply the logic of the CbD theory to systems in which all objects are measured in pairs so that
each object belongs to precisely two pairs. We call such systems cyclic, because we can enumerate the
objects in such a system q1, . . . , qn and arrange them in a cycle

q1 // q2 // · · · // qn−1 // qnkk (5)

in which any two successive objects form a context. The number n is referred to as the rank of the
system. Our last example in the previous section is a cyclic system of rank 2, the smallest possible.

In accordance with our notation, each object qi in a cyclic system is measured by two random

variables: R
(qi,qi⊕1)
qi and R

(qi	1,qi)
qi , where the operations ⊕ and 	 are cyclic addition and subtraction

(so that n ⊕ 1 = 1 and 1 	 1 = n). Since there are no other random variables involved, we can

simplify notation: we will denote R
(qi,qi⊕1)
qi , measuring the first object in the context, by Vi, and R

(qi	1,qi)
qi ,

measuring the second object in the context, by Wi. As a result each bunch in a cyclic system has the
form (Vi,Wi⊕1); e.g., the bunch of measurements for (q1, q2) is (V1,W2), for (qn, q1) the bunch is (Vn,W1),
etc.

Now we can represent a cyclic system of measurements in the form of a V −W cycle:

V1 W2 V2 W3 · · · Vn W1 (6)

where solid lines indicate bunches (joint measurements) and point lines indicate connections (measure-
ments of the object in different contexts).

It is proved in Refs. [14,16,17] that such a system is noncontextual if and only if its bunches satisfy
the following inequality:

∆C = s1(〈V1W2〉, . . . , 〈Vn−1Wn〉, 〈VnW1〉)− (n− 2)−
n∑

i=1

|〈Vi〉 − 〈Wi〉| ≤ 0, (7)

where 〈·〉 denotes expected value, and the s1-part is the maximum of all linear combinations ±〈V1W2〉±
. . .±〈Vn−1Wn〉± 〈VnW1〉 with the proviso that the number of minuses is odd. Note that the criterion is
written entirely in terms of the expectations of Vi, Wi and of the products Vi,Wi⊕1 (i = 1, . . . , n). This
means that the information about a cyclic system we need can be presented in the form of the diagram

〈V1〉
〈V1W2〉

〈W2〉 〈V2〉
〈V2W3〉 · · · 〈Vn〉

〈VnW1〉
〈W1〉 (8)

We will use such diagrams to discuss experimental data in the subsequent sections.
This criterion of noncontextuality is generally breached by quantum-mechanical systems. Thus,

for consistently connected systems, for n = 3, the inequality reduces to Suppes-Zanotti-Leggett-Garg
inequality [19,20], for n = 4 it acquires the form of the Clauser-Horn-Shimony-Holt inequalities for the
Einstein-Podolsky-Rosen-Bell paradigm [21–23], and for n = 5 (with an additional constraint) it becomes
what is known as Klyachko-Can-Binicioglu-Shumovsky inequality [24]. All of them are predicted by
quantum theory and supported by experiments to be violated by some quantum-mechanical systems.
For n = 3, using the criterion (7), violations are also predicted for inconsistently connected systems [18];
and for n = 5 violations of (7) were demonstrated experimentally [25] (as analyzed in Ref. [16]).

By contrast, we find no violations of (7) in all known to us behavioral and social experiments aimed
at revealing contextuality: ∆C never exceeds zero. In the subsequent sections we demonstrate this
“failure to fail” the noncontextuality criterion on several experimental studies, for cyclic systems of rank
2, 3, and 4.
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3 Question order effect (cyclic systems of rank 2)

Wang, Solloway, Shiffrin, and Busemeyer [26] considered 73 polls in which two questions, A and B
(playing the role of “objects” q1, q2 being measured), were asked in two possible orders, A → B and
B → A (forming two contexts). The possible answers to each question, random variables

V1 = RA→B
A ,W2 = RA→B

B , V2 = RB→A
B ,W1 = RB→A

A , (9)

were binary: +1 (Yes) or −1 (No). For instance, in the Gallup poll results used in Ref. [27], one pair of
questions was (paraphrasing)

A: Do you think many white people dislike black people?

B: Do you think many black people dislike white people?

with the resulting estimates of joint and marginal probabilities

A→ B Yes to B
Yes to A .3987 .4161

.5599 N
.
=500

Yes to B B → A
.5391 .4012 Yes to A
N
.
=500 .4609

We translate “Yes to A” into V1 = 1 in A → B and into W1 = 1 in B → A; correspondingly, “Yes to
B” translates into W2 = 1 in A → B and into V2 = 1 in B → A. Using the notation (8), we deal here
with the system

〈V1〉 〈V1W2〉
〈W2〉

〈W1〉 〈V2〉
〈V2W1〉

=

−.1678
.6428

.1198

.0782 −.0782
.6048

To make sure the calculations are clear, for any ±1 random variables X, Y ,

〈X〉 = 2 Pr[X = 1]− 1,
〈XY 〉 = Pr[X = Y ]− Pr[X 6= Y ] = 4 Pr[X = 1, Y = 1]− 2 Pr[X = 1]− 2 Pr[Y = 1] + 1.

The noncontextuality criterion (7) for cyclic systems of rank 2 specializes to the form

∆C = |〈V1W2〉 − 〈V2W1〉| − (|〈V1〉 − 〈W1〉|+ |〈V2〉 − 〈W2〉|) ≤ 0. (10)

For the values in the diagram above, ∆C = −0.406, so there is no evidence the system is contextual.
Ref. [26] contains analysis of 73 such pairs of questions, including 66 taken from PEW polls (with

N ranging from 125 to 927), four taken from Gallup polls reported by Moore [27] (with N about 500),
and three pairs of questions with N ranging from 106 to 305. (The data were kindly provided to us by
the authors of Ref. [26]; our computations based of these data are shown in supplementary file S1.)

The analysis is simplified if we accept the empirical regularity discovered by Wang and Busemeyer [28]
and convincingly corroborated in Ref. [26]: using our notation, the discovery is that for vast majority
of question pairs,

〈V1W2〉 = 〈V2W1〉, (11)

while
|〈V1〉 − 〈W1〉|+ |〈V2〉 − 〈W2〉| 6= 0. (12)

The last inequality is what traditionally called the question order effect [27], and (11) is dubbed by Wang
and Busemeyer the quantum question (QQ) equality. Wang and Busemeyer [28] theoretically justify
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the QQ equality by positing that the process of answering two successive questions can be modeled by
orthogonally projecting a state vector ψ twice in a succession in a Hilbert space. Denoting the projectors
corresponding to response Yes to the questions A and B by P and Q, respectively, we have P 2 = P ,
Q2 = Q. The orthogonal projectors corresponding to response No to the same two questions are then
I − P and I −Q, with I denoting the identity operator. We have, for the question order A→ B,

1 + 〈V1W2〉
2

= ‖QPψ‖2 + ‖(I −Q)(I − P )ψ‖2 = 〈(PQP + (I − P )(I −Q)(I − P ))ψ |ψ〉,

and it is readily shown that

PQP + (I − P )(I −Q)(I − P ) = I − (P +Q) + (PQ+QP ).

As P and Q enter in this expression symmetrically, the expression is precisely the same for

1 + 〈V2W1〉
2

= ‖PQψ‖2 + ‖(I − P )(I −Q)ψ‖2.

The empirical QQ effect now follows from the assumption that the operators P,Q do not vary across
respondents (being determined by the questions alone), whereas the mixture of the initial states ψ has
the same distribution in any two large groups of respondents. At the same time, the question order
effect follows from the fact that ‖QPψ‖2 is not the generally the same as ‖PQψ‖2.

The QQ equality trivially implies (10), i.e., lack of contextuality. Therefore, to the extent the QQ
equality can be viewed as an empirical law (and Ref. [26] demonstrates this convincingly for 72 out of
73 question pairs), the criterion of noncontextuality should be satisfied for any 〈V1〉, 〈W1〉, 〈V2〉, 〈W2〉.
We can confirm and complement the statistical analysis presented in Ref. [26] of the 72 questions by
pointing out that the overall chi-square test of the equality (11) over all of them yields p > 0.35, df = 72.

The singled out pair of questions that violates the QQ equality is taken from the Gallup poll study
reported in Ref. [27]: paraphrasing,

A: Should Pete Rose be admitted to the baseball hall of fame?

B: Should shoeless Joe Jackson be admitted to the baseball hall of fame?

Refs. [26, 28] provide an explanation for why the double-projection model should not apply to this
particular pair of questions, but we need not be concerned with it. The diagram of the results for this
pair is

〈V1〉 〈V1W2〉
〈W2〉

〈W1〉 〈V2〉
〈V2W1〉

=

.3241
.6190

−.2886

−.0346 .0780
.3162

,

and it is readily seen to violate the equality 〈V1W2〉 = 〈V2W1〉 (p < 10−7, chi-square test with df = 1).
At the same time the diagram yields ∆C = −0.422, no evidence of contextuality. This example serves
as a good demonstration for the fact that while the QQ equality is a sufficient condition for lack of
contextuality, it is by no means necessary.

Considering the question pairs one by one, all but six ∆C values out of 73 are negative. In five
of these six cases, the QQ equality |〈V1W2〉 − 〈V2W1〉| = 0 cannot be rejected with p-values ranging
from 0.06 to 0.47. Therefore (10) cannot be rejected either. In the remaining case, p-value for the QQ
equality is 0.008, and ∆C = 0.063. While this case is suspicious, we do not think it warrants a special
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θ	  

Figure 1: Shröder’s staircases used in the experiments reported in Ref. [29]

investigation: using conventional significance values, say, 0.01, for 73 similar cases we get the probability
of at least one rejection inflated to 0.52.

Note that in the literature cited, including Refs. [26, 28], the term “contextual effect” is used to
designate the question order effect (12). This meaning of contextuality corresponds to what we call here
inconsistent connectedness (or violations of marginal selectivity), and it should not be confused with
the meaning of contextuality as defined in Sections 1 and 2 and indicated by the sign of ∆C.

4 Schröder’s staircase illusion (a cyclic system of rank 3)

Asano, Hashimoto, Khrennikov, Ohya, and Tanaka [29] studied a cyclic system of rank 3, using as
“objects” q1, q2, q3 Shröder’s staircases tilted at three different angles, θ = 40, 45, 50 degrees, as shown
in Figure 1. In fact, these three angles formed the middle part of a set of 11 angles ranging from 0 to 90
degrees and presented either in the descending order (context c1), or in the ascending order (context c2),
or else in a random order (context c3). Each context involved a separate set of about 50 participants,
and each participant in response to each of 11 angles had to indicate whether she/he sees the surface
A in front of B (+1) or B in front of A (−1). From these 11 responses, in each context, the authors
selected two. In context c1 the selected responses where those to θ = 40, 45 deg, so, formally, c1 can
be identified with (q1, q2); in contexts c2 and c3 the selected responses were those to θ = 45, 50 deg
and to θ = 50, 40 deg, respectively, making c2 = (q2, q3) and c3 = (q3, q1). It is irrelevant to the logic
of the analysis that each context in fact contained all three tilts q1, q2, q3, as well as eight other tilts.
(Ref. [29] includes a variety of other combinations of three objects and three contexts extracted from
the experiment in question. The data set for the combination described here was kindly made available
to us by the authors of Ref. [29].)

The results of the experiment are shown in the diagram of expected values below:

〈V1〉 〈V1W2〉
〈W2〉

〈W1〉 〈V2〉
〈V2W3〉

〈V3〉

〈V3W1〉

〈W3〉

=

.708
.625

.417

.382 −.333
.625

−.345

.127

−.625

The criterion of noncontextuality for a rank 3 cyclic system has the form
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∆C = s1(〈V1W2〉, 〈V2W3〉, 〈V3W1〉)− 1−
3∑

i−1

|〈Vi〉 − 〈Wi〉| ≤ 0 (13)

where
s1(x, y, z) = max(x+ y − z, x− y + z,−x+ y + z,−x− y − z).

The calculation shows ∆C = −1.233, no evidence for contextuality.
Search for contextuality is the specific goal of Ref. [29], but the meaning of the concept there is

different from ours: there, it means violations of the Suppes-Zanotti-Leggett-Garg inequality (which is
the consistently connected case of (13)), irrespective of whether these violations are due to inconsistent
connectedness or due to contextuality in our sense.

5 Conjoint choices: Animals and sounds they make (a cyclic

system of rank 4)

Aerts, Gabora, and Sozzo [30] present results of an experiment in which each of 81 participants had to
choose between two animals and between two animal sounds, under four conditions c1, c2, c3, c4 (con-
texts), as shown below:

V1

W2

c1 Growls Whinnies
Horse .049 .630 .679
Bear .259 .062 .321

.308 .692

V4
c4 Snorts Meows

Horse .593 .025 .618
Bear .296 .086 .382

.889 .111

W1

W3

V2
c2 Growls Whinnies

Tiger .778 .086 .864
Cat .086 .049 .135

.864 .135

W4

c3 Snorts Meows
Tiger .148 .086 .234
Cat .099 .667 .766

.247 .753

V3

The “objects” to be measured here are the choices offered:

q1 = Horse or Bear? q2 = Growls or Whinnies?
q3 = Tiger or Cat? q4 = Snorts or Meows?

Each of the four contexts corresponds to a pair of these objects,

c1 = (q1, q2), c2 = (q2, q3), c3 = (q3, q4), c4 = (q4, q1),

and the choices made are binary measurements (random variables)

c1 c2 c3 c4
(V1,W2) (V2,W3) (V3,W4) (V4,W1)

.

The table of the results above translates into the diagram of expected values
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〈V1〉 〈V1W2〉
〈W2〉

〈W1〉 〈V2〉

〈V2W3〉

〈V4〉

〈V4W1〉

〈W3〉

〈W4〉 〈V3〉
〈V3W4〉

=

.358 −.778 −.384

.236 .728

.655

.778

.358

.728

−.506 −.532
.630

The noncontextuality criterion for rank 4 has the form

∆C = s1(〈V1W2〉, 〈V2W3〉, 〈V3W4〉, 〈V4W1〉)− 2−
4∑

i=1

|〈Vi〉 − 〈Wi〉| ≤ 0, (14)

where

s1(w, x, y, z) = max(|w + x+ y − z|, |w + x− y + z|, |w − x+ y + z|, | − w + x+ y + z|).

The value computed from the data is ∆C = −3.357, providing no evidence for contextuality.
Ref. [30] reports that contextuality in this data set is present because

s1(〈V1W2〉, 〈V2W3〉, 〈V3W4〉, 〈V4W1〉)− 2 > 0, (15)

i.e., the data violate the classical CHSH inequalities [22, 23]. As pointed out in Ref. [31], the CHSH
inequalities are predicated on the assumption of consistent connectedness (marginal selectivity). With-
out this assumption they cannot be derived as a necessary or sufficient condition of noncontextuality,
and this assumption is clearly violated in the data. Aerts [32] has developed a theory which allows
for inconsistent connectedness, but it is unclear to us how this justifies the use of CHSH inequalties in
Ref. [30].

6 Word combinations and priming (cyclic systems of rank 4)

Bruza, Kitto, Ramm, and Sitbon [33] studied ambiguous two-word combinations, such as “apple chip”.
One can understand this word combination to refer to an edible chip made of apples or to an apple
computer component. It is even possible to imagine such meanings as a piece chipped off of an apple
computer, or a computer component made of apples. In the experiments referred to the participants
were asked to explain how they understood the first and the second word in a combination: one meaning
of each word (e.g., the fruit meaning for “apple”, the edible product meaning for “chip”, etc.) can be
taken for +1, any other meaning being classified as −1. The meanings were determined by asking the
participants to explain how they understood the words. For each two-word combination the experi-
menters used one of four pairs of priming words presumably affecting the meanings. For the “apple
chip” combination, the priming words could be

q1 = banana q2 = potato
q3 = computer q4 = circuit

,
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forming four contexts

c1 = (banana, potato) c2 = (potato, computer)
c3 = (computer, circuit) c4 = (circuit, banana)

.

The order in which we list the words in a context is chosen to create a cycle: (q1, q2), (q2, q3), etc.
Although this is not intuitive, formally, the measured “objects” here are the priming words q1, q2, q3, q4,
while the measurements are binary random variables indicating in what meaning (±1) the participant
understood “apple” and “chip”. In (V1,W2) and (V3,W4) the V ’s are meanings of “apple” and W ’s
the meanings of “chip”; in (V2,W3) and (V4,W1) it is vice versa. (This is no more than a notational
convention, purely for the purposes of using the cyclic indexation.)

Ref. [33] presents data on 23 word combinations preceded by priming words (each combination in
each context being shown to each of 61-65 participants). In all 23 cases the computed values of ∆C are
negative, ranging from -2.882 to -0.418 (for the “apple chip” example the value is -1.640). We conclude,
once again, that there is no evidence in favor of contextuality. (The authors of Ref. [33] kindly provided
to us the word pairs and priming words, with the computed values of s1 and equivalents of |〈Vi〉− 〈Wi〉|
(i = 1, . . . , 4), for all 23 word combinations; they are presented, with permission, in the supplementary
file S2, with the computation of ∆C added.)

The aim of Ref. [33] was not to study contextuality. Rather they were interested in the property called
compositionality, defined, in our terms, as consistent connectedness together with lack of contextuality.
Violations of this condition therefore amount to either inconsistent connectedness or, if connectedness
is consistent, to contextuality in our sense.

7 Psychophysical matching (cyclic systems of rank 4)

All experiments discussed so far use participants as replicants: the estimate of Pr[V = v,W = w]
in a given context is the proportion of participants who responded (v, w), v = ±1, w = ±1. In the
question order effect and Schröder’s staircase illusion studies different groups of people participated
in different contexts, whereas the conjoint choices and word combinations studies employed repeated
measures design: each participant made one choice in each of the four contexts.

In our laboratory, we searched for possible contextual effects in a large series of psychophysical
experiments where each of very few (usually, three) participants were repeatedly “measuring” the same
four “objects” in the same four contexts. In each of the seven experiments the number of replications
per participant was 1000-2000, evenly divided between different contexts.

The logic of an experiment was as follows. The participant was shown two stimuli, target one
(T ) and adjustable one (A), both completely specified by two parameters. In each trial, the values
α and β of these parameters (real numbers) in the target stimulus T (α, β) are fixed at one of several
values, each pair of values determining a context; in the adjustable stimulus the two parameters can be
simultaneously or (in some experiments) successively changed by the participant rotating a trackball.
At the end of each trial the participant reaches some values X and Y of these parameters that she/he
judges to make A(X, Y ) match (i.e., look the same as) T (α, β). In most experiments α and β vary on
several levels each (or even quasi-continuously within certain ranges), and we always choose four specific
values or subranges of their values: q1, q3 for α and q2, q4 for β. They form four contexts that can be
cyclically arranged as (q1, q2), (q2, q3), (q3, q4), (q4, q1), and for each of them we get empirical distributions
of X and Y : (X12, Y12) for context (q1, q2), (X41, Y41) for context (q4, q1), etc. In this notation, of the
two objects qi, qj, the random variable Xij “measures” the q with an odd index (1 or 3), whether i or j;
analogously, Yij “measures” the q with the even index.
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Figure 2: Stimuli used in the matching experiments. The left panels show pairs of stimuli at the
beginning of a trial, the right panels show an intermediate stage in the matching process. Top panels:
in Experiments 1a-b there participants adjusted the position of the dot within a lower-right circle to
match a fixed position of the target dot in the upper-left circle. Middle panels: in Experiments 2a-c
they adjusted the radii of two concentric circles on the right to match two fixed concentric circles on
the left. Bottom panels: in Experiments 3a-b they adjusted the amplitudes of two Fourier harmonics of
a floral shape on the right to match a fixed floral shape on the left. For details, see the supplementary
file S3.

The values of X and Y are then dichotomized in the following way: we choose a value xi and a value
yj (i = 1, 3, j = 2, 4) and define

Vi =

{
+1 if Xi,i⊕1 > xi
−1 if Xi,i⊕1 ≤ xi

, Vj =

{
+1 if Yj,j⊕1 > yj
−1 if Yj,j⊕1 ≤ yj

. (16)

Wi =

{
+1 if Xi	1,i > xi
−1 if Xi	1,i ≤ xi

, Wj =

{
+1 if Yj	1,j > yj
−1 if Yj	1,j ≤ yj

. (17)

The values of (x1, x3, y2, y4) can be chosen in a variety of ways, and for each choice we apply to the
obtained V and W variables the criterion (14).

As an example, in one of the experiments the stimuli T and A were two dots in two circles,
like the ones shown in Figure 2, top, with a dot’s position within a circle described in polar co-
ordinates (α and X denoting distance from the center in pixels, β and Y denoting angle in de-
grees measured counterclockwise from the horizontal rightward radius-vector). We extract from this
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Figure 3: Results for four contexts α (px)×β (deg) = {q1 = 53.67, q3 = 71.55}×{q2 = 63.43, q4 = 26.57}
extracted from Experiment 1a, participant P3, about 200 replications per context.



Dzhafarov, Zhang, Kujala 13

experiment a 2 × 2 subdesign as shown in Figure 3. Then we choose a value of x1 as any inte-
ger (in pixels) between max[minX12,minX41] and min[maxX12,maxX41], we choose y2 as any integer
(in degrees) between max[minY12,minY23] and min[maxY12,maxY23], and analogously for x3 and y4.
This yields 25 × 23 × 21 × 79 quadruples of (x1, x3, y2, y4), and the corresponding number of cyclic
systems of binary random variables (V1,W2, V2,W3, V3,W4, V4,W1). Consider, e.g., one such choice:
(x1, x3, y2, y4) = (72 px, 67 px, 60 deg, 23 deg). The diagram of this system is

〈V1〉 〈V1W2〉
〈W2〉

〈W1〉 〈V2〉

〈V2W3〉

〈V4〉

〈V4W1〉

〈W3〉

〈W4〉 〈V3〉
〈V3W4〉

=

−.989
.211

−0.2

−0.902 0.300

.301

−0.006

.016

0.960

0.167 0.991
.158

and the value of ∆C = −2.137, no evidence of contextuality. In fact negative values of ∆C are obtained
for all 25 × 23 × 21 × 79 dichotomizations. Clearly, different dichotomizations of the same random
variables are not stochastically independent, but there is no mathematical reason for ∆C to be of the
same sign in all of them.

In the supplementary file S3 we describe in detail how the dichotomizations were made, their number
ranging from 3024 to 11,663,568 per 2 × 2 (sub)design in each experiment for each participant. The
outcome is: not a single case with positive ∆C observed.

8 Conclusion

The empirical data analyzed above suggest that the noncontextuality boundaries, that are generally
breached in quantum physics, are not breached by behavioral and social systems. This may seem a
disappointing conclusion for some. With the realization that quantum formalisms may be used to con-
struct models in various areas outside physics [34–37], the expectation was created that human behavior
should exhibit contextuality, perhaps even on a greater scale than allowed by quantum theory. However,
if the no-contextuality conclusion of the present paper is proved to be a rule for a very broad class of
behavioral and social systems, it is rather fortunate for behavioral and social sciences. Noncontextuality
means more constrained behavior, and constraints allow one to make predictions. The power of quantum
mechanics is not in that quantum systems breach the classical-mechanical bounds of noncontextuality,
but in the theory that imposes other, equally strict constraints. Presence of contextuality, in the absence
of a general theory like quantum mechanics, translates into unpredictability.

It must be noted that absence of contextuality in behavioral and social systems does not mean that
quantum formalisms are not applicable to them. A good argument for why this conclusion would be
groundless is provided by the question order effect discussed in Section 3: it is precisely the applicability
of a quantum-mechanical model in the question order effect analysis [26, 28] that allows one to predict
the lack of contextuality in this paradigm.

When discussing contextuality, one should be aware of the likelihood of purely terminological confu-
sions. It is clear that in the behavioral and social systems a context generally influences the measurement
of an object within it. For instance, the distribution of answers to a question depends on a question
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asked and answered before it. One could call this contextuality, and many do. This is, however, a trivial
sense of contextuality, on a par with the fact that the distribution of answers to a question depends on
what this question is. One should not be surprised that other factors (such as temperature in the lab or
questions asked and answered previously) can influence this distribution too. We call this inconsistent
connectedness, and we offer a theory that distinguishes this ubiquitous feature from contextuality in a
different, one could argue more interesting meaning.
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s1-‐value |<V1>-‐<W1>|+|<V2>-‐<W2>| Delta	  C Delta	  C	  >	  0? QQ	  chi^2 QQ	  p<0.05? QQ	  p<0.01? Data	  set	  #
order	  A	  -‐>	  B order	  B	  -‐>	  A order	  A	  -‐>	  B order	  B	  -‐>	  A

<V1> <W1> <W2> <V2> <V1*W2> <V2*W1>
0.2105 0.0482 -‐0.1100 -‐0.1491 0.5359 0.4781 0.0578 0.2014 -‐0.1435 0 0.9830 0 0 1 PEW
0.2584 0.2081 0.0096 0.0407 0.5694 0.5882 0.0189 0.0814 -‐0.0625 0 0.1150 0 0 2 PEW
0.3398 0.2705 0.1359 0.0984 0.6214 0.5820 0.0394 0.1069 -‐0.0675 0 0.2736 0 0 3 PEW
-‐0.0484 -‐0.0324 -‐0.2823 -‐0.2146 0.5806 0.5749 0.0057 0.0837 -‐0.0779 0 0.0123 0 0 4 PEW
0.1239 0.1367 -‐0.1193 0.0325 0.6193 0.6529 0.0337 0.1646 -‐0.1309 0 0.4268 0 0 5 PEW
0.0136 0.1198 -‐0.1900 -‐0.0645 0.6606 0.6406 0.0201 0.2318 -‐0.2117 0 0.1531 0 0 6 PEW
0.0411 0.0206 -‐0.2055 -‐0.1512 0.6370 0.5945 0.0425 0.0748 -‐0.0323 0 0.8474 0 0 7 PEW
-‐0.1442 -‐0.0946 -‐0.3759 -‐0.2634 0.5981 0.6675 0.0694 0.1620 -‐0.0926 0 1.6353 0 0 8 PEW
-‐0.0494 -‐0.0847 -‐0.2565 -‐0.2037 0.6424 0.6156 0.0268 0.0881 -‐0.0613 0 0.2559 0 0 9 PEW
-‐0.0432 -‐0.1231 -‐0.2815 -‐0.3588 0.6304 0.5633 0.0671 0.1571 -‐0.0900 0 2.0235 0 0 10 PEW
-‐0.2070 -‐0.1544 -‐0.3815 -‐0.2354 0.6259 0.5139 0.1120 0.1987 -‐0.0866 0 3.6979 0 0 11 PEW
0.3515 0.3293 -‐0.4387 -‐0.4622 0.1662 0.1118 0.0544 0.0457 0.0087 1 0.5272 0 0 12 PEW
0.3099 0.1750 -‐0.3568 -‐0.3650 0.2770 0.3700 0.0930 0.1431 -‐0.0500 0 1.9950 0 0 13 PEW
0.1979 0.2245 -‐0.3298 -‐0.2857 0.3562 0.3878 0.0316 0.0707 -‐0.0391 0 0.2227 0 0 14 PEW
0.1715 0.0633 -‐0.3487 -‐0.3321 0.3950 0.4894 0.0945 0.1248 -‐0.0304 0 2.8834 0 0 15 PEW
0.1789 0.0691 -‐0.4252 -‐0.4362 0.3372 0.3351 0.0021 0.1207 -‐0.1185 0 0.0009 0 0 16 PEW
0.0651 0.0815 -‐0.4943 -‐0.3718 0.3870 0.4115 0.0246 0.1389 -‐0.1143 0 0.1838 0 0 17 PEW
0.0805 -‐0.0056 -‐0.5862 -‐0.5562 0.3103 0.2921 0.0182 0.1161 -‐0.0979 0 0.0642 0 0 18 PEW
0.0291 0.0132 -‐0.5058 -‐0.5145 0.3721 0.3140 0.0581 0.0246 0.0335 1 0.6917 0 0 19 PEW
0.1358 -‐0.0171 -‐0.2741 -‐0.3888 0.5012 0.4621 0.0391 0.2676 -‐0.2285 0 0.4058 0 0 20 PEW
0.0074 -‐0.0076 -‐0.4604 -‐0.4582 0.4629 0.4025 0.0603 0.0172 0.0432 1 1.7896 0 0 21 PEW
0.0030 -‐0.0877 -‐0.5137 -‐0.4854 0.4225 0.3567 0.0658 0.1191 -‐0.0533 0 0.8554 0 0 22 PEW
-‐0.0620 -‐0.0392 -‐0.5682 -‐0.5196 0.4342 0.3107 0.1235 0.0715 0.0520 1 3.4820 0 0 23 PEW
0.0278 0.0997 -‐0.4889 -‐0.4394 0.4056 0.3100 0.0956 0.1215 -‐0.0259 0 1.9147 0 0 24 PEW
0.0290 -‐0.0261 -‐0.5411 -‐0.4774 0.3816 0.3682 0.0135 0.1187 -‐0.1053 0 0.0441 0 0 25 PEW
0.0230 -‐0.0300 0.0138 -‐0.0700 -‐0.4286 -‐0.3000 0.1286 0.1369 -‐0.0083 0 1.9870 0 0 26 PEW
-‐0.0876 -‐0.0729 -‐0.0046 -‐0.0729 -‐0.2258 -‐0.1667 0.0591 0.0829 -‐0.0238 0 0.3719 0 0 27 PEW
0.0486 -‐0.0960 -‐0.1243 -‐0.1818 -‐0.2000 -‐0.1263 0.0737 0.2021 -‐0.1284 0 1.0697 0 0 28 PEW
-‐0.0611 -‐0.1761 -‐0.1444 -‐0.2159 0.0056 -‐0.0398 0.0453 0.1865 -‐0.1412 0 0.3658 0 0 29 PEW
-‐0.1940 -‐0.1705 -‐0.2239 -‐0.1705 0.1343 0.0650 0.0693 0.0770 -‐0.0077 0 0.9338 0 0 30 PEW
-‐0.1279 -‐0.2046 -‐0.0444 -‐0.1124 -‐0.0548 -‐0.1182 0.0633 0.1447 -‐0.0814 0 0.7374 0 0 31 PEW
-‐0.2185 -‐0.3063 -‐0.2185 -‐0.1848 0.0231 -‐0.0228 0.0459 0.1215 -‐0.0756 0 0.4133 0 0 32 PEW
-‐0.2204 -‐0.4018 0.0863 0.1239 -‐0.1757 -‐0.1178 0.0579 0.2190 -‐0.1611 0 0.5515 0 0 33 PEW
-‐0.3199 -‐0.3651 -‐0.0428 -‐0.0370 -‐0.0428 -‐0.0794 0.0365 0.0510 -‐0.0144 0 0.2597 0 0 34 PEW
-‐0.4142 -‐0.3803 -‐0.1420 -‐0.2169 0.0414 0.0817 0.0403 0.1088 -‐0.0685 0 0.2820 0 0 35 PEW
-‐0.2845 -‐0.2044 -‐0.0264 -‐0.2044 -‐0.1261 -‐0.0899 0.0362 0.2581 -‐0.2219 0 0.2344 0 0 36 PEW
-‐0.3433 -‐0.3008 -‐0.1164 -‐0.0786 -‐0.0388 0.0081 0.0469 0.0803 -‐0.0334 0 0.3878 0 0 37 PEW
-‐0.3598 -‐0.4525 -‐0.2691 -‐0.1844 0.0255 -‐0.0503 0.0758 0.1775 -‐0.1017 0 1.0208 0 0 38 PEW
-‐0.2978 -‐0.2213 -‐0.2089 -‐0.1762 -‐0.1022 -‐0.0451 0.0571 0.1091 -‐0.0520 0 0.7698 0 0 39 PEW
-‐0.4000 -‐0.3265 -‐0.3158 -‐0.1877 -‐0.0526 -‐0.1465 0.0939 0.2017 -‐0.1078 0 1.7120 0 0 40 PEW
-‐0.4677 -‐0.4707 -‐0.4160 -‐0.2977 0.0801 -‐0.0382 0.1183 0.1213 -‐0.0031 0 2.7289 0 0 41 PEW
0.0576 0.0335 -‐0.0262 0.1196 0.6859 0.6842 0.0017 0.1699 -‐0.1682 0 0.0005 0 0 42 PEW
-‐0.0343 0.0554 -‐0.0218 0.0321 0.7632 0.7901 0.0268 0.1435 -‐0.1167 0 0.3015 0 0 43 PEW
-‐0.1736 -‐0.1304 -‐0.1460 -‐0.1237 0.7741 0.7659 0.0082 0.0654 -‐0.0572 0 0.0275 0 0 44 PEW
0.0360 -‐0.0455 0.4676 0.5649 -‐0.2230 -‐0.2208 0.0022 0.1787 -‐0.1765 0 0.0008 0 0 45 PEW
0.4067 0.3800 -‐0.2575 -‐0.0019 0.0089 0.0888 0.0800 0.2824 -‐0.2025 0 1.7499 0 0 46 PEW
0.0846 0.0777 0.1741 0.3368 0.6318 0.5337 0.0982 0.1695 -‐0.0714 0 1.4372 0 0 47 PEW
0.1481 0.1743 -‐0.0617 0.0642 0.6914 0.7798 0.0885 0.1521 -‐0.0637 0 1.6198 0 0 48 PEW
0.3838 0.2394 0.1616 0.1737 0.6768 0.8216 0.1448 0.1565 -‐0.0117 0 4.9124 1 0 49 PEW
-‐0.5987 -‐0.6622 -‐0.1973 -‐0.1824 0.3043 0.2500 0.0543 0.0784 -‐0.0240 0 0.4759 0 0 50 PEW
-‐0.0236 -‐0.1360 -‐0.0866 -‐0.2960 0.5906 0.6160 0.0254 0.3218 -‐0.2963 0 0.0641 0 0 51 PEW
-‐0.3111 -‐0.4415 -‐0.4833 -‐0.5847 0.5278 0.5990 0.0713 0.2318 -‐0.1605 0 1.4492 0 0 52 PEW
0.2000 0.3135 -‐0.0173 0.0618 -‐0.1654 -‐0.1304 0.0350 0.1926 -‐0.1576 0 0.2636 0 0 53 PEW
0.5371 0.5601 0.2800 0.3314 0.0686 0.0557 0.0129 0.0744 -‐0.0615 0 0.0286 0 0 54 PEW
-‐0.4947 -‐0.5130 -‐0.5211 -‐0.4404 0.2368 0.1917 0.0451 0.0989 -‐0.0537 0 0.4088 0 0 55 PEW
0.0684 0.0957 -‐0.0769 -‐0.0522 0.6325 0.6957 0.0632 0.0520 0.0111 1 0.8281 0 0 56 PEW
0.2874 0.3117 -‐0.1494 -‐0.0931 0.3487 0.3522 0.0036 0.0807 -‐0.0771 0 0.0018 0 0 57 PEW
-‐0.8069 -‐0.6839 -‐0.8414 -‐0.7871 0.7310 0.6129 0.1181 0.1773 -‐0.0592 0 3.8166 0 0 58 PEW
0.3173 0.3548 0.0481 -‐0.0215 0.2885 0.3656 0.0771 0.1071 -‐0.0300 0 0.6562 0 0 59 PEW
-‐0.6582 -‐0.5960 0.0408 0.1010 -‐0.1276 -‐0.3131 0.1856 0.1224 0.0632 1 7.1309 1 1 60 PEW
-‐0.1048 0.1181 -‐0.4516 -‐0.3307 0.3629 0.3622 0.0007 0.3439 -‐0.3432 0 0.0001 0 0 61 PEW
-‐0.0797 -‐0.0842 0.3768 0.5421 -‐0.2536 -‐0.2997 0.0460 0.1697 -‐0.1237 0 0.3288 0 0 62 PEW
0.2600 0.1906 -‐0.0680 -‐0.0650 0.4822 0.5291 0.0469 0.0723 -‐0.0254 0 1.3466 0 0 63 PEW
-‐0.1441 -‐0.0091 -‐0.7205 -‐0.7455 0.3013 0.2273 0.0740 0.1599 -‐0.0859 0 0.6615 0 0 64 PEW
-‐0.3260 -‐0.2665 -‐0.0313 -‐0.0621 0.0645 0.0421 0.0224 0.0903 -‐0.0679 0 0.1308 0 0 65 PEW
-‐0.2343 -‐0.3559 0.1033 -‐0.0056 -‐0.0730 -‐0.0056 0.0674 0.2306 -‐0.1632 0 0.8542 0 0 66 PEW
0.0694 0.1759 0.3333 0.5231 0.5570 0.5509 0.0061 0.2964 -‐0.2903 0 0.0119 0 0 67 Gallup
-‐0.0481 -‐0.1830 0.4279 0.3740 0.1945 0.1883 0.0062 0.1889 -‐0.1827 0 0.0081 0 0 68 Gallup
-‐0.1678 0.0782 0.1198 -‐0.0782 0.6427 0.6049 0.0378 0.4440 -‐0.4062 0 0.5515 0 0 69 Gallup
-‐0.3793 0.0741 0.0862 -‐0.2222 0.2931 0.4444 0.1513 0.7618 -‐0.6105 0 1.4845 0 0 70 see	  PNAS	  2014	  paper
0.0508 0.1887 0.2881 0.3962 0.5932 0.6792 0.0860 0.2459 -‐0.1599 0 0.6963 0 0 71 see	  PNAS	  2014	  paper
0.6792 0.2131 -‐0.0375 0.6590 0.2423 0.4230 0.1806 1.1626 -‐0.9820 0 5.4846 1 0 72 see	  PNAS	  2014	  paper

0.4111 0.5606 0.6166 0.3333 0.1680 0.1537 0.0143 0.8656 -‐0.8513 0 25.4164 1 1 73 Gallup:	  Rose-‐Jackson

Resp	  to	  A Resp	  to	  B

Wang,	  Z.,	  Solloway,	  T.,	  Shiffrin,	  R.M.,	  Busemeyer,	  J.R.	  2014
and	  Wang,	  Z.,	  Busemeyer,	  J.R.	  2013.

The	  73d	  data	  set	  is	  the	  "Rose-‐Jackson"	  question	  pair	  showing	  a	  significant	  violation	  of	  QQ	  equality.	  

Computed,	  with	  permission,	  from	  the	  collection	  of	  data	  sets	  analyzed	  by	  
Supplementary	  Information	  S1:	  Question	  Order	  Effect



word	  combination prime	  q1 prime	  q3 prime	  q2 prime	  q4 s1-‐value |<V1>-‐<W1>| |<V2>-‐<W2>| |<V3>-‐<W3>| |<V4>-‐<W4>| N Delta	  C
boxer bat dog fighter ball vampire 0.740 0.350 0.676 0.280 0.316 64.000 -2.882
table file chair chart nail folder 0.330 0.116 0.228 0.470 0.226 63.000 -2.710
star suit moon movie vest law 1.180 0.616 0.108 0.326 0.116 62.000 -1.986
mole pen dig face pig ink 1.180 0.250 0.126 0.042 0.600 63.000 -1.838
crane hatch lift bird door egg 1.920 0.282 0.298 0.592 0.466 63.000 -1.718
stag yarn party deer story wool 1.770 0.750 0.208 0.438 0.090 61.000 -1.716
apple chip banana computer potato circuit 2.110 0.500 0.588 0.228 0.434 65.000 -1.640
web bug spider internet beetle computer 2.000 0.420 0.592 0.134 0.306 63.000 -1.452
bank log money river journal tree 2.130 0.110 0.676 0.184 0.514 65.000 -1.354
port vessel harbour wine ship bottle 1.560 0.212 0.226 0.170 0.236 65.000 -1.284
count watch number dracula time look 1.400 0.390 0.022 0.126 0.126 65.000 -1.264
rock strike stone music hit union 2.010 0.376 0.626 0.234 0.026 64.000 -1.252
fan post football cool mail light 2.130 0.700 0.050 0.250 0.376 63.000 -1.246
match bowl flame contest disk throw 1.750 0.274 0.150 0.500 0.044 64.000 -1.218
seal pack walrus envelop leader suitcase 2.140 0.166 0.324 0.426 0.442 64.000 -1.218
spring plant summer coil leaf factory 2.020 0.588 0.000 0.266 0.346 64.000 -1.180
slug duck snail punch quack dodge 1.830 0.192 0.266 0.306 0.052 63.000 -0.986
bill scale phone pelican weight fish 1.630 0.162 0.108 0.226 0.108 64.000 -0.974
toast gag jam speech choke joke 1.230 0.000 0.036 0.016 0.052 63.000 -0.874
net cap gain volleyball limit hat 1.860 0.070 0.118 0.184 0.350 65.000 -0.862
battery charge car assault volt prosecute 2.010 0.134 0.234 0.096 0.240 63.000 -0.694
club bar member golf pub handle 2.280 0.266 0.250 0.000 0.276 64.000 -0.512
poker spade card fire ace shovel 2.150 0.272 0.000 0.070 0.226 65.000 -0.418

Supplemntary	  Information	  S2:	  Word	  Pairs	  with	  Priming

Reproduced	  with	  permission.

and	  coversion	  of	  probabilities	  into	  expectations

Results	  of	  the	  experiment	  by
Bruza,	  P.D.,	  Kitto,	  K.,	  Ramm,	  B.J.,	  &	  Sitbon,	  L.,

analyzed	  in	  Section	  6	  of	  the	  main	  text;
all	  the	  computations	  are	  made	  by	  Bruza	  et	  al.,	  except	  for	  the	  last	  column



Supplementary Information S3:
Details of the Matching Experiment

1 Participants

All the participants were students at Purdue University. The second author of this paper, labeled

as P3, participated in all the experiments. Two persons (P1 and P2) participated in Experiments

1(a) and 2(a), and two other persons (P4 and P5) in Experiments 1(b), 2(b), 2(c), 3(a), and 3(b).

All participants were aged around 25 and had normal or corrected to normal vision.

2 Stimuli and Procedure

Visual stimuli consisting of curves and (sometimes) dots were presented on a flat-panel monitor.

They were grayish-white on a comfortably low intensity background. The diameter of the dots and

the width of the curves was 5 pixels (px). The participants viewed the stimuli in darkness using

a chin rest with a forehead support at the distance of 90 from the monitor, making 1 screen pixel

approximately 62 sec arc. In each trial the participants were asked to match a fixed stimulus by

adjusting a variable stimulus by rotating a trackball using their dominant hand. Once a response

was made to the participant’s satisfaction, she or he clicked a button on the trackball device to end

this trial, and a new stimulus appeared half a second later. Each experiment took several days,

each of which consisted of about 200 trials conducted with a 10-min break in the middle; each such

session was preceded by a practice series of 10 trials (which were not recorded).
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2.1 Experiment 1(a)

Each trial began with presenting two circles with a dot in the first quadrant of each circle (as

shown in Figure 1, top panels). The radius of each circle was 160 px. The dot in the upper left

circle was fixed at one of randomly chosen six positions. Using the center of its circle as the origin,

they can be represented equivalently using the rectangular coordinates: {(24 px, 48 px), (32 px, 32

px), (32 px, 64 px), (48 px, 24 px), (64 px, 32 px), (64 px, 64 px)} or the polar coordinates: {(53.67

px, 63.43 deg), (45.25 px, 45 deg), (71.55 px, 63.43 deg), (53.67 px, 26.57 deg), (71.55 px, 26.56

deg), (90.51 px, 45 deg)}. Hence the experimental design contained a 2⇥2 “rectangular” subdesign,

{32 px, 64 px}⇥{32 px, 64 px}, and a 2 ⇥ 2 “polar” subdesign {53.67 px, 71.55 px}⇥{63.43 deg,

26.57 deg}.

The position of the dot in the bottom right circle was controlled by the trackball, until its location

matched that of the fixed one. Once a response was made, the program recorded the locations of

the target dot and the matching dot in both rectangular coordinates and polar coordinates. There

were 1200 trials overall with approximately 200 trials per treatment.

2.2 Experiment 1(b)

The horizontal coordinate and vertical coordinate of the target dot were random integers drawn

before each trial from the the rectangle [20 px, 80 px)⇥[20 px, 80 px). This Cartesian rectangle

contained the polar-coordinate rectangle [40 px, 90 px)⇥[30 deg, 60 deg), allowing us to analyze

the data falling within it separately. The overall number of trials was 1800, of which 900 fell within

the polar-coordinate rectangle. In all other respect, the procedure was the same as in Experiment

1(a).

2.3 Experiment 2(a)

Each trial began as shown in Figure 1, middle left panel. The target figure, on the left, consisted

of two concentric circles together with their center. The radii of circle 1 and circle 2 were randomly

chosen from the sets {16 px, 56 px, 64 px} and {48 px, 72 px, 80 px}, respectively, in a 3⇥3 factorial
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design. On the right, in the beginning of the trial, there was a dot located at (250 px, 0 px) relative

to the center of the target figure. By rotating the trackball the participant aimed at matching the

target figure by “blowing up” two circles from the dot on the right, one by one. Once the first

matching circle was produced (inner or outer, the person could choose), the participant clicked a

button on the trackball to stabilize this circle and then the program enabled him or her to “blow”

the other circle. After the second match was made, the trial was terminated by clicking the same

button on the trackball. The program recorded the radii of the target and matching concentric

circles in each trial. There were 1800 trials overall, approximately 200 trials per treatment.

2.4 Experiment 2(b)

Experiment 2(b) was identical to Experiment 2(a) except that in each trial the radii of the

target circle 1 and circle 2 were randomly chosen from four possibilities {12 px, 24 px}⇥{18 px, 30

px}. There were 1600 trials overall, about 400 trials per treatment.

2.5 Experiment 2(c)

Experiment 2(c) was identical to Experiment 2(a) except that in each trial the radius of the

target circle 1 was a number randomly chosen from the uniform distribution on the interval [18 px,

48 px) and the radius of the target circle 2 was randomly chosen from the interval [56 px, 86 px).

There were 1800 trials overall.

2.6 Experiment 3(a)

Examples of two floral shapes together with their centers are shown in Figure 1, bottom panels.

Two such configurations were presented simultaneously in each trial. The target one was on the

left, the variable one on the right. The floral shape was generated using the function
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x = cos(.02⇡�)[70 + ↵cos(.06⇡�) + �cos(.1⇡�)], (1)

y = sin(.02⇡�)[70 + ↵cos(.06⇡�) + �cos(.1⇡�)],

where x, y stand for the rectangular coordinates. Amplitude ↵ and amplitude � of the left floral

shape were randomly chosen from the sets {-18 px, 10 px, 14 px} and {-16 px, -12 px, 20 px},

respectively. � was varied from 0 to 99 with an increment of 1 at each step. At each step, a

point with coordinates (x, y) was drawn to the screen and each floral shape was composed of 100

such points. The ↵ and � for the shape on the right was controlled by rotating the trackball.

The program converted the horizontal (vertical) component of the rotation to the change of ↵

(respectively, �). The initial values for these amplitudes were randomly picked from the interval

[-35 px, 35 px). There were 1800 trials overall, about 200 trials per treatment.

2.7 Experiment 3(b)

Experiment 3(b) was identical to Experiment 3(a) except that the two amplitudes for the target

shape were randomly chosen numbers from the interval [-30 px, 30 px).

3 Results

The data are available as "Contextuality in Psychophysical Matching" dataset (Excel files) in

http://dx.doi.org/10.7910/DVN/OJZKKP, Harvard Dataverse, V1.

4 Analysis

In each experiment we deleted outliers, defined, rather informally, as the matching values that

were too far from the target values. The outliers made less than 1% of all data. (Note that the files

in the repository do not have the outliers deleted.)

In Experiment 2b the design was 2⇥ 2. In Experiment 1a there were two 2⇥ 2 subdesigns, the
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“rectangular” and “polar” ones. In Experiment 2a and 3a the design was 3 ⇥ 3 and the analysis

was made for each of the nine possible 2 ⇥ 2 subdesigns. In Experiments 1b, 2c, 3b the values of

the target stimulus were first dichotomized into below-median and above-median values, forming a

2 ⇥ 2 factorial design in each of them.

Once a 2 ⇥ 2 design was formed, the responses (matching values of the variable stimuli) were

dichotomized as described in Section 7 of the main text, by choosing all possible combinations of

four integer values in the intervals

x1 2 {max[minX12, minX41], min[maxX12, maxX41]},

x3 2 {max[minX23, minX34], min[maxX23, maxX34]},

y2 2 {max[minY12, minY23], min[maxY12, maxY23]},

y4 2 {max[minY41, minY34], min[maxY41, maxY34]}

The analysis afterwards consisted in computing the value of �C. The number of dichotomizations

in each 2 ⇥ 2 (sub)design was between 3024 and 11,663,568.
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