JOURNAL OF MATHEMATICAL PSYCHOLOGY 36, 235-268 (1992)

The Structure of Simple Reaction Time
to Step-Function Signals

EHTIBAR N. DZHAFAROV

University of Hlinois at Urbana—Champaign
and The Beckman Institute
for Advanced Science and Technology

Simple reaction time to a step-function signal of amplitude 4 can be additively decomposed
into a signal-dependent component, T(4) (converging to zero as A4 increases), and a signal-
independent component, R. The two components, however, are not mutually independent,
they both are increasing deterministic functions of a single random variable; T(4)= T(4, C})
and R=R(C). C is interpreted as a “criterion” or “inhibition factor” controlling simulta-
neously “readiness to detect” and “readiness to respond.” The model is not based on a priori
distributional assumptions. RT percentiles of a given rank P computed across RT distribu-
tions for different values of A4, have a deterministic structure, RT o(4) = T(4, Cp)+ R{(Cp),
where Cp is the Pth percentile of C. Subtracting RT 5(A4*) for a very large A* from RT p(A4),
one gets an estimate of T(A, Cp), the Pth percentile of T(A4). Applying this to different values
of P, one can a posteriori reconstruct the joint distribution of the two RT components. The
asymptotic consequences of this model (for sufficiently large 4) are corroborated by data on
the RT to instantaneous displacements of a visual target.  © 1992 Academic Press, Inc.

1. INTRODUCTION

1.1. Brief Overview

Simple reaction time (RT) to a step-function signal tends to decrease as a func-
tion of signal amplitude. Assumptions underlying this statement are that (a) step
changes in a stimulus parameter occur from a fixed base level; (b) response is
required as soon as a change is detected (simple RT paradigm); and (c) the step
changes (signals) form a unidimensional “strength” continuum, i.e., their perceptual
salience (detectability and/or subjective magnitude) increases with amplitude. The
RT decrease is best documented for step increases in physical intensity (Pieron,
1920; Chocholle, 1940; Kohfeld, Santee, & Wallace, 1981a, b; Luce, 1986), but it
has also been shown for non-intensity “strength” signals, such as velocity of a light
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FiG. 1. Mean and standard deviation of the RT to visual motion onset (step-function signal with
respect to motion speed; from an unpublished experiment by Dzhafarov, Sekuler, Allik, and Williams).
The two statistics (computed over the RTs falling between 100 and 1000 ms) are arithmetically averaged
over two subjects, which is justifiable because the expected dependence is linear with respect to theoreti-
cal parameters.

source (Ball & Sekuler, 1980; Tynan & Sekuler, 1982; Allik & Dzhafarov, 1984;
Troscienko & Fahle, 1987; see Fig. 1).! The RT decrease is typically presented in
terms of the mean and variance of (censored) RT distributions, but a more general
fact can be stated: for a given percentile rank, RT percentile is a decreasing function
of signal amplitude, except for the close-to-margins percentiles, which show weak
or no ordinal dependence on amplitude.

A theoretical framework for this dependence is provided by the idea of a process
evoked by signal onset, developing in time through successive stages, and termi-
nating in an external response. Some stages notably (but not exclusively) motor
ones, are not influenced by signal amplitude: their total duration can be termed the
signal-independent component of RT. The complementary, signal-dependent, RT
component decreases (stochastically) as a function of amplitude. There seems to be

! The linearizing transformation of velocity, 4 ~%?, in Fig. 1, as well as the linearizing transformation
of displacement, 42, in Figs. 5, 7, 9, and 14 have been derived from an elaborated version of a motion
detection model proposed by Dzhafarov and Allik (Dzhafarov, 1982; Dzhafarov & Allik, 1984). The
model is not discussed in this paper.
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variables. In the best available survey of the subject, Luce (1986, p. 97) €Xpresses
doubts that the independence hypothesis can be tested by psychophysical data.
The independence, therefore, is assumed primarily because of its mathematical
simplicity. However, unless distributional assumptions are made concerning the two
RT components, the independence does not translate into simple algorithms for RT
decomposition.

To illustrate some difficulties, consider a model in which a signal of amplitude A4
initiates a deterministic process, W\l A ), ue‘vempmg in umc, i. Detection occurs
when this process reaches a random criterion level, C. Then detection time is a
random variable D = D(4, C), obtained by solving y(t, 4) = C for ¢:> D is identified
as the signal-dependent RT component, and RT is D(A4, C)+F, where F denotes
the total duration of signal-independent processes preceding and following the
detection process. According to the independence assumption, we have
k;[RT(A)]=«;[D(A4, C)]+ «,;(F] for cumulants x; of any order i.

For a typical psychophysical model, once it predicts the value of D(4, C) for any
given 4 and C, distributional assumptions about C and F are not essential.
However, «;[ D(A, C)] cannot be found without such assumptions, and to make
the model testable by RT data, the distribution of C will have to be derived from
external considerations (such as the frequently misused invocation of the central
limit theorem), or else it will have to be estimated from data. In the former case,
a failure of the conjunction of the two hypotheses, about the function D(4, C) and
the distribution of C, cannot be uniquely attributed to one of them—an undesirable
situation if the distributional assumptions are not essential for the model. When the
distribution is estimated from data, the model acquires too much freedom to be
falsifiable by the observed «;[RT(A4)], at least in a limited range of i. The situation
improves only if D(A4, C) can be factorized into f(C) Dy(A), in which case to fit the
values of k,[RT(4)] all one has to do is to find coefficients x,[ f(C)] and «,;[F].

Even in this case, however, the empirical applicability is limited to low-order
cumuiants oniy, typicaily the mean and the variance. High-order cumuiants are dif-
ficult to estimate reliably, and they are sensitive to distribution tails and censoring
procedures (Ashby & Townsend, 1980; Luce, 1986; Ratcliff, 1979). There are com-
pelling reasons to believe that the lower tails of RT distributions contain false
alarms mixed with signal-initiated responses, and the upper tails contain omission/
distraction responses (see Section 1.5). As a result, RT distributions should be
censored before their cumulants are computed. No censoring procedure, however,
under the assumption of independence would separate “true” responses from signal-
unrelated responses. In addition, any censoring procedure transforms the distribu-

2 Here and throughout the text: (1) a symbol in boldface type, like H, indicates a random variable;
(2) the same symbol in regular type, like H, stands for a particular or arbitrary value of this variable;
(3) the Pth percentile of a random variable H is denoted by Hp. RT, when in mathematical expressions,
should always be read as a single symbol: RT, RT, etc. Note that H(X) is a random variable depending
on a parameter X, whereas H(X) is a deterministic function of a random variable X. All random
variables are assumed to vary between but not within trials.
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tions of D and F in an unknown way and introduces both an unknown dependence
n A and an unknown interdependence between D and F. Consequently, the
results of an analysis based on high-order RT cumulants (in fact beginning with the
variance) will depend critically on the exact values, or percentile ranks, below and
above which the RT distributions are trimmed. The same problems arise if the
analysis is based on integral transforms of empirical RT distributions, rather than
cumulants (see Section 1.3).

These difficulties would have to be taken as inherent limitations of the RT

o
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]
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alternatives to the assumption of independence. I show in this paper that this is not
the case: an alternative is proposed and empirically justified that greatly simplifies
algorithms of RT decomposition and considerably advances the analytical power of
the RT paradigm. It is important to realize that mutual stochastic independence
of the two RT components can in no way be inferred from the fact that only one
of them, by definition, depends on signal amplitude: it is quite possible that both
components depend on a common set of (signal-independent) random variables.
In the decomposition D(4, C)+F, the variable C is A-independent, and it is
logically possible that F and C are interdependent, inducing an interdependence
between F and D.

In the simplest case, F might be a deterministic function of C, F = F(C), inducing
a deterministic relation between F and D, for any given A. This possibility con-
stitutes the essence of the RT decomposition model arrived at in this paper: the two
RT components are deterministic (monotonic) functions of a single signal-
independent random variable. In a sense, this is a conceptual opposite of the
independence hypothesis. The decomposition model proposed is not based on
parametric assumptions about underlying distributions, but it allows one to
reconstruct these distributions a posteriori. The model also provides theoretical
grounds for separating signal-initiated RTs from signal-unrelated responses.

Most of the theoretical predictions derived in this paper are related to the
asymptotic behavior of RTs, as signal amplitude tends to its upper limit. Their
empirical corroboration, therefore, requires sufficiently large amplitudes. At the
same time, the model’s applicability is only moderately limited: it is shown that at
least for one class of signals all perfectly detectable amplitudes are “sufficiently
large.” The major advantage of the asymptotic analysis is that it does not require
specific assumptions about sensory processes evoked by a given class of signals.

1.2. Basic Assumptions

Here 1 present two basic assumptions underlying all RT decomposition models
considered in this paper. The discussion is confined to “true” reactions, evoked by
signal onset (signal-unrelated RTs are discussed in Section 1.5).

1. AdditiveDecomposition Assumption. RT to a signal of amplitude 4 can be
decomposed as (see footnote 2 for notation)

RT(A4)=D(A4,Z)+F, (1)



THE STRUCTURE OF SIMPLE REACTION TIME 239

(a) F=0;

(b) Z is a set of random variables (not necessarily countable) such that the
joint distribution of (F, Z) is independent of A;

() D(A,Z)>0is a strictly decreasing function of A4 for any value Z of the
random set Z.

D(A4)=D(A, Z) is a signal-dependent component of RT. It is a random variable
because it (deterministically) depends on the random set Z. It is “stochastically
decreasing” as A increases because it is strictly decreasing for any given Z and
the distribution of Z does not change with A. F is a signal-independent component
of RT. The concept of “signal-independence” should not be taken as meaning
“stimulus-independence,” which is a much stronger term. It is only assumed that
the distribution of (F, Z) does not vary as a function of amplitude of a specific
stimulation parameter.

To appreciate the generality of Assumption 1, note that any random variable
D(A) can be presented as a deterministic function D of A and of some random
variables that are A-independent themselves (see Lemma 1.2.1 and Corollary 1.2.1
below). The assumption, therefore, does not impose any restrictions on the
marginal distribution of D(A4)= D(4, Z). Assumption 1 is only violated if for any
choice of Z in Eq. (1), either the distribution of (F, Z) depends on 4, or D(4, Z)
does not decrease in A. The following lemma shows that this cannot happen in
intuitively a very important case, when for a given value of F all percentiles of the
conditional distribution of D(A) decrease with increasing 4.

Lemma 1.2.1.* Let RT(A)=D(A)+F, where (1)F =0 does not depend on A;
and (2) Dp(A|F), the Pth percentile of D(A|F=F)20, is a strictly decreasing
Sfunction of A for any P. Then Assumption 1 is satisfied.

CorOLLARY 1.2.1. Let RT(A)=D(A4)+F, where (1)F =0 does not depend on
A; (2) Dp(A), the Pth percentile of D(A) 20, is a strictly decreasing function of A
for any P; and (3) D(A) and F are mutually independent. Then Assumption 1 is
satisfied.

This corollary shows that Assumption 1 is a direct generalization of the com-
monly accepted assumption of independence (see Section 1.1), provided that D(A4)
decreases in all percentiles with increasing A.

*Two technical comments: (a) the “value Z” means, of course, the set of values for all components
of the random set Z; (b) here and throughout the paper the terms “any,” “always,” and “all,” when
referring to values of random variables, should be taken with the usual possible exception of zero-
probability sets.

4 All proofs are presented in the Appendix.
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2. Asymptotic Differentiability Assumption.> For any Z (see 3b), as
A — o0, there asymptotically exists a nonzero finite derivative of D(A4, Z) with
respect to some positive function s(A4).

This means that D(4, Z) can be written as

D(A4, Z)=D(w0, Z)+ C(Z) s(A) + o{s(4)}, (2)
where
(a) s(4)>0;
(b) C(Z)#0 is the finite asymptotic derivative 0D/ds, A — o0;

(c) D(e0, Z) is a non-negative limit function whose existence follows from the
fact that D(A4, Z) decreases while remaining nonnegative.

The difference
T(A, Z)=D(A, Z)— D(0, Z)= C(Z) s(A) + 0{s(4)}

is a strictly decreasing function of A converging to zero. The random variable
T(A, Z) plays an important role in making the term “signal-dependence” unam-
biguous. As pointed out by Luce (1986, pp. 98-99), in general the decomposition of
RT into signal-dependent and signal-independent components is not unique: if
D +F is such a decomposition, then so is (D +X)+ (—X +F), provided X is
signal-independent and the redefined components remain non-negative. 7(4, Z)is
a “minimal” form of the signal-dependent RT component: it cannot be further
additively decomposed. Correspondingly,

R=D(w,Z)+F

is a “maximal” form of the signal-independent RT component.
Assumption 2 is rather unrestrictive. Its major purpose is to ensure asymptotic

co-measurability of the central tendency of T(4, Z) (median, mean) and the time-
dimencioned variahilitv of T( A 7\ (interguartile range, standard devmflnn\ as
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A - o0, the ratio of the two tends to a positive finite constant.6

The following simple results provide a detailed asymptotic characterization of the
function T(A, Z), which will be used for theoretical analysis of RT distributions in
Section 3.

5 Without loss of generality, let 4 assume all values in [0, co): for any other 4,,, one can replace A
by (4! —A;,;)“. Asymptotic statements in the following text are formulated as equations including
0{s(4)}, which denotes a function of 4 such that o{s(4)}/s(4) -0 as 4 - co. If s(4) converges to zero,
then o{s(4)} converges to zero infinitely faster. In practice this means that 0{s(A4)} can be neglected
when s is sufficiently small (i.e., 4 is sufficiently large). 0{1} denotes any variable converging to zero.

61 am grateful to R.D. Luce (1991, personal communication) for subjecting Assumption2 to a
thorough analysis. He constructed a simple counter-example by putting Z=Z>0, a single random
variable, and T(A4, Z)=kA~Z. This yields RT(A4) =R + kA4 ~Z, for which, as proved by Luce, Assump-
tion 2 is not satisfied. It is easy to show that as 4 — oo, the mean and median of 7(4, Z) are vanishing
infinitely faster than its standard deviation and interquartile range. Intuitively, this is an “anomalous”
behavior for a positive random variable, and Assumption 2 prevents this from happening.
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LemMA 1.22. T(A4, Z) is asymptotically factorizable into a product of a positive
function C(Z) and a strictly decreasing positive function s(A) vanishing at A - o,

T(A4, Z)=C(Z) s(A) + 0{s(4)},

where C(Z) is unique, and s(A) is asymptotically unique, except for positive scaling
coefficients having reciprocal values for the two functions.

It immediately follows that

COROLLARY 122. T(A,Z) asymptotically increases with C(Z), ie., (a) if
C(Z,)= C(Z,) then beginning with some vaiue of A, T(A, Z,) = T(A, Z,); and (b) if
C(Z,)=C(Z,) then T(4, Z,)— T(A4, Z,) = 0{s(4)}.

The RT decomposition assumptions can now be summarized in the form

RT(4)=T(4,Z)+R, (3a)
R=D(w0,Z)+F, (3b)
T(4,2)=C(Z)s(4) +o{s(4)}, (3¢c)

where all terms and their relations are as above; obviously, (R, Z) is A-independent.
Equation (3) will be referred to as the basic RT decomposition model (for signal-
initiated responses). All models considered in this paper are particular cases or
simple modifications of this model.

1.3. RT Decomposition Models Based on the Assumption of Independence

As mentioned in Section 1.1, there seems to be a consensus that the RT com-
ponents D(A, Z) and F in Eq. (1) are mutually independent random variables. In
general this does not translate into mutual independence of 7(4,Z) and R, the
“minimal” signal-dependent component and the “maximal” signal-independent
component, respectively. Indeed, R in Eq. (3) contains the component D(oo,_Z)
depending on Z. If, however, the variability of D(co, Z) happens to be much
smaller than that of F, then an approximate independence exists between 7(4, Z)
and R.

This suggests a strong version of the assumption of independence, in which
D(o0, Z)=const, and the principal components of the basic RT decomposition,
T(A,Z) and R, are mutually independent (Luce & Green, 1972; Kohfeld er al.,
1981a, b). Reflecting the two major properties of the model, the mutual inde-
pendence of the RT components and the convergence to zero of the signal-
dependent component, it will be referred to as the “asymptotic zero plus
independence” (4Z + I) model.

The model is of special importance because it is the only independence-based
model leading to distribution-free algorithms for RT decomposition. Indeed, as 4
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increases, the distribution function Fgr4)(?) tends to F(z).” Then Fg(z) can be
estimated by Fgr4+)(?) for a sufficiently large 4*, and the detection time distribu-
tion can be recovered from any RT(A4) by deconvolving the estimated f.(¢) from
frre)(?). In terms of the moment generating functions (mgf),

mgf[ T(A, Z)] ~ mgf[RT(A)]/mgf[RT(4*)]. 4)

The AZ+ 1 model will be shown to disagree with the observed asymptotic
behavior of the RT distributions (Section 3.1). Due to its theoretical importance,
however, it is worthwhile to see whether the predictions of the model can be
improved by simple modifications while retaining the model’s essential features.
I consider two such modifications employing two schemata of mixing true RTs
with signal-unrelated responses. One such schema is a 2-state mixture,

H with probability 1 — o;

T(A,Z)+R with probability «; (3)

RT(A)={

where H does not depend on A. Another schema assumes a race between signal-
initiated and signal-unrelated processes. Denoting by N duration of the latter, the
model states

RT(4)=min{N, T(4, Z)} +R. (6)

N and Z are not necessarily mutually independent. As an example, consider
again the model in which detection occurs if a deterministic process (¢, 4) reaches
a variable criterion C (Section 1.1). In this model Z = C. Let an independent “noise
process” X(t—t,) randomly launched at moments t, race with (s, 4) for the
current criterion level, C. In this case N and C must positively covary. Note that
both N in the race model and H in the 2-state model, being signal-unrelated, may
attain non-positive values, counting from the signal onset.

It is shown (Section 3.3) that both modifications considered (which turn out to
be asymptotically equivalent) can indeed improve the predictive power of the
AZ + I model, but only at the cost of assuming an unrealistically large proportion
of signal-unrelated responses in RT distributions (50% or more for the RT data
reported below).

1.4. Overview of the Single-Variate RT Model

A conventional approach, once the 4Z + I model is shown to fail, would be to
seek the next simplest model as that in which D(co, Z) # const. i.e., its variability
is not negligible, but Z and F in Eq. (3b) are still independent. The independence
assumption then would be formally preserved, but not between the RT components

7 Notation conventions: distribution and density functions of a random variable H at a value H will
always be denoted by F,(H) and f,(H), respectively: the subscript indicates the name of the random
variable. I will assume that F,(H) for all time-dimensioned H are strictly increasing and differentiable
on (inf H, o).
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taken in the “minimal-maximal” form, T + R (Eq. (3a)). It is shown, however, that
such a model would be theoretically redundant in so far as the asymptotic RT dis-
tributions are concerned (Section 3.2). If R is comprised of elements depending on
Z and elements independent of Z, then the latter elements can be dropped from the
model with no consequences for asymptotic predictions. Moreover, experimental
data strongly suggest that the interdependence of R and Z has a particularly simple
form: R is a deterministic increasing function of T(A4, Z) for any given A.

The simplest model incorporating this relationship is constructed by assuming
that T(4, Z) can be presented as T(4, C(Z)) for all 4, not only asymptotically, as
it follows from Eq. (3). Related to Corollary 1.2.2, this means that T(4, C(Z)) is
a strictly increasing function of a single random variable, C=C(Z). The RT
decomposition (Eq. (3)) then assumes the form

RT(4)=T(4, C)+R, (7a)
R=L(C)+m, (7b)
T(A, C)=Cs(4)+ o{s(4)}, (7c)

where both T(4, C) and L(C) are increasing functions of C, and m is a positive
constant (about 130 ms in the experiments reported). The constant m = inf{ R(C)}
is isolated because of its traditional interpretation as the “irreducible minimum”: no
signal-initiated RT can fall below this value.

Equation (7) will be referred to as the single-variate RT (SVRT) model: RT(A)
in this model is a monotonic transformation of a single random variable, C, rather
than a combined effect of independent random variables selectively associated with
A.® The function L(C) is found to be a simple scale transformation, L(C)= BC,
where B is a positive constant. This finding simplifies RT analysis, but is not critical
for the SVRT model.

The most important consequence of the SVRT model is that all RT percentiles
of a given rank P, RT p(A4), correspond to a single value of the criterion C, namely,

to the Pth percentile of C, Cp. As a result, Egs. (7a, b) can be rewritten as
RT {AY=T(4, Cp)+ L(Cp} + m. 8)

Remarkable consequences of this equation are discussed in Section 1.6.

One interpretation of the random variable C in Eq. (7) is that it represents a
preset “criterion” that has to be crossed by a signal-initiated deterministic process,
y(t, 4), in order for detection to occur. This hypothetical process can always be
constructed in such a way that solving the equation Y(z, 4)=C for ¢ one gets
t=T(A,C)+ L(C)=RT(4)—m. One can recognize here the variable criterion
model proposed by Grice (1968, 1972; Grice, Nullmeyer, & Spiker, 1982) for
simple RT. In a modified version, the process y(¢, A) can be constructed to yield

8 Observe that if the SVRT model holds, then the only way to decompose RT(A) into a sum of
mutually independent components, D{A4) and F, is to put D(4)=L(C)+ T(4,C), and F=m: a
constant is simultaneously stochastically independent of and functionally related to any random variable.
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t=T(A, C) as a solution of W(t, 4)=C, so that R=L(C)+ m has to be added to
this solution to get RT(A). Due to these and similar interpretations I refer to the
random variable C as the “criterion.” This term, however, should only be taken as
a technical label. This paper does not address the question of what experimental
manipulations may affect the distribution of C, and in what way: in particular, the
“criterion” is not necessarily a “high-order” decision variable. To give an obvious
example of another interpretation, consider C~'¥(z, 4) to be a stochastic process
which has to reach a fixed (unity) level for detection to occur: C 'y (z, 4)=1
(McGill, 1963). Since this equation is equivalent to (¢, A) = C, the “criterion” may

be a conceptual means to describe “sensory” variability of a particular kind, rather
than a decision variable.’

1.5. “True,” “Too Fast,” and “Too Slow” Reactions

Equation (8) will be shown to hold in a wide percentile range, but not for very
low and very high percentile ranks: as P approaches 0 or 100%, the dependence of
RT (A) on A loses even ordinal regularity.

The problem with the upper-tail RT percentiles is to a large extent statistical:
they cannot be reliably estimated from moderate-size samples due to their extreme
positive skewness. Another factor is that with some probability the observer can be
distracted and miss the signal onset. This would result in very long RTs (up to
several seconds). Irrespective of A4, these RTs will have percentile ranks exceeeding
some relatively high value, say P*. In the SVRT model the “distraction state” can
be formally associated with an extremely high (or infinite) value of the criterion C,
occurring with probability 1 — P*. As a result, Eq. (8) will not be affected at P < P*.

The fact that the lower-tail RT percentiles can be close to zero, or even negative,
indicates that the “true,” signal-initiated responses are mixed here with signal-
unrelated “false alarms.” At the same time, the SVRT model for “true” reactions
(Egs. (7) and (8)) seems to account for all RT percentiles whose rank exceeds a
relatively low value, P, (unless P> P*, as discussed above). A simple schema in
which effectively all false alarms are concentrated below a certain RT percentile can
be constructed as follows. Consider a “race” between Y(t, A) and X(z—t,) as
discussed in Section 1.3 for the AZ + I model (Eq. (6)). Assume that after either of
the two processes reaches the current criterion level, C, the reaction continues as
postulated in the SVRT model (Eq.7(b)): the remaining time, L(C)+m, is an
increasing function of C. It follows that the false alarm times are always shorter
than the true RT for any given C. Assume now that the “noise process” is effectively
bounded from above, ie., Prob{X(1—t,)>C,} is negligibly small for some level
C,. Then Eq. (8) will hold for all P exceeding the percentile rank P, of C,.

1.6. Operational Consequences of the SVRT Model

The SVRT model greatly enhances one’s ability to test models of sensory
processing (with no a priori distributional assumptions) by means of the RT

° The present form of this paragraph is due to a most helpful discussion with R. D. Luce.
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paradigm. Consider the model discussed in Section 1.1, predicting the detection
time of a signal as a function of amplitude and criterion position, D(4, C). To test
these predictions, RT distributions are obtained for a number of amplitude values,
{A4,, 4,, .., A,}. Let the percentiles RT (A4,) be computed across all these distribu-
tions, for values of P between some limits P, and P*. According to the SVRT
model (Eq. (8)),

RTp(4;) —RTp(4))=T(4;, Cp) = T(4;, C;) = D(A4;, Cp) — D(4;, Cp).

Fixing the value of P (say, at 50%) one can see that C; is fixed across all values
of A4, so it can be estimated by means of a regression analysis (the form of the func-
tion D is specified by the model tested). Moving to another percentile level (say,
40 or 60%) one gets another test for the hypothetical function D(4, C), and, as a
by-product, an estimate of the 40th or 60th percentile of C. Continuing in this way,
one gets as many tests of the model (within a single set of data) as there are
percentile levels that can be reliably estimated from the RT distributions. Provided
the model is corroborated between the percentile ranks P, and P*, as a by-product
one reconstructs a posteriori the distribution of C between P, and P*. The situation
is completely deterministic and, if the model is correct, the regression error is
associated only with empirical estimation of the RT percentiles.

Moving downward from P, and upward from P* one can reach the percentile
levels at which the fit deteriorates considerably. These levels would provide
estimates of the percentile range containing only true RTs, separated from false
alarms and omissions/distractions (Section 1.5). Note that ignoring marginal per-
centiles does not constitute a censoring (truncation) of the RT distributions: all the
percentiles analyzed are determined from the entire distributions. At the same time,
the relatively central percentiles are not affected by the values of the marginal
ones—one of the well-known advantages of dealing with percentiles rather than
moments or integral transforms (see Townsend & Ashby, 1983, pp. 95-98; Ratcliff,
1979).

if D(4, C) is of interest in its “minimai” form oniy, 7(4, C), the analysis can be
simplified further. From Eq.(7) we have lim RT,(4)=R,. The limit can be
estimated by RT ,(A4*), where 4* is sufficiently large (the latter can be verified by
observing that further increase in 4 leads to only negligible changes in RT (4 )}—an
“empirical form” of Cauchy’s convergence criterion). Then

RT o(4) = RT o(A*)x T(4, Cp), 9)

which ig ne of the deconvaolntion dieenceced in
which 1§ e 01 U onvoiution discussed 1

Lo S Lv o

Section 1.3 (Eq. (4)) and also more reliable as a numerical procedure.

2. EXPERIMENTAL DATA

The theory presented in this paper is related to the results of two experiments on
detection of instantaneous changes in spatial position of a small light source. The
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main experiment is a simple RT one in which the observers had to respond to a
spatial shift as soon as it was noticed. To assess detectability of different spatial
shifts, a Yes-No detection experiment was conducted in which the observers
indicated whether they noticed or did not notice a shift. The experimental
procedures were as follows.

2.1. Method

In both experiments the light source was a bright (>99% contrast) square-
shaped spot (1.1'x 1.1") on a dark background, binocularly viewed from 220 cm
(chin-rest, forehead support). A Macintosh Plus computer (60 Hz vertical refresh
rate) presented the stimuli and recorded the subjects’ respomses. To prevent
autokinetic motion, the room was illuminated dimly, allowing the display’s borders
(4.8°h x 3.2°v) to be just discriminable.

A trial started when the subject pushed a designated “readiness” key on the
computer keyboard with the left hand. This caused the spot to appear in the center
of the display. The spot remained in this position for a random time interval
(uniformly distributed between 1 and 2s), adter which it disappeared and
instantaneously reappeared in another position along the same horizontal line. The
amplitude and direction of the displacement varied from trial to trial. The spot
remained in the displayed position until the subject pushed a designated response
key (one of two keys in the Yes—No experiment) on the keyboard with the
right hand. Then the spot disappeared, ending the trial (response-terminated
presentation mode).

Both experiments were carried out as a sequence of short blocks of trials, one or
two blocks per subject per day. Within a block each amplitude value was presented
26 times, 13 times to the left and 13 times to the right. Except for this constraint,
the presentation order was random.

Two right-handed subjects with corrected acuity participated in the simple RT
experiment. The observers had to push the response key as quickly as possible as
soon as a displacement was noticed, regardless of its direction. The displacement
amplitudes in this experiment were 1.1°, 1.7, 2.2', 2.8', 3.3/, 44’, 7.2, and 19.9'.

O hcoarver SW narticinated in O hlacke and ahgarver RWCQ in 2 hi
OS50 veT o O1

rver SW participated in 9 blocks and observer RWS in
trials per amplitude, respectively).

Five different observers with normal or corrected acuity participated in the
Yes—No detection experiment. The displacement amplitudes presented were 0.6,
1.1', and 1.7', and, for two observers, 0’ (no displacement). The observers were
asked to push the “Yes” key, if they noticed a displacement, “quickly enough” to
indicate an “immediate impression.” If no displacement was noticed within a
sufficiently long time, counting from the trial start, the “No” key was pushed: all
observers had been trained to wait at least 4-5s to make sure. No feedback was
given. Only type of response, “Yes” or “No,” was recorded. Each observer
participated in 4 blocks, 104 trials per amplitude per observer in total.
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Fig. 2. Detection probability of instantaneous displacements (step-function signal with respect to
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spatial shift) of amphtudes 0, 0.55, 1.1, and 1.7 (arc min) for 5 observers 104 responses per amplitude
per observer; 0’ amplitude was presented to 2 observers only. The curve is drawn through across-subject
means.

2.2. Results

(1) Distributions of the RTs to leftward and rightward displacements of the
same amplitude were combined, as they were found sufficiently similar: the
Smirnov-Kolmogorov two-sample statistics, (n/2)"?D,, ,, computed for 16 pairs of
distributions (2 subjects by 8 amplitudes) range from 091 (p>02) to 1.19
(0.1 < p<0.15), with the median of 1.08 (0.15 < p <0.2). The same similarity was
found for the response frequencies in the Yes-No experiment (the y* value pooled
over all subjects and all amplitudes is 41.13, df =34, p>0.1). All data, therefore,
are presented and analyzed as functions of amplitude only. The psychometric func-
tions obtained in the Yes—No experiment are presented in Fig. 2. The empirical
distribution functions obtained in the RT experiment are shown in Fig. 3.

(2) Figure 2 shows virtually perfect detectability of the 1.7° displacements.
Thus, of the amplitudes used in the RT experiment, all but the lowest, 1.1°, are vir-
tually perfectly detectable. This “virtually” can be dropped for the next (after 1.7")
amplitude, 2.2’; the reason it was not included in the Yes-No experiment is that its

perfect detectability was phenomenologically obvious. The detectability of the 1.1’
amnlitude is imperfect and varies between 60 and 90%. Note in Fic. 3. RWS, an

GLIPUIWGT 15 LUPVIIVLVE Gl Vailivs Ubiwevis UV G 0 ANV A DI 2y VY, Gl

increase in the RT(1.1’) density at about the 70th percentile, indicating a
bimodality. This bimodality is what can be expected if the upper percentiles of the
distribution reflect trials when the displacement was not detected by this subject.'

10 A more detailed analysis, not included in this paper, confirms that the detectability of the 1.1’
displacement by RWS was almost precisely 65%. The same amplitude was detected by subject SW about
90% of the time, and the ceiling effect prevents one from seeing a bimodality in this case.

480/36/2-7
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(3) Figure 2 shows also about a 10% false alarm rate. Assuming the two
experiments are roughly comparable, it might be expected then that signal-
unrelated false alarms make up about 10% of RT trials (if the SVRT model holds,
then the false alarm reactions should al be concentrated at the lower tails).

{4) Tn accordance with the general rule mentioned in Section 1.1, all percen-
tiles of the RT distributions, RT »(4), are decreasing functions of A4, provided P is

cumulative frequency (%)

reaction time (ms, log-scale)

100
Q3
S0 Med
01 e anavaess
[+} ..A...,.........f‘,
100

RVSl-r
{ ) Kb ndundomdbe \ N 0

100 1000 10000
reaction time (ms, log-scale)

cumutative frequency (%)

FiG. 3. Cumulative frequency distributions of the RT to instantaneous displacements of amplitudes
1.1, 1.7, 2.2, 2.8, 3.3, 44, 7.2, and 19.9 {arc min) for 2 observers; 208 RTs per amplitude for subject SW,
182 RTs per amplitude for subject RWS. The medians (open symbols) and two lateral quartiles (filled
symbols) are indicated in each curve. For better discriminability the curves corresponding to different
amplitudes are shifted by 20% steps with respect to each other. The amplitudes are shown above corre-
sponding vertical axes. 100 and 0% levels for every curve are shown by dotted lines, The interrupted line
in the panel for RWS, 1.1, points out a density increase at about the 70% level, resulting in a second
mode at about the 80-85% level.
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not close to 0 or 100% (in our case, 10-15% < P < 85-90%). This is dem
in Fig. 4. Note that the lower limit (10-15%) roughly agrees with the false alarm

rate mentioned in paragraph (3).

(5) One can determine from Fig. 3 that the differences between corresponding
percentiles of the RT distributions for 4=19.9', the largest amplitude used, and
7.2, the next largest amplitude, are very small, on the order of 1 ms. This means
that as 4 exceeds 7.2’ RT(A4) approaches its theoretical minimum, lim RT(4)=R
(Eq. (3)).

2.3. Asymptotically Linearizing Transformations

Figure 5 shows that beginning with 4 =1.7', the three RT quartiles are well
approximated by linear functions of A~2 The linearity grossly deteriorates
(especially for the third quartile) if the 1.1” amplitude is included, and it improves,
though very slightly, if the 1.7" amplitude is excluded. This suggests that the
transformation 4~2 is asymptotically linearizing. Figure 6 shows that amplitude
squaring is essential for the obtained linearity: the quality of fit for all three curves
sharply deteriorates as the exponent shifts from —2 in either direction. The same
results as in Figs. 5 and 6 have been obtained for other percentiles between the 15th
and 85th (occasional small deviations from —2, as in the third quartile curve of
Fig. 6, do not exhibit any systematic pattern). These percentiles are not shown here
to avoid obscuring the graphs, but all are included in a more comprehensive
analysis presented in Section 3.4.

It is a simple mathematical fact (see Theorem 3.1.2 below) that the mean RT,
computed for the values of 4 and over the region of P where RT(4) is a linear
function of 472, is itself a linear function of 42 Figure 7 demonstrates this fact

percentile rank , %

o] 20 40 60 80 100
] 1 1 1 1
—l— obs. RWS
——O— 0bs. SW
[%]
i
T | L
£ 0
I3
)
b4
] L.

FiG. 4, Kendall’s rank-order correlation between the amplitudes 4 and the percentiles RT (4) as
a function of P (taken with 2.5% steps). Due to the extreme positive skewness of the distributions, the
percentiles above the 90th could not be estimated reliably. The values of = between —0.5 and 0.5 are not
significantly different from 0 at 0.05 significance level.
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FiG. 5. RT quartiles and the semi-interquartile interval as functions of amplitude 4 (43 1.7, ie..
A4 =1.1"is excluded). The statistics are arithmetically averaged over two subjects (RWS and SW), which
is justified as in the legend of Fig. I. The functions are linear with respect to 42 (approximation error
values can be read from Fig. 6, at = —2).

for the RT distributions censored (truncated) below the 10th and above the 90th
percentiles. The same is true for the RT standard deviation (not variance): it is
linear in the same plots for the same censoring procedure. The linearity of the mean
and standard deviation also holds for any other pair of cut-off percentile ranks
taken between 10 and 90% (not necessarily symmetrically with respect to the
median).
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FiG. 6. Standard error of approximation of the three RT quartiles from Fig. 5 by linear functions of
A®, as a function of f.
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FiG. 7. Mean and standard deviation of the RT to instantaneous displacments (4 > 1.7'), computed
over the RTs falling between the 10th and 90th empirical percentiles, and arithmetically averaged over
two subjects (RWS and SW; see legends of Figs. 1 and 5).

3. THEORETICAL ANALYSIS

3.1. Dependence of the RT Percentiles on Signal Amplitude

Figure 5 presents RT data in the format focal for this section: RTs of a given
percentile rank P plotted against a transformation of A that linearizes the plots.
It is shown in this section that such a linearizing transformation should exist for
sufficiently large values of A if the basic RT model holds (Eq.(3)). Moreover,
this transformation (asymptotically) equals the function s(4) in the asymptotic
factorization of T(4, Z) (Eq. (3c)).

The intercepts of the linearized RT,(A4) plots are theoretically equal to the
corresponding percentiles R, of the signal-independent RT component
R=RT(4)—T(4,Z). A theoretical meaning of the RT,(4) slopes within the
framework of the basic RT model is less obvious. The following theorem shows that
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these slopes equal E[C|R=R,],"" so the degree the slopes change with P reflects
the degree of interdependence between R and the cirterion C.

THEOREM 3.1.1. In the basic RT decomposition model (Eq. (3))
RT(A)=Rp+E[CIR=R,]s(4)+0{s(4)}. (10)

Three conclusions follow from this theorem when related to the RT, vs s(A4)
data. First, the function s in Eq. (3) can be empirically identified by finding the
“best” linearizing transformation for sufficiently large values of 4. In our case
(Figs. 5 and 6), s asymptotically equals 4 % Second, the range of “sufficiently large
values of A” in the experiments reported coincides with the range of perfectly detec-
tabie signais. Finaily, the data in Fig. 5 suggest that R and C have a considerabie
degree of positive covariation. Indeed, it immediately follows from Eq. 10 that

COROLLARY 3.1.1. If R and C are mutually independent (AZ + I model), then
RT,=Rp+E[C]s(A4)+0{s(4)}. (11)

In other words, if R and C are mutually independent, the slopes of the linearized
percentile curves have to be virtually identical for all P. This is obviously not the
case: as P increases, both the intercepts and the slopes of the percentile curves
increase (Fig. 5). Figure 8 demonstrates this for all analyzed percentiles; in fact, the
slope of the linearized curves increases about 4-6 times faster than the intercept.
The inset shows that this relationship is not critically determined by inclusion of the
lower amplitudes, but is indeed an asymptotic property.

It is clear, therefore, that the AZ + I model should be dismissed, even as a first
approximation. At the same time the data are in conformity with the SVRT model.
In this model only one value of C corresponds to R=R,, and this value is
Cp (Eq. (8)). In terms of Eq.(10), E[C|R=R,]=C,, which is obviously an
increasing function of P (or of R,).

A more traditional way to establish interdependence between C and R would be
to linearize the mean and standard deviation of the RTs, rather than the percentiles.
The following simple theorem shows that the asymptotically linearizing transforma-

tinem o nf 4 10 thao gama in hath Aacag
o1 5§ 01 A 15 uiC 3aimc ifi 60wl Cascs.

THEOREM 3.1.2. If the basic RT decomposition model holds for the RT distribu-
tions in a percentile rank region (P, P*), then (see footnote 11 for notation)

E[RT(4)|P,]=E[R|P]+E[C|P]s+o{s},
D[RT(4)|P,]=D[R|P]+r[C,R|P]D[C|P]s+o{s},

! Notation conventions: expected value and standard deviation (not variance) of a random variable
H will be denoted by E(H) and D(H), respectively; correlation between H and X will be denoted by
r(H, X). If the distribution of H is conditioned on a certain statement P, the notation is E(H|P) and
D(H|P). Symbols E(H|X) and D(H|X) can be used if the statement P is of the type X = X. Finally,
E(H|X) is a random variable with values E(H|X).
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FiG. 8. Slopes and intercepts of the linear functions b+ b; 42 approximating RT p(4), 4> 1.7;
symbols from left to right correspond to P =15, 20, ..., 80, 85% (the linear functions for 25, 50, and 75%
are shown in Fig. 5). The inset shows the slopes and intercepts of the quartile functions computed for
three highest amplitudes only, 4.4', 7.2', and 19.9' (averaged over two subjects).

where P 4 stands for RTp (4) <RT(4) <RT;.(4); P stands for Rp <R<Rp.; and
C=E[C|R].

As a result, if C and R are mutually independent, ie., r[C,R|P]=
r[C,R|P]=r[C,R]=0, then (omitting the conditions for simplicity)

{D[RT(4)] - D[R]} =o{E[RT(4)] - E[R]},

ie, asymptotically D[RT(A4)] should be infinitely closer to a constant than
E[RT(A)]. Figure 7 shows that this is not the case: D[RT(A4)] — D[R] is nearly
proportional to E[RT(4)]—E[R] (E[R] and D[R] are the intercepts of the
straight lines).'?

An analogous result is shown in Fig. [ for the RT to uniform motion onset (the
linearizing transformation here is s =423, where 4 is velocity). Note, however,
that it follows from the analysis just presented, that the cut-off points should be
placed at fixed percentiles (as in Fig. 7) rather than at fixed RT values (as in Fig. 1).
The similarity of the patterns displayed by the two figures should be attributed to
the fact that the cut-off points in Fig. 1, 100 ms and 1000 ms, have roughly constant
percentile ranks across the velocity values (at the same time, 100 ms is high enough
to exclude most of the false alarms).

Summarizing, the experimental data are incompatible with the 4Z + I model,
and strongly support the basic RT decomposition model with positive covariation

2 All linear equations in this paper are explicitly formulated as asymptotic statements, hence in
addition to sampling error the residuals in Figs. 5 and 7 {and later in Figs. 10-14) constain a systematic
component induced by dropping the unknown o{s}-terms. Consequently, a formal goodness-of-fit
analysis (when applicable), or tests of linearity against higher-order trends, are uninformative, aside from
characterizing the statistical power of the tests.
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of T(A) and R. They are also in agreement with the SVRT model in which T(4)
and R are deterministic increasing functions of each other for any given A.
Although I am not aware of other experimental analyses where RT percentiles were
asymptotically linearized, the approximately linear relationship between D[RT(4)]
and F[RT(4)] for sufficiently large A seems to be a common finding (Cocholle,
1940; Green & Luce, 1971). Due to Theorem 3.1.2, this is an indication that the RT
percentiles for other signal types also follow the SVRT model pattern.
3.2. SVRT Model versus Basic RT Model

Two models making identical predictions concerning RT p(A4) are operationally
equivalent, whatever their formal differences. The following very simple theorem
shows that this is the case with the basic RT model (Eq. (3)) and the SVRT model
(Eq. (7)) in so far as the asymptotic RT distributions are concerned.

THEOREM 3.2.1. [f the basic RT decomposition model with E[C|Rp] being an
increasing function of P accounts for the asymptotic RT distributions in a percentile
rank region (P, P*), then in the same region the asymptotic RT distributions can be
accounted for by the SVRT model with Cgyrr=E[C|R]pasic-

The situation can now be viewed in the following way. The SVRT model and the
AZ + I model are two opposite and extreme cases of the basic RT model. The latter
is corroborated by finding an asymptotically linearizing transformation s of A for
the RT percentiles (a somewhat different approach is described in Section 3.4
below). Now, if the asymptotic slopes of the percentile curves do not change with
their intercepts (equivalently, percentile ranks), then the basic RT model reduces to
the AZ + I model. If the slopes increase with percentile rank (which is the case for
the experiments reported), then the basic RT model reduces to the SVRT model.
Only if neither of the two situations took place (a decreasing or non-monotonic
dependence), there would be a reason for keeping the basic RT model in its general
form. This statement does not exciude the possibility that the SVRT modei can
be tested against the basic RT model using RT distributions for weak signals (see
Section 4).

3.3. Two-State Mixture And Race Models

In this section I consider whether the compatibility of the independence
hypothesis with the RT percentile data can be improved by the two modifications
troduced in Section 1.3: the 2-gtate mixture model and the race model

in

THEOREM 3.3.1. Let the 2-state mixture model hold (Eq.5), and let A(x) be the
likelihood ratio function f,(x)/t g(x). Then

RT(A4)= Rp+ C(P) E[C]s + 0o{s}, (12)
where C(P)=[1+ A(Rp)(1 —a)/a] .
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One can see from this corollary that, unlike the 4Z + I model, its 2-state mixture
modification can account for the fact that the slope of the linearized RT percentile
curves increases with their intercept. One has to assume only that t,{x)/fr(x) is a
decreasing function. To understand why mixing signal-unrelated reactions with
those generated according to the AZ+ 7 model makes such a change, note that
Eq. (5) can be presented as

RT(4)=bT(4)+ {bR + (1 —b)H},

where b attains values 1 and 0 with probabilities « and 1 — a, respectively. It is clear
now that the signal-dependent component of RT is bT{A), rather than T(4) alone.
Analogously, bR + (1 —b)H is the signal-independent component. The covariance
of the two components equals

E[b>TR] — E[bT] E[bR + (1 — b)H] = (1 —a) E[T]{E[R] — E[H]}.

This value is positive, because, since A(x) is monotonically decreasing, E[R] >
E[H]. In other words, the 2-state mixture improves the AZ + I model’s predictive
power by de facto introducing a positive correlation between the signal-dependent
and signal-independent RT components. In a sense, this defeats the original
purpose: to retain the assumption of independence. Nevertheless, the model might
still be considered a viable alternative to the SVRT model, if one could show that
the estimated values of o and A(x) are reasonable. The parameter a can be roughly
estimated by comparing the slopes of the linearized RT percentile curves to that of
the linearized E[RT ]-curve.

LEMMA 3.3.1. If the 2-state mixture model holds, then for any P,

< asymptotic slope of E[RT] vs 5(A4)
% . .
asymptotic stope of RT , vs s(A4)

(13)

Since A(Rp) is a decreasing function, the greater the P chosen, the closer the
denominator of Eq. (13) approaches E[C] and the more precise the estimate of .
However, one cannot use a percentile rank too close to 100%: for the considered
data the 85th-90th percentile is about the highest for which the asymptotic
linearization is still acceptable (Fig.9, upper curve). The lower curves in Fig. 9
represent E[RT]."* The ratio of the slopes (Eq. (13)) shows that & <0.55 for both
observers. Even assuming that at P=85-90% A(R,) is practically zero, so that

2 It is not clear from the model how the RT distributions should be censored to compute E[RT].
Fortunately, E[RT] is robust with respect to different types of censoring: as one can see from Fig. 9, the
values of E[RT] computed over data uncensored except for the exclusion of obvious upper-tail outliers
are very close to E[RT] computed as in Fig. 7.
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Fi. 9. Mean RT compared with a high-rank RT percentile plotted against A=2 (4> 1.7). The
means computed from distributions censored as for Fig.7 (open squares) coincide with the means
computed from uncensored distributions (filled squares). The rank of the percentiles was chosen as the
highest (in the series taken with 5% steps) for which the linear approximation is still acceptable.
The ratio of the slopes is about 0.55 for both observers.

@~ 0.55, this means that almost half of all reactions are signal-unrelated. This
clearly contradicts introspection and is an unrealistic possibility.

The situation with the second modification of the AZ + I model introduced in
Section 1.3, the race model, is exactly the same: the model can formally account for
the positive slope-intercept covariation in the linearized RT percentile curves, but
then half or more of all reactions should be signal-unrelated. The reason for this
similarity is that the two models, 2-state and race, are asymptotically equivalent, as
shown in the following theorem.

THEOREM 3.3.2. The race model (Egq.(6)) is asymptotically equivalent to the
2-state mixture model (Eq. (5)) with

% state = PrOb{N > O}race
IFH(t)Z-state = PrOb{N + R < th S O}race

The asymptotic equivalence here means that for any X

Prob{RT < X},... = Prob{RT < X}, jarc + 0{5}.

In summary, unless one is ready to accept the possibility that half or more of all
reactions in a simple RT experiment are signal-unrelated, one cannot accept the
2-state mixture and race models. In addition, these models do not account for the
lack of a regular relationship between A4 and very low RT percentiles. It is formally
possible, of course, to complement these models by the “fast false alarms”
hypothesis presented in Section 1.5 for the SVRT model. This would amount,
however, to adding still another type of signal-unrelated reaction to the already
unreasonably large proportion.
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3.4. Percentile-versus-Percentile Curves

In this section I describe a test for the SVRT model that does not require
that one find the linearizing transformation s(A) beforehand. I also show how to
establish the form of the function L(C) in Eq.(7), and how to estimate the
constant m.

As a first step, recall that RT(4)— Rp,=Cps(4)+ o(s) (see Theorem 3.2.1).
Then for any two values 4,, 4,,

RTp(A4,)— Rp=(5,/5,)[RT5(A4;) — Rp] +0{s,}.

Recall also that R, can be estimated by RT(4*), where A* is a “very large
amplitude,” whose further increase does not lead to a non-negligible decrease in
RTp(4*) (Eq.9). If the SVRT model holds in a percentile range (P,, P*), then
within this range one should expect that for sufficiently large 4,, 4,,

RTp(4,) = RTp(A4*) % (51/5;)[RT p(4;) — RT o(4*)]. (14)

Plotted against each other, RT ,(4)-RTz(4*) curves should form a fan of zero-
intercept straight lines. Consider a class of amplitude values {4,, 4,, .., 4,}, in
ascending order, with 4, taken for 4*. An economic way to show that Eq. (14)
holds is to plot RT (A4, RT(4*), i=1, .., n— 1, against their normalized mean,

p(P)=[RTp(-)—RTx(4*)]/[RT.(-) - RT.(4%)],

where the dot replacing a parameter indicates arithmetic averaging across all values
of this parameter. If (and only if) Eq. (14) holds, then

RT p(4;) = RTp(4*) = b, u(P), (15)

where b; does not depend on P and decreases with 4. Figure 10 shows that Eq. (15)
is satisfied with a reasonable precision for all perfectly detectable amplitudes
between P, =15% and P* =85%, with A*=19.9" (Section 2.2(5)).

Note that u(P) is an estimate of Cp/C., hence the slopes b; of the curves are
estimates of s,C. measured in time units. Figure 11 confirms that the pattern in
Fig. 10 is indeed only asymptotic: for the 1.1’ amplitude, whose detection proba-
bility is measurably less than 1, the approximation is very poor, even if one
excludes the upper percentiles reflecting signal omission trials (Sections 1.5; 2.2(2)).
Figure 11 shows also that zero-intercept straight lines are not a priori fittable to
data in this format due to their ordinal-scale properties (see footnote 12).

The next problem to consider is the dependence of R, on Cjp. Since C, (in units
of C.) is estimated by p(P), and R, is estimated by RT(A*), the simplest way to
deal with the problem is to plot RT 5(4*) against u(P). To make the analysis more
convincing, one can look at the dependence on u(P) of RT p(A4;) for all values of
A shown in Fig. 10, in addition to 4* (Fig. 12).
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FiG. 10. Empirical estimates of ARTp(4)= RT(A)—1limRT(A4), 4> 1.7, plotted against the
means of these estimates across 4, ART z(-), normalized by their grand mean, ART.(-); lim RT p(4) is
estimated by RT 5(4 = 19.9'); P=15, 20, ..., 80, 85%. Theoretically, the graphs represent estimates of sC
plotted against estimates of Cp/C..

Surprisingly, the RT p(A4) vs u(P) functions turn out to be linear with a common
intercept, indicating that R, is a linear function of Cp:

R, =(BC.)(Cp/C.)+m=BCp+m. (16)

The “irreducible minimum” m in Fig, 12 is obtained by linear extrapolation, even
though the percentiles close to sero have been excluded from the analysis. There is
no contradiction here, because the low-tail percentiles reflect a mixture of true reac-
tions and false alarms, as discussed in Section 1.5. The constancy of the intercept

arrace diffarant curvee can hae cancidered a validatinn of thic hunathegic
aClross QuICICnNL CUrves Can o CONSIGEIEa a4 vVailGaudil O1 iUnis nYPOulilsis.

Figure 13 presents a different way to establish that R, is a linear function of C,,
and to estimate m. Since RT p(4) — R, = Cs+ o(s), it follows from Eq. (16) that

RTp(A)=(s+ B)Cp+m+o{s}. (17)
Then for any two sufficiently large values from {4, 4,, .., 4,,},
RT (A4;) b, RT o(A,) + m(1—b,),

where b, stands for (s, + B)/(s;+ B). If one computes all pairwise regression lines
RTp(A4;) vs RT p(4;), and plots intercept values against the values of (1-slope), the
relation should be described by a zero-intercept linear function. The slope of this
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Fic. 11. Same as in the Fig. 10, but 4 =1.1'. The graph for RWS does not include the four higher
percentiles (70th through 85th), because of their very large values (all percentiles are shown in the inset).

linear function is an estimator of m. Figure 13 shows that this prediction is correct,
and the estimates of m practically coincide with those obtained from Fig 12.

Still another estimate for m can be derived from Fig. 7, by plotting E[RT(4)]
against D[RT(A)] (omitting for simplicity the censoring condition P ,). Indeed, it
follows from Eq. (17), that E[RT(A4)] must be a linear function of D[RT(A)], with

SE=3.6 ms SE~4.8ms
R’= .99 R*=.97
m=145 ms m=125 ms

RTP(H), ms

ART(-) /ART () ART, () / 8RT ()

FiG. 12. RT,(A), A>17, plotted against the same horizontal axis as in Figs. 10 and

P=(15,20, .., 80, 85%. Theoretically, the vertical axis represents estimates of sCp+ BCp+m.

2.0

w.dyg +dqs

11);
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FiG. 13. The values of b, and 1 — b, of the linear functions RT 5(4;) = by + b, RT 4(4,), computed for
all amplitude pairs (4,, 4;) chosen from the set 4> 1.7; P=15,20,.. 80, 85%. The dotted lines
separate the regression coefficients for 4,> 4, (upper right quadrant) from those for 4, < 4, (lower left
quadrant). The slope of the straight line fitted to the [b,, 1 —b,] pairs is an estimate of parameter m.

the intercept estimating m. (The computations yield 127 ms for SW and 146 ms for
RWS, in agreement with Figs. 12 and 13).

I return now to the linearizing transformation s(A4). Its identification was not
necessary so far in this section, and the SVRT model was corroborated without
regard to the form of this transformation. Once established, however, the model
allows one to solve the identification problem as a separate issue. The procedure is
analogous to that used in Section 2.3, Figs. 5 and 6, but this time it includes all RT
percentiles considered, and does so in a more economic way.

The slopes of the linear functions in Figs. 10 and 12 are estimators of the
theoretical values sC. and sC. + BC., respectively. Plotted against any function of 4,
these slope values would form two parallel curves, with the vertical separation
equal to BC.. To find the transformation s(4) means to linearize these two parallel
curves.

In agreement with the previous analysis, Fig. 14 shows that putting s=A 2
yields an almost perfect linear fit. Figure 15 confirms that if the transformation is
sought in the form 4%, B <0, the best linear fit is indeed obtained at § about —2.

4. CONCLUSION

I have shown in this paper that the problem of interdependence between the
signal-dependent and signal-independent RT components can be meaningfully
addressed by psychophysical means, based on plausible initial assumptions. The
two RT components have been shown to positively covary, which disagrees with
the commonly accepted independence hypothesis. The SVRT model proposed is the
simplest conceptual opposite of the independence hypothesis and the simplest
variant of the basic RT decomposition model that agrees with data. In this model
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FiG. 14. The slopes of the linear functions from Fig. 10 (filled symbols) and Fig. 12 (open symbols),
plotted against s = 4 ~2 Theoretically, the two functions are, respectively, sC. and sC.+ BC., i.., they
are linear with the same slope, C. (approximation error and determination coefficient values can be read
from Fig. 15, at f= —-2).

the additive RT components are monotonic functions of each other for any given
signal amplitude, and their variability is accounted for by a single random variable,
termed the “criterion.”

One way to describe the SVRT model is to say that the “criterion” C is a
“double-readiness” factor: readiness to detect and readiness to respond. The higher
the criterion the lower the readiness both to detect and to respond; hence, the com-
ponents T(A)= T(A4, C) and R= L(C)+ m increase or decrease together for any
given A. This interpretation is especially plausible if one accepts Grice’s modelling
schema (see Section 1.4, last paragraph). As shown in the same paragraph, C can
also be interpreted as a factor controlling sensory accumulation rate, a multi-
plicative perturbation of a deterministic accumulation process, ¥(z, 4), by a signal-
independent noise. The fact that C is signal-independent suggests that the source of
this noise is relatively central: a transient “inhibition” (attenuation) state is imposed
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FiG. 15. Standard error of approximation and determination coefficient obtained when 42 in
Fig. 14 is replaced by other powers of 4.
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on an entire network of signal-specific sensory encoders (e.g., Reichardt-type bilocal
correlators in the case of motion/displacement detection; Reichardt, 1961; see
Nakayama, 1985, for a review). The SVRT model then can be viewed as suggesting
that this transient inhibition affects activation transmission through all processing
subcomponents, signal-dependent or not, possibly including the activation
transmission from sensory encoders to motor units.

It remains to be seen whether the SVRT model applies to weak signals, those
whose detection probability is measurably less than 1. If Assumption 1 (Section 1.2)
holds, the distribution of R extracted from asymptotic RT distributions should
remain the same for all signal amplitudes, however small; otherwise, the joint
distribution of (Z, R) would be signal-dependent. In particular , the approximation
of R by L(C[Z))+ m shouid appiy to ail amplitudes. However, the approximation
of T(4, Z) by T(4, C(Z)), an increasing function of C(Z), may not apply to small
amplitudes. It is possible, therefore, that even though R is the same, its extraction
from weak-signal RTs requires different decomposition algorithms. It is also
possible, of course, that the Assumption 1 itself holds only asymptotically. Thus, it
is not certain that by subtracting an asymptotic estimate of R, from RTz(A) for
small 4, one would obtain an estimate of Tp(A). This prediction, however, can be
empirically tested in conjunction with a specific model of sensory processing (see
Section 1.6).

It is possible that further analyses will demonstrate limitations of the SVRT
model as a general model of simple reaction time, either for small signal values or
even as an asymptotic approximation. However, due to its remarkable simplicity
and openness to empirical falsification, the model can be viewed as a new nor-
mative schema, in addition to the traditional schema based on the independence
hypothesis.

APPENDIX: PrOOFs

Proof of Lemma 1.2.1. D(A) can always be presented as D(A4, F, P), a deter-
ministic function of 4, F, and a random variable P uniformly distributed between
0 and 100. Indeed, put D(A, F, P)= D (A|F), the Pth percentile of the conditional
distribution of D(4|F=F), 0<P<100. P and F are mutually independent and
independent of 4. Hence the joint distribution of (F, P) does not depend on 4, and
neither does the joint distribution of (F, P, F). The proof is completed by putting
Z = (F, P), and observing that (a), (b), and (c) in Assumption 1 are satisfied.

In particular, if D(A) and F are mutually independent, then D(A, F, P)=
D(A4, P)=Dp(A), the Pth percentile of D(A4)= D(A4, P). Putting Z =P, we get a
proof of Corollary 1.2.1. |

Proof of Lemima 1.2.2 (omitting arguments of functions C and s for short). That
C is positive and s is vanishing at 4 — oo follows trivially from Eq. (2). The unique-
ness properties are proved by equating C,s;+o{s;} and C,s,+o0(s,}, and
observing that then s, /s, - C,/C,. Since the limit of s, /s, does not depend on Z,
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and C,/C, does not change with A4, this asymptotic equality can only be satisfied
if A=C,/C, is a constant, and s,/s, > 4. Then C,=C,/, and s, =4s, +0{s,}.
Finally, to prove that s(4) can be chosen to be strictly decreasing, put
s(4)=T(4, Z,) for a fixed value Z, of the random set Z. |

Proof of Theorem 3.1.1.'* The percentiles RT , and R, are defined from
Prob{R+T<RT,}=P; (*1)
Prob{R<R,}=P. (*2)

Prob{R+T<RT,}=Prob{R<RT,—T} can be presented in terms of the
conditional distribution functions F . -(R|T) as

[ FairRT,— T\ T) db(T) = P. (*3)
0

In the region RTp—T>0 F +(RT,—T|T) can be expanded as
Frir(RTp|T)—fg 7(RTp|T) T+ o{T}.

Observing that both o{T} and [y "o{T}dF;(T) are ofs}, one can rewrite
(*3) as

RT, RTp
[, Frr®RTAD dF (D)~ | Thar(RTH I T)dFA(T) +o{s} = P. (*4)

In the second integral f.,(RT|T) can be replaced with f. -(R;| T) because

RTp
|, TUwir(RT A T) = a7 (Rp | T)] dF (T) =0{s}.

Indeed, the expression in the brackets is 0{1}, so the integrated function is o{T}.
After this substitution the second integral in (*4) can be rewritten as

RTp RTp
J, Tiar(ReI T df7(T)=Fa(Rp) [ TdFra(TIR,), (*5)
because
£ (R IMTYJE (TY_F (P ) J4 (TIR Y—4 (D T™ AT
VR|T\& p| £ Jwli T 2 )= UR\IpJUIT I R\L |1 p) VR, T\4iV\py, L J o 1.

Next, the upper integration limits for both integrals in (*4) can be replaced with
. Indeed, for the first integral'’

Jo, Frr(RTAT) A A(T)< [ dF(T)<ELT?IRTS,

!4 Notation conventions: (1)in this and following theorems, to make mathematical expressions less
cumbersome, I will omit the argument A when referring to random variables or functions depending on
A: thus, s, RT, RT,, T, etc., will stand for s(4), RT(A4), RT 5(4), T(A), etc.; (2) conditional distribution
and density functions of a random variable H given a certain value of a variable G will be denoted by
Fuc(H|G) and t4 c(H|G), respectively.

131 use here Chebyshev’s inequality for non-negative variables: 1 — F, (x) < E[X2]/x%

480/36/2-8
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and since E[T>]=o0{s} whereas RT3 — R, their ratio is o{s}. For the second
integral, taken in the form (*5),'¢

Fa(R)) fw T dF 7, o(T| Rp) < o(Rp) E[T?| R,1/RT,
and, again, E[T?|R,]=o0{s}. Now (*4) can be presented as
f; Fr r(RT5|T) dF(T) — T o(R,) f TdFria(TIRp) +0{s}=P.  (*6)
At the same time, due to (*2),
| Fair(RIT) dE7(T)=P. (*7)

Subtracting (*7) from (*6), and observing that
Frir(RTp| T) = Fp7(Rp| T) =1 7(Rp| T)RT, — Rp) + o{RT, — Ry},

one gets the following equation:

(RT,=Rp) [ fai7(Rp| T) dF7(T) +0{RT,— Ry}

—64(Rp) | TdF7ia(TIRp)+ofs}. (*8)

The expression o{ RT,— R} can be dropped, because it is o{s}, as one can see by
dividing both sides of the equation by s. Using the same transformation as in (*5),
the left-hand integral in (*8) can be presented as

| Rm(Re I T)AF 1(T) = $4(Rp) [~ dF 1y (TI Rp) = E(Ro)

Since the right-hand integral in (*8) represents E[T| R,], the equation assumes the
form

fr(Rp)(RTp—Rp) =Fo(Rp) E[T|Rp] +0{s}.
Dividing both sides by f4(R,), and observing that
E[T|R,]=E[C|Rs]s+0{s},
one comes to the statement of the theorem. §

16 Here I use an inequality for non-negative variables closely related to Chebyshev's: E[X|X > x] x
(1 - Fx(x)) < E[X2]/x. Its proof is analogous to that of Chebyshev’s inequality.
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unction P the
first statement of the theorem is immediately obtain: d from Eq. (10). To prove the
second statement expand (D*[R + C(R)s+0{s}])" up to the first power of 5. ||

Proof of Theorem 3.2.1. If Eq. (10) holds, then by renaming E[C|R,] as C(P)
one gets

Proof of Theorem 3.1.2. Considering C as a

RTH(4)=R,+ C(P)s+o{s),

i
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e Pt h percentlle of a random variable (. Its percentiles below
P, and above P* can be added by an arbitrary continuous extrapolation. Since R
is an increasing function of C, one can denote inf{ R} by m (a nonnegative value),
and present R as L(C)+m, where L is an increasing function vanishing at the
lower boundary inf{(C} of C. Renaming (s as °T(4, ), one gets

RTp(4)="T(4, Cp) + L(Cp) + m+o0{s},
which is asymptotically equivalent to Eq. (8). ||
Proof of Theorem 3.3.1. The percentiles RT, and R, are defined from

Prob{R+T <RT,}a+Prob{H<RT,}(1 —a)=P; (*1)
Prob{R <R,}o+Prob{H<R,}(1 —a)=P (*2)

First, we subject Prob{R+ T <RT,} to transformations analogous to those used
in Theorem 3.1.1:

Prob{R+T <RT »(4)}

RTp
=[ " F(RT,~T)dF(T)
0

_jRT RT,,)d[FT(T)j T2 (RT,) dF {T) +0{s).

Observing, as in Theorem 3.1.1, that f5(RT,) can be replaced by f,(R;), and the
upper integration limits can be replaced by oo, the transformations continue as

FR(RT,) f:’ dF (T)— (Rp) j: T dF (T)+o{s)

=Fg(RTp)—fo(Rp) E[T]+0{s}. (*3)

Substituting (*3) for Prob{R+T<RT,} in (*1), we come to the following
expression:

Fr(RTp)a—fo(Rp) E[T]a+ F,(RT,)(1— ) + 0{s} = P. (*4)
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Due to (*2), we have also
Fr(Rp)a+Fpu(Rp)(1—a)=P. (*5)

Subtracting (*5) from (*4), presenting Fz(RT ) —Fz(Rp) as fr(Rz)(RT,— Rp) +
o{RT,—R,}, presenting F;(RT,)—F,(Rp) as f,(Rp)(RTp—Rp)+0(RT,~Rp},
and observing that o{RT,— R} is o{s}, one gets

{ofg(Rp)+ (1 —a) F,,(Rp) }(RT p— Rp) = af g (Rp) E[T] + 0{s}.

Since E[T] =E[C]s+ o{s}, the statement of the theorem is obtained from here by
algebraic transformations. |

Proof of Lemma 3.3.1.
E[RT] = {«E[R]+ (1 —a) E[H]} + aE[C]s+o{s},

hence asymptotically the E[RT] vs s slope equals «E[C]. From Eq.(12), the
asymptotic RT, vs s slope equals E[C][1+ A(Rp)(1 —a)/a]~". This value cannot
exceed E[C] because [1+ A(Rp)(1—a)/2a] '<1. Hence the ratio of the two
asymptotic slopes cannot be less than «E[C]/E[C]=a. |

Proof of Theorem 3.3.2. The theorem states that the race model is asymptoti-
cally equivalent to the 2-state mixture model

N+R with probability 1 —«

RT(A)=
(4) {T +R with probability a,

where a is Prob{N>0}. Prob{RT < X} in this model can be presented in the
following form:

oo p0
Prob{RT<X}sgue=| | Fa(X—N)dFyr(N|T)dF(T)

By oMW 1 ol 22N 1
|£)atrrid ) )

The analogous expression for the race model is
© p0
Prob{RT<X}e=| | Fa(X—N)dFyr(NIT)dF(T)
0 -~
o oT
+[7 [ FalX = N) dFy (NI T) dF 1(T)
0 0

[ [ Fa(X =T dFy (NI T)AF(T). (*2)
0 T
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The difference between (*2) and (*1) is

J~0c>o JAOT [}:R(X—N) d‘}:NIT(N' T) d{}IT(T)

_Loo JOT[FR(X~ T)dFu +(N|T)dF (T). (*3)

Expanding both Fz(X— T) and Fr(X— N) up to the first power of T and N,
respectively, and observing that o{7T} =o0{s} and, since N < T within the integra-
tion limits, o{ N} = o{s}, the difference (*3) can be rewritten as

£ (X) fow fOT(T—N)d[FNlT(NI T) dFp(T) +o{s)

—f.(X) f: TLT (1= N/T)dF y,7(N|T) dF (T) + o{s}.

The inner integral is obviously o{1}, and since T is of the order of s, the entire
expression is o{s}. This proves the statement of the theorem. |
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