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Abstract. We construct a class of real-valued nonnegative binary functions
on a set of jointly distributed random variables. These functions satisfy the
triangle inequality and vanish at identical arguments (pseudo-quasi-metrics).
We apply these functions to the problem of selective probabilistic causality en-
countered in behavioral sciences and in quantum physics. The problem reduces
to that of ascertaining the existence of a joint distribution for a set of variables
with known distributions of certain subsets of this set. Any violation of the
triangle inequality by one of our functions when applied to such a set rules
out the existence of the joint distribution. We focus on an especially versatile
and widely applicable class of pseudo-quasi-metrics called order-distances. We
show, in particular, that the Bell-CHSH-Fine inequalities of quantum physics
follow from the triangle inequalities for appropriately defined order-distances.

1. Introduction

We show how certain metric-like functions on jointly distributed random vari-
ables (pseudo-quasi-metrics introduced in Section 2) can be used in dealing with
the problem of selective probabilistic causality (introduced in Section 3), illustrat-
ing this on examples taken from behavioral sciences and quantum physics (Section
4). Although most of Section 3 applies to arbitrary pseudo-quasi-metrics on jointly
distributed random variables, we single out one, termed order-distance, which is
especially useful due to its versatility. We discuss examples of other pseudo-quasi-
metrics and rules for their construction in Section 5.

2. Order p.q.-metrics

Random variables in this paper are understood in the broadest sense as measur-
able functions X : V

s

! V , with no restrictions being imposed on the sample spaces
(V

s

,⌃
s

, µ
s

) and the induced probability spaces (V,⌃, µ), with the usual meaning
of the terms (sets of values V

s

, V , sigma-algebras ⌃

s

,⌃, and probability measures
µ
s

, µ). In particular, any set X of jointly distributed random variables (functions
on the same sample space) is a random variable, and its induced probability space
(or, simply, distribution) X = (V,⌃, µ) is referred to as the joint distribution of its
elements.
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Given a class of random variables X , not necessarily jointly distributed, let X ⇤

be the class of distributions X for all X 2 X . For any class function f⇤
: X ⇤ ! R

(reals), the function f : X ! R defined by f (X) = f⇤ �X
�

is called observable (as
it does not depend on sample spaces, typically unobservable). We will conveniently
confuse f and f⇤ for observable functions, so that if f is defined on X , then
f (Y ), identified with f⇤ �Y

�

, is also defined for any Y 62 X with Y 2 X ⇤. (This
convention is used in Section 3, when we apply a function defined on a set of random
variables H to different but identically distributed sets of A-variables.)

For an arbitrary nonempty set ⌦, let H = {H
!

: ! 2 ⌦} be a indexed set of
jointly distributed random variables H

!

with distributions H
!

= (V
!

,⌃
!

, µ
!

).
For any ↵,� 2 ⌦, the ordered pair (H

↵

, H
�

) is a random variable with distribution
(V

↵

⇥ V
�

,⌃
↵

⇥ ⌃

�

, µ
↵,�

), and H⇥H is a set of jointly distributed random variables
(hence also a random variable).

Definition 2.1. We call an observable function d : H ⇥ H ! R a pseudo-quasi-
metric (p.q.-metric) on H if, for all ↵,�, � 2 ⌦,

(i) d (H
↵

, H
�

) � 0,
(ii) d (H

↵

, H
↵

) = 0,
(iii) d (H

↵

, H
�

)  d (H
↵

, H
�

) + d (H
�

, H
�

).
For terminological clarity, the conventional pseudometrics (also called semimet-

rics) obtain by adding the property d (H
↵

, H
�

) = d (H
�

, H
↵

); the conventional
quasimetrics are obtained by adding the property ↵ 6= � ) d (H

↵

, H
�

) > 0. A
conventional metric is both a pseudometric and a quasimetric. (See, e.g., [27] for a
discussion of a variety of metrics and pseudometrics on random variables.)

By obvious argument we can generalize the triangle inequality (iii): for any
H

↵1 , . . . , H↵l 2 H (l � 3),

(2.1) d (H
↵1 , H↵l) 

l

X

i=2

d
�

H
↵i�1 , H↵i

�

.

We refer to this inequality (which plays a central role in this paper) as the chain
inequality.

Let
R ⇢

[

(↵,�)2⌦⇥⌦

V
↵

⇥ V
�

,

and write a � b to designate (a, b) 2 R. Let R be a total order, that is, transitive,
reflexive, and connected in the sense that for any (a, b) 2

S

(↵,�)2⌦⇥⌦ V
↵

⇥ V
�

, at
least one of the relations a � b and b � a holds. We define the equivalence a ⇠ b
and strict order a � b induced by � in the usual way. Finally, we assume that for
any (↵,�) 2 ⌦⇥ ⌦, the sets

{(a, b) : a 2 V
↵

, b 2 V
�

, a � b}

are µ
↵,�

-measurable. This implies the µ
↵,�

-measurability of the sets

{(a, b) : a 2 V
↵

, b 2 V
�

, a � b} , {(a, b) : a 2 V
↵

, b 2 V
�

, a ⇠ b} .

Thus, if all V
!

are intervals of reals, � can be chosen to coincide with , and
(assuming the usual Borel sigma algebra) all the properties above are satisfied.
Another example: for arbitrary V

!

, provided each ⌃

!

contains at least n > 1

disjoint nonempty sets, one can partition V
!

as
S

n

k=1 V
(k)
!

, with V
(k)
!

2 ⌃

!

, and
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put a � b if and only if a 2 V
(k)
↵

, b 2 V
(l)
�

and k  l. Again, all properties above
are clearly satisfied.

Definition 2.2. The function

D(H
↵

, H
�

) = Pr [H
↵

� H
�

] =

ˆ
a�b

dµ
↵,�

(a, b)

is called an order p.q.-metric, or order-distance, on H.

That the definition is well-constructed follows from

Theorem 2.3. Order-distance D is a p.q.-metric on H.

Proof. Let ↵,�, � 2 ⌦, H
↵

= A, H
�

= B, and H
�

= X. That D(A,B) is deter-
mined by the distribution of (A,B) is obvious from the definition. The properties
D(A,B) � 0 and D(A,A) = 0 are obvious too. To prove the triangle inequality,

D(A,B) = Pr [A � B] = Pr [A � B � X] + Pr [A � B ⇠ X]

+Pr [A � X � B] + Pr [A ⇠ X � B] + Pr [X � A � B],

D(A,X) = Pr [A � X] = Pr [A � X � B] + Pr [A � B ⇠ X]

+Pr [A � B � X] + Pr [A ⇠ B � X] + Pr [B � A � X],

D(X,B) = Pr [X � B] = Pr [X � B � A] + Pr [X � A ⇠ B]

+Pr [X � A � B] + Pr [A ⇠ X � B] + Pr [A � X � B].

So

D(A,X) + D (X,B)�D(A,B) = Pr [B � A � X] + Pr [A ⇠ B � X]

+Pr [X � B � A] + Pr [X � A ⇠ B] + Pr [A � X � B] � 0.

⇤

Since in the last expression all events are pairwise exclusive, we have

D(A,X) + D (X,B)�D(A,B)  1.

This may seem an attractive addition to the triangle inequality. The inequality
is redundant, however, as it is subsumed by the triangle inequalities holding on
{A,B,X}. Rewriting it as

D(A,B) + 1�D(X,B)�D(A,X) � 0,

this inequality immediately follows from

D(A,B) + D (B,X)�D(A,X) � 0

and
D(B,X) = Pr [B � X]  1� Pr [X � B] = 1�D(X,B) .
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3. Selective probabilistic causality

Consider an indexed set W =

�

W�

: � 2 ⇤

 

, with each W� being a set referred
to as a (deterministic) input, with the elements of {�} ⇥ W� called input points.
Input points therefore are pairs of the form x = (�, w), with w 2 W�, and should
not be confused with input values w. A nonempty set � ⇢

Q

�2⇤ W� is called a set
of (allowable) treatments. A treatment therefore is a function � : ⇤ !

S

�2⇤ W�

such that � (�) 2 W� for any � 2 ⇤. Note that the symbol � not followed by an
argument always refers to the entire function, the set {(�,� (�) : � 2 ⇤)}.

In the following we use two kinds of random variables: those indexed as A�

�

(each
corresponding to a fixed index � 2 ⇤ and a fixed function �) and those indexed as
H�

w

(with w 2 W�), corresponding to input points (�, w).
Let there be a collection of sets of random variables, referred to as (random)

outputs,
A

�

=

�

A�

�

: � 2 ⇤

 

, � 2 �,

such that the distribution of A
�

(i.e., the joint distribution of all A�

�

in A
�

) is known
for every treatment �. We define

A�

=

�

A�

�

: � 2 �

 

, � 2 ⇤,

with the understanding that A� is not a random variable (i.e., A�

�

for different � are
not jointly distributed). To illustrate the notation, let ⇤ = {1, 2, . . .} and W� be
the set of reals for all � 2 ⇤. A treatment � then is a real-valued function (sequence)
{(1,� (1)) , (2,� (2)) , . . .} = (� (1) ,� (2) , . . .), where � (1) 2 W 1,� (2) 2 W 2, etc.
Let � be a nonempty set of such sequences. Fixing one of them, � = (w1, w2, . . .),

A
�

= A(w1,w2,...) =

n

A1
(w1,w2,...)

, A2
(w1,w2,...)

, . . .
o

;

fixing, say, � = 2 and allowing (w1, w2, . . .) range over �,

A�

= A2
=

n

A2
(w1,w2,...)

: (w1, w2, . . .) 2 �

o

.

The following problem is encountered in a wide variety of contexts [6, 7, 15]. We
say that the dependence of random outputs A�

�

on the deterministic inputs W� is
(canonically) selective if, for any distinct �,�0 2 ⇤ and any � 2 �, the output A�

�

is “not influenced” by � (�0
). The question is how one should define this selectivity

of “influences” rigorously and how one can determine whether this selectivity holds.
This problem was introduced to behavioral sciences by Sternberg [18] and Townsend
[22]. In quantum physics, using different terminology, it was introduced by Bell [3]
and elaborated by Fine [10, 11]. The definition can be given in several equivalent
forms, of which we present the one focal for the present context.

Definition 3.1. The dependence of outputs
�

A�

: � 2 ⇤

 

on inputs
�

W�

: � 2 ⇤

 

(or the “influence” of the latter on the former) is (canonically) selective if there is
a set of jointly distributed random variables

H =

�

H�

w

: w 2 W�,� 2 ⇤

 

(one random variable for every value of every input) such that, for any treatment
� 2 �,

H
�

= A
�

,
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where
H

�

=

n

H�

�(�) : � 2 ⇤

o

and
A

�

=

�

A�

�

: � 2 ⇤

 

(the corresponding elements of H
�

and A
�

being those sharing the same �).

This definition is known as the Joint Distribution Criterion (JDC) for selectivity
of influences, and the set H satisfying this definition is referred to as a (hypothetical)
JDC-set. Specialized forms of this criterion in quantum physics can be found in
[19] and [10, 11]; in the behavioral context and in complete generality this criterion
is given (derived from an equivalent definition) in [8].

Remark 3.2. The adjective “canonical” in the definition refers to the one-to-one
correspondence between W� and A� sharing the same �. A seemingly more gen-
eral scheme in which different A� are selectively influenced by different (possibly
overlapping) subsets of

�

W�

: � 2 ⇤

 

is always reducible to the canonical form by
considering, for every A�, the Cartesian product of the inputs influencing it to be
a single input and redefining correspondingly the sets of input points and the set
of allowable treatments.

The simplest consequence of JDC is that the selectivity of influences implies
marginal selectivity [6, 24], defined as follows. For any ⇤

0 ⇢ ⇤ we can uniquely
present any � 2 � as �0 [ �0, where �0 2

Q

�2⇤0 W� and �0 2
Q

�2⇤�⇤0 W�. Then,
if JDC is satisfied, the joint distribution of

n

A�

�

0[�

0 : � 2 ⇤

0
o

does not depend on
�0.

Remark 3.3. In the following we always assume that marginal selectivity is satisfied.

The relevance of the order-distance and other p.q.-metrics on the sets of jointly
distributed random variables to the problem of selectivity lies in the general test
(necessary condition) for selectivity of influences, formulated after the following
definition.

Definition 3.4. We call a sequence of input points

x1 = (↵1, w1) , . . . , xl

= (↵
l

, w
l

)

(where w
i

2 W↵i for i = 1, . . . , l � 3) treatment-realizable if there are treatments
�1, . . . ,�l 2 � (not necessarily pairwise distinct) such that

{x1, xl

} ⇢ �1 and {x
i�1, xi

} ⇢ �i for i = 2, . . . , l.

If a JDC-set H exists, then for any p.q.-metric d on H we should have

d
�

H↵1
w1

, H↵l
wl

�

= d
⇣

A↵1

�

1 , A
↵l

�

1

⌘

and
d
⇣

H↵i�1
wi�1

, H↵i
wi

⌘

= d
⇣

A
↵i�1

�

i , A↵i

�

i

⌘

for i = 2, . . . , l, whence

(3.1) d
⇣

A↵1

�

1 , A
↵l

�

1

⌘


l

X

i=2

d
⇣

A
↵i�1

�

i , A↵i

�

i

⌘

.
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This chain inequality, written entirely in terms of observable probabilities, is re-
ferred to as a p.q.-metric test for selectivity of influences. If this inequality is
violated for at least one treatment-realizable sequence of input points, no JDC-set
H exists, and the selectivity is ruled out. Note: if the sequence �(1), . . . ,�(l) 2 �

for a given x1, . . . , xl

can be chosen in more than one way, the observable quantities
d
⇣

A↵1

�

(1) , A
↵l

�

(1)

⌘

and d
⇣

A
↵i�1

�

(i�1) , A
↵i

�

(i)

⌘

remain invariant due to the (tacitly assumed)
marginal selectivity.

As an example, let ⇤ = {1, 2}, W 1
= [0, 1], W 2

= [0, 1], � = W 1 ⇥ W 2. Let
n

A1
�

, A2
�

o

for any treatment � have a bivariate normal distribution with zero means,
unit variances, and correlation ⇢ = min (1, w1 + w2), where w1 = � (1) , w2 = � (2).
Marginal selectivity is trivially satisfied. Do

�

W 1,W 2
 

influence
�

A1, A2
 

selec-
tively? For any bivariate normally distributed (A,B), let us define A � B iff
A < 0, B � 0. Then the corresponding order-distance on the hypothetical JDC-set
H is

D

�

H1
w1

, H2
w2

�

=

arccos (min (1, w1 + w2))

2⇡
.

The sequence of input points (1, 0) , (2, 1) , (1, 1) , (2, 0) is treatment-realizable, so if
H exists, we should have

D

�

H1
0 , H

2
0

�

 D

�

H1
0 , H

2
1

�

+D

�

H2
1 , H

1
1

�

+D

�

H1
1 , H

2
0

�

.

The numerical substitutions yield, however,
1

4

 0 + 0 + 0,

and as this is false, the hypothesis that
�

W 1,W 2
 

influence
�

A1, A2
 

selectively is
rejected.

The theorem below and its corollary show that one only needs to check the
chain inequality for a special subset of all possible treatment-realizable sequences
x1, . . . , xl

.

Definition 3.5. A treatment-realizable sequence x1, . . . , xl

is called irreducible if
x1 6= x

l

, and the only subsequences {x
i1 , . . . , xik} with k > 1 that are subsets

of treatments are pairs {x1, xl

} and {x
i�1, xi

}, for i = 2, . . . , l. Otherwise the
sequence is reducible.

Theorem 3.6. Given a p.q.-metric d on the hypothetical JDC-set H, inequality
(3.1) is satisfied for all treatment-realizable sequences if and only if this inequality
holds for all irreducible sequences.

Proof. We prove this theorem by showing that if (3.1) is violated for some reducible
sequence x1, . . . , xl

, then it is violated for some proper subsequence thereof. Clearly,
x1 6= x

l

because otherwise (3.1) is not violated. For l = 3, x1, x2, x3 is reducible
only if it is contained in a treatment, but then (3.1) would be satisfied. So l > 3,
and the reducibility of x1, . . . , xl

means that there is a pair {x
p

, x
q

} belonging to
a treatment, with (p, q) 6= (1, l) and q > p + 1. But then (3.1) must be violated
for either x

p

, . . . , x
q

or x1, . . . , xp

, x
q

, . . . , x
l

(allowing for p = 1 or q = l but not
both). ⇤

If � =

Q

�2⇤ W� (all logically possible treatments are allowable), then any
subsequence x

i1 , . . . , xik of input points with pairwise distinct ↵
i1 , . . . ,↵ik belongs

to some treatment. Therefore an irreducible sequence cannot contain points of more



ORDER-DISTANCE AND OTHER METRIC-LIKE FUNCTIONS ON JOINTLY DISTRIBUTED RANDOM VARIABLES7

than two inputs, and it is easy to see then that it must be a sequence of pairwise
distinct x1 2 {↵} ⇥W↵, x2 2 {�} ⇥W � , ..., x2m�1 2 {↵} ⇥W↵, x2m 2 {�} ⇥W �

(↵ 6= �). It is also easy to see that if m > 2, each of the subsets {x1, x4} and
{x2, x5} will belong to a treatment. Hence m = 2 is the only possibility for an
irreducible sequence.

Corollary 3.7. If � =

Q

�2⇤ W�, then inequality (3.1) is satisfied for all treatment-
realizable sequences if and only if this inequality holds for all tetradic sequences of
the form x, y, s, t, with x, s 2 {↵}⇥W↵, y, t 2 {�}⇥W �, x 6= s, y 6= t, ↵ 6= �.

Remark 3.8. This formulation is given in [8], although there it is unnecessarily
confined to metrics of a special kind.

4. An application

The four tables below represent results of an experiment with a 2 ⇥ 2 factorial
design, {x, x0} ⇥ {y, y0}, and two binary responses, A and B. In relation to our
general notation, here we have ⇤ = {1, 2}, W 1

= {x, x0}, W 2
= {y, y0}, and

four treatments (x, y) , . . . , (x0, y0). For every treatment �, the random outputs
A1

�

and A2
�

are represented by, respectively, A
�

and B
�

, each having two possible
values, arbitrarily labeled. This design is arguably the simplest possible, and it
is ubiquitous in science. In a psychological double-detection experiment (see, e.g.,
[23]), the input values may represent presence (x and y) or absence (x0 and y0)
of a designated signal in two stimuli labeled 1 and 2, presented side-by-side. The
participant in such an experiment is asked to indicate whether the signal was present
or absent in stimulus 1 and in stimulus 2. The output values A = � and B = u
may indicate either that the response was “signal present” or that the response
was correct, and analogously for A = • and B = t (either “signal absent” or an
incorrect response). The entries p

ij

, q
ij

, etc., represent joint probabilities of the
corresponding outcomes and a

i·, a
0
i·, etc., represent marginal probabilities. The

question to be answered is: does the response to a given stimulus (A to 1 and B to
2) selectively depend on that stimulus alone (despite A and B being stochastically
dependent for every treatment), or is A or B influenced by both 1 and 2?

� = (x, y) B
xy

= t B
xy

= u
A

xy

= • p11 p12 a1·
A

xy

= � p21 p22 a2·
b·1 b·2

� = (x0, y) B
x

0
y

= t B
x

0
y

= u
A

x

0
y

= • r11 r12 a01·
A

x

0
y

= � r21 r22 a02·
b·1 b·2

� = (x, y0) B
xy

0
= t B

xy

0
= u

A
xy

0
= • q11 q12 a1·

A
xy

0
= � q21 q22 a2·

b0·1 b0·2

� = (x0, y0) B
x

0
y

0
= t B

x

0
y

0
= u

A
x

0
y

0
= • s11 s12 a01·

A
x

0
y

0
= � s21 s22 a02·

b0·1 b0·2
Another important situation in which we encounter formally the same problem

is the Einstein-Podolsky-Rosen (EPR) paradigm. Two particles are emitted from a
common source in such a way that they remain entangled (have highly correlated
properties, such as momenta or spins) as they run away from each other [1, 16].
An experiment may consist, e.g., in measuring the spin of electron 1 along one
of two axes, x or x0, and (in another location but simultaneously in some inertial
frame of reference) measuring the spin of electron 2 along one of two axes, y or
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y0. The outcome A of a measurement on electron 1 is a random variable with
two possible values, “up” or “down”, and the same holds for B, the outcome of
a measurement on electron 2. The question here is: do the measurements on
electrons 1 and 2 selectively affect, respectively, A and B (even though generally
A and B are not independent at any of the four combinations of spin axes)? If the
answer is negative, then the measurement of one electron affects the outcome of the
measurement of another electron even though no signal can be exchanged between
two distant events that are simultaneous in some frame of reference. What makes
this situation formally identical to the double-detection example described above is
that the measurements performed along different axes on the same particle, x and
x0 or y and y0, are noncommuting, i.e., they cannot be performed simultaneously.
This makes it possible to consider such measurements as mutually exclusive values
of an input.

Theorem 4.1. (Fine [10, 11]) A JDC-set H =

�

H1
x

, H1
x

0 , H2
y

, H2
y

0

 

satisfying

�

H1
x

, H2
y

 

= {A
xy

, B
xy

},
n

H1
x

, H2
y

0

o

= {A
xy

0 , B
xy

0},

�

H1
x

0 , H2
y

 

= {A
x

0
y

, B
x

0
y

},
n

H1
x

0 , H2
y

0

o

= {A
x

0
y

0 , B
x

0
y

0}

exists if and only if the following eight inequalities are satisfied:

(4.1)

�1  p11 + r11 + s11 � q11 � a01· � b·1  0,
�1  q11 + s11 + r11 � p11 � a01· � b0·1  0,
�1  r11 + p11 + q11 � s11 � a1· � b·1  0,
�1  s11 + q11 + p11 � r11 � a1· � b0·1  0.

We refer to (4.1) as Bell-CHSH-Fine inequalities, where CHSH abbreviates Clauser,
Horne, Shimony, and Holt [4]. In this work Bell’s [3] approach was developed into
a special version of (4.1).

Remark 4.2. The proof given in [10, 11] that (4.1) is both necessary and sufficient
(under marginal selectivity) for the existence of a JDC-set can be conceptually
simplified: the Bell-CHSH-Fine inequalities can be algebraically shown to be the
criterion for the existence of a vector Q with 16 probabilities,

Pr

⇥

H1
x

= •, H1
x

0 = •, H1
x

= t, H1
x

= t
⇤

, . . . ,

Pr

⇥

H1
x

= �, H1
x

0 = �, H1
x

= u, H1
x

= u
⇤

,

that sum to one and whose appropriately chosen partial sums yield the eight ob-
servable probabilities

p11, q11, r11, s11, a1·, b·1, a
0
1·, b

0
·1

(other probabilities being determined due to marginal selectivity). This is a simple
linear programming task, and the Bell-CHSH-Fine inequalities can be derived “me-
chanically” by a facet enumeration algorithm (see [25, 26] and [2]). For extensions
of the Bell-CHSH-Fine inequalities to multiple particles, multiple spin axes, and
multiple random outputs, see [9] and [17]. For modern accounts of mathematical
and interpretational aspects of the entanglement problem in quantum physics, see
[12, 13, 14].
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The point of interest in the present context is that the Bell-CHSH-Fine inequal-
ities, whose rather obscure structure does not seem to fit their fundamental im-
portance, turn out to be interpretable as the triangle inequalities for appropriately
chosen order-distances.

Consider the chain inequalities for the order-distance D1 obtained by putting
• = t = 1, � = u = 2 and identifying � with :

q12 = D1(H
1
x

,H2
y

0)  D1(H
1
x

,H2
y

)+D1(H
2
y

,H1
x

0)+D1(H
1
x

0,H2
y

0) = p12+r21+s12,

p12 = D1(H
1
x

,H2
y

)  D1(H
1
x

,H2
y

0)+D1(H
2
y

0,H1
x

0)+D1(H
1
x

0,H2
y

) = q12+s21+r12,

s12 = D1(H
1
x

0,H2
y

0)  D1(H
1
x

0,H2
y

)+D1(H
2
y

,H1
x

)+D1(H
1
x

,H2
y

0) = r12+p21+q12,

r12 = D1(H
1
x

0,H2
y

)  D1(H
1
x

0,H2
y

0)+D1(H
2
y

0,H1
x

)+D1(H
1
x

,H2
y

) = s12+q21+p12.

(4.2)

Also consider the inequalities for the order-distance D2 obtained by putting • =

u = 1, � = t = 2 and identifying � with :

q11 = D2(H
1
x

,H2
y

0)  D2(H
1
x

,H2
y

)+D2(H
2
y

,H1
x

0)+D2(H
1
x

0,H2
y

0) = p11+r22+s11,

p11 = D2(H
1
x

,H2
y

)  D2(H
1
x

,H2
y

0)+D2(H
2
y

0,H1
x

0)+D2(H
1
x

0,H2
y

) = q11+s22+r11,

s11 = D2(H
1
x

0,H2
y

0)  D2(H
1
x

0,H2
y

)+D2(H
2
y

,H1
x

)+D2(H
1
x

,H2
y

0) = r11+p22+q11,

r11 = D2(H
1
x

0,H2
y

)  D2(H
1
x

0,H2
y

0)+D2(H
2
y

0,H1
x

)+D2(H
1
x

,H2
y

) = s11+q22+p11.

(4.3)

Theorem 4.3. Each right-hand Bell-CHSH-Fine inequality is equivalent to the
corresponding chain inequality in (4.2) for the order-distance D1. Each left-hand
Bell-CHSH-Fine inequality is equivalent to the corresponding chain inequality in
(4.3) for the order-distance D2.

Proof. We show the proof for the first of the Bell-CHSH-Fine double-inequalities.
The equivalence of

p11 + r11 + s11 � q11 � a01· � b·1  0

to
q12  p12 + r21 + s12

is obtained by using the identities

q12 = a1· � q11,
p12 = a1· � p11,
r21 = b·1 � r11,
s12 = a01· � s11.

The equivalence of

p11 + r11 + s11 � q11 � a01· � b·1 � �1

to
q11  p11 + r22 + s11

follows from the identity

r22 = 1 + r11 � a01· � b·1.

⇤
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5. Concluding remarks

The order-distances are versatile and have a broad sphere of applicability because
order relations on the domains of any given set of random variables can always be
defined in many different ways. If no other structure is available, this can always
be done by the partitioning of the domains mentioned in Section 2 and used in the
example with bivariate normal distributions in Section 3 as well as for the binary
variables of the previous section: V

!

=

S

n

k=1 V
(k)
!

, V (k)
!

2 ⌃

!

, ! 2 ⌦, putting a � b

if and only if a 2 V
(k)
↵

, b 2 V
(l)
�

and k  l. Due to its universality and convenience
of use, it deserves a special name, classification distance.

There are numerous ways of creating new p.q.-metrics from the ones already
constructed, including those taken from outside probabilistic context. Thus, if d is
a p.q.-metric on a set S, then, for any set H of jointly distributed random variables
taking their values in S,

D (A,B) = E [d (A,B)] , A,B 2 H,

is a p.q.-metric on H. This follows from the fact that expectation E preserves
inequalities and equalities identically satisfied for all possible realizations of the
arguments. Another example: given any family of p.q.-metrics {d

�

: � 2 ⌥}, their
average with respect to a random variable U with a probability measure m,

d (A,B) =

ˆ
�2⌥

d
�

(A,B) dm (�) ,

is a p.q.-metric. As a special case, consider a classification distance with binary
partitions: the domain V

!

of every H
!

in H is partitioned into two (measurable)
subsets, W (1)

!,�

and W
(2)
!,�

. Making these partitions random, i.e., allowing the index
� to randomly vary in any way whatsoever, we get a new p.q.-metric. In the special
case when all random variables in H take their values in the set of real numbers and
W

(1)
!,�

is defined by z  � (z 2 V
!

⇢ R, � 2R), the randomization of the partitions
reduces to that of the separation point �. The p.q.-metric then becomes

d
S

(A,B) = Pr [A  U < B] ,

where U is some random variable. An additively symmetrized (i.e., pseudometric)
version of this p.q.-metric, d

S

(A,B) + d
S

(B,A), was introduced in [20, 21] under
the name “separation (pseudo)metric” and shown to be a conventional metric if U
is chosen stochastically independent of all random variables in H.
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