
Probabilistic Contextuality

in EPR/Bohm-type Systems with Signaling

Allowed

Janne V. Kujala
University of Jyväskylä
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Abstract

In this chapter, we review a principled way of defining and measuring
contextuality in systems with deterministic inputs and random outputs,
recently proposed and developed in (Kujala et al., 2015; Dzhafarov et al.,
2015). We illustrate it on systems with two binary inputs and two bi-
nary random outputs, the prominent example being the system of two
entangled spin-half particles with each particle’s spins (random outputs)
being measured along one of two directions (inputs). It is traditional to
say that such a system exhibits contextuality when it violates Bell-type
inequalities. Derivations of Bell-type inequalities, however, are based on
the assumption of no-signaling, more generally referred to as marginal
selectivity: the distributions of outputs (spins) in Alice’s particle do not
depend on the inputs (directions chosen) for Bob’s particle. In many ap-
plications this assumption is not satisfied, so that instead of contextuality
one has to speak of direct cross-influences, e.g., of Bob’s settings on Al-
ice’s spin distributions. While in quantum physics direct cross-influences
can sometimes be prevented (e.g., by space-like separation of the two
particles), in other applications, especially in behavioral and social sys-
tems, marginal selectivity almost never holds. It is unsatisfying that the
highly meaningful notion of contextuality is made inapplicable by even
slightest violations of marginal selectivity. The new approach rectifies
this: it allows one to define and measure contextuality on top of direct
cross-influences, irrespective of whether marginal selectivity (no-signaling
condition) holds. For systems with two binary inputs and two binary
random outputs, contextuality means violation of the classical CHSH in-
equalities in which the upper bound 2 is replaced with 2(1 + ∆0), where
∆0 is a measure of deviation from marginal selectivity.

1 Introduction

In the foundations of quantum physics the notion of contextuality can be for-
mulated in purely probabilistic terms within the framework of the Kolmogoro-
vian probability theory (Larsson, 2002; Khrennikov, 2008a,b; Dzhafarov and
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Kujala, 2013a, 2014e,b,c, 2015, 2014a; Dzhafarov, Kujala and Larsson, 2015).
The notion applies to any system of random variables recorded under different
(mutually incompatible) conditions. Contextuality means that these random
variables cannot be “sewn together” into a single system of jointly distributed
random variables if one assumes that all or some of them preserve their identity
across different conditions. Within the Kolmogorovian framework the existence
of this single joint distribution is equivalent to the presentability of all random
variables involved as functions of one and the same (“hidden”) random variable
(Suppes and Zanotti, 1981; Fine, 1982; Dzhafarov and Kujala, 2010).

In spite of its long history (dating from Specker’s (1960) example with three
boxes, contextuality does not have a standard definition (Kochen and Specker,
1967; Laudisa, 1997; Spekkens, 2008; Kirchmair et al., 2009; Badzia̧g et al.,
2009; Khrennikov, 2009; Cabello, 2013), and is often confounded with such
notions as nonlocality and lack of realism (the notions we will not get into in
this chapter). All authors who use this term in quantum theory, however, agree
on the possibility of detecting contextuality in the spins of entangled particles
by violations of Bell-type inequalities (Fine, 1982; Bell, 1964; Clauser et al.,
1969). Many other tests have been developed for systems of random variables
in and outside quantum physics, notably in psychology (Kujala and Dzhafarov,
2008; Dzhafarov and Kujala, 2012b,a, 2013b). All of these tests are necessary
(sometimes also sufficient) conditions for non-contextuality, because of which
all of them presuppose or are directly making use of the condition known in
psychology as marginal selectivity (Townsend and Schweickert, 1989; Dzhafarov,
2003) and in quantum physics as no-signaling (Cereceda, 2000; Masanes et al.,
2006; Oas et al., 2014). In this chapter we use the first term, as more general
and purely probabilistic (see Section 7).1 If marginal selectivity is violated, no
“sewing together” of the kind mentioned above is possible.

The problem associated with this fact is that in some cases (including all
cases known to us in psychology) violations of marginal selectivity can be readily
attributed to the lack of selectivity in the dependence of random variables on
various components of the conditions under which they are recorded. If a person
is asked to judge brightness and size of a visually presented object, it is not
difficult to construct a model in which the judgment of brightness is directly
influenced by physical intensity and also directly influenced by object’s physical
size. In the EPR/Bohm paradigm, if the two measurements of spins in entangled
particles are separated by a time-like interval, the spatial axis chosen by Bob
(for one of the particles) can in principle initiate a process that will directly
influence the spin recorded by Alice (for another particle). We will refer to the
dependence of an output distribution on the “wrong” input as a direct cross-
influence. The Bell-type inequalities (e.g., in the CHSH form, Clauser et al.,
1969) cannot be derived under direct cross-influences, and whether or not they
are violated therefore becomes irrelevant.

It seems strange and intellectually unsatisfying, however, that we can detect

1Within our most recent publications developing the theory, this property is also referred
to by the technical name consistent connectedness.
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contextuality when marginal selectivity holds precisely, but we cannot speak
of contextuality at all when it is violated, however slightly. In this chapter
we review (in the context of systems with binary inputs and binary random
variables as outputs) a recently proposed definition and measure of contextuality
(Kujala et al., 2015; Dzhafarov et al., 2015) that overcome this difficulty: even
in the presence of direct cross-influences (say, from Bob’s setting to Alice’s
measurements and vice versa) we can detect the presence and compute the
degree of contextual influences “on top of” the direct cross-influences. The
theory can be generalized to arbitrary systems with deterministic inputs and
random outputs, but we do not attempt to present it here. We have made an
effort to keep the presentation on a very nontechnical level. This level would be
difficult to maintain in a more systematical or more general presentation.

2 The System (α, β,A,B)

Consider a system with two binary inputs, α, β, and two outputs that are binary
random variables, A,B. Alice chooses the value of α to be either α1 or α2, and
she records the corresponding value of A as either +1 or −1. Bob chooses the
value of β to be either β1 or β2, and he records the value of B as either +1 or
−1. Alice and Bob do this repeatedly in successive trials, so that each input
choice and output recording by Alice is paired with an input choice and output
recording by Bob. They send their paired choices of inputs and recordings of
the outputs to Charlie, who creates four tables of joint distributions: for every
i ∈ {1, 2} and j ∈ {1, 2}, the distribution is

φ = (αi, βj) Bij = +1 Bij = −1
Aij = +1 Pr [Aij = 1, Bij = 1] . . . Pr [Aij = 1]
Aij = −1 . . . . . . . . .

Pr [Bij = 1] . . .

(1)

Charlie knows that the only variables that can possibly influence A are α and β,
so he labels A recorded under conditions φ = (αi, βj) as Aij , allowing thereby
Aij to have up to four different distributions. Each of these distributions can
be represented by Pr [Aij = 1], or equivalently by the expected value 〈Aij〉 =
2 Pr [Aij = 1] − 1. The notation Bij for Bob, and the values Pr [Bij = 1] and
〈Bij〉 are analogous.

Charlie thus deals with eight random variables,

A11, B11, A12, B12, A21, B21, A22, B22. (2)

With respect to the joint distribution of Aij and Bij , their individual distri-
butions are referred to as marginal. The joint distribution for (Aij , Bij) is
uniquely determined by the two marginal probabilities and the joint probability
Pr [Aij = +1 and Bij = +1]. Equivalently, it is determined by the two expected
values 〈Aij〉 , 〈Bij〉 and the product expected value

〈AijBij〉 = Pr [Aij = Bij ]− Pr [Aij 6= Bij ] . (3)

3



3 Selectivity of influences and marginal selectiv-
ity

Let us assume that Charlie, based on some theory, expects that the dependence
of A,B on α, β is selective: Bob’s choice of β value does not influence Alice’s A
and vice versa:

α

��

β

��
A B

(4)

This means that Ai1 and Ai2 are one and the same random variable for every i ∈
{1, 2}, and so are B1j and B2j for every j ∈ {1, 2}. Charlie can therefore relabel
Aij into Ai and Bij into Bj . But he can also approach this in a more cautious
way. He can retain the double indexation and ask the following question: given
the eight random variables in (2) of which we know the expectations

(〈AijBij〉 , 〈Aij〉 , 〈Bij〉) , i, j ∈ {1, 2} , (5)

can we impose a joint distribution on these eight random variables2 such that

Pr [Ai1 6= Ai2] = 0 for i ∈ {1, 2}
Pr [B1j 6= B2j ] = 0 for j ∈ {1, 2} ? (6)

If the answer is affirmative, then the situation is equivalent to the existence of
a joint distribution of the single-indexed A1, B1, A2, B2 such that

(〈AiBj〉 , 〈Ai〉 , 〈Bj〉) = (〈AijBij〉 , 〈Aij〉 , 〈Bij〉) , i, j ∈ {1, 2} . (7)

However, and this is the reason we call Charlie’s approach cautious, the
answer does not have to be affirmative. One situation that precludes this is if
the following equalities are violated at least for one i or one j:

〈Ai1〉 = 〈Ai2〉 , 〈B1j〉 = 〈B2j〉 . (8)

These equalities represent marginal selectivity of A with respect to changes
in β and of B with respect to changes in α. This marginal selectivity is an
obvious consequence of (6). If, e.g., 〈A11〉 were different from 〈A12〉, then, as
Bob changes the value of β from β1 to β2, Alice’s distribution of A for one and
the same choice of α = α1 changes. A11and A12 cannot therefore be always
equal, contravening (6).

2To impose a joint distribution on (2) means to create a vector of jointly distributed A′
11,

B′
11, . . ., A′

22, B′
22 called a coupling for (2), such that the pairs

(
A′

ij , B
′
ij

)
have the same

distributions as (Aij , Bij) for all i, j ∈ {1, 2}. No other subset of (2) has a joint distribution.
In this chapter we conveniently confuse random variables and their primed counterparts. See
(Dzhafarov and Kujala, 2013a, 2014e,b,c, 2015, 2010, forthcoming) for detailed discussions.
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In situations like this Charlie is forced then to revise his model (4) in favor
of

α

�� ��

β

����
A B

. (9)

This can be referred to as a model with direct cross-influences: the distribution
(hence also identity) of the outputs is allows to be influenced by “wrong” inputs
(“wrong” from the point of view of the Charlie’s original theory3).

4 Contextuality under marginal selectivity

There is also another possibility for Charlie’s question to have a negative an-
swer. The marginal selectivity requirement may very well be satisfied, but the
observed expectations (5) may be incompatible with the hypothesis (6). The
incompatibility means that a joint distribution of the eight random variables
(2) that accords with both (5) and (6) does not exist. This understanding of
contextuality was first utilized by Larsson (2002). It helps to understand the
essence of all Bell-type theorems. Stated in the form convenient for our pur-
poses, the theorem that applies to all systems with two binary inputs and two
binary random outputs Fine (1982) says:

Theorem 4.1 (Fine, 1982). The observed expectations (5) are compatible with
the identity connections (6) if and only if marginal selectivity (8) is satisfied for
all i, j ∈ {1, 2}, and

max
i,j∈{1,2}

|〈A11B11〉+ 〈A12B12〉+ 〈A21B21〉+ 〈A22B22〉 − 2 〈AijBij〉| ≤ 2. (10)

The term “connections” used in this formulation (Dzhafarov and Kujala,
2013a, 2014e,b,c) refers to the unobservable pairs

(A11, A12) , (A21, A22) , (B11, B21) , (B12, B22) . (11)

3This is the “subjective”, or theory-laden aspect of the notion of contextuality: this notion
acquires its meaning only in relation to some model, in this case represented by (4), that
describes the system the way it “ought to be” or predicted to be by some theory. We will
not elaborate, but this accords with our view (Dzhafarov and Kujala, 2014a) that while
probabilities are objective, the identities of random variables are theory-laden.
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Their unobservable joint distributions are given by

Ai2 = +1 Ai2 = −1
Ai1 = +1 Pr [Ai1 = 1, Ai2 = 1] . . . Pr [Ai1 = 1]
Ai1 = −1 . . . . . . . . .

Pr [Ai2 = 1] . . .

B2j = +1 B2j = −1
B1j = +1 Pr [B1j = 1, B2j = 1] . . . Pr [B1j = 1]
B1j = −1 . . . . . . . . .

Pr [B2j = 1] . . .

(12)

for i, j ∈ {1, 2}. If (6) holds, i.e., the entries on the minor diagonals of the tables
are zero, then the connections are called the identity ones.

The compatibility of connections with the observed expectations (uniquely
defining the observed distributions) means that each of the 28 possible combi-
nations

A11 = ±1, B11 = ±1, . . . , A22 = ±1, B22 = ±1

is assigned a probability, so that the probabilities for all combinations contain-
ing, say, A12 = 1 and B12 = −1 sum to the observed Pr [A12 = 1, B12 = −1];
and the probabilities for all combinations containing, say, B12 = 1 and B22 = 1
equals the hypothetical (unobservable) connection probability Pr [B12 = 1, B22 = 1].

The inequalities (10), in physics referred to as CHSH inequalities, can be
violated, and they are de facto violated if A and B are spins of two entangled
particles under certain choices of spatial axes (α and β) along which they are
measured (Aspect et al., 1981, 1982; Weihs et al., 1998). When these inequali-
ties are violated while marginal selectivity is satisfied, we speak of contextuality:
Alice’s output A under her choice of α1 does not change its distribution depend-
ing on Bob’s choice of β1 or β2, but A11 and A12 still cannot be considered one
and the same random variable (it should not come as a surprise that different
random variables can have the same distribution).

In the diagram below the interrupted lines indicate contextual influences:
the dependence of identities of identically distributed random variables on the
“wrong” inputs:

α

�� ��

β

����
A B

(13)

When the inequalities (10) are violated, a measure of contextuality can be easily
designed as follows. If (6) were compatible with the observed expectations (5),
then (by definition) Charlie could construct a joint distribution of the random
variables (2) in which

∆ = Pr [A11 6= A12] + Pr [A21 6= A22] + Pr [B11 6= B21] + Pr [B12 6= B22] (14)
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equals zero. If (6) is incompatible with (5), then this ∆ cannot be zero in any
joint distribution imposed on (2). It is natural therefore to adopt the following

Definition 4.2. Under marginal selectivity, the degree of contextuality in a
system with given observed expectations (5) is the minimal value of ∆ in (14)
for which a joint distribution for (2) exists.

As it turns out, this minimal value of ∆ equals

∆min = max {0,∆CHSH} , (15)

where

∆CHSH =
1
2 max
i,j∈{1,2}

|〈A11B11〉+ 〈A12B12〉+ 〈A21B21〉+ 〈A22B22〉 − 2 〈AijBij〉| − 1 (16)

is (1/2 times) the violation of the CHSH inequalities. This is a special case of
the formula derived later in Theorem 6.1 without the assumption of marginal
selectivity.

As an example, let the observed expectations be at the Tsirelson bounds
(Tsirelson, 1980; Landau, 1987). Then ∆min is

√
2 − 1. The largest possible

value of ∆min is 1.

5 Contextuality on top of direct cross-influences

The definition of contextuality given above does not work for the situation
depicted in (9), where marginal selectivity is not satisfied. In this case we have
direct cross-influences from “wrong” inputs, and this precludes the possibility
that ∆ in (14) is zero. In fact, we have the simple

Theorem 5.1. Given the observed expectations (〈Aij〉 , 〈Bij〉)i,j∈{1,2}, the min-

imum possible value for ∆ in (14) is

∆0 = 1
2 ( |〈A11〉 − 〈A12〉|+ |〈A21〉 − 〈A22〉|+
|〈B11〉 − 〈B21〉|+ |〈B12〉 − 〈B22〉|).

(17)

Proof. We minimize ∆ if we minimize separately Pr [A11 6= A12], Pr [A21 6= A22],
Pr [B11 6= B21], and Pr [B12 6= B22]. Consider, e.g., the distribution of the con-
nection (A11, A12):

A12 = +1 A12 = −1
A11 = +1 Pr [A11 = 1, A12 = 1] Pr [A11 = 1]− Pr [A11 = 1, A12 = 1]
A11 = −1 Pr [A12 = 1]− Pr [A11 = 1, A12 = 1] . . .

(18)
The largest possible value for the probability Pr [A11 = 1, A12 = 1] is

min {Pr [A11 = 1] ,Pr [A12 = 1]} ,

whence the minimum of Pr [A11 6= A12], which is the sum of the entries on the
minor diagonal, is |Pr [A11 = 1]− Pr [A12 = 1]| = 1

2 |〈A11〉 − 〈A12〉|.
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Under the marginal selectivity we have ∆0 = 0, and we speak of contextuality
if the minimal value of ∆ that is compatible with the observed expectations (5)
is greater than ∆0 = 0. In the general case ∆0 > 0, and we need a more general
definition of contextuality. The idea is simple. If ∆0 > 0, we have direct cross-
influences (9), and if ∆ = ∆0 is compatible with the observed expectations
(5), then no contextuality is involved: direct cross-influences is all one needs to
account for the system’s behavior. If however ∆ = ∆0 is not compatible with
the observed expectations (5), then we can speak of contextuality “on top of”
the direct cross-influences. The natural measure of the degree of contextuality
then is given by

Definition 5.2. The degree of contextuality in a system with given observed
expectations (5) is ∆min−∆0, where ∆min is the minimal value of ∆ in (14) for
which a joint distribution for (2) exists.

6 General formula for contextuality

We now need to derive a formula for ∆min of which (15) is a special case.

Theorem 6.1. The minimum possible value ∆min for ∆ that is compatible with
the observed expectations (5) is

∆min = max {∆0,∆CHSH} , (19)

where ∆0 is given in (17) and ∆CHSH in (16).

Proof. By Lemma 8.2 (a computer-assisted result detailed in the next section),
∆ is compatible with the observed (〈AijBij〉 , 〈Aij〉 , 〈Bij〉)i,j∈{1,2} if and only if

it satisfies

∆ ≥ −1 + 1
2s1 (〈A11B11〉 , 〈A12B12〉 , 〈A21B21〉 , 〈A22B22〉) , (20)

∆ ≥ 1
2 (|〈A11〉 − 〈A12〉|+ |〈A21〉 − 〈A22〉|+
|〈B11〉 − 〈B21〉|+ |〈B12〉 − 〈B22〉|),

(21)

∆ ≤ 4−
[
−1 + 1

2s1 (〈A11B11〉 , 〈A12B12〉 , 〈A21B21〉 , 〈A22B22〉)
]
, (22)

∆ ≤ 4− 1
2 (|〈A11〉+ 〈A12〉|+ |〈A21〉+ 〈A22〉|+
|〈B11〉+ 〈B21〉|+ |〈B12〉+ 〈B22〉|),

(23)

where s1(· · · ) is defined in (39) in Sec. 8 below and is equal to the max |. . .|-part
of (16). These inequalities are always mutually compatible, whence ∆min is the
larger of the two right-hand expressions in (20) and (21).

It follows that ∆min −∆0 is always nonnegative, and Definition 5.2 is well-
constructed: ∆min−∆0 = 0 indicates no contextuality, ∆min−∆0 > 0 indicates
contextuality on top of the direct cross-influences.

We can present the notion of (non-)contextuality in as close a form as possible
to the traditional CHSH inequalities:
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Theorem 6.2. The system exhibits no contextuality if and only if

|〈A11B11〉+ 〈A12B12〉+ 〈A21B21〉 − 〈A22B22〉| ≤ 2 (1 + ∆0) ,

|〈A11B11〉+ 〈A12B12〉 − 〈A21B21〉+ 〈A22B22〉| ≤ 2 (1 + ∆0) ,

|〈A11B11〉 − 〈A12B12〉+ 〈A21B21〉+ 〈A22B22〉| ≤ 2 (1 + ∆0) ,

|− 〈A11B11〉+ 〈A12B12〉+ 〈A21B21〉+ 〈A22B22〉| ≤ 2 (1 + ∆0) ,

(24)

where ∆0 is the natural measure of violation of marginal selectivity, (17). If at
least one of these inequalities is violated, then the largest difference between the
left-hand side and 2 (1 + ∆0) is the degree of contextuality (after scaling by 1/2).

The maximum value attainable by one of the linear combinations in (24)
is 4. It follows that the system exhibits no contextuality if the violation of
marginal selectivity ∆0 in it is not less than 1. Put differently, if ∆0 ≥ 1, any
observed distributions of random variables can be accounted for in terms of
direct cross-influences, with no contextuality involved.

7 Consequences of the new definition of contex-
tuality

The notion of contextuality was presented in Introduction to mean that random
variables recorded under mutually incompatible conditions cannot be “sewn
together” into a single system of jointly distributed random variables, provided
one assumes that all or some of them preserve their identity across different
conditions. We should now relax the assumption clause:

contextuality means that random variables recorded under mutually
incompatible conditions cannot be “sewn together” into a single sys-
tem of jointly distributed random variables, provided one assumes
that their identity across different conditions changes as little as
possibly allowed by direct cross-influences (equivalently, by observed
deviations from marginal selectivity).

As mentioned in Introduction, marginal selectivity is rarely satisfied outside
quantum physics, and, in particular, is almost always violated in psychological
experiments. Consider, e.g., a double-detection experiment, where a participant
is presented two side-by-side flashes of light (left and right) and asked to say
“Yes/No” to the question “Is there a flash on the left?” and another “Yes/No”
to the question “Is there a flash on the right?”. Each flash can be presented
at two intensity levels: zero (no flash) and some very small value s > 0. We
have therefore four conditions: (0, 0) , (0, s) , (s, 0) ,(s, s). Denoting the response
about the left stimulus by A and he response about the right stimulus by B,
we get the eight random variables A00, B00, . . . , Ass, Bss. The situation is for-
mally identical to the Alice-Bob paradigm. The “normative” diagram (4), with
α, β being the two flash intensities, is very likely to be violated on the level of
marginal probabilities: the answer about the left flash will almost certainly be
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influenced by the intensity of the right flash, and vice versa. Our definition of
contextuality, however, allows one to determine whether contextuality is there
on top of these direct cross-influences.

Another example is taken from the work by Aerts et al. (2013). They esti-
mated the probabilities with which people chose one of two presented to them
animal names and one of two presented to them animal sounds. The results
were as follows:

Probability estimates from Table 1 of (Aerts et al., 2013). †

φ = (α1, β1)
B11 = B11 =

φ = (α1, β2)
B12 = B12 =

Growls Whinnies Snorts Meows
A11 = Horse .049 .630 .679 A12 = Horse .593 .025 .618
A11 = Bear .259 .062 .321 A12 = Bear .296 .086 .382

.308 .692 .889 .111

φ = (α2, β1)
B21 = B21 =

φ = (α2, β2)
B22 = B22 =

Growls Whinnies Snorts Meows
A21 = Tiger .778 .086 .864 A22 = Tiger .148 .086 .234
A21 = Cat .086 .049 .135 A22 = Cat .099 .667 .766

.864 .135 .247 .753

† Based on 81 respondents per table.

Here, α indicates one of the two animal dichotomies offered (α1 = Horse or Bear,
α2 = Tiger or Cat), and β analogously indicates one of two animal sound di-
chotomies. The value of ∆CHSH given by (16) equals 0.210 here, and Aerts et
al. report it as evidence in favor of contextuality (note that the CHSH bound
of 2 corresponds to ∆CHSH = 0). We criticized this conclusion (Dzhafarov and
Kujala, 2014d) by pointing out that the derivation of the CHSH inequalities is
not valid without marginal selectivity, and the latter is clearly violated in the
data: e.g., Pr [B12 = Snorts] = 0.889 while Pr [B22 = Snorts] = 0.247.

We can now amend our criticism: the computation of ∆CHSH is meaning-
ful even if marginal selectivity is contravened. One has, however, to compare
∆CHSH to ∆0 of (17) rather than to zero, and to compute max {∆0,∆CHSH}−∆0

as the measure of contextuality. Unfortunately for the Aerts et al.’s conclusions,
∆0 in their data is too large (1.889) to allow for nonzero contextuality.

In quantum physics, the no-signaling condition (a special case of marginal
selectivity) can be ensured by separating the outputs from the “wrong” inputs by
space-like intervals. There are, however, some indications that in the well-known
experiments by Weihs et al. (1998), where space-like separation is claimed to
be the case, some violations of marginal selectivity were observed (Adenier and
Khrennikov, 2007). If so, and whatever the physical cause of these violations,
our new approach provides a way of testing whether contextuality is still present
in the data.
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Signaling is natural to assume in Leggett–Garg (1985) -type systems, with
three binary random variables X,Y, Z tied to three successive moments of time,
t1 < t2 < t3. Any two of these three random variables can be measured to-
gether, in one experiment, but not all three of them. If X and Z are measured
together, then (in accordance with our general approach, see Dzhafarov and
Kujala, 2014e,b,c, 2015, 2014a) the identity of X as a random variable may be
different from the identity of X when measured together with Y . This means
that X in the two situations should be labelled differently, say, X13 and X12,
respectively (based on the time moments involved). Analogously, we have Y12
and Y23 depending on whether Y is measured together with X or with Z; and
we have Z13 and Z23.

Suppes and Zanotti (1981) have shown that given uniform marginals, an
equivalent condition for the existence of a joint distribution of

X12, X13, Y12, Y23, Z13, Z23 (25)

under the constraint X12 = X13, Y12 = Y23, Z13 = Z23 is

−1 ≤ 〈X12Y12〉+ 〈Y23Z23〉+ 〈X13Z13〉
≤ 1 + 2 max {〈X12Y12〉 , 〈Y23Z23〉 , 〈X13Z13〉} .

(26)

As a side product of our analysis, we show that this inequality in fact holds for
arbitrary marginals as well and we generalize the inequalities to the signaling
case.

Theorem 7.1. The minimum possible value ∆′min for

∆′ = Pr [X12 6= X13] + Pr [Y12 6= Y23] + Pr [Z13 6= Z23] (27)

that is compatible with the observed expectations

〈X12Y12〉 , 〈X13Z13〉 , 〈Y23Z23〉 , 〈X12〉 , 〈X13〉 , 〈Y12〉 , 〈Y23〉 , 〈Z13〉 , 〈Z23〉
(28)

is
∆′min = max {∆′0,∆′SZ} , (29)

where

∆′0 =
1

2
(|〈X12〉 − 〈X13〉|+ |〈Y12〉 − 〈Y23〉|+ |〈Z13〉 − 〈Z23〉|) (30)

is the natural measure of the violation of marginal selectivity and

∆′SZ = − 1
2 + 1

2 max
{
〈X12Y12〉+ 〈X13Z13〉 − 〈Y23Z23〉 ,
〈X12Y12〉 − 〈X13Z13〉+ 〈Y23Z23〉 ,
−〈X12Y12〉+ 〈X13Z13〉+ 〈Y23Z23〉 ,
−〈X12Y12〉 − 〈X13Z13〉 − 〈Y23Z23〉

} (31)

is (1/2 times) the maximum violation of the Suppes–Zanotti inequalities (26).
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Proof. By Lemma 8.5 of the next section, ∆′ is compatible with the observed
expectations (28) if and only if it satisfies

∆′ ≥ − 1
2 + 1

2s1 (〈X12Y12〉 , 〈Y23Z23〉 , 〈X13Z13〉) , (32)

∆′ ≥ 1
2 (|〈X12〉 − 〈X13〉|+ |〈Y12〉 − 〈Y23〉|+ |〈Z13〉 − 〈Z23〉|) , (33)

∆′ ≤ 3−
[
− 1

2 −
1
2s1 (〈X12Y12〉 , 〈Y23Z23〉 , 〈X13Z13〉)

]
, (34)

∆′ ≤ 3− 1
2 (|〈X12〉+ 〈X13〉|+ |〈Y12〉+ 〈Y23〉|+ |〈Z13〉+ 〈Z23〉|) . (35)

These inequalities are always mutually compatible, whence ∆′min is the larger
of the two right-hand expressions in (32) and (33).

Definition 7.2. The degree of contextuality in a system with given observed
expectations (28) is ∆′min −∆′0, where ∆′min is the minimal value of ∆′ in (27)
for which a joint distribution for (25) exists.

Using essentially the same reasoning as for the EPR/Bohm paradigm, we
come to the following

Theorem 7.3. A Leggett–Garg-type systems exhibits no contextuality if and
only if

〈X12Y12〉+ 〈Y23Z23〉 − 〈X13Z13〉 ≤ 1 + 2∆′0,

〈X12Y12〉 − 〈Y23Z23〉+ 〈X13Z13〉 ≤ 1 + 2∆′0,

−〈X12Y12〉+ 〈Y23Z23〉+ 〈X13Z13〉 ≤ 1 + 2∆′0,

−〈X12Y12〉 − 〈Y23Z23〉 − 〈X13Z13〉 ≤ 1 + 2∆′0.

(36)

The largest in absolute value breach of one of these boundaries then can be taken
as a measure of contextuality.

Inequalities (36) can also be equivalently rewritten closer to the Suppes–
Zanotti (1981) formulation:

−1− 2∆′0 ≤ 〈X12Y12〉+ 〈Y23Z23〉+ 〈X13Z13〉
≤ 1 + 2∆′0 + 2 max {〈X12Y12〉 , 〈Y23Z23〉 , 〈X13Z13〉} .

(37)

8 Technical details

In this section, we give the technical details of the computer-assisted results
used above. Refer to Fig. 1 for a graphical representation of the connections
and observed pairs of random variables in the system.4

4Based on our most recent theoretical results (Kujala et al., 2015; Kujala and Dzhafarov,
2015), the computer-assisted proofs for the systems considered here can in fact be obtained
analytically as well. However, the principles of computer-assisted proof laid out here are
applicable in systems that are not covered by the analytical results.
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Lemma 8.1. The necessary and sufficient condition for the connection expec-
tations (〈Ai1Ai2〉 , 〈B1jB2j〉)i,j∈{1,2} to be compatible with the observed expecta-
tions

(〈AijBij〉 , 〈Aij〉 , 〈Bij〉)i,j∈{1,2}
is

s0 (〈A11B11〉 , 〈A12B12〉 , 〈A21B21〉 , 〈A22B22〉)
≤ 6− s1 (〈A11A12〉 , 〈B11B21〉 , 〈A21A22〉 , 〈B12B22〉) ,

s1 (〈A11B11〉 , 〈A12B12〉 , 〈A21B21〉 , 〈A22B22〉)
≤ 6− s0 (〈A11A12〉 , 〈B11B21〉 , 〈A21A22〉 , 〈B12B22〉) ,

(38)

where

s0 (a, b, c, d) = max {(±a± b± c± d) : the number of minuses is even} ,
s1 (a, b, c, d) = max {(±a± b± c± d) : the number of minuses is odd} .

(39)

Proof. The joint distribution of the eight random variables

A11, B11, A12, B12, A21, B21, A22, B22

is fully described by the vector q ∈ [0, 1]n, q1 + · · · + qn = 1, consisting of the
probabilities of the n = 28 = 256 different combinations of the values of the
eight random variables. We then define a vector p ∈ [0, 1]m, m = 32, consisting
of the 16 observable probabilities Pr[Aij = a, Bij = b] for a, b ∈ {−1, 1},
i, j ∈ {1, 2} and the 16 connection probabilities given by Pr[Ai1 = a, Ai2 = a′]
and Pr[B1j = b, B2j = b′] for a, a′, b, b′ ∈ {−1, 1} and i, j ∈ {1, 2}. As every
element of p is a (2-)marginal probability of the joint represented by q, there
exists a binary marix M ∈ {0, 1}m×n such that

p = Mq. (40)

It follows that the observable probabilities p1, . . . , p16 are compatible with the
connection probabilities p17, . . . , p32 if and only if there exists an n-vector q ≥ 0
such that (40) holds. As described in (Dzhafarov and Kujala, 2013a, Text S3),
the set of vectors p satisfying this constraint forms a polytope whose vertices
are given by the columns of M and whose half space representation can be
obtained by a facet enumeration algorithm. As also described in (Dzhafarov
and Kujala, 2013a), this halfspace representation consists of 160 inequalities and
16 equations in p1, . . . , p32. The 16 equations correspond to the requirement
that the 1-marginals of the observable probabilities agree with those of the
connections and that the observable probabilities are properly normalized.

Expressing the probabilities in the vector p in terms of the observable
and connection expectations (〈AijBij〉 , 〈Aij〉 , 〈Bij〉 , 〈Ai1Ai2〉 , 〈B1jB2j〉), i, j ∈
{1, 2}, the 16 equations become identically true (the parameterization already
guarantees them), and of the 160 inequalities, 128 turn into exactly those rep-
resented by (38) and the remaining 32 are trivial constraints of the form

−1 + | 〈A〉+ 〈B〉 | ≤ 〈AB〉 ≤ 1− | 〈A〉 − 〈B〉 | (41)
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for the 8 pairs of random variables involved in (38). The trivial constraints cor-
respond to the implicit requirement that the observable and connection prob-
abilities are nonnegative and thus they need not be explicitly shown in the
statement of the theorem.

This proof is different from the similar result in (Dzhafarov and Kujala,
2013a) in that the parameterization for the probabilities in p is more general
(allowing for arbitrary marginals of the eight random variables) and so we obtain
a more general condition for the compatibility of observable and connection
probabilities than before. It should be noted that although the expectations
〈Aij〉 , 〈Bij〉, i, j ∈ {1, 2} do not explicitly appear in (38), they are still present
in the 32 implicit constraints.

Lemma 8.2. If the connection expectations (〈Ai1Ai2〉 , 〈B1jB2j〉)i,j∈{1,2} are

compatible with the observed expectations (〈AijBij〉 , 〈Aij〉 , 〈Bij〉)i,j∈{1,2}, then,

with ∆ defined as in (14),

∆ ≥ −1 + 1
2s1 (〈A11B11〉 , 〈A12B12〉 , 〈A21B21〉 , 〈A22B22〉) ,

∆ ≥ 1
2 (|〈A11〉 − 〈A12〉|+ |〈A21〉 − 〈A22〉|+
|〈B11〉 − 〈B21〉|+ |〈B12〉 − 〈B22〉|),

∆ ≤ 4−
[
−1 + 1

2s1 (〈A11B11〉 , 〈A12B12〉 , 〈A21B21〉 , 〈A22B22〉)
]
,

∆ ≤ 4− 1
2 (|〈A11〉+ 〈A12〉|+ |〈A21〉+ 〈A22〉|+
|〈B11〉+ 〈B21〉|+ |〈B12〉+ 〈B22〉|).

(42)

Conversely, if these inequalities are satisfied for a given value of ∆, then the con-
nection expectations (〈Ai1Ai2〉 , 〈B1jB2j〉)i,j∈{1,2} can always be chosen so that

they are compatible with the observable expectations (〈AijBij〉 , 〈Aij〉 , 〈Bij〉)i,j∈{1,2}
and yield the given value of ∆ in (14).

Proof. Given the 160 inequalities (including the 32 implicit inequalities) of
Lemma 8.1 characterizing the compatibility of the connection expectations with
the observable expectations, we amend this linear system with the equation (14)
defining ∆ written in terms of the expectations

(〈Ai1Ai2〉 , 〈B1jB2j〉 , 〈Aij〉 , 〈Bij〉)i,j∈{1,2} .

Then, we use this equation to eliminate one of the connection expectation vari-
ables (〈Ai1Ai2〉 , 〈B1jB2j〉)i,j∈{1,2} from the system (by solving the variable from

the equation and then substituting the solution everywhere else). After that, we
eliminate the three remaining connection expectation variables one by one us-
ing the Fourier–Motzkin elimination algorithm (see Theorem 8.3 below). After
the elimination of each variable, we remove any redundant inequalities from the
system by linear programming using the algorithm described in (Dzhafarov and
Kujala, 2013a, Text S3). After having eliminated all connection expectation
variables, we are left with the system (42) (and implicit constraints of the form

14



A12

��

// B12
//oo B22

oo // A22

��

oo

A11

OO

// B11
//oo B21

oo // A21

OO

oo

(Bell-system)

Y12

""

// X12
//oo X13

oo // Z13

||

oo

Y23

bb

// Z23

<<

oo

(LG-system)

Figure 1: Random variables involved in the Bell-system and LG-system. The
pairs of random variables whose joint distributions are empirically observed, e.g.,
(A12, B12) and (X12, Y12), are indicated by solid double-arrows. The pairs of
random variables forming probabilistic connections (with unobservable joint dis-
tributions) are indicated by point double-arrows, e.g., (A11, A12) and (X12, X13).

(41) for the pairs (Aij , Bij), i, j ∈ {1, 2}). The Fourier–Motzkin elimination al-
gorithm guarantees that the resulting system has a solution precisely when the
original system has a solution with some values of the eliminated variables.

Theorem 8.3 (Fourier–Motzkin elimination). Given a system of linear inequal-
ities in the variables x and y =y1, . . . , yn, the system can always be rearranged
in the following form

x ≥ li·y, i = 1, . . . , nl,
x ≤ ui · y, i = 1, . . . , nu,
0 ≤ ni·y, i = 1, . . . , nn,

(43)

where l1, . . . , lnl
,u1, . . . ,unu

,n1, . . . ,nnn
∈ Rn. Furthermore, given y ∈ R, this

system is solved by y and some x ∈ R if and only if the following system is
solved by y:

li · y ≤ uj · y, i = 1, . . . , nl, j = 1, . . . , nu,
0 ≤ ni·y, i = 1, . . . , nn.

(44)

Lemma 8.4. The necessary and sufficient condition for the connection expec-
tations 〈X12X13〉, 〈Y12Y23〉, 〈Z13Z23〉 to be compatible with the observed expec-
tations 〈X12Y12〉, 〈X13Z13〉, 〈Y23Z23〉, 〈X12〉, 〈X13〉, 〈Y12〉, 〈Y23〉, 〈Z13〉, 〈Z23〉
is

s1 (〈X12Y12〉 , 〈X13Z13〉 , 〈Y23Z23〉 , 〈X12X13〉 , 〈Y12Y23〉 , 〈Z13Z23〉) ≤ 4. (45)

where

s1 (a, b, c, d, e, f) = max{ (±a± b± c± d± e± f) :

the number of minuses is odd }.
(46)
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Proof. The details are analogous to those of the proof of Lemma 8.1. The poly-
tope in terms of probabilities is defined by 12 equations and 56 inequalities. The
12 equations correspond to the requirement that the 1-marginals of the observ-
able probabilities agree with those of the connections and that the observable
probabilities are properly normalized. Expressing the probabilities in terms of
the observable and connection expections, the 16 equations become identically
true and of the 56 inequalities, 32 turn into those represented by (46) and the
remaining 24 correspond to the trivial constraints of the form (41) for the 6
pairs of random variables appearing in (46).

Lemma 8.5. If the connection expectations 〈X12X13〉 , 〈Y12Y23〉 , 〈Z13Z23〉 are
compatible with the observed expectations

〈X12Y12〉 , 〈X13Z13〉 , 〈Y23Z23〉 , 〈X12〉 , 〈X13〉 , 〈Y12〉 , 〈Y23〉 , 〈Z13〉 , 〈Z23〉 ,

then, with ∆′ defined as in (27),

∆′ ≥ − 1
2 + 1

2s1 (〈X12Y12〉 , 〈X13Z13〉 , 〈Y23Z23〉) ,
∆′ ≥ 1

2 (|〈X12〉 − 〈X13〉|+ |〈Y12〉 − 〈Y23〉|+ |〈Z13〉 − 〈Z23〉|) ,
∆′ ≤ 3−

[
− 1

2 + 1
2s0 (〈X12Y12〉 , 〈X13Z13〉 , 〈Y23Z23〉)

]
,

∆′ ≤ 3− 1
2 (|〈X12〉+ 〈X13〉|+ |〈Y12〉+ 〈Y23〉|+ |〈Z13〉+ 〈Z23〉|) .

(47)

Conversely, if these inequalities are satisfied for a given value of ∆′, then the
connection expectations 〈X12X13〉 , 〈Y12Y23〉 , 〈Z13Z23〉 can always be chosen so
that they are compatible with the observable expectations

〈X12Y12〉 , 〈X13Z13〉 , 〈Y23Z23〉 , 〈X12〉 , 〈X13〉 , 〈Y12〉 , 〈Y23〉 , 〈Z13〉 , 〈Z23〉

and yield the given value of ∆′ in (27).

Proof. The details are analogous to those of the proof of Lemma (8.2).
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