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Objectives
•Prove a quantum probabilism theorem for
projection-lattice logics P(H) to assess beliefs
about measurement outcomes and beliefs
about unseen objects.

•Apply the theorem to an operational
interpretation of such logics, recovering a
result due to Randall and Foulis.

•Show the coherence of vague-property
semantics for such logics.

•Show a trilemma for eigenstate-value link
semantics.

Generalized Dutch Books

Data for generalized Dutch books:
•A propositional language L
•A set T of (partial) truth valuations T : L→ N

•A set V of (partial) ideal beliefs VT : L→ [0, 1]
•An agent’s actual (partial) beliefs B : L→ [0, 1]
B is Dutch-bookable if there is a finite set {φi} in
the domain of some V ∈ V and stakes si ∈ R such
that for all V ∈ V defined for {φi},

n∑
i=1
si(V (φi)−B(φi)) < 0. (1)

Kühr and Mundici prove the following [1].
Theorem 1. For V pointwise-closed in
[0, 1]L, if A ⊆ [0, 1]L is pointwise-closed and
convex, V ⊆ A and ∂A ⊆ V, then B ∈ [0, 1]L
avoids Dutch books if and only if B ∈ A.
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Figure: An illustration of Theorem 1 for L containing two
propositions φ and ψ.

Proof of the Theorem

A sketch of the proof of QPF:
•By dim(H) <∞, states E on B(H) are normal
states N , and E = N is convex and weakly∗
closed and ∂E = ∂N is weakly∗ closed [2].

•The map from states to the Tychonoff cube
r : E → [0, 1]P(H) :: ω 7→ ω�P(H)

is continuous, linear (convexity-preserving),
injective, and closed.

•Thus r(N ) is convex and pointwise-closed and
r(∂N ) = ∂r(N ) is pointwise-closed; Theorem 1
completes the proof.

The Language P(H)

For φ ∈ P(H), φ = PAα(aα) via spectral theorem:
•Operationalist. φ is

After measurement, the values of {Aα} for
the system lie in {aα}, respectively.

•Classical-realist. φ is
The values of {Aα} for the system lie in
{aα}, respectively.

•Dispositional-realist. φ is
The system is disposed to yield a value of
{Aα} in {aα} upon measurement of {Aα},
respectively.

(QPF) Quantum Probabilism in Finite Dimensions

For finite-dimensional H, if ideal beliefs are restrictions of vector states to the lattice P(H), then Born-rule
beliefs (restrictions of normal states to P(H)) are all and only the total beliefs avoiding Dutch books.

Belief-Fixing Strategy

•Born-fixing. Pick an appropriate B ∈ r(N ).
•Truth-fixing. Pick a convex sum of T ∈ T.

Operationalist Semantics

TO :=

Tη(φ) :=


〈η, φη〉 〈η, φη〉 ∈ {0, 1}
undf. otherwise




for η ∈ H, ||η|| = 1.
Weak truth-fealty. For all T ∈ T:
•T (φ) = T (ψ)⇒ VT (φ) = VT (ψ) or both undf.
• If T (φ) is undf. then VT (φ) is undf.
• If T (φ) is 1 (0) then VT (φ) is 1 (0).

Weak truth-fealty fixes VO.
Coherence of operationalism. Given
Born-fixing, a corollary of QPF yields all
beliefs avoid Dutch books.

This recovers a result due to Randall and Foulis in
the setting of test spaces [3].

Vague-Property Semantics

TV := {Tη(φ) := 〈η, φη〉}

Strong truth-fealty. VT = T for T ∈ T .

Strong truth-fealty fixes VV .
Coherence of vague properties. Given
Born-fixing or truth-fixing and dim(H) <∞,
QPF yields that agents’ beliefs are all and
only those total ones that avoid Dutch books.

E-V Link Semantics

TE :=

Tη(φ) :=


〈η, φη〉 〈η, φη〉 ∈ {0, 1}
2 otherwise




Weak truth-fealty fixes VE for VT (φ) = c when
T (φ) = 2, for either c ∈ [0, 1] or c undefined.

Incoherence of E-V link. Given
Born-fixing and c ∈ [0, 1], a corollary to
Theorem 1 yields that agents’ beliefs are
Dutch-bookable (in the Bohm-EPR case).

E-V Link Trilemma
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Figure: A sketch of the trilemma facing the defender of the
eigenstate-value link; the rightmost leg leaves agents
susceptible to Dutch books.
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